
-~~~~~

AD AOUb ‘51 MARYLAND LRIIV COLLEGE PARK COMPUTER SCIENCE CENTER FIG 1’e/S
HISTOGRAM MODIFICATION FOR THRESHOLD SELECTION. (U)
AUG ‘77 ,J S WESZKA, A ROSENFELD AFOSR —77—3271

UNCLASSIFIED TR—567 AFOSR—TR— 77—128O It



10 2 H  l1~
2 5

________ 
3 J ~

1•1 ~: lllli!1~
• 

~I1Ill12
~ ~~~~~~

NATIONAL BUREAU OF STANDARDS
________________________ ~ G~OGOPY ~(SOLUTIQN TUT GHMT



— 

_i~
_ —

AFOSR TR. 77 -  1280

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

UNWERSITY OF MARYLAND
COLLEGE PARX~ MARYLAND (a,’ D D C

20742 1~Et!fl R~Efl
I U) NOV 15 1917 

~U 1J~ t~U)u U LSL)
0

riD~~LukumnON STATEM~IT A
Appj~~ 4 lot pubUa r.1.o ,~D~IfdbutjO!l Unlimited

- .



• --I-- -
~ 

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_

411 ~~RC1 OPIICE OP SCIENTIPIC MSP.ARCH (kFSC ~
~OTTCE OP TWJSMII’TAL TO DDC
This technic.) report has been re ’1~ wod ~~~~~
n~proved for public re1e~’~ e L’ti A~R i~i~~— 1~~ (~ b) .
!)~stribution is unlimited.
A. D. ~LOSE
?~aaI~iicel 1nforu~ation Off toer

L

- - — - — - _ 1~~ - -



I
I T ~~~~u~ ~~~~

~~~ 
- -

~ 

—

.

_ - ./ ‘~I - I’ // ~/ 
—

TR 567 _ 
~~~~~~~~~~ ~~~~ 

Augwst 1~ 77 — - -

7A~d~R—77—327l 
/

(~~~) Is~ ô~~ MrM~~Tvr~ATr FOR

THRESHOLD SELECTION. .-
~ 

-

- 

Joan S /We~~~~~~ / ‘

Azriel/Rosenfeld~  
-- -

~ö~ti~üter Science Center
University of Maryland
College Park, MD 20742

~~~~~~~~~~~~~~~ ~‘ o~• ‘r : ’i ~~c 1~~~~~ :

i:: i: c :
- -- - — 

f~~~ii~i~ nn r~j -~/ ~: 
~~~~~~~~~ 

t 5 

~~~~~~~~ABSTRACT UULbt~~L~LJ1Ij ]~1J
0

~A standard approach to threshold selection forimage segmentation is based on locating valleys in the
image ’s gray level histogram. Several methods have been
proposed that produce a transformed histogram in which
the valley is deeper, or is converted into a peak, and is
thus easier to detect. The transformed histograms used
in these methods can all be obtained by creating (gray
level, edge value) scatter plots, and computing various
weighted projections of these plots on the gray level
axis. Using this unified approach makes it easier to
understand how the methods work and to predict when a par-
ticular method is likely to be effective. The methods are
applied to a set of examples involving both real and
synthetic images, and the characteristics of the resulting
transformed histograms are discussed.
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1. Introduction

Many types of images contain dark objects on a light

background, or vice versa -— for example, printed characters
on paper, chromosomes on a microscope slide, or clouds above

the sea surface. Such images can be segmented into objects

and background by thresholding -- i.e., by assigning each
image pixel to one of two classes, light and dark, according

to whether its gray level is lighter or darker than a sped-

field threshold t.

Thresholding is a special case of pattern classification

in which a one—dimensional feature space is used, the feature

being the gray level of the pixel. The threshold is a “hyper-

plane” decision surface (i.e., a point) in this one-

dimensional space. If we knew the distribution of gray levels

in the giv~n ensemble of images -- e.g., if we knew that the
gray levels were a mixture of two Gaussian populations with

given means and standard deviations -- then we could determine
analytically the threshold that minimizes the classification

error. In the absence of such knowledge , we can approach the

problem of threshold selection by performing cluster analysis

on the feature space. Suppose that we construct the gray

level histogram of the image (or en semble); this is a plot

showing how often each gray level occurs. A cluster of

feature values is then nothing more than a peak on the histo-

gram, corresponding to a densely populated range of gray

levels. If we find two peaks on the histogram , it is reason-

able to choose a threshold that separates these peaks, e.g.,
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at the bottom of the valley between them, since this threshold

appears to separate the gray level population into two dis-

tinctive subpopulations. Similarly , if there are three or

more peaks, we can segment the image using two or more

thresholds at the intervening valley bottoms. This method of

threshold selection was first described in [1].

Several methods have been proposed that produce a trans-

formed gray level histogram in which the valley is deeper, or

is converted into a peak, and is thus easier to detect. The

transformed histograms used in these methods can all be

obtained by creating a (gray level, edge value) scatter plot

for the given image (ensemble) , and computing various weighted

projections of these plots onto the gray level axis. Using

this unified approach makes it easier to understand how the

methods work, and to predict when a particular method is

likely to be effective.

In Section 2 of this paper we define the class of images

to which these methods should be applicable. Section 3 de-

scribes the methods of producing transformed histograms, and

Section 4 shows how these methods all reduce to constructing

weighted projections of (gray level, edge value) scatter

plots. In Section 5 and 6, the methods are applied to a set

of examples involving both real and synthetic images, and the

characteristics of the resulting transformed histograms are

discussed.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



2. The underly ing image model

We shall assume that the given images consist of objects

on a background, where the objects and background each have a

unimodal gray level population. We further assume that the

gray levels of adjacent points interior to the objects, or

to the background , are highly correlated , while across the

edges at which objects and background meet, adjacent points

di f fer  significantly in gray level.

If an image satisf ies these assumptions, its gray level

histogram will be primarily a mixture of two unimodal histo-

grains corresponding to the object and background populations,

respectively. If the means of these populations are suffi-

ciently far apart, their standard deviations are sufficiently

small, and the populations are comparable in size, then the

image histogram will be bimodal. Otherwise , the histogram

may be unimodal , but one side of the peak may display a

shoulder or slope change, or one side may be less steep than

the other, reflecting the presence of two peaks that are close

together or that differ greatly in height. The histogram will

also contain a third, usually smaller, population corresponding

to points on the object/background border (since this is not

perfectly sharp, in general). These points have gray levels

intermediate between those of the object and background ; their

presence raises the level of th~ lley floor between the two

peaks, or if the peaks are already close together, makes it

harder to detect the fact that they are not a single peak.



Four images that appear to satisfy these assumptions are

shown in Figure 1. Part (a) of this figure is a photomicro-

graph of some chromosomes; part (b) is a TV image of cloud

cover as seen by a meteorological satellite; part Cc) is a

signature on a bank check; and part Cd) is an infrared image

of a tank against a terrain background. The histograms of

these four images are shown in Figure 2. (In the case of

part (b), the image contained only even-numbered gray levels,

so that the histogram bars are spread apart.)



_ _ .
_ _ _ _ __ _ _

~

3.  Methods of producing transformed histograms

If the histogram peaks are close together or very unequal

in size, it may be difficult to detect the valley between

them. This section describes several methods of producing a

transformed histogram in which the valley is deeper, or is

converted into a peak, and is thus easier to detect. In

determining how each point of the image should contribute to

the transformed histogram , these methods take into account the

rate of change of gray level at the point, as well as the

point’s gray level. For brevity , we shall refer to rate of

change of gray level as “edge value” .

3.1 Histogramming points having low edge values

According to the image model described in Section 2,

points interior to the objects and background should generally

have low edge values, since they are highly correlated with

their neighbors, while those on the object/background border

should have high edge values. Thus if we histogram the gray

levels of points having low edge values only, the peaks should

remain essentially the same, since they correspond to interior

points, but the valley should become deeper, since the inter-

mediate-gray-level points on the object/background border

have been eliminated . (See Panda and Rosenfeld [2].)

More generally, we can compute a weighted histogram in

which points having low edge values are counted heavily , while

points having high edge values are counted less heavily. For

example, if IL~I is the edge value at a given point, one could

- -



give that point weight 2 in the histogram; this gives
1+ [A I

full weight (1) to points having zero edge value, and negligible

weight to high edge value points. This method was proposed

by Mason et al. (3], and has also been investigated by Weszka

and Rosenfeld (4].

3.2 Histogranuning points having hig~h edge values

Conversely, suppose that we histogram the gray levels of

only those points that have high edge values. If edge values

are high at the object/background border and low elsewhere ,

the resulting histogram should have a single peak at a value

intermediate between the object and background gray levels.

Thus the mode of this histogram , or perhaps its mean, should

be a good threshold. This method was first suggested by Katz

[5], and has also been studied by Weszka and Rosenfeld [6].

An alternative possibility arises if we use the absolute-
2 2

value Laplacian operator ( I~—~ + 

~—5~ 
, or its finite-

x y

difference analog A~ f + A~ f I) to define “edge value”. Since

these are second-derivative operators, they have value zero

on a linear ramp, but high values on the shoulders at the

top and bottom of a ramp. Thus if the object/background bor-

ders are ramplike, the points having high Laplacian values

will be adjacent to, but not on, these borders. The histo-

gram of high-Laplacian-value points should thus have two

peaks, representing object and background gray levels; but

the valley between these peaks should be quite deep, since



the Laplacian has low values at the intermediate-gray-level

points that lie on the borders. Moreover, the peaks should

be relatively equal in size, since the border zones in the

objects and the background should have comparable areas, even

if the objects and background themselves have very different

areas. This method was introduced by Weszka et al. [7].

More generally , we can compute a weighted histogram in

which points having high edge values are counted more heavily

than those having low edge values. For example, we can give

each point its edge value [ A l  as a weight, so that zero edge

value points are not counted at all, while high edge value

points are counted heavily. This method , which was proposed

by Watanabe [8], is equivalent to summing the edge values for

each gray level. If the edge values at the object/background

borders are very high, the resulting histogram will have a

peak at a gray level intermediate between those of object and

background , and this peak can be used as a threshold . How-

ever, a possible difficulty with this method is that if the

areas of the objects and background are large, the sum of the

large numbers of low edge values in their ineteriors may be

higher than the sum of the smaller number of high edge values

at the borders, and the peak may not exist. To avoid this

objection, Weszka et al. [9] proposed using the average,

rather than the sum, of the edge values for each gray level;

this average should certainly be higher for the border gray

levels than it is for the interior gray levels.
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4. (Gray level, edge value) scatter plots

All of the transformed histograms described in Section 3

can be obtained by constructing a two-dimensional scatter

plot of gray level vs. edge value for the given image (or

ensemble), and computing various weighted projections of this

plot onto the gray level axis. In pattern classification

terms, this can be thought of as first plotting the image

pixels in a two—dimensional feature space, and then transform-

ing the space back to one dimension to obtain the new histo—

gram*.

Specifically, when we histogram the gray levels of the

low edge value points only , we are in effect applying a step-

like weighting function to the scatter plot, giving weight 1

to low edge values and weight 0 to high edge values. In the

method of Mason et al., we are applying the weighting function

2 ~ where t A t is the edge value. In Katz ’s method, we
1+1 I
are again using a step function, but with high edge values

having weight 1 and low values weight 0; similarly for the

method of Weszka et al., but using the Laplacian as an edge

value. Finally, in Watanabe ’s method we are using [At as a

weighting function; while in Weszka ’s et al.’s modification

*Some other methods of using the (gray level, edge value)
feature space to classify pixels (and thus to segment the
image) are described in (2]. Watanabe (personal coznntunica-
tion) has also used scatter plots of gray level vs. cumula-
tive edge value for image segmentation.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _  _ _  _ .~-~~~~~~~-.~~~~~~ - _
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of this method, we are pointwise dividing Watanabe ’s weighted

histogram by the original, unweighted histogram.

We can understand more readily how the methods of Section

3 work, and when they are likely to be effective, by consider-

ing what the (gray level, edge value) scatter plot can be ex-

pected to look like for images that satisfy the assumptions

made in Section 2. On such a plot, there should be two large

clusters of points near the gray level axis, representing

pixels interior to the objects and background , which should

have low edge values. The shapes of these clusters will de-

pend on the degree to which the interior points are correlated .

If the correlation is very high, or if the edge operator is

not too sensitive to noise, these clusters should be compact

and should lie close to the gray level axis. On the other

hand, if the correlation is lower , or the edge operator is

noise-sensitive (the Laplacian , for example), we can expect

the clusters to extend farther from the axis at the ends of

the (object or background) gray level range, since these gray

levels will be rarer and so are more likely to be associated

with high edge values.

There should also be points on the plot corresponding to

object/background border points, but the location of these

points depends on the sharpness of the borders and on the

nature of the operator used to define edge value. For ex-

ample , if the borders are ramplike , and a first-derivative

edge operator such as the gradient magnitude is used, there

- — _—~~ 
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should be a cluster of border points joining the object and

background clusters. This border cluster should extend away

from the gray level axis by an amount that depends on the

maximum steepness of the borders . If a Laplacian operator is

used , the border points should not give rise to intermediate-

level points that extend away from the axis*.

*Thjs description assumes that the objects and background have
relatively large interiors , and do not consist primarily of
border points. For the signature image (Figure ic), this is
not the case; the object points are virtually all border
points. The images of Figure 1 will be discussed further in
the next section. 
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5. Examples

Scatter plots of gray level vs. edge value for the images

of Figure 1 are shown in Figure 3. In these plots, the origin

is in the upper left-hand corner; gray level increases to the

right, and edge value increases downward. The darkness of a

point on these plots is proportional to the log of the number

of times that the corresponding pair of (gray level, edge

value) values occurs; log scaling was used to make faint

clusters more easily visible.

Five different edge—value operators were used in these

plots. These operators are defined as follows, for the pixel

E whose neighborhood is

A B C

D E  F G

H I J K

L M

1) LAP, the “Laplacian ”: ~E 
A+B+C+D+F+H+I+J

2) ROB, the “Roberts cross” : max [ E-J I ,  lI— Fl ]

3) DIF1, the max of differences of average gray levels

in pairs of horizontally and vertically adjacent 2-by-

2 neighborhoods:

max [ I  B+C+E+F-I-J-L-M I’ I D+E+H+I-F-G-J—K I]

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~
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4) DIF2 , analogous to DIF1 but using pairs of 4-by—4

neighborhoods.

5) DIF3, analogous but using 8-by-8 neighborhoods.

We can make the following comments on these scatter

plots:

a) In the chromosome image, the objects and background

are quite smooth, so that the object and background

clusters are close to the gray level axis. In

addition , the border ramps are shallow; thus the

edge operators having small sets of support

(ROB,DIF1) do not give rise to points far from the

gray level axis. This is true even for the Laplacian

operator , since the chromosome image is highly

correlated and noise-free. For the larger operators ,

on the other hand, the maximum edge value approaches

the contrast between the objects and the background,

and is much farther from the axis.

b) In the cloud image, the objects and background are

noisy, so that the scatter plots are spread far from

the gray level axis when small-support edge operators

that respond to the noise are used; but they are

concentrated closer to the axis when larger oper-

L 

ators are used. For the Laplacian operator, there

is a slight tendency for the rarer gray levels to

yield higher Laplacian values.

C) In the signature image, as mentioned earlier , vir-
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tually all the object points are border points.

Thus for the small-support edge operators, the

“object” cluster is far from the gray level axis, and

the background cluster also extends far from the

axis due to the high contrast between objects and

background. For the larger operators, on the other

hand, the object/background contrast decreases,

since the neighborhoods used in these operators can

never be contained inside the objects; thus the

clusters move closer to the axis as the operator

size increases. The tendency for rarer gray levels

to have higher edge values is noticeable, for the

small operators , in the background cluster, and

strongly present in the object cluster.

d) The scatter plots for the tank image generally re-

semble those of the chromosome image, allowing for

the fact that the tank image has lower contrast and

is somewhat noisier. In particular, the rare gray

level/high edge value trend is quite noticeable for

the Laplacian operator.

Based on these descriptions of the scatter plots, we can

judge how the methods of Section 3 might be expected to work

for the four images:

1) The results using Pand a ’s method, histogramming the

points having edge value zero only, are shown in

Figure 4. As expected , for the chromosome and tank
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images, the valley deepening effect is greatest for

the operators having large sets of support, while

the reverse is true for the cloud image. The method

fails for the signature image, where the objects con-

tain almost no zero—edge—value points, since they

have no interiors. It also fails for the Laplacian

operator in all cases , since the intermediate gray

levels are not expected to have high Laplacian values,

so that restricting the histogram to low Laplacian

values is not expected to have a valley—deepening

effect. Analogous remarks apply to Mason ’s method,

as seen in Figure 5.

2) Results using Katz ’s method here are shown in Figure

6, with high edge values defined using four differ-

ent percentiles: 80%, 85%, 90%, and 95%. (For some

of these, no histograms are shown because the per-

centile was reached for zero edge value , so that the

method yielded the same result as Panda’s.) As ex-

pected , for the chromosome and tank images, un imodal

histograms are usually obtained, especially for the

higher percentiles. The cloud image also tends to

yield unimodal histograms, but the position of the

mode is less reliable, owing to the high variability

of the edge values for this image. The signature

image does not yield unimodal histograms, which is

also as expected, since its border point population

contains its object point population.
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3) The method of Weszka et al. (see Figure 7), based on

points having high Laplacian values, does produce a

slight valley deepening for the chromosome image,

but its effect is small since this image has almost

no points with high Laplacian values. For the other

three images, the method gives rise to a pair of re-

latively equal peaks , particularly for the highest

percentiles. However, inspection of the scatter

plot3 suggests that these peaks correspond to the

high Laplacian values at rare (= high or low) gray

levels, rather than representing high Laplacian

values adjacent to object/background borders. The

method produces histograms whose valleys yield

reasonable thresholds, but this may simply be because

any threshold intermediate between the high and low

gray levels would be reasonable for these images.

4) Watanabe’s method fa ils for all four images , for both

the gradient and Laplacian operators , as shown in

Figure 8. As pointed out in Section 3, the back-

ground points continue to dominate the histogram,

since there are so many more of them, even though

the border points have higher edge values. Weszka ’s

modification of this method , for the gradient oper-

ators , is more successful if we ignore the high

value at the ends of the gray level range (which re-

suit from div iding by very low values on the original

histogram).



6. Synthetic examples

In order to further study the dependence of the scatter

plots on the statistics of the image regions, a set of syn-

thetic images was generated. Each of these images, shown in

Figure 9, contains a square “object” region (amounting to about

10% of its area) having mean gray level 40 (on a 0—63 gray-

scale), and a background region having mean gray level 20.

The gray levels of the object and background have approximately

Gaussian distributions (truncated at 0 and 63) with standard

deviation 7 in the object regions, and 3 (Figs. 9a, d, g),

5 (Figs. 9b, e, h), or 7 (Figs. 9c, f, i) in the background

region. In Figures 9a-c, the gray levels of neighboring

points are uncorrelated. The remaining parts of Figure 9 were

obtained by starting with uncorrelated gray levels, and in-

troducing correlation by local averaging , using neighborhood

sizes 2x2 (Figs. 9d—f) and 4x4 (Figs. 9g-i), respectively .

[To compensate for the fact that averaging reduces the stand-

ard deviation , 1.arger standard deviations (6, 10, 14 and 12,

20, 28) were used in the initial uncorrelated images; a

larger gray level range was used to accommodate Gaussian dig-

tributions with these large a ’s.]

Gray level histograms for the images in Figure 9 are

shown in Figure 10, and scatter plots, using the same four

edge operators as for the real images, are shown in Figure

11. The histograms are similar for all four degrees of

correlation , as expected , but the scatter plots differ

appreciably. For low correlations and small edge operators, 

_—~~~~~~~~~~
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the tendency for rare gray levels to have high edge values is

evident; this is very strong in the case of the Laplacian.

Lower standard deviations, or edge operators involving much

averaging , yield clusters that lie closer to the gray level

axis. The scatter plots for high correlation resemble those

for the tank image.

~‘Jhen the Laplacian operator is used, the Panda method

(Figure 12) works for low-correlation images only; for the

gradient operators, it works best for the high correlation

images using large edge operators, just as it did for the tank

image. Similar remarks apply to the Mason method (Figure 13).

Katz ’s method yields unimodal histograms, especial ly

for the high-correlation images (Figure 14). Weszka ’s method

yields multimodal histograms (Figure 15), but the peaks

correspond to high Laplacian values at rare gray levels,

as in Section 5.

Watanabe ’s method does not yield useful central peaks

for any of the operators. Weszka’s modification does yield

such peaks for the Laplacian operators, and tends to do so

for the gradient operators , particularly for the lower back-

ground standard deviations (Figure 16).



-~~~~~~~~ .- .

7. Concluding remarks

The structure of the (gray level, edge value) scatter

plots is influenced by several factors , including the smooth-

ness of the image and the correlation of neighboring gray levels.

Thus gefleral criteria for predicting the degree to which a

given method can be expected to work are not simple to formu-

late. However, as we have seen, examination of the scatter

plot makes it easy to determine which methods will work for

a given class of images. These scatter plots thus appear to

be a useful tool for image analysis. Quantitative modelling

of their structure (e.g., in terms of mixtures of two-

dimensional distributions) would be desirable as a further

aid to analyzing threshold selection techniques.

-



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _  - -

References

1. J.M.S. Prewitt and M. L. Mendelsohn, The analysis of cell
images, Annals N.Y. Acad. Sci. 128, 1966, 1031—1053.

2. D. P. Panda and A. Rosenfeld , Image segmentation by pixel
classification in (gray level, gradient) space, IEEE
Trans. Computers (submitted). See also D. P. Panda, Seg-
mentation of FLIR images by pixel classification, Univer-
sity of Maryland Computer Science Center Technical Report
508, 1977.

3. D. Mason, 3. Lauder , D. Rutovitz, and G. Spowart, Measure-
ment of C-bands in human chromosomes (preprint).

4. J. S. Weszka and A. Rosenfeld , Threshold selection, 4,
University of Maryland Computer Science Center Technical
Report 336, 1974.

5. Y. H. Katz, Pattern recognition of meteorological satellite
cloud photography , Proc. 3rd Symp. on Remote Sensing of
Environment, Institute of Science and Technology , Univer-
sity of Michigan , 1965, 173—214.

6. J. S. Weszka and A. Rosenfeld , Threshold selection tech-
niques, 5, University of Maryland Computer Science Center
Technical Report 349 , 1975.

7. J. S. Weszka, R. N. Nagel, and A. Rosenfeld , A threshold
selection technique, IEEE Trans. Computers 23, 1974, 1322—
1326. See also idem., A technique for facilitating
threshold selection for object extraction from digital
pictures, University of Maryland Computer Science Cen-
ter Technical Report 243, 1973.

8. S. Watanabe and the CYBEST group, An automated apparatus
for cancer prescreening : CYBEST, Computer Graphics Image
Processing 3, 1974, 350—358.

9. J. S. Weszka, J. A. Verson, and A. Rosenfeld , Threshold
selection techniques , 2, University of Maryland Computer
Science Center Technical Report 260, 1973.

I.



øs1~
~~~~~ I
•._ -

,

-I-
c) ~~~~~~~~~~~~~~~~~~~~~~~ d)

0~

Figure 1. Test images: a) chromosomes; b) cloud cover;
c) handwriting ; d) tank .
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Figure 2. Histograms of the images in Figure 1.
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Figure 3. Scatter plots of gray level vs. edge value for
the images of Figure 1, using edge-value oper-
ators LAP , ROB , DIF1, DIF2 , and DIF3 (see text).
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Figure 4. Histograms of the gray levels of zero-
edge-value points for the four images.
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Figure 5. Histograms for the four images in which
points having low edge values are given
higher weights.
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Figure 6. Histograms of the gray levels of high-edge-
value points (percentiles 80, 95, 90, 95)
for the four images, using the four gradient
operators.
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Figure 6, cont’d.
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Figure 7. Histograms of the gray levels of high-
Laplacian—value points (percentiles 80,
85, 90, 95) for the four images.
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Figure 8’r~~istograms for the four images in which points having

high edge values are given higher weights ; and results
of dividing these histograms pointwise by the Un-
weighted histograms.
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Figure 9. Synthetic images: mean gray levels 20 (background )
and 40 (objec t ) . Standard devia tion of object gray
levels 7; of background gr ay lev~ ls 3 (parts a , d ,
g) , 5 (par ts  5 , e, h )  , or 7 (par ts c , f , i) . In
parts a—c , no local averaging was done; in parts
d—f and g—i , local averaging was per f ormed using
2x2 and 4x4 neighborhoods , respectively.
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. Figure 10. Gray level histo-
grams for the nine
images in Figure 9.
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Figure 11. (Gray level, edge value) scatter plots
for the nine images, using edge oper-
ators LAP , ROB , DIF1, DIF2, DIF3.
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Figure 12. Histograms of the gray levels of zero—
edge-value points for the nine images. 
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Figure 13. Histograms for the nine images in which
points having low edge values are given
higher weights.
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Figure 14. Histograms of the gray levels of high—
edge—value points (percentiles 80, 85,
90, 95~ L.~r che nine images, using the
four gradient operators.
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Figure 14, cont ’c3.
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Figure 14 , cont’d.
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Figure 14 , cont’d.
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Figure 15. Histograms of the gray levels of
the high-Laplacian—value points
(percentiles 80, 85 , 90 , 95) for
the nine images. 

. . . 
____

.—

~ 

~~~~~~~~~~~~~~~~~~~ - .-- .~ . , _-  - . - .  . . ,



LAP ROB DIF 1 DIF2 DIF3

Figure 16. Histograms for the nine images in which points
having high edge values are given higher weights;
and results of dividing these histograms point-
wise by the unweighted histograms.
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