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1. INTRODUCTION

In the design of optical systems it is often convenient and efficient to make
use of surfaces that are aspherical (i.e., not spherical). The use of aspheric
surfaces has not been common practice because of the cost of producing such
surfaces but with the development of numerically controlled machines capable of
cutting metal surfaces to high accuracy this cost disadvantage has been somewhat
reduced. Positional accuracy and finish available from diamond cut metals is
still not so good as that required for optical systems using the visible wave-
lengths, but for systems using the longer wavelength of the infrared part of the
spectrum (10 to 20 times longer than visible light), presently available
accuracies are adequate.

Aspheric surfaces are useful in optical systems in a number of ways.

However, it should firstly be stressed that these surfaces are not capable of
solving all the optical designer's problems. Aspheric elements, either mirrors
or lenses, have been used for many years in light concentrating systems and
illuminators. Such systems have not required high aberration correction and
adequate performance has been obtained with relatively simply produced elements.
Astronomical telescopes have also for many years employed aspheric elements but
the manufacture of these has been a process of repeated grinding, polishing and
testing. In more recent years aspheric elements have been used in a large
variety of systems particularly in high aperture systems and catadioptric systems
where good aberration correction is required over large fields of view.

In general infrared systems require optics that have relatively large
apertures and large focal ratios. Also because fewer materials with suitable
transmission properties and refractive indices are available in the infrared
part of the spectrum as compared to the visible, reflecting elements are more
desirable. For systems with only small fields of view purely reflecting systems
are practical, when the above restrictions are considered, but for large fields
of view at least some refracting elements have to bc employed.

The methods of design described in this paper reflect a build up in facilities
to assess designs and to produce actual aspheric surfaces. Initially it was the
aim to produce both designs and surfaces that could be described by an even order
polynominal of ten terms (i.e., up to terms of 20th power of radial distance).
However, as limitations of this aim became apparent the facilities were modified
so that aspheric curves, expressed by points and gradients, could be assessed
by ray tracing and manufactured directly from this information.

2. DESIGN THEORY

The method of design employed for the aspheric mirrors differs from the
traditional method of considering aberrations. It involves consideration of
the basic optical invariants of the systems. The systems are designed to be
aplanatic, that is, the on-axis image must be formed by rays that are:

(1) perfectly stigmatic (all pass through the one point)

(2) obey the sine condition (the relationship between the angles of rays
to the axis in image and object space).

These above two conditions are the ones that are employed in the actual design
of the systems as is shown below. In terms of traditional aberration these two
conditions make the two Seidel aberrations, spherical aberration and coma, both
equal to zero.

To image an object in such a manner as to fulfill the two conditions stated
above, two reflecting surfaces are required and these can in general be placed
in any position. Having specified the positions of the object, image and the
two optical surfaces the shapes of the surfaces are then implicitly defined.

The problem is then to determine these surfaces in suitable explicit forms.
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Beforc giving details of how this is done it is necessary to indicate the more
general problem that has to be solved. It is necessary in many optical systems
to have more than two elements and this is particularly so with reflecting
systems where large obscurations have to be avoided. Further it is inconvenient
and still costly to have large aspheric surfaces. It can be shown that two
aspheric surfaces can be used in combination with any number of other surfaces,
both spherical and aspheric, to produce an aplanatic system(ref.1). With only
one aspheric surface, in general, it is possible to correct only on-axis
aberrations. Consider an optical system (shown schematically in figure 1)
imaging a source S to an image at 1 by a series of optical surfaces. Aspheric
surfaces can be introduced at A and B to make the system aplanatic or surfaces
already at these positions can be modified to produce the same result. There is
no restriction requiring the two aspheric surfaces to be adjacent. They may be
separated by other surfaces. Both these situations can be dealt with by the
method described below. When surfaces other than the aspherics are present the
aspherics correct the coma and spherical aberration of these other surfaces.

Thus to determine the aspherics the aberration contributions of the other surfaces
must be specified in some manner.

The rays from the on-axis source in object space, pass through the various
optical surfaces and form a normal rectilinear congruence at A. Each ray (Ri)

passing through the plane normal to the axis at A can be described by a
relationship of the form

y = hj + x.tan ag (1)

It is the relationship between the values of hi and @, that describe the

congruence and this relationship depends upon the aberrations of the previous
surfaces.

In a similar manner the rays (R;) from the image I, can be traced back

through the system and described by a relationship similar to equation (1) where
they intersect the normal plane at B. Here they form another normal rectilinear
congruence which contains implicitly the aberrations of the surfaces between B
and I.

These congruences, that is the relationships between the values of h and w,
can be expressed either as an explicit mathematical relationship, or an implicit
one through parameters, or in tabular form. Explicit relationships are used
throughout this paper. The various methods of specifying the values are shown
in figure 2, where (a) is typical of a system with an element before the
aspheric and (b) with one following. Parameters t and t' are to be used as the
independent variables in the differential equations with one being eliminated in
terms of the other. Here these are always defined by the relationships (2),
but any parameters would be suitable which provides a relationship between @
and 9" .

t = sin6® and t' = sin 0 (2)

Then w and w' must be expressed in terms of t and A respectively. It is
cbvious that the sine condition is a linear relation between t and t' .

Figure 2(c) illustrates the point that the source or the image may be at
infinity and then w = o0 and t = h, These definitions are further illustrated
by the examples in the appendices.

Having established the two congruences of rays, the corresponding member
rays of each congruence may be connected by a single intermediate ray following
the simple rules of reflection and refraction. (The details are provided in
Appendix I).
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In Appendix I the relationship between two congruences in a reflecting optical
system are deduced. These are expressed in equations (I.6) and (I.7) from that
Appendix, repeated here

e { Rcos —J
-R= e W‘* tan w E+x t(tanw) (3)
' Rcos ]
where
1
Ry = ¥ e ¥, Bem X -xand R = (sz + Ryz)2 (5)

These above two partial differential equations when solved simultaneously
provide uniquely the two surfaces which will make the optical system aplanatic.
The last bracketed term of each differential equation contains the terms involving
the aberrations for the congruences and the explicit relations are shown in the
various Appendices (II to IV) where a number of examples are shown.

3. COMPUTATION METHODS

In this section the more unusual aspects of the calculations are described,
but it is not intended to be a complete description of the mathematical method.

In dealing with aspheric surfaces there is a difficulty as to how best to
define a particular surface. In the present instance two definitions have been
used. Firstly, the aspheric surfaces are defined as series of points on the
surfaces. While this is the most accurate method of defining the surfaces it is
a very inconvenient definition with which to perform procedures such as ray
tracing. To overcome this problem a second method of definition is also used.
That is the aspheric surface is defined as a polynomial of the form

10
(6)

Equation (6) is to be considcred as an approximation to the basic point
definition and is used in the various procedures cmployed to obtain an initial
approximate solution from which the true solution is found using the point
definition.

3.1 Runge-Kutta integration

The Runge-Kutta integration is employed to integrate the pair of
simultaneous differential equations (3) and (4). The particular method
used is based on one given by Piaggio(ref.2). If the pair of differential
equations are
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)
j (13)
xol(N + 1) = X )+ 8+ 31 e 31t 4 1Yy

This integration system has been tested in a number of ways with
differential equations that are likely to be encountered in defining aspheric
surfaces. All tests have shown sufficient accuracy is obtainable, however,
it is possible that in certain circumstances (i.e., with very complex curves)
the integration system could become inaccurate.
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In general 600 points have been used but tests with half this number and
with 8h doubled have produced identical results.

3.2 Curve fitting to the aspheric
It is necessary to determ.ae the ten coefficients (Ai) of equation (6)

so that this equation gives a good fit to the actual points on the aspheric
surface and also that the slopes (gradients) of the aspheric surface are
accurately followed. This last point is important because the accuracy of
the gradients can have a marked effect upon procedures such as ray tracing.
To fit the curve to the original points, twenty of these original points
are selected with a density distribution along the radius (Ro) proportional

to sin(R/ZRo). This gives more weight to the periphery of the surface

roughly in proportion to the area. The central curvatures of the surfaces
can be calculated either by the Gaussian optical approximation or using
points of the original set close to the vertex. In practice the third
point (second from the vertex) of the 600 has been used and found to give
satisfactory results. The slopes at the twenty selected points are found
from the angles between the appropriate in going and outgoing rays to the
aspheric surface, these rays being defined, one by the appropriate congruence
and the other by the line joining the corresponding points on the two
aspherics. Using the twenty points and twenty slopes, together with the
central curvature, the ten coefficients of the even order polynomial
describing the surface are found by a method of least squares.

3.3 Ray tracing through an aspheric defined by points

Existing computer programs were available to provide ray traces through
surfaces defined by explicit mathematical relationships. Using such a
program and the fitted curve an approximate intersection was found. A
corrcction to the point of intersection was then calculated by interpolating
the curve and the slope. The procedure was continued until the correction
became insignificant. (See for example Welford(ref.3)).

Newton's method of divided differences was used to provide the inter-
polation. Five adjacent original points in the region of the intersection
were used, which in effect defines a fourth degree polynomial to the
aspheric curve in that region. Because of the differencing it was found
necessary to employ double precision in this section of the program.

As with all ray tracing programs extreme cases can be found that this
program is incapable of dealing with. In particular when using aspherics
in optical systems with small focal ratios (less than F/0.6) rays that travel
nearly normal to the direction of the optical axis may be found that will not
be handled by the program.

4. ACCURACY AND PERFORMANCE

As has already been pointed out the Runge-Kutta integration system has been
tested with a number of points and intervals and consistent results were obtained
within a few parts in 10'°.

For a further check on the accuracy an optical system was designed (see
Appendix II) in which two mirrors were used to image a source in a symmetrical
arrangement. The solution was, of course, two identical parabolas. The error
in the determination of these curves is given in figure 3.

To test the curve fitting subroutines the system as shown in Appendix III was
run at a number of different apertures. This system has a 6 inch radius spheri-
cal mirror as the first element and the aspherics are required to correct the
spherical aberration from this mirror. With apertures up to 8 inches in diameter
it is to be expected that the aspherics would be complex and therefore difficult
to represent accurately by a polynomial. Table 1 below gives the curve fitting
errors for three diameters.
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TABLE 1. CURVE Fi7TING ERRORS

Aperture diameter|r.m.s. curve error|(Maximum curve error|r.u.s. gradient error

4 inches 6 x 10°® inches |1077 inches 9 x 107"
6 inches 1.8 x 107% inches|3 x 10™® inches 1 x 10°°
8 inches 1.8 x 107? inches|2.8 x 1077 inches 2.4 x 1072

These figures indicate that for a 4 inch and 6 inch aperture system of this
type the polynomial approximation is satisfactory and could have been used for
ray tracing. However, beyond 6 inches the errors become large very quickly and
the polynomial is useful only as a first approximation. A similar situation
exists with all systems with significant errors appearing when large apertures
are used or many combinations of aberrations require correction.

In Appendix IV the differential equations are deduced for a bolometer radio-
meter (two mirror telescope). Both this system and that of Appendix II are
two mirror systems without other aberration contributing optical elements. The
aspheric surfaces for such systems can be determined explicitly by other methods.

For example Head(ref.5) gives a method applicable to two mirror aplanatic systems.

However, the advantage of the method described in this report is its ability to
include additional optical elements that introduce aberrations whether they be of
significant optical power or flat windows such as might be used to encapsulate

a bolometer.

5. CONCLUSTONS

A method of designing aspheric mirrors has been outlined which has been
tested and found to provide reliable results. The method is intended to be used
in optical systems to correct on-axis aberrations and produce aplanatic systems.
A selection of systems that have been designed is included in the Appendices II,
ITT and IV to illustrate the application of the design method.
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APPENDIX I

RELATIONSHIP BETWEEN TWO CONGRUENCES IN A REFLECTING OPTICAL SYSTEM

Let a congruence be defined by a set of rays one of which is specified by
(h, w). This ray meets the surface at P (see figure 4) and is reflected back
to cut the X-axis at an angle w *, Let the plane tangent to the surface at P
make an angle 6 with the X-axis.

Then
0 = w+ §.+ ay oray = 0 - w- ; (1.31)
and
0 = w* + ;-- a, ora, = -0 + w* + % (1.2)
From Snell's law for reflecting surfaces
sina, = - sin a,
therefore
cos(w-0) = cos(w* - 0)
and
cos wcos 6 + sinwsin @ = cos w* cos 0 + sin w * sin 0 (1.3)

Let the surface be expressed in a paramctric form with 't' as the parameter,
then

—j% = tan 0, and cos 0 = %%(—,andsinO = %,

thus equation (I.3) can be written

dx| cos w - cos w * | dy
dt sinw—sinw*_ t

(I.4)

Now expressing the surface in terms of the congruence, the x and y coordinates
satisfy

Yy = h+ x tan w

and equation (I.4) gives

dx| cos w - cos w * dh d d
dt :inw-;inw*’| 5 'La;"xﬁ(tan W + tan W (1.5)
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which reduces to

d s w - w * 3 oy
d_)t( — L;'i’: o :‘:z o+ tan : %ht—+ x.g—t (tan w)J (1.6)

Now if therc are two congruences such as the one above, and another whose
input ray is the output ray (w *) of the first, a further equation can be set u
for this second congruence similar to the first. In this case the parameter t
is climinated by using the relationship between t and t' (sine condition)

That is

{

o
¢ b * ’ ; i)
%‘ E 'LS?,SI::' _gg;:j* + tan w'_’ L%—+ x -:il—t-(tanw )J (I.7)

From these it is possible to eliminate the w * by considering the relation-
ship between P and the corresponding points (say Q) on the other congruence.

P has coordinates (x,y) = (x, h + x tan w).

Q has coordinates (x ,y') = (xX',h' + x’ tan w').

Let
1
Ry = y -yandR = X -xandR = (R? +Ry?)? (1.8)
then
sin w * = —gland cos w* = —g—’i (I.9)

Thus equations (1.6) and (I.7) represent two partial differcntial equations
which when solved simultancously will provide a unique solution. This is based
on a general method of solution described by Born and Wolf(ref.1) and Wasserman
and Wolf(ref.4).
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APPENDIX II

TEST SYSTEM (DOUBLE PARABOLA)

In this test system, which was used to check the accuracy of the computational
system, a source at RA (see figure 5) is to be imaged at XF after reflection in
aspheric surfaces at X2 and X3. The distances RA to X2 and X3 to XF were made
equal. Apart from putting in numerical values of these distances this is the
only information required.

Points on the aspherics

Yy = h +x tanw' y = h+ xtanw (11.1)

A paramcter t was chosen such that

t = sin w (11.2)
To prescrve the sine condition
t = sinw = - sinw' (I1.3)
Also
h" = (X3 -XF) tanw' and h = (X2 - RA) tan w (11.4)

Equations (II.4) are the congruences for each surface and equation (II.3)
provides the relationship that must be held between them.

Using equations (I.6) and (I.7) of Appendix I, differential equations for the
solution of this system arc obtained as follows:

dx R, - Reos w T
gra -t;ﬁ;—:—ig;;—z;+ tan ej (X2 - RA + X)/cos® w (IT.5(a))

' &
- Rcos w i

IR
dx' _ X ' | ' PR
5 LRY “Rein o' Tt u)’J (X3 - XF + X )/cos” w (I1.5(b))
These are soluble in conjunction with the rclations

- D - e - 2 2412
Ry =y Y, Rx X x and R (Rx + Ry ) (I1.6)

This system, as might be expected, results in two identical parabolas and the
accuracy of their determination is discussed in the body of the paper.

I't should be noted that the beams leaving the source and approaching the image
are not aberrated and therefore the last bracketed term of the differential
equations are of the form (A + X)/cos® w.
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APPENDIX III
SECTOR SCANNER SYSTEM
ITI.1 In going congruence
The positions of points on the surface (x,y) are expressed in terms
of h and w by

y = h+ x tan w (I11.1)

From the geometry of the sphere (see figure 7)

t = Ro sin /2 (I11.2)
and
/ RO \
h = \x, : ————w) tan w (111.3)
2 cos =

This last equation is the congruence relating h and w for all rays and thus
contains the aberrations of the sphere. Substituting this into equation
(1.6) of Appendix I the first of the partial simultaneous differential
equations is obtained

] P R

%;:L Rx 224 tan w‘l : [‘*os21 w<Xz X .
Sy sin w R_ cos = 2 cos

o 2
tan = =
0 Z) X
+ tan a:<;—-cos g})+ ot O{J (I11.4)
S

Note the complexity of the last term now that aberrations are present
in the input beam.

I11I.2 Outgoing congruence (see figure 8)

Again
Yy = h +x tan w'’ (111.5)
and

Iy (X3 - XF) tan w' (111.6)

and to maintain the sine condition

t/Ft = - sin w' (111.7)
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where F¢ is the focal length.

Again, using equation (I.7) of Appendix 1 the second differential
cquation is obtained, namely

R - R '
dx’ _ X cos W X3 - XF + x
e lRy = Rsin e + tan QJ—i LF‘ g e _l (111.8)

Equations (II1I.4) and (III.8) are solved simultaneously to define the
two surfaces at X2 and X3.
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APPENDIX IV

BOLOMETER RADIOMETER

Object Space Congruence (see figure 9)

w = o
} (IvV.1)
Ho =t
Image Space Congruence
@' = =@
} (1v.2)
h' = (XF - X3) tan @
Let t' = sin 6, then to preserve the sinc condition
t = f sin@
Therefore
€ = £t

where f is the focal length. Equation (I.6) and (I.7) from Appendix I may be
written as

R =R L %
dx  _ cos W X dh qdie
T e Lﬁgfﬁwzrtni; + tan 91{ <dt + X g tan w) (IV 3)
and
R r - R & 5 '
dx’ cos w x . <_4h__ 5ol B ,
o Lﬁsin e Ry + tan a>.J dt + X at tan uJ/ (IV 4)

substituting from above
- -1
dx L_(R ~*Y
at R
b

R +r - R _,-| ’
dx’ cos w X ' (XF - X3 - X))
'L - +tanw_J f cos’ (w')

"1
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Figure 1
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Figure 3
Y
A
} X=Y %
e
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F
4
degrees A edegrees Bx

0.3 -5 x 107! 64 9 x 10°¢

172 5 x 107'° 72 6 x 1076

5.5 5 x 10 ® 73.5 -1 x 10°¢

11.5 1077 75 -2 x 107

17.5 3x 1077 76 -3 x 10°¢

23.5 1076 77 -5 x 10

30 1.4 x 10°® 78.5 -1.3 x 10°%
37 Z % 10" 80 -4 x 10°°%
44.5 1076 82 -Z.1 x 107
53 107°% 84.5 -2.9 x 10°°?

A
Figure 3. Accuracy of test parabola
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Figures 4 § 5
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Figure 5.

Double parabola
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Figures 6 § 7

Figure 6. General arrangement of sector scanner aspherics
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Figure 7. In going congruence sector scanner
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Figures 8 & 9

Figure 8. Out going congruence sector scanner
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Figure 9. Congruences bolometer radiomcter
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