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ABSTRACT

A fully symmetric duality model is presented which subsumes

the classical treatments given by Duffin (1956), Eisenberg (1961)

and Cottle (1963) for linear , homogeneous and quadratic convex

programming . A wide variety of other special objective functional

structure , including positive homogeneity of any nonzero
degree , is covered as well. The model is valid in spaces

of arbitrary dimension and treats explicitly systems of both

nonnegativity and linear inequality constraints , where the partial

orderings correspond to nonpolyhedral convex cones. The approach

is based on augmenting the Fenchel-Rockafellar duality model

(1951, 1967) with cone structure to handle constraint systems

of the type mentioned. The many results and insights from

Rockafellar ’s general perturbational duality theory can thus be

brought to bear, particularly on sensitivity analysis and the

interpretation of dual variables. Considerable attention is

devoted to analysis of suboptimizations occurring in the model,

and the model is shown to be the projection of another model.
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EXPLANATION

The paper treats optimi zation problems of the form minimize

f(x) subject to the side conditions x > 0 and Ax > b, where

the function f is convex in the vector variable x, the

transformation A is linear , and the inequality relations may

be determined by general convex cones. An essentially equivalent ,

or “dual” , formulation of this problem is developed which reflects

rather explicitly various possible structural features possessed

by f. This dual problem provides the theoretical basis for an

indirect way of approaching the original problem computationally,

and in particular one which can provide lower bounds on the optimal

value sought. A distinguishing feature of the duality model , or

theory , presented here is that the alternate problem generated by

it remains within the same qualitative realm of difficulty as the

given problem . The paper can thus be viewed as a rather broad

extension of the classical theory of dual linear programs , to

cover dual pairs of nonlinear convex programs sharing the same

qualitative level of difficulty .
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SY MMETRIC DUALI TY FOR STRU CTURE D CONVE X P ROGRAM S

L. McLinden

1. Introduction. Consider the problem of minimizing a function f(x)

subject to constrai nts of the form x > 0 and Ax > b , where the function

f is convex , the transformation A is linear , and the partial orderings

are determined by convex cones . Often it is important to take into account

the sensitivity of this problem with respect to small changes in the vector

b. In addition to the special form of the constraints , the function f

may also have special structure , such as linearity, quadraticity , positive

homogeneity , etc . This extra structure ought usually to be reflected

rather explicitly in dual approaches to the problem . Further , it may be

essential to consider such an optimization problem in some infinite dimen-

sional real vector space rather than in R~ , and to regard the inequalities

as determined by order cones not necessarily finitely generated.

The aim of this paper is to provide a duality model which deals fully

with each of the above considerations , and which is also symmetric, in

the sense that the dual problem generated will enjoy structural character-

istics of the same qualitative type as the original problem. The goal of

such symmetry is motivated not simply by aesthetics or by the proof—

theoretic power which it provides , but mainly by its algorithnic implica-

t ions . By symme t ry one is guaran teed in advance that the character of

the dual problem given by the model will be qualitatively no worse than the

original problem .

In 1956, R. J. Duffin [31 gave such a mode l to handle  the fundamental

case of f l inear , though it was not apparent at that time just what the

Research sponsored in part by the National Science Foundation under grant
number MPS75-08025 at the University of Illinois at Urbana—Champaign , ar~din part by the United States Army under Contract number DAAG29—75—C-0024 at
the Mathematics Research Center , University of Wisconsin — Madison.
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connection with sensitivity was. Duffin ’s model is the natural , infinite

dimensional extension of the celebrated Gale-Kuhn-Tucker 16) symmetric

treatment of linear programming duality . Working in finite dimensions

and using polyhedral order cones , E. Eisenberg [4) in 1961 , and R. W. Cottle

[2) in 1963 , gave symmetric duality models for the basic nonlinear cases

of f positively homogeneous and quadratic, respectively. The case of a

positive definite quadratic functional in Hilbert space occurs very

implicitly in a 1965 paper by J.—J. Moreau [12), although there the concern

is not with constraints per Se. In 1967, R. T. Rockafellar (17] provided

a symmetric duality treatment for completely general convex optimization

problems , by broadening and extending the finite dimensional model presented

by W. Ferichel [5) in 1951. It was here that the issue of sensitivity

under perturbations was first dealt with and its intimate connection with

the dual problem explored. Constraints were covered , but only implicitly,

by the presence of extended-real—valued functions and a highly useful

linear transformation . In 1967 also , Rockafellar presented the outlines

of his subsequent extremely broad , and symmetric , perturbational duality

theory for convex optimization problems . Details of this , a wide variety

of applications , and further references may be found in [20).

In the preser t paper , the basic Fenchel-Rockafellar model is augmented

with expl~ cit cone structure , so as to handle directly general constraint

systems of the form x > 0 and Ax > b. This is done in a manner which

maintains the complete symmetry of the original model. The resulting

framework forms a direct bridge, as it were , between the Fenchel—Rockafellar

model for general convex problems , on the one hand , and the treatments

given by Duffin , Eisenberg , and Cottle for the par ticular classes of

linear , homogeneous , and quadra tic problems , on the other hand. We

indicate how these cases, as well as many other classes of problems having

—2—
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special s t ructure, can be handled in the present f ramework.  This requires

providing conjugacy and subd i f f e ron t i a l  formulas  for var ious  special

func t iona l  s t ruc tures  of in teres t .  This we do for two ~..• oad classes of

functions. One consists of generalized , con vex “distance ” func tions :

Minkowski gauge func tionals composed with Youn g ’s functions on the half

line . The other class is the natural , concave analogue , consisting of

what migh t be viewed as genera l ized, concave “utility ” functions. Taken

together , the two cl asses inc lude, in particular , positive homogeneity

struc ture of ~~~ nonzero degree. The Lagrangian minimax problem associated

with our primal and dual problems ha s explicit “nonnegativity ” constraints

in each of the two arguments. (Additional , implicit constraints might

also be built in via the extended-real—valued saddle function.) The present

results can thus also be interpreted as bearing on such constrained two—

person zero—sun games.

A topical outline follows . In §2 notation is established and the

Fenchel—Rockafellar model recalled briefly . In §3 a simple principle is

observed for in troducing f u r ther structure into the problem in a symmetr ic

fashion . Based on this, the three problems forming our cone-augmented

model are presented . It is indicated here how the various classical

models can be recaptured from the present one. In §4 the main results

rela;ing the prima l and dual problems are developed , and the issue of

suhoptimization partially addressed . In §5 the extremality conditions

and the associated minimax problem are treated , and the issue of sub—

optimization analyzed further. It is shown , in part icular , that the trio

of prob lems be ing treated , regarded both collectively and individually,

can rightly be viewed as the projection of another trio having no sub-

optimizations but “twice as many ” variables. In §6 the projection

phenomenon is analyzed fur ther and seen to be ac tua l ly  qui te a genera l

—3—
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‘ construction ” , suggesting further issues for investi gation . In §7

conjugacy and subdifferential formulas are indicated for the generalized

convex distance and concave utility functions mentioned above , enabling

such functions to be employed freely in the model. In §8 are some

concluding remarks about possible variations and re1incments in the present

framework .

Although the thrust of the present paper is towards (possibly infinite)

linear inequality constraint systems over cones, we should mention that

a symmetrized duality model is also available for constraint systems

consisting of finitely many convex inequalities . This was first presented

by E. L. Peterson in 1972 for closed problems in the finite dimensional

setting [14,15] ,  and has recently been broadened by McLinden [11] to cover

nonclosed problems in general spaces , as well as polyhedra l refinements in

the finite-dimensional case. In that model, too, symmetrization is seen

to be intimately tied to suboptimizations. On this point those papers

serve as a useful complement to the present one .

To hi ghlight the many symmetries appearing throughout , we work in the

setting of locally convex real topological vector spaces paired in duality

(see , e.g., [1] or [7]). Readers unfamiliar with this setting may , for

convenience , interpret all spaces as Euclidean with the usual topology,

or reflex.~ve Banach under the norm topologies. We use freely standard

facts from the theory of conjugate convex functions (see, e.g., Moreau (1 3)

or Rockafellar (18 ,20)), and also general facts about perturbational

duality theory contained in Rockafellar [20).

— 4 —
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2. The basic Fenchel-Rockafellar model. This involves the following

ingredients:

A

[_ co ,+co ] ~h ak 
~~~~~~

Here X and V are locally convex Hausdorff topological vector spaces

over the real numbers R and are paired in duality by a real bilinear

form (x,v) -, (x ,v). The situation is analogous for the spaces U and Y .

The functions h and k are extended-real—valued convex and concave ,

* *respectively, and h and k are the functions conjugate to them under

the Fenchel transform (in the convex and concave sense , respectively).

* . *The transformations 3h and ~k are the subdifferentials of h and k

respective ly . They send points into closed convex sets and are generaliza-

tions of gradient mappings , to which they reduce in the presence of

differentiability . The transformation A is linear and continuous ~‘ith

*adjoint A

The model is designed to treat the initial problem of interest , the

prima l problem

min{h (x) — k ( A x ) }  , (P0)x

by means of its close interrelationships wi th two other optimization

problems : the dual p~~~ lem

max {k*(y) — h (A
*y ) }  , (D 0)

and the Lagran gian problem

—5—
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m i n im ax (h ( x )  + k (y)  — (Ax ,y )) . (L
x y 0

The variables in (L
0) are restricted to lie in the product set dom h x dom k * .

It is helpf u l  to th ink of (L
0) as a sort of brid ge link ing (P0) wi th (D0).

Throughout the paper we make the nondegeneracy assumption that the

lower semicontinuous hull of h is finite somewhere and the upper semi—

continuous hull of k is finite somewhere . (In the Euclidean case this is

satisfied if h and k are merely proper convex and proper concave , respec-

tively .) This implies that h, k, h*, k* are proper and moreover satisfy

** **lsc h =c lh = h  , usc k = c l k = k

From the properness , note that the extended arithmetic in (P
0), (D 0

), and (L
0)

never involves add ing —
~~~ to +~~~.

*The subdif ferent ia ls  ~h , ~k serve as vehicles for expressing the

extremality conditions, or abstract Kuhn-Tucker conditions, associated

with this trio of problems:

* *A x e  ~k ( y ) ,  A y e  ~h ( x )

A pair (x ,y )  sat isf ies these conditions if and only if it solves (L
0
), in

which case x solves (P
0), y solves (P

s
) ,  and all three optimal values

Coincide . Conversely, under any of a variety of hypotheses (“constraint

q u a l i f i c a t i o n s” ) ,  i n  order that  a vec tor x solve (F
0), it is necessary that

there exists a vector y such that (x,j) satisfies the Kuhn—Tu cker  condi t ions .

Aj-i important feature of the model is its relevance to sensi t ivi ty

analysis .  Br ie f ly,  the func t ion  being optimized in (D
0) precisely mi rrors

the sensitivity of (F
0
) with respect to a certain class of perturbations ,

which here correspond to “horizontal” translations of the graph of k.

This relationship between primal sensitivi ty and the dual problem was

first observed in [17] and is explicated thoroughly in [18,20). Details

of this , as well as other general rela tionships concerning the three

problems just introduced , may also be obtained by appropriate specializa-

tion of the cone-augmented version of the model which follows .

-~~ I - 
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3. The undurlyinq idea and the  cone-augmented mode l. Our method of

obtaining symmetry is based on a very simple idea. The idea is also quite

natura l , in view of the basic properties of the Fenchel transform.

We proceed in  a quasi-formal manner , introducing two noneinpty f a m i l i e s,

A and B , of extended-real-valued functions. The members of A are

required to be convex with lower semicontinuous hull somewhere finite ,

and those of B are required to be concave with upper sernicontinuous hull

somewhere finite . These families will serve to single out special types

of problem structure such as linearity, quadraticity , and even cone

constraint structure , as we shall see shortly. When the functions h and

k in (P
0) satisfy h ~ A and k € B ,  we say (P0) is of type (A,B) .

For symmetry , conditions are needed which will imply that (D 0) is of the

same type as (F
0
), up to closures and minus signs. Cle:rly, the above

restrictions on h and k imply that h A and k e B , where the

*notation C denotes the family obtained from C by forming the conjugates

(in the appropriate sense) of the members of C. (Similarly for the nota—

tian ci C and -c to follow.) Since this means that (D
0
) is of type

(B ,A ) , the conditions needed to ensure that (D
0
) is of the same type

as are simply that A and B satisfy

- A = —Cl B and P = —ci A . (3.1)

In this terminology , the general Fenchel-Rockafellar problems (P0) and

are each of type (A , P) for the largest possible choices of A and

B , namely B = -A , where A is the family of all convex functions having

lower semicontinuous hull somewhere finite . With this choice , conditions

(3.1) follow immediatel y from the basic properties of the Fenchel transform.

We shall see below , in terms of the cone-augmented model , how other , more

special choices of the families A and B yield symmetric duals having

specific structure .

—7—
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We now apply the above idea to see how to handle  in a symmetric

fash ion  systems of both nonnegativity and linear inequality constraints

over cones . Consider , for example , the problem posed at the beginning of

the Introduction , namely, to minimize f(x) subject to x e P and

Ax — b e Q, where P and Q are nonempty convex cones determining the

orderings . This can be cast as by l e t t i n g  h = f + and k =

(We wr i te  to denote the convex indicator of a convex set C.) Notice

that incorporating the constraint Ax > b into the k (Ax) term of (P
0
)

ensures that the dual problem will yield information on the particular

sensitivity in (F
0) of interest to us, namely the effects of perturbing

the right—hand—side vector b by small amounts (C f .  remark concerning

sensitivi ty at the end of §2) . Now how can the preceding ( A , B ) - develop-

ment be brought to bear, at least heuristically? Since h is of the form

h = h1 + h2, le t us take for A all the convex functions “having this

form .” Then the elements of A * have the form of h*~ rcl (h 0

under suitable circumstances , where the symbol 0 denotes the operation of

infimal convolution on convex functions. In view of the ‘irst requirement in

(3.1) , this suggests choosing for B a l l  concave func t ions  k of the form

k = k1 
0 k2 , where here the symbol 0 denotes the operation of supremal

convolution on concave func t ions .  The members of B then look like

= k
1 + k;~ so that , again under suit ab l e  conditions , the other requirement

in (3.1) is met. Now consider what happens when h2 is of the special form

h 2 = for a convex cone P. The fact  that  h 2 = 4~~ , where P° is the

polar cone, suggests tak ing  k 2 ( in  the elements of B) to be of the special

form k 2 = -

~~~~~ 

for some convex cone Q. This , of course , yields

= ~~~i o (” )  = —~
p 

~~~, 
where Q

* is the dual cone (i.e. negative of the polar) .
0

This outlines a ra ther general scheme , in which the three optimization

problems assume the form

—8—
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min { (h
1 

+ h2) (x) 
— (k

1 
0 k2) (Ax)) , ( 3 . 2 )

max {(k~ + K ;) (y ) — (h 0 h )  (A*y)) , (3.3)

and

minimax{(h1 + h 2 ) ( x )  + (k~ + k) (y) — ~Ax ,y )) , (3.4)

and the func t ions  h 2 ,  k 2 ,  h 2 ,  k can be res t r ic ted to be the i n d i c a t o r s

of certain cones. Of course , all this is only heuristic , since the above

“derivation ” glossed over key technical issues in several places. It -

does , however , serve to illuminate the origin of the cone-augmented model

below .

To clarify further , consider once more the problem from the Introduc-

tion . We can apply the above scheme to it by choosing h1 = f, h2

k1 
= 

~ ‘~ b~1’ 
k2 

= -~P0. In view of 1
~~ b~ 

0 (~~ Q) = 
~Q+b ’ 

problem (3.2)

is then just

mm {f(x)}
x>0 ,Ax>b

and its “dual” problem should be something like that given by (3.3), i.e.

max~~((b ,y ) - ~ ~ (y)) - 0
y 0

By drawing the inf-convolutiori to the outside , this can be rewritten as

max su~ {(b ,y ) — f*(v)) (to find y only)
y>0 V>A y

where the partial orders are the natural ones induced on V and Y by

* *P and Q . The associated minimax problem ought to be (3.4), i.e.

minimax{f(x) + (b ,y ) — (A x , y) )
x>0 y>O

Notice in the ‘dua l” the appearance of a suboptimization over an auxiliary

variable v. This reflects the fact that the original , primal problem

we started with is actually asymmetric in a certain sense having to do

—9— 
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with the particular class of perturbations involved. The statements of

all the results below can easily be specialized to such asymmetric cases .

Now let  nonempty convex cones P C x and Q C U be g iven and f ixed ,

once and for a l l , and let  h , k , and A be as in the beeinning of 12. The

cone-augmented ex tens ion  of the F e n c h e l - R o c k a f e l l a r  model wh ich  we shal l

study consists of problems (3.2), (3.3) and (3.4), where

h1 
= h , h2 = j ,.~, k 1 = k, k2 = -

~~~~~

Thus , our pr imal  problem is

m i n (  (h + ‘h,
) (x) - (k D—qi

0 ) (A x )

which , by d rawing  the sup-convolut ion to the outside , can be rewritten as

mm inf (h(x )  — k ( z ) J ( to f ind  x only)  . (p)
x>0 Ax>z

Our dua l problem is

max { (k * 
— IJ) *) (y ) — (h * 0 ~p p~ )(A *y )  )

y Q

which , by drawing the inf-convolut ion  to the outside , can be rewritten as
* *max sup {k (y )  - h (w)} (to find y only) . (B)

y > 0  w>A *y

The associated Lagrangian saddlepoint problem is

*m i n i m a x ( h ( x )  + k (y) — (Ax ,y)) , (L)
xeC yeD

where

= P 0 dom h , D = 0 ~~ dom k
* 

. (3.5)

Notice f i r s t  of al l  that with the choices P = X and 0 = (0) these

three problems coincide exact ly wi th  the problems (P 0)~ (Do), and (La)

~reated by the Fenchel-Rockafe l lar  model. The various hypotheses we

shall invoke in §~ 4,5 in proving results for the cone-augmented model all

reduce, for this particular choice of cones, to the “standard ” conditions

required in the original Fenchel-Rockafellar model.

—10—
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Next , notice that Duffin ’s model x~ .iilt s when the cone—augmented

*model is restricted to problems (F) of type (A, B), where B = —A and A

consists of all continuous lineai functions. This follows from the fact

that the (convex) conjugate of a function of the form x -, (x ,a> has the

form v 
~~~~~~ 

Thus, if we take h and k to be of the form

h(x) (x, c> and k(u) = 
~b

(u), then the three problems assume the

special form

mm {(x ,c))
x>0 ,Ax>b

max 
* 
{(b ,y))

y>c ,c’A y

and

minim axt (x ,c >  + (b,y> — ( A x , y ) )
x>0 y>0

The above two cases can be regarded as the “extreme ’ cases of the

cone-augmented model. They are the ~~~~ cases in which the suboptimiza-

tions “disappear ” from both (B) and ( D )

Symmetric duality for various types of nonlinear objective functional

structure can be obtained by using the conjugacy (and subdifferential)

formulas , presented in §7 , together with the results in §~ 4,5 for ( F ) ,

(B) and (L). For examp le , Eisenberg ’s treatment of the homogeneous case

is extended by considering those problems (P)  of type (A ,B ) ,  where

*B —A and A is chosen to be the fami ly of (closed) gauge furictionals.

Corollary 13B in §7 provides the essential facts for this. As another

example , Cottle ’s treatment of the quadratic case is extended by consider-

*ing those problems (F) of type (A ,B), where again B = —A but  th is

time A is chosen to be the family of all functionals of the form

X 
~ ~~~~~~~~~~~~~ 

where is the closed gauge associated with a “pola r ” set

C. Convex quadratic forms , or more generally, ~th powers of norms , can be re—

presented by the appropriate specification of C. The essential conjugacy (and

—11—
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subdifferential) formulas are provided by Corollary 13A of §7.  A number

of other interesting objective functional structure s likewise admit

symmetric d-uality treatment with the aid of Proposition s 13 and/or 14 of

§7 , combined with the results which follow in §~ 4,5.

—12—
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4. Relationships between (F) and (B). In this section we establish

mild conditions under which the duality between (F) and ( D )  imp lied in §3

is in fact the case . We shall see that in the absence of such conditions ,

the two problems bear only a weaker , subduality relationship to one anoth~ r.

The di f f icul ty is that certain closure or semicontinuity properties may

in general be lacking.

Our objective is to work towards placing our trio (B), (B) , (L) ir~

the general perturbational duality framework developed by Rockafellar 118 ,20].

Toward this end , we introduce functions F, G and K defined by

((h + ‘~~ ) (x ) — (k D—~p ) (Ax + u) if x C
F(x ,u) =

if x~~~ C ,

,
_ 

* * *J (k — 

~
p ,~)(y) — (h 0 q~~~)(A y + v) if y € D

G(y,v) = Q
if y f D ,

and

+ ~P~
) (xl + k* — 

~ * ) ( y )  — (Ax ,y > if x e C
K(x ,y) = ç Q

~~~~~co if x~~fC ,

where C and D are the sets in (3.5). (Any product spaces occurring

will be assumed to be paired in the obvious manner. Thus , for example ,

X x U an d V x Y are regarded as paired unde r the bilinear form

(x,u)’,(v,y)> -‘ (x ,v> + (u ,y ).) These can be reform ulated as

( inf {h(x) — k(z)) if x > 0

F(x ,u) = 
Ax#u~z

L. + =  otherwise

* *( sup ( K ( y )  — h (w) ) if y > 0
G ( y ,v) ~ W >A ~~~+V

L. — ‘ otherwi se

and

*h (x) + k (y) - (Ax ,y ) i f  x e C and y € 0

K(x ,y) = -=  if x e C and y V D

L +~~~ if x / C .

—1 3—
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In terms of these functions , the problems (F), (B) and IL) can be expresued

as

mm F ( x , 0)
x

max G (y,0)

and

min imax  K ( x , y)
x y

In view of the similarity in notation between the above and the

development in 12 0 ] ,  it would appear th~ t we can apply the results from

there immediatel y. That would be incorrect , however , as it has not been

established that the present functions F, G and K bear the same

relationships to each other as do Rockafellar ’s corresponding three func-

tions . The relationships among F, G and K presumed by the development

in (20] all stem from two key identities:

*G(y,v) = —F (v,—y) (4.1)

and

K(x ,y ) = i n f { F (x ,u) + (u ,y)} (4.2)
U

(cf. [20, equations (4.17) and (4.2)]).

It is easy to see that one of these , (4.2), holds here wi thout any

additional conditions . Indeed , from our definitions of F and K it

is satisfied trivially when x / C , while for x € C we can compute that

i n f{F(x ,u) + (u ,y )} = inf{(h + mP~ )(x) — (k D— ’4i0
)(Ax + u) + (u ,y~~}

= (h + ~~ ) ( x ) + inf{(u,y > — (k D~~p0
)(Ax -4- u )}

(h + i~~)(x) + inf{(u ’ ,y ) — (k D-~0
)(u ’)) - (Ax ,y )

*= (h + mP~ )(x) + (k — i~ ~)(y) 
— (Ax ,y )

0

— 14—

______ ~~~~~~~~~~~~~~ ~~~~. ~~~~~~~~~~~~~ ~~~~~~- -————-~~~~~ b~l~~—~ =~~~~ 
- - -- . .  - —



-- —~~ _ _ _ _ _ _

The identity (4.1) is a more delicate matter. In general , the best

one can obtain is the inequality in Proposition 1 below . For it , and

for the remainder of the paper , it is convenient to make the following

nondegeneracy assumption:

C~ # 4 i  and D � ~~ . (4.3)

This simply has the effect of eliminating from the discussion certain

trivial situations which would be awkward always to carry along. It can

be shown that 0 = 0 if and only if the function usc (kD - q~~) is + .=

throughout the set cl(clom k + Q).

PROPOSITION 1. The functions F and G satisfy

*G ( y ,v)  < -F (v,-y)

and

*F(x,u) -G (u ,—x) .

Furthermore , F is proper con vex with lsc F never ~~~~~~~ and G is

proper concave with usc G never + .

PROOF . We give the proof for the second inequality only, as the proof

of the first one is quite similar . Computation yields that
*—G (u,—x) = —inf (( (u,—x), (y,v) ) — G(y,v) I

y, v

= sup{—< u ,y ) + (x ,v) + G(y,v))
y,v

= sup sup{.-( u,y > + < .z, v) + (k* — 

~ *) (y )  — (h* 0 
~4~~~

) lA y + v))
y€D v 0

= sup {(k* — 

~ ~
) (y) - (u,y > + e(x,y)}

yCD 0

where

a(x,y) = sup ((x ,v )  - (h * 
0 ~

po )(A
*
y + v))

= sup{ (x ,v ’ ) - (h * 0 
~4~~ ) (v’)I 

- (x ,A*y >
v i

= ( h O (~~~ ) ( x ) — ( x ,Ay )

(h + ~i~~ø o ) ( X) - (x ,A y )

—1 5— 
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If x ~~
‘ C, then F(x ,u) = + and the desired inequalit y is satisfied

trivially. If x C, then a(x ,y) is finite and we have

* ** * *—G (u,—x) = (h + ~~~~
) .x) + supHk — 

~~ ~)(y) 
— (u ,y> — ( x ,A y > }

y€ D 0

** *= (h + ) ( x ) — inf (< Ax + u ,y > — (k — ~) (y) }yeD

** * *= (h + ~~~~ (x) — (k - ~p * ) (A x + u)

Since h** + ~~~~‘zh  + and (K - ~~~
) > K EiJ~~ Q~ the desired inequality

follows . Next , we claim that G cannot be identicall y — =  . Indeed ,

O # 0 implies that C if and only if h* 0 ij~~~~~ + , which

happens if and only if h += . But the latte r cannot occur , because

lsc h is assumed finite somewhe re . Now since C ~ — , the first

*inequality implies that F f- + = , from which it follows that lsc F is

never - . In a similar way, using C ~ ~~, one shows that F /~ +

*From this and the second inequality it follows that C ~ -= , so that

usc G is never + = . Finally, F is proper because of

— u, < lsc F < F #~ +

and G is proper because of

- I G < usc C < +=-

COROLLARY 1A. One always has the estimate

F ( x , 0) > G(y,0)

Itoreover , equality is attained by a pair of vectors x and y if and

only if x solves (I ’) , y solves (0), and mm (1’) = max (D).

PROOF . From either of the inequalities established in the proposition ,

one can obtain the general inequality

F(x,u) - (x, v> > G(y,v) — (u ,y )

The corollary follows by specializing this to the case u = 0, v = 0.

The inequalities in Proposition 1 say that F and C are always

subcoj~j~~ii~j mte s of one another (up to minus siqns ) , and thus one can always

—16 —
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view (I’ ) and (0) as subduals of each other. But in general (B) will not

furnish as tight a lower bound on (F) as one would hope for , unless the

identity (4.1) is satisfied . In addition , most of the nicest duality

relationshi ps between ( I ’ )  and (D)  require that the function F(x ,u) be

closed in the u argument at least, and some even require F to be

closed in (x,u) jointly (cf. [20]). As the next proposition shows , these

types of regularity depend on the following condition ’s being met:

(h+IP p)
* = h * D (po (H i )

or
* *(k — i~ * ) = k D()Q . UI 2

)
0

In the case of the basic Fenchel-Rockafellar mode l (i.e. P = X and

o = (0)), the first of these is met trivially, while the second amounts

simply to having k closed . A similar remark applies to conditions (Hi)

and (IIi) used in §5. Proposition 8 at the end of this section furnishes

a number of conditions imply ing 
~~~~~~~ 

as well as the (Ej) and ( J I ~~) occurring

later on , in the case where the order cone structure is nontrivial.

PROPOSITION 2. If 
~~~ 

holds , then C is closed (jointly) and

satisfies the identity

*G ( y , v) = -F (v,-y) . (4.1)

If (11
2
) holds , then F (x ,u) is closed in u for each x, and if in addition

h and P are closed , then F is closed (jointly) and satisfies

*F (x , u) = -G (u,—x)

PROOF . We prove only the latter two assertions , as the proof of the

first assertion is similar. If x /C , then F(x ,.) +~~~~ , which is

trivia l ly closed . If x € C, then (h + ~ç~) lx) is finite , and so the

closedness of F ( x , .)  is equiva len t  to that  of (k ~~~~~~ But th i s  func-

tion is closed , since by the assumption (112) it is a conjugate function.

To prove F is closed jointly , it suffices to establish the identity ,

—17— 
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since that  exh ib i t s  F as a conjugate  f u n c t i o n .  The identity itself

follows from an examination of the proof of the corresponding inequality

in Proposition 1. Indeed , i f  h and are closed , then

h + = h + p~~, and from th is  it fo l lows  t ha t

—G ( u , —x)  = + =  = F ( x , u ) ,  Vx / C

and

* *— G ( u , —x)  = (h + ~p ) (x) — 1k — m4 * ) (Ax + u) , Vx c CP 0
Under the hypothesis (112), the desired identity t hen follows .

COROLLARY 2A . I f  (Il
i
) holds , then

G(y,v) = inf{K(x ,y) — (x ,v)} ,
x

and so in particular

sup(D) = sup i n f ( L )

If (11
2) holds , then

F(x ,u) = sup{K(x ,y) — (u,y )) ,
y

and so in pa r t i cu l a r

inf(P) = inf s u p ( L )

PROOF . If holds , then the proposition yields (4.1). But also

_F * (v , _y )  = inffF(x ,u) — ( x , v )  + (u ,y ))
x, U

= i n f {i n f ( F ( x , u)  + (u ,y )}  — ( x , v ) }
x U

= i n f {K ( x ,y )  - ( x ,v ) }
x

by ( 4 . 2 ) . This establishes the first identity . Next , observe (4.2) can

be rewrit ten as
*K ( x ,y )  = — F ( x , )  ( -y )

and so

—18—
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su p {K ( x , y )  — ( u ,y >) = sup l-F(x ,.) (-y) - ( u ,y ) )
y y

= sup{(u ,-y> -

y

**= F ( x , .) (u)

Since the l as t  express ion  equa l s  F (x , u)  when F t x ,~~) is closed , we are

done by the proposition when (112) holds.

In view of Proposition 2, we are in a position to harvest immediately

from [20] five additional propositions containing a great dea l of informa-

tion concerning our trio of problems . These could , of course , be established

“from scratch” , working directly with the model’s ingredients h , k , P, Q

and A , but  that  wou ld  serve l i t t l e  purpose besides l eng then ing  the paper .

The first of these provides a great deal of information concerning the

preci se relationshi p between (B) and (B) . It relates the optimal value

function in one problem to the objective function in the other problem.

The prima l ~~jective function is

f inf{h (x) — k(z) AX > z} if x E c
f ( x )  = F(x ,0) = (

if x / C ,

the dual ective function is

* * *sup{k (y) - h (w) fw > A y) if y € D
g(y) = G(y,0) =~~- 

~~~- if y f D ,

the p~~~~
l optimal value f u n c t i o n  is

= inf F(x ,u) = inf{h(x) — k ( z ) I x  > 0 , Ax + u > z} , (4.4)
x

and the dual 
~2~~

rnal value function is

y ( v ) = sup G(y,v) = sup (k*(y) — h (w) I~ > 0, w > A*y + v} . (4.5)
y

Notice that

dom~~ = d o m k + Q - A C ~~~ 0

and
* * *dom ’y = d o m h  - P  - A D ~~’0

—19—
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where the nonemuptiness follows from the nondegeneracy assumption (4.3).

PROPOSITION 3. (a) Assume (H
1) holds. Then

g = (—c ) and -g =cl~ .

In particular ,

suptD) = lim inf ~ (u) , (4.6)
u~’ 0

except in the caae where 0 / Cl don ~ and the function lsc ~ is nowhere

finite. (In the exceptional case, sup(D) is — =  , while the limit is

+ and lsc ~ — = on dom lsc ~ = ci dom c . )

(b) Assume (112) holds and that h and P are closed. Then

f = (-y) and -f =cl y

Ii: particular ,

i n f ( P )  = lim sup -y (v) , (4.7)
v~ 0

except in the case where 0 / ci dom y and the function usc y is nowhere

finite. (In the exceptional case, inf(I’) is += , while the limit is

— =  and usc y E += on dom usc y= cl dom y.)

(C )  Assume 
~
11i~ 

and 
~~~ 

both hold and that h and P are closed.

Then both (4.6) and (4.7) hold , except in the degenerate case in which

all of the following properties are present:

~ (0) = + = , lsc ~ - = on dom lsc ~
- cl don ~‘

y(0) = — =  , usc -y += on don usc y= cl dom y

PROOF . Parts (a) and (b) follow from [20 , Theorems 7 and 7’], together

with Proposition 2. Part Ic) then follows from (a) and (b) , with the aic~ H
of [20, Theorem 41 .

The next result involves in part the extremality conditions associated

with the trio (B) , ID), (L) . By virtue of the saddlepoint characterization

of them wh i ch obtains “usually ” (i.e. under suitable constraint qualifica-

tions), they can be introduced as the abstract Kuhn-Tucker conditions:

—2 0—
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(0,0) c 3K(x,y) (4.8)

(cf. [20, page 39]). The pairs (x,y) satisfying (4.8) are precisely the

saddlt-points of K , i.e. the solutions of (L).

I!) the case of the basic Fenchel—Rockafellar model , the Lagrangian

sad~~1t function is

*h (x) + K ( y )  — ( A x ,y> if x c don h
(x,y)-÷ ~ (4.9)

if x / don h

and from this it is easy to see, using the definitions , that conditions

(4.8) are equivalent to the conditions

* *A y e 3h(x) and Ax e 3k (y) . ( 4 . 1 0 )

Now in the cone-augmented model , observe that the Lagrang ian saddle func-

tion K coincides wi th what one obtains by substituting h + and

K 0-~4~ in place of h and k, respective ly, in (4.9). It follows by

simple substitution in (4.10), then , that the Kuhn-Tucker conditions for

the cone-augmented model are equivalent to the conditions

A y  c 3(h + ~P~ ) (x) and Ax € 3 ( k * - 
~4 *

) (y )
0

Corollary l2A in §5 will provide a further break-down of these conditions.

PROPOSITION 4. If (H
i) holds, then the implications

(a) <=> (b) =>  ( C )  > (d)

hold among the conditions :

(a) inf(P) = sup(D)

(b) ~ (0) =cl~,(0)

(c) the saddle value of the Lagrangian K exists;

(d) y (0)=cl~y- (0)

If 
~“2~ 

ho1ds ,~ then (b) and Ic) are equivalent . If both and 
~~~

hold and h, k, P, Q are all closed, then (a), (b), (c), (d) are all

equivalent. Furthermore , if (1/i) holds , then the implication

(e) => ( f )

—2 1—
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holds between the followim ~ conditions , with actual equivalence when (1.1
2 )

is also satisfied:

(e) x solves (B), y solves ( I i ) ,  and inf(B) = s u p (D )

(f) the pair (x,y) satisfies the Kuhn—Tucker conditions.

PROOF. By [20, Theorems 15], together w ith Proposition 2.

COROLLARY 4A. ASSUme 
~
11i~ 

holds and that inf(i) = max (D) (i.e.,

inf (P) = sup(.’) and there actually exists a solution to 1L )) . Then .i

necessary condition in order that x solve ( I ’ )  is that there exist a y

such that (x,y) satisfies the Kuhn-Tucker conditions . This condition

is also sufficient when (112) holds , or more generally, when

F(x ,0)= cl F(x ,0).

PROOF . All but the very last remark follows directly from the

proposition . The sufficiency under the assumption F(x ,0) =cl
~~
F(x1 0)

follows upon a closer examination of the proof of 120 , Theorem 15]

PROPOSITION 5. Assume 111i~ 
holds. Then the following conditions on

a vector y are equivalent:

(a) y solves ( D )  and inf(P) = s u p ( D )

(b) —y € 3~’(0)

(c) inf(P) = inf K(x ,y)
x

PROOF . By 120, Theorem 16], together with Proposition 2.

COROLLARY 5A . Assume 111i~ 
holds and that p(0) = inf (J’) is finite.

Then the following are equivalent:

(a) inf(P) = max(D)

(b) lim inf ~‘
‘ (0;u ’) is finite for some u.

u ’ ~u

PROOF . By the equivalence between (a) and (b) of the proposition ,

together with (20, Theorems 11(b) and 4] applied to the function

0 ( u )  =

— 22— 
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t’ROPO S I ‘lI ON 6 - A~. 11u) .1 

~~~ 
hol  (IS amid t h at  ~ i bounded above on

a nei ghborhood of 0. Then each of the following holds:

( a)  i r i f  (P)  = max (B )

(b )  In f a c t , fo r  eve ry real 11 the set {y l g ( y )  > B) is closed ,

bounde d and  r- o nvcx , a c t u a l l y e g u i c u n t i z i u o us anid hence w e a k l y  compact

(in the weak topo logy  i nduced  on Y by U ) . Thus , eve ry max i m i z i n g

sequence fo r ( I ) ) has weak c l u s t e r  po in t s , and every  such c l u s t e r  po in t

solvea (H)

(c) If the optimal value (s) in (a) are not — = , then

~‘ ‘ (0;u) = max{ ( u ,—y )jy solves I D ) )

(d) A vector y solvea (0) uniquely if and only if y =

t h a t  is ,

~ ‘(0;u) = — (u ,y)

and imm this event every maximizing sequence for C D )  converges w e a k l y  to y .

(e) The maximizing sequences for CD) all actually converge in the

desig n , i t : : topo 1 eay on Y if and n .’ni y if  ~ is d i f f e r e n ti a b le  a t  U

in r e l a t i o n  t u  tha t t opo logy .

PROOF . By 120 , Theorem 17] and Propos~~t ion 2.

PROPO SiTION 7 .  Each of the fo l l owing  c o n d i t i o n s  is s u f f i c i e n t  fc ’ x

~ to be bo unded above on a neighborhood of 0 (and  hence c o n t i n u o u s  a t  0 ) :

( a )  The re e x i s ts  an x suc~m t h a t  the f u n2 t i o n  u -
~ F ( x , u)  is

bounded ara ve on a nei ghborhood of 0.  (Or more g e n e r a l l y ,  fo r  some

c o n t i n u o u s  mapping 0 : U -
~ X the function u F ( 0  (u )  , u) is bounded

above on a n ei ghbo rhood of 0 . )

(b) U = R
h 

= Y and 0 c core don ~ (where “core ” denotes the

a lgebra ic  i n t e r i o r)

(c) X and U are each Bana~~h spaces ( i n  the desi gna ted  topologies),

0 c core dom ~~ , h and P a re  closed , and 
~“ 2~ 

holds.
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Cd) U = Y , at icast one of  th e  l € v ~~l set.~: 
(y~g (y ) 

~} is

r,aIIL’mI. t v ar i d  b n ’L I i u L d  , and c 11i~ 
holds.

C e )  Both  a nd 
~‘ 2~ 

hold , h and  P a i  closed , and there

ex i s t s  a ne i c jhb o l li .o 1 N of 0 in  V and a r ea l  n u I l d ) t ’r B such  t ha t

the set

{y~~~v € N , G ( y , v)  > B )

is non emp t y .eo. ~~~ Li~~ cont i nimou s

PROOF . By [ 2 0 , ‘rhLs x 18] d i i  I roposi  ion 2.  Conce rn ing  (c )  , t h e

f a c t  tha t i t  s u f f i c e s  to  asnunLe j u st  t h a t  X is B anach , r a t h e r  t h a n  V ,

is shown in [~~6 , C o r o l l a ry 1] .

COROLLARY 7A. Suppose t h t  condition (e) of Proposition 7 holds ,

~~~~t w i t h  equ icon t  i m i u i t y  rep ] ,.iL ’)L ] b y the assump t i o n  t h a t  the c losure  of

{yL 1 L- € ~~ , G ( y , v)  >

is w e a k l y  compact .  Then ~ is bounded above in  a ne ighbo rhood of 0 rela-

t ive to the  Mackey topology on U , and he nce a l l  the conc lu c ions  of

Proposition 6 are v a l i d  i f  i n t e r p re t e d  in t h a t  topology.

PROOF ’ . Analogous  t.o t h a t  of 120 , Corollary 18’A].

D ual ve r s ions  of a l l  these r e su l t s  f rom P ropos i t ion  5 onwards  could

a l so  be s t a t ed .  One would  s imp ly im pose the bla n ke t hypo thes i s  t h a t  b o t h

a nd hold arid t ha t  h and P are closed . These a s s u m p t i o n s

gua r a n tee , by Propos i t i on 2 , t ha t  F and G bear the needed relat1.onship

to each other and t ha t  F is a c t ua l l y  closed .

In Propositions 2 through 7, heavy use has been made of the conditions

111i~ 
and (11

2). We now give a number of sufficient conditions for these

to hold. it so happens that the sufficient conditions to be given actually

ensure considerably more, in particular , they ensure attainment in the

convolutions appearing in 
~
11i~ 

and ( 11 2 ) .  They also ensure closely related

subdifferential formulas which , as we ’ll see from Corollary 12A in §5 , come

i n t o p lay in simpli fyinq t h e  i ’x t r em , m ] . i ty  c o n d i t i o n s  for  our t r i o  of problems .

—2 4—
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In order not to take up excessive space , we leave to the reader the

easy task of adapting to the present context those conditions in the  n e x t

proposition which are of the most relevance to him . To make the proposi-

tion as easily applicable to (11
2
) as to (H

i
) n o t a t i o n a l ly ,  we f o r m n u l a t e

it in terms of “neutral” paired spaces Z and W. Notice that in order

to guarantee (11
2
) via these conditions , one needs K and Q to be clorad.

In specific instances , though , it just might be possible to argue that

(11
2
) holds by ad hoc methods not requiring this.

In the proposition conditions (f) through (i) are stated in terms of

the recession functions f10
+. These are given by

* +  * 
. * *)(w) = sup(f1

(w ’ + w)  — f . ( w ’ ) I w ’ e don f.}

and serve to describe the growth behavior or asymptotic nature of f.

( C f .  [18 , § 8 ] ) .

PROPOSITION 8. Let f
1 and f2 be extended-real-valued proper

convex functions on Z. Then

+ f2)
* (w) = min{f1(w1) + f(w 2)lw = w1 + w2}

and

+ (z) = 3f1(z) + 3f2(z)

hold whenever one of the following conditions is fulfilled:

(a) there exists a z c don f1 in a neighborhood of which f2 is

bounded above;

n(b) Z = R = W and 0 e core S, where

S = {(z 1, z2) z. e Z and ~ ~ ( z .  + don f.))

(C)  Z is a Banach space (in the designated topology compatible with

the pair ing ) ,  f
1 

and f 2 are closed , and 0 e core S for S as in (b);

Cd) Z = R~ = W, and for some w and some real ~ the set

{ (w
1,
w
2

) w .  don f

1~~~
, w = w1 + w2, f(w 1

) 4- f (w 2) ~ ci)

is nonemp ty and bounded ;

—25—
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Ce) and f2 are closed , and for somiie open set M in W the set

I (w1,w2) 1w . don f* , w1 
+ w2 ri , f (w

1
) + t ( w 2) < ~~~

is floflempty and equicontinuous;

2
Ct ) Z R~ = W and ~~ I ~~~ ri dom f., where the relative interior

i=l

“ri’ may be deleted for either index i for which f. may happen to be

polyhedral;

(y) ‘L = R n 
= W , and for all w the condition

* + * 4(f
10 ) (w) + (f20 ) (—w) < 0

imp ] it s

(f 10 ) (—w) + (f20 ) (w) < 0

( h )  ~ = ~~ = W , f1 is polyhedral , and whenever w satisfies

(f
1
0 ) (w) + (f20 ) (—w) < 0

and

* +(f10 ) (—w) + ( f 2 0 ) (w) > 0

it f o l l o w s that

*~~~ * ÷(f
1
0 ) (w ) = (f20 ) (w)

(i) Z = Rn 
= W , f

1 
a nd f 2 are pol yhedra l , and

* 4- ) (w) + (f 2 0 ) C—w) > 0

PROOF . The sufficiency of conditions (a) through Ce) ‘s proved in

[20 , Theorem 20]. The refinement that reflexivity is unnecessary in Cc)

follows from [16 , Corollary 1). The proof under condition If) follows by

combining Theorems 16.4 , 20.1 and 23.~ of (18]. Finally, conditions (g),

(h )  and ( i )  can be s~een to be the dua l ized  ve r s ions  of the three conditions

contained in (f). For (g), one uses Corollary 16.2.2 of [18] directly.

For (h), one uses Theorem 13.3 and Corollary 20.2.1 of [18], reformulating

—26—
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ii s l i g h t l y “ W&~~~J . e m  ‘ forms t h e  e u l i d i t i o m i  g iven  in  Corollary 20.2.1. (The
as stat~~ i t h e i~~ is only sufficient, not necessary and sufficient.)

For ( i ) ,  ~.e sh a l l  sket ch  th e proof that., when both f1 and f 2 are
polyhed ral , the c~ tid i tion

� don f 1 
(1 don

is equivalent to

* 4. * 4.Cf 10 ) (w) + (f
20 ) (—w) > 0

By using t h u  same t echni que employed in the proof of Corollary 16.2.2 of
( 1 8 ) ,  we sec  tha t it suffices to establish a polyhedral version of
Lemma 16.2 of (183. That is, it suffices to show that  if L is a subspaco
of R’~ and f is a proper polyhedral convex function on R’~, then

~ L (‘ dom f

if and only if

*4 .  j(f 0 ) 1w) > 0, w c L

But  t h i s  can be es tab l i shed  by m o d i f y i ng  the proof of Lemma 16.2 of ( 1 8] ,
appealing to the polyhedral separation theorem [18 , Theorem 20.2) in place
of the usual finite-dimensional one [18, Theorems 11.3). This concludes

the proof of the propos it ion .

—27-
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5. The m e an t  ii  of the subaptimi v ’ t  i ens  ove r . cx i l ia ry _ v ar i . ub l e s.  In

t h i s  s e c t i o n  we to . at  in Seine detail the i ssue  of t b  s u b o p tim i z a t i o n s

o c c u r r i ng  i n ( !‘) and (‘1 . I t  w i l l  be shown th at . (1), C ’ )  and even C L )

actuall y arise as t h e  p r o j ec t i o n s , b o t h  i n d i v i d ua l l y  and  as an o p t i m i z a t i o n

t r i o  coll ’. ct  i ve ly  , t a n o th e r  opt  i m i  ~at~ omi t x i o .  The p rec i se  connec t  ion

betweemi t he opt j ma 1 v i  1 ues and solu t  i n a  f o r  t h e  t h i e e  j a  i rs of c o r r e s p o n d  —

ing problems is g iven , as w e l l  as a c e n r I p a r i s a l i  of t he  r espec t ive  e x t r em a l i t y

co n d i t i o n s .  The pr  i ;~i ; l  a tmc l  m u  p rob lems  of t h ~ new t r i o  i n v o l v e  no

s u b o pt i  r , i i x a t  i o n s . This  f e a t u r e  comes at t h e  e~: 1c n s e , however , of h a v i n g

essentially twice as many  p r o b l e m  v a r ia b l e s  and ~~~r t  ; ;r b a t i o n  v a r i a b l e s .

Still , since the new , ‘ e x p a n d e d ”  p r o b lem s  i n v o l v e  a f u l l e r  c lass  of

perturbati ons , and hence entail additional sem isitivity information , there

may be s i t  u a t i o r m s i n  w h i c h  one  mi g h t  pi c ’ f v r  to work  w i t h  the new problem

t r i o  i ns t e ad

The new p r i m a l  p r o b l e m  in ;

mm {h ( x )  - k ( z ) }  ( to  f i n d  b o t h  x and z )  , (P
1
)

x~~0 , A x z

and the new Lini l p r o b lem  is

max 
* 

(k * (y) - h ( w ) )  (t o  f i n d  both  y and w)  . (D
1
)

y>0 ,w~A y

Firs t , we ~~ Lab l ish the c o n n e c t i o n s  b etween  these and our e a r l i e r

problems ( ) and ( I )  , in which the  v a r i a b l e s  z and w are m e re l y

a u x i l i a r y .  H a l f  of t h i s  correspondence r equ i  res t h e  f o l l o w i n g  s t r eng thened

forms of Cl i
) and (112 ) :

(h + ~jp)
*
Cv ) = m l n {h * (v j ) + i 1,0 (v ~~) 1v 1 + V

2 
= v )  , (ii~~)

(k - = m a x {k ( u 1
) - . Q~ U 2 ) H1 + u 2 = u) . (JJ~~)

N o t i c e  t h a t  a v a r i e t y  of c o n d i t i on s  n i i f f i c i ~~ .t f o r  each of these to hold

is furnished by P r o p o s i t i o n  8.
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PROPOSITION 9. The optimal values satisfy

inf(P) = inf (P
1
) and supCl) = su p (D

1
) .

If  (x ,z) solves (P
1
), then it solves (P) . Conv ersely , if x solves

(P) and if (11k) holds , then there exists a z such that Cx ,z) solves

(P
1
). If Cy ,w) solves CD1), then y solves CD) . Conversely, if y

solves (11) and if (Hi) holds , then there exists a w such that (y,w)

solves CD
1
)

PROOF . It is straightforward to check that

inf{ inf {h(x) — k(z)}) = inf {h(x) — k(z)}
x>0 Ax>z x>0,Ax>z

so the optimal values in (P)  and (P
1
) agree. It follows that if (x,z)

yields attainment of the infirnum on the right , then x yields attainment

of the outer infimum on the left. Now suppose , conversely, that x yields

a t ta inment  of the outer infimuin on the l e f t  and that (Hi) holds. Then

i n f ( P
1
) = i n f {h (x) — k ( z ) )

Ax>z

= h(.x )  — sup ( k ( z ) }
Ax>z

= h(x) - sup(k(Ax - z) -

By (FI~~) ,  the latter supremum is actually attained at some z, where

without loss of generality (considering the possibility that the supremun

is — =  trivially) we can assume that ~ ~ Q. Hence ,

inf ( P 1) = hCx) - k (Ax -

for some e Q. This shows that the pair 
~~~~~~~~~~ 

where z = Ax —

solves (P
1

) .  The asser tions concerning CD) an d (D
1
) are establ ished

similarly.

COROLLARY 9A. If min(P
1
) = m a x ( D

1
), then mnin (P) = max(D). The

converse is valid when both (Hi) and (Hi) hold.

Our nex t  aim is to show tha t  (D
1

) is indeed a dual of CP
1
) in the

sense of Rockafol la r ’s per turba tional dual it y theory (18,203 , and to
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identif y, moreover , the saddle point problem CL
1

) corresponding to (P~~)

and (1)
i

) .  For this , it is necessary to parametrize (P
1
) “convexly” in

such a way that the general theory in [20] yields CD
1
) as the dual problem.

To do this , we shall exhibit functions F1, G1 
and K1 satisfying

i den t i t i e s  ana logous  to the key i d e n t i t i e s  ( 4 . 1 )  and ( 4 . 2 ) .

Def ine  F’1 on X x U X * U , G1 
on V x Y x V x Y ,  an d K 1 ~~

X x U x V ~~~~Y by n ea n s o f

F1 (x ,z,s,u) = }m (x) + P
Q
(Z) + ji~~(x + s) — k ( l t x — z + u)

G1 (w,y, v ,t) = k (y) — r4 ~ Cw) — 
~ ~ (y — t) — h (A y + w + v)

P 0

and

K1 (x ,z,w ,y) = (h(x) + 4)
Q
(Z)] + [k (y) —

— ((x ,w> + (Ax,y> — ( z , y ) ]

if (x,z) e don h x P and K1
(x,z,w ,y) = += if (x,z) / don h ;~ P. It

is easy to see that

is mm F1 (x ,z,0,0)
x,z

is max G
1
(y, w, O , O)

y,w

and that K1 
determines a saddle point problem over the product set

(don h P) CQ x don k). We define this saddle point problem to be (L
1
).

The fact that CD
1

) is actually the dual of (P
1
) and that CL 1

) is the

associated Lagrang ian minimax problem follows from [20] and the two

identities to be established now.

PROPOSITION 10. The functions F1, G1 and K1 satisfy the identities

G1
(w ,y , v ,t) = —F1

(v,t,--w ,—y )

and

K 1(x , z ,w ,y)  = i n f( F
1
(x,z,s,u) + ( (s , u ) , ( w , y ) ) }

s,u

—30—
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PROOF . These can be derived nest easily in stages . First suppose

q is some function convex on X x u and that B : X -* U is a continuous

linear operator. If H is defined as

H(x ,u) = q(x ,u + Bx)

it is routine to check that

* * *—H (v ,-y) = -q (v + B y , — y )

and

infCH(x ,u) + (u ,y )} inf (q (x,u) + (u,y>) — (Bx ,y)
U U

Now apply these identities with the choices

q(x ,z;s ,u) = hCx ) + qi
0
(z) + m~;~~(s) 

— k(u)

and

B(x ,z) = (x ,Ax — z)

* *It is routine also to check that q and B are given by

q* (v , t ; w ,y )  = h*(v) + q 00 (t )  + i1~~0 (w) — k
*(_y)

and

* *B (w,y) = (A y ~1- w,-y)

Upon substitution we see that H becomes F1, etc., and the desired

identities follow from those already noted for H.

COROLLARY lOA . One always has the estimnate

F1(x , z , 0 , 0 ) > G 1(w ,y , 0 , 0)

Moreover , equality is attained by pairs (x ,z) and (w ,y) if and only

if (x ,z)  solves (P
1

) ,  (w,y) solves (D
1

) ,  and inf (P
1
) = sup(D

1
).

PROOF . Similar to that of Corollary 1A.

We turn now to the connection between the two Lagrangian probl ems

(L)  and CL 1).

PROPOSITION 11. Assume P is closed . Then

sup inf K1 < sup inf K < inf sup K < inf sup K
1

If in addi tion and 
~~~ 

hold , then the two lower saddle val ues agree

and the two upper sadd le va lues agree.

— 31—
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PROO F ’ . Time m i d d l e  i n equ a l i t y  is a l w a y s  t r u e , as can be r a c i ly

~e ri  fled . The a s s e r t i o n s  a b o u t  t he  “ sup iii!~ expressions fol lox’ from (la

c o m p u t a t i o n s
*

sup iim f K
1 

= sup i n f  {h ( x )  + k (y) — x .w  — Ax~ y 4.

w ,y x ,.z Wt P* * Zl ()

ye dom k  x dora h
* *

= sup {k  (y )  — sup (x .(A y + w) - h ( x )  + sup z.(-yH}
w c p * 

* 
xc dom h z Q

ye don k
* * *

= 
~~~~~~ * 

sup~,{k (y) — h (A y + ~ ‘)  ~
ycQ ndom k wtP

= sup f(k * - 

~ ~
) ( y )  - (h 0 ~

) (A y )
yc l) 0

and

*sup in! K = sup in f  [ h ( x )  + k (y) — (Ax , y )}
y x ye D xc C

* *
= sup (k  ( y )  — sup((x ,A y ) — h(x)fl

yeD xeC

= sup( (k* - (~ ~
) (y) - (h  +

yeD Q

( where we have abbrev ia ted  the b i l i n e a r  p a i r i n g  f u n c t i o n s  by the “dot ”

n o t a t i o n  to shor t en  the  f o r m u l a s ) .  Since in general (h + ~i~~ ) ~ (h 0

i t  fo l lows t h a t

sup i n f  K 1 su p i n f K

always holds , while if 
~
11
~~ 

holds  we ac tu a l l y ha ve e q u a l i t y . For the

“inf sup ’ assertions we proceed similarly, calculating that

in! sup h
1 

= m t  sup (h(x) + k*(y) - x•w — Ax•y + z.y)
x ,z w ,y zeQ w (P* 

*x edom h y ed om k

= inf {h(x) — inf 
* 
((Ax - z).y - k ( y )  + inf~ 

x.w)}
z Q  ye dom k w c P

xe dom h

= inf inf (h(x) — Ccl k )  (Ax — z))
xf (clP)fl dom h zcQ

= inf f(h + ~~~ ~ ) ( x )  — (el k D-r4 ) (Ax))
xc (cIP)r’l dom h
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and

*inf  sup K in f  s u p {h ( x )  + k (y) — (Ax ,y ))
x y xCC yED

*
= inf{h(x) — inf{ (Ax ,y) — k (y))}

xEC ycfl

= inf{ (h + iSi~~
) Cx) — Ck — 

*)
*
CAx ) I

x€ C 0

Now in general one has

(k — mP *)
*=cl(k fl_i~.)) > Ccl k [l_ (~~) > (k D—~Q)Q -

Thus , if P is closed it follows that

inf sup K
0 > inf sup K

If in addition ( 112 ) holds , then (k * 
- Ip *

)=  (Cl k D_lPQ
)~ and so we

0
actually have equality .

COROLLARY h A .  Assume P is closed . If the saddle value in (L
1
)

exists, then so does the saddle value in (L) and the two values coincide .

Conversely, if the saddle value of (L) exists and (111) and ( H
2
) ho ld ,

then the saddle value of (L
1) exists and the two values coincide.

The connection between i n f ( P ) , sup(D) and the lower and upper saddle

values of (L) was noted in Corollary 2A. The parallel assertions concern-

ing (P
1

) ,  (D
1

) and (L
1
) are that

inf(P
1) = inf sup(L

1) if P and k are closed ,

while

sup(D1) = sup in! CL 1
)

always holds.  These fac t s  follow from the identities of Proposition 10

and [20, pages 18—19]

Now consider the abstract Kuhn—Tucker conditions corresponding to

, 
~°l~ 

and (L
1

) :

(0,0,0,0) c ~K ( x ,w , y , z)  .

These are characterized and contrasted with those corresponding to (P), CD)

and CL) in the next result and its corollary .
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PROPOSI’!’loN 12. Vectors x and y satisf y (0,0) ~‘K(x ,y) if

and only if

A y  ~)(h + ~~ Cx ) and Ax e 3(k - 
~ * ) (y )  . (5.1)
0

Vectois x , z , w , y satisfy (0,0,0,0) e aK1 (x,z,w ,y) if and only if

x ~ cl p, w c p , x ,w> = 0 , (5.2)

*z Q, y Q , (z,y) = 0 , ( 5 . 3 )

w ah (x) and Ax — z t ak (y) . (5.4)

PhOel ’ . The first assertion was established following (4.10). The

same approach used there can be used to obtain the second assertion . In

( 4 . 1 0 )  rep lace h by the function (x ,z) -
~ h(x) + ~0

C z ) ,  replace k

by the f u n c t i o n  (s ,u) — r$’~~( s)  + k(u), and replace A by the linear

,t r a n s f o r m a t i o n  (x , z)  (x ,Ax — z). Then A becomes the transformation

(w ,y) * (Ay + w ,-y) and k* becomes the function (w ,y) ~ (_g~~)*(w) + k C y ) .

Substitution of these ingredients into (4.10) yields that

(0,0,0,0) t 3K1
(x ,z,w ,y)

if and only if

A y  + w ah(x), Ax — z e ~k (y), -y e arp
0
(z), x c a (-~~~) 

* 
(w) .

*Finall y, it is routine to show that x e a(— q~~) (w) is t h e  ~ nmp as (5.2)

and t h a t  -y C a c~Q (z) is the same as (5.3).

The .o nveisr ’  par t  of the f o l l o w i n g  corol lary  e s t a b l is h e s  hypotheses under

which the e xt i o r n a l i t y  condi t ions  ( 5 . 1 )  can be broken down in t o  ( 5 . 2 ) ,

( 5 . 3 )  and ( 5 . 4 ) .  I ts  s t a t e m e n t  u t i l i z e s  the  cond i t i ons

a C h + iP~~) ( x ) = ah (x) + aq~~(x) , (H
i )

— ( * ) C y )  = ak Cy) — a p  ~(y) . (11
2
)

0 0

Notice t ha t  P ropos i t ion  8 provides a variety of sufficient conditions

ensuring that these hold .

COFt OLLARY 12A. I f C x , z ,w ,y )  solves CL 1) and P is cl osed , then

(x ,y )  solves CL). Conversely ,  if (x , y)  solves ( L ) ,  0 is closed , and
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I,

both 
~

11
i~ 

and 
~~~ 

hold , then there exist vectors z and w such that

(x ,z,w ,y) solves CL 1
).

PROOF . Suppose first that (x,z,w ,y) solves CL
1
). Then the proposi-

tion yields (5.2), (5.3) and (5.4). Now ( 5 . 2 )  is the same as —w € 3up p (x)

when P is closed , and (5.3) implies —z € a r~ ~ (y). In view of the
Q

general inclusions

ah (x) + 3r ~~ ( x )  C ~(h + P~ ) Cx), ak
*(y) — amp ~ Cy ) C a(k* — ‘p *) ( y )

0 0

(5.4) then yields (5.1). Now suppose conversely that (x,y) solves (L ) .

If 
~
11i~ 

and (112) both hold , then by (5.1) we know there exist vectors z

and w such tha t  -w e ~mp~~(x), — z e a~p ~ ( y ) ,  and ( 5 . 4 )  hold. Now
0

—w e amp~ cx) implies (5.2), and -z e amp 
~

(y )  is the same as ( 5 . 3 )  when
0

0 is closed. Hence the proposition implies , in the presence of the

assumptions mentioned , that (x,z,w ,y) solves ( L 1
) .

It is interesting to examine the primal and dual optima l value func-

tions associated with the duality between (P 1) and (D
1

) :

= inf F1(x,z,s,u)x ,z

= inf{h(x) — k(z) Ix + s > 0, Ax + u > z )

and

y1(v,t) = sup G1 (w,y,v ,t)w ,y

= sup(k
*
Cy) - h (w) y > t, w > À y  + v}

Comparison of these with ~ and y, given in (4.4) and (4.5), shows that

the new t r io  of problems , invo lving more exp licit variables, is based on

perturbing the “nonnegativity ” constraints in addition to the “linear

inequality ” constraints . Thus , the sensitivity informa tion given by the

model with more (primal perturbation) variables is more comprehensive ,

though at the price of having to deal with additional (dual problem)

variables.
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One might reasonably inquire , t~jerefore , which nnslel prob lem , C ])

r 
~l , s the  more appropr Ia t ‘ on w h i c h  to f o c u s  t h e  m a i n  a t  t n t ion

The answer w o u l d  seem to de~~, msl  m a i n l y on t h e r ole be i ng pL. i y ed  by C he

n o n n e q a l . i v i t y  c on st  r m i n t s  in the  ac tua l p r o b l e m  b a i m i g  s t u d i e d . I f , as is

qu i t e  o f t e n  the  case , t h e  n L n n c q a ti v i t y  con s t r a i n t s  are deemed r e l a t i v e l y

i n v i o l a b l e , t h e n  the or i q i n a l  c o n e— a u g m e n t e d  p r o b l e m  ( . ‘ ) seer s i n d i c a t e d .

On the o ther  hand , i f  one has  some need fo r  s e n s i t i v i t y  i n f o r m a t i o n

conc e r n i n g d i s c rep a n c i e s  i n  s a t i s f y ing  the  n o n r m e q a t i  v i  ty const~ a i : , t ~~~, and

is at the  same t ime w i l l i s q  to a d m i t  i n t o  the  c a l c u l a t i o n s  a d d i t i o n a l

expl i c i t  dual  prcblem v a r i a b l e s , t h e n t he mode l  i n v o l v i n q  ~I seer s

indicated . E i t h e r ( F )  or w i l l , ol course , y i e ld  sensitivity info rm-

t ion  concern ing  the genera l  l i n e a r  i n equ a l i t y  c o n s t r a i n t s .

The reader  can f o r m u lat e  w i t h  l i t t l e  d i f f i c u l t y  t he  p a r a l l e l  ver s io : : r

of P r o p o s i t i o n s  3 throug h 7 fo r the t r i o  (P a
) (P r

) , CL
1
)

— 3 6 —
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6. One optimization trio as the m a o ’  of another. Results in the

last section show that C!), CD) and (F), taken individually, are the

“projections ” of (1’
1
) , CD 1

) and (F
1
). Now we show that , in a precise sense ,

the entire optimization trio (P), CD) , CL) is the image of the trio (P1)~

CD
1
), CL

1
) under a certain type of projection transformation . This will

yield an alternate formulation of the question whether identity (4.1) holds,

one which reveals much more clearly the connection with the suboptimiza-

tions occurring in F and G. The transformations involved are more

general  than  the  o rd inary  p ro jec t ion  linear transformations; namely, they

are particularl y simple types of convex processes (see [18 , §39) fo r

definitions) . The “self-dual” form of these transformations will help to

explain why the extreme symmetry possessed by the trio (P1)~ (D
1

) ,  (L
1
)

is passed on intact to the image trio (P)  , CD) , CL)

Conside r first the convex process

M X x U X X x U - . X * U

defined by

I {(x,u)) if s =
M(x ,z,s,u) =(

if s # 0 ,

where we assign M the supremum orientation. It is not hard to see tha t

the sup-oriented convex process

M : V X Y X V X Y - ~~V X Y

is given by

r {(v ,y ) } if t 0
M (v,t,w ,yj ‘~~~~

if t~~~ 0 .

Now let N be the convex process having tLe sar~ie graph as M but

which is assi gned instead to the i n f i n m .mm orientation . Then the image of

F1 under M is F, while the image of under N is G. Indeed ,

— 37—
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(MF
1
)(x ,u) = m t  F

—l 1
M (x,u)

= inf{F
1 Cx ,z,0,u)}

= F(x ,’u) ,

and

(NG
1
) (v ,y) = sup G

—lN (v,y)

= sup(G
1 (w,y,v,0)J

G(y,v)

where the last equalities in each case are straightfori~ard calculations.

Fi om these ident i t ies, we see tha t  it is the self-dual structure of M

that permits the symmetry between F1 and to be passed on to F and G.

One also has that

-G (—y ,v) = —sup (G1
(w,-y,v ,0)}

= irif { —G 1 ( — w , — y , v , 0 ) }

= in f {F 1(v ,.0 , w , y ) )

= ~1nf F 1M (v,y)

*
= CM F1) (v,y)

Together wi th  the two ear l ie r  ident i ties , this shows tha t  the under l y i n g ,

central  issue of
‘) *G ( y , v)  -F Cv , -y )

is ac tua l ly  equivaleat  to the question

* ) *14 F 1 ‘~‘ (MF1
)

The problem of providing general conditions ensuring that such a duality

identity holds between a convex function and a convex process was first
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dealt with by Rockafellar [18 , Theorem 39.7). The infinite—dimensional

case is treated in i1cLinden [10] , where the associated subdifferential

formimula is also derived .

Finally, let us see how the passage from (L
1
) to CL ) can also be

viewed in similar terms . For this , regard the ordinary projection

L1
(x ,z) x as a sup-oriented convex process and likewise regard the

projection L2
(w,y) = y as an inf-oriented convex process. It can be

checked that each of the two saddle functions

(x ,y) -÷ inf sup K
—1 —lx L2 y

and

(x ,y)  -
~ sup inf K 1

L;
1y L1’x

has e f f ec t i ve  dom,~a i n  C x D and agrees with K there. It follows that

each of these two possible ways of forming the image of 1<
1 

under the

“product convex process ” L = L1 
x L

2 
gives rise to CL ). Notice also

that M and N can be expressed in terms of L1 and L2 as

H L1 
x L;

1 and N = L1
’ X L~

*_l
provided we interpret L2 as sup-oriented and L1 as imf—oriented.

The above furnishes an outline which could clearly be extended to

product convex processes more general than M, resulting in a general

treatment of the effects of “projecting ” one trio of optimization problems

onto another. Of particular interest would be the associated suboptimiza—

t ions  ( the  counterpart  of the Z ’S an d w ’s here) and also the way s in

which var ious  classes of perturbations would be transformed.
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7. 
— S1~~~’i ~u l  f u n c t i o n a l_ s t r u c t u r e .  I n th is sect io n we g ive conjugacy

and m . u L 1 i f t ~ ’ m e r i t i , m l  fo r m u l a s  for  c e r t a i n  u s e f u l  ci, l e c t i vo  f u n c t i o n

s t x u c ’ t u r t ’ . T h i s  i n f o r m a t i o n , when combi n ed w i t h  the  symme t r ic con e

comm t r .i I m e J  ci m a l i  ty model dove 1 opec] above , p rovides  the  b a s i s  fo r  t r e a t i n g

s ym m e t r i - i l l y  a v a r i e t y  of specific classes of model prob l ems . In §3 we

i n d i c a t e d  how one would  o b t a i n  q u a d r a t i c  and homogeneous  p r o g r a m m i n g .  The

same approach applies , using the tools  wh i c h f o l l o w , to p rov ide du a l i t y

treatment for functions homogeneous of ~~~~~~~ nonzero degree . (Of course in

general , one need not necessarily pick the famil y B to satisfy

*1 1 = — A . See §3.)

The class of functions to be treated first (in Proposition 13 below)

may be heuristicall y viewed as a rather broad generalization of convex

“distance ” functions , such as the function x ~ (1/2)flx11
2 in a normed

space . Here , the role of the norm w i l l  be p layed  by the gauge of a convex

set containing the origin , and the role of the quadratic “scaling ” func-

tion will be taken over by a generalized Young ’ s function on the half—

line. Before giving the result , we recall from Rockafellar [18) certain

relevant material .

The polar of a nonempty convex subset C of X is

C° = ( v J ( x , v )  < 1, Yx € C I

It is a basic fact that C°° is the closure of the convex h u l l  of C and

the origin. Consequently, if C is itself closed and contains the origin ,

then C°° = C. We shall call such a set a polar set. A gauge on X is

a positively homogeneous proper convex function on X which is nonnegative

and vanishes  at the o r i g i n .  The polar of a gauge ‘y is the f u n c t i o n

y ° ( v )  = inf{0 < ~.m < + =  I (x, v )  < p . y(x ) ,Yx }

This is a closed gauge on V , and one has y °° ~ cl’y . The closed gauges

on X are in one-to-one correspondence with the polar sets in X via
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y(x) = inf (0 < p < + °“Ix €

and

C = {x ~ y (x)  < 1)

It is convenient to write 1C for the gauge corresponding in this way

to a polar set C , and one has 
~~~~~ 

= 1C° A function f : X -÷ [-= ,+ =

is called gaugelike provided f(0) = inf f < +w and the various level sets
x

{xjfCx ) < a ) ,  f ( 0 )  < a < + = ,

are all proportional (i.e. can all be expressed as positive scalar multi ples

of a s ingle  s e t) .  If .p [0 ,+ w )  -* (- , + ] is a nondecreasing convex

f u n c t i o n  which  is f i n i t e  at zero , then its monotone conjugate is the func-

tion : [0 ,4 - )  -
~ (- ,+co J given by

~~~~r )  = sup C OT  —

=
This is another such function , and moreover it is lower semicontinuous.

One has = lsc p ,  the lower semicontinuous hul l  of ~~~. If ~ is

nonconstan t and finite somewhere on (0,+ ) ,  then has these same

properties. From the definition of it follows that one always has

~ (o) + ~~~~~~ > oi , Va , i €

The subdifrerential of ~ is the multivalued mapping a~ : [0 ,+ )  -* [0,+”’ )

defined by

T € a~p ( o )  if and only if p ( o )  + ~~~~~~t )  =

The set a~~( o )  amounts to simp ly the derivative at points  a where .~

is differentiable . Monotone conjugacy for functions on (0 ,+ ) may be

viewed as the natural generalization of the classical facts concerning

Young ’s functions. We are now in a position to present the first result.

• PROPOSITION 13. A func tion  f is a gaugelike closed proper convex

fu nction if and only if i t  can be expressed in the form

f ( x )  = ~~(y (x))

—41—
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where ‘y is a closed ga uge and ~ is a nondecreasing, lower semicontinuou s

convex f u n c ti o n  on [0 ,+= )  which is nonconstant and finite somewhere

on (0 , -F ) . C i l e r t  ~ (+ ) is to be i n t e r p r e t e d  as + in the f o r m u l a
*for f.) In this case f is gaugelikL’, too, and in fact

* +f Cv ) = ~ (y °(v) )

where satisfies the same conditions as ~~~ . Moreover , one then has

v € af (x) if and onl y if

( x , v >  = y (x) y °(v) and y°(v) c

and the sets

{ x l y C x )  < i}, {vly oCv) < 1]

are polar to each other. -

PROOF . See Rockafellar 118 , Theorem 15.3 , or the original , finite—

dimensional presentation of this result. The proof given there extends ,

in broad outline form , to the general case; see NcLinden 19] for details

in the infinite-dimensional case .

“Quadratic ” convex functions are included in the case p = 2 of the

followirm y corollary . The case in which y is a norm is also quite

important.

COROLL2\RY 13A. A func t ion  f is closed proper convex and positively

homogeneous of degree p, where 1 < p < + , if and only if it is of

the form

f(x) = (1/ph (x)~
*for some closed gauge ‘i . In this case f is positively homogeneous

1 1of degree q, where + 

~ 

1; in fact , 

qf Cv ) = (1/q)y °(v)

One then has
i/p * 1/q *(x ,v >  < [p f ( x ) ) I qf  Cv) ) , Vx c dom f , Vv c dom f

and the sets

—42—
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)
{xlf(x) <

~~~~
.. I , (v~ f~~(v) <~~~) -

are polar to each other. Moreover , v € afCx) if and only if

(x ,v) = y(x ) . y °(v) and y°(v) =

PROOF . If f(x) = (l/p)y (x)~ for some 1 < p < += and closed gauge

• y ,  then f = ‘,~ y, where ~ (o) = ( l / p ) c m~ has the properties described

in the proposition, an d he n ce f is closed proper convex. On the other

hand , if f is closed proper convex and positively homogeneous of degree

p for 1 < p < += , one can deduce that 0 = f(0) = inf f, the set
x

C = {xjf (x) < l/p) is closed convex containing the origin, and that

{xlfCx ) < cm) = (ap)1”~C = {x~~ ° YC (X) < c m )

for every 0 < a < += , where .~‘ (o) = C l/p)OP. it follows that f = 0

The remainder of the corollary now follows from the proposition , upon

noticing that for this ~p one has v~
4 ( t )  = (l/q)~~ for + = 1.

Ordinary positive homogeneity (i.e. of degree p 1) for convex

functions is handled by the basic correspondence relating indicator func-

tions to support functions , which is readily accessible from the general

conjugacy correspondence . (See also 118 , Theorem 13.2].) The next

co~o1lary deals with nonnegativity combined with positive homogeneity . The

case in whi . h C and C° are the unit balls of polar norms is of

particular importance .

* *COROLLARY 13B. Let C be a polar set. Then = 
~~~~ 

and =

Moreover , v 
~ ~

y
C CX) if and only if (x ,v) = YC (x) 

. Yco (v) and either

= 0 and 
~~~~~~~~~~~~~ 

< 1

or el se

‘rC ( x )  > 0 and 
~
‘
~~~C”

) = 1

PROOF . The proposition applied to f ~ 0 where ~~Ca) = a ,

* + + *yields f = 0 Since ~ CT) = ~) 10 ,1~~~(T)~~ this means =
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‘ t . i k i m m 1  e s ’  u~~~m t c n  them ) yields th e first i d em i t  it y, SfliC ~~~ C h~~~~~ i .

‘time i;cthmI j~ t , - m c n t j a l  c h , m m a c t e r i ? a t i o n  f u l ! e w ~; b y t i e  1~~~~~1. ’~~~J t  m m ,  f i nn t i .-

t a t  t h i t  i ~~ ( c  ) i f  and omily if ci = 0 and 0 < i < 1 or a — 0

am i d  1 1.

We hive ~~m u-iis ~ d coverage of posit ive h n m i r ’j ene i t y of an y  n on i er o

t * .- p. t om p < 1, this clearl y puts us most naturall y m t  a the realm

c(s~~m v y t im m et I OIlS . What we shall do is present a natural , comic~~ve

analogue of i i:oj ua itioji 13. It turns out that the class of funct inns 1 t

reats sin he heuristicall y viewed as comicavo “u ti l i t y ” func tions , m u c h

as those of the previous discussion W O S S  convex “di ~~t anec’” functions. To

formulate this concave analogue (Proposition 14), we require appropriate

analogues of the  concepts and fac t s  used e a r l i e r .  For more on the fo l low-

ing material , see McLinden [9].

Let C be a nonempty convex subset of X such that 0 / ci C. The

anti polar of C is

> i , vx C C)

(Here, and be low , we rely on the context to indicate whether the symbols
0 + *

and ci are to be interpreted in the earlier , convex sense or

in the plesent , concave sense.) It is a basic fact that C°’ is t.he set

cl {Ax IA > 1, x € C). Hence . C°° = C if and only if C is a n o n e mp t y

closed convex set which excludes the origin and satisfies the condition

Ax € C for al] A > 1 and x c C

We call such a set an an t ip o l a r  set .  (A particularl y nice examp le of an

antipolar set in X = R~ is the ‘hyperbolir” set C = { (h , .  ~~~~~~~~) I > 0

each i , and r > ~h. This has the self—dual property C° = C.)

An ant ig~~~~ on X is a positively homogeneous proper concave function on

X which vanishes at the origin and is nonnegative but not identically

zero on its effective domain. The ~ntipolar of an antigauge y i’i the

function

— 4 4—
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y °Cv ) = sup {0 < p < + I(x ,v> > P.y(x), Yx ~ don y}

where we use the convention sup 0 = — . This function is a closed

antigauge on V, and one has y °° = c l y .  The closed antigauges on X are

in one—to-one correspondence with the antipolar sets in X via

1 s u p ( 0 < P < + = l x
~~~

Pc} if x cone C

y Cx) = 0 jf X € asym C

if x / r ec C

and 
-

C = {x ~ y ( x )  > 1)

Here rec C denotes the recession cone of C (i.e.

rec C = {zjx + Az ~ C, Vx e C VA > 0)), cone C denotes the projecting

cone of C (i.e. C = {Ax Ix E C,A > 0) ) ,  and asym C consists of what

might be thought of as the asymptotes of C, name ly asym C = rec C \ cone C.

(Some feel for asym C may be gained by considering a few simp le examp les

in the plane. If C1 
= {(

~)~ €2)I
~2 > 1), then asym C

1 
= {(

~~i
,0) 

~~ 
€ R}.

If C2 = t C ~~1,~~2 ) J F,2 > l,~~ > 0), then asym C2 = { C
~~i, 0 ) I ~~i 

> 0). If

C3 = 
~~~~~~~~ 

10 < 1 
~ ~1~ 2’ 

or else 1 
~ ~1’~~2 ’  them)

asym C3 = {C~ 1,0)I~~1 
> 0) U {( 0 ,

~~2 ) I ~~2 > 0). The set

D
1 

= { (
~1,~2 ) I ~2 > e I is not antipolar , but C4 = is. One can

check that C4 { (
~ l’~ 2 ) I

~ 2 > e and < 1, or else > e(~1 and

1 < ~~~~~~
}, so that asym C4 = ((l

l ,0) l~~l 
< 0). The set

D2 = C 1,~ 2H~ 2 > 1 + ~~~~~~) is not antipolar , but C5 = is. One has

C5 = 
~~~~~~~~ ~2 

> 1 + and < 1, or else 
~2 

> 2I
~~l I and

> 1) and asym C5 = {C0 ,o)L) It is convenient to wr i te  ‘

~

‘

~~~ 

for the

ant igauge  corresponding in the above manner to an antipolar Set C, and

one has 
~~~~ 

We shal l call a func tion f : X -÷ [ — = ,+=) anti-

gaugelike (admittedly, a verba l monstrosity !) provided tha t, on the set

{x j fCx ) > ~~~~ f is noncons tan t and bound ed below by f (0 ) ,  and that

the various level sets

—45—
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{xlf (x) > a) , f (0) < a < sup f

are al l  p ropo r t i ona l  ( i . e .  can a l l  be expressed as p o s i t i v e  scala r  m u l t i p l e s

of a single set). If ~ ~0,+ ) [ — = , + ) is a nondecreasing concave

function not identically — ~ ‘ , then its monotone conjuqate is the func-

tion : 10 ,+ ) 
~ [— ‘ , + ) given by

= inf {oi —

0<o<+ =

This is amm ot her  such function , and moreover m t  is upper s emicon t inuous .

One has ~~~~~~~ 
— usc ~

‘ , the upper semicontinuous hull of ~
‘ . If ,~ is

nonconstammi , then ~ is also nonconstant . From the definition of

it follows that one always has

~‘(o) + ~~~~~T) < ai , Vu , t € [0,+=)

The s u i d i t f i r u n t i u l  of ~ is the mul t iva lued  mapping 3,~ [0 , + )  -* 10 ,+ )

defined oy

• • +
T € a~~( u )  if and only  if ~~C o )  + ~ C t ) = OT

As before , ~i~~(a) amounts to simply the ordinary derivative at points

a whe re ~ is differentiable. Armed with these notions and facts, we

can proceed to the concave analogue of Proposition 13.

PROPOSITION 14. A function f is an antigaugelike closed proper

concave function if and only if it can be expressed in the form

fCx) = ~‘(y (x) )

where y is a closed antigauge and p is a nondecreasing , nonconstant ,

upper semicont inuous  concave f u n c t i o n  on [0 , + = ’ ) .  (H ere ~~(-~~° )  is to

*be interpreted as -
~~~ in the formula for f.) In this case f is

a n t i g a u g e l i k e, too , and i n f a c t

* +f (v) = ~ (y °(v)) ,

where satisfies the same conditions as p. Moreover , one then has

V e ~f(x) if and only if
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(x ,v) = y(x) . y °Cv ) and ‘y °(v) c 3p(y(x))

and the sets

{ x l y ( x )  1) , (vl y °(v) > 1)

are antipolar to each other .

PROOF . See flcLinden [9j.

The following corollary completes the treatment of positive homogeneity

of nonzero degree p. (The case - = < p < 0 corresponds to the dual

version of the corol lary . )

COROLLARY l4A. A function f is closed proper concave , nonconstant

on its effective domain , and positively homogeneous of degree p, where

0 
~ 
p < 1, if and only if it is of the form

f(x) (~~)y(x)~
’ 

* .for some closed antigauge y. In this case f is positively homogeneous

of degree q, where + = 1; in fact,

* ~ 
(l)y O ( ~~~~)~~~ if y°(v) > 0

f Cv ) = ç q

otherwise

One then has

1/ * 1’ *(. x,v> > (pf(x)) P[qf Cv) ) ~~~ > 0, Yx € don f , Vv e dom f

and the sets

{xlf(x) > ~~~}, {vJf *Cv) ~

are antipolar to each other. Moreover , v € af(x) if and only if

1(x)  > 0, y°(v) > 0,

(x ,v) = 1(x) . 1° (v) and y°(v) =

PROOF . We proceed in a manner quite similar to that for Corollary 13A.

First , suppose f is of th e form f = (1)yP for some 0 < p < 1 and

closed antigauge y. Then it is clearly nonconstant and positively homo-

geneous of degree p, and fu r thermore , for p (a) = (~~)~~I~ it is of the

form treated by the proposition , and hence is closed proper concave . On
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the other hand , suppose f is closed proper concave , n o n c o n st ant  On i t s

effective domain , and p o s i t i ve l y homogeneous of dec;ree p for some

0 < p < 1. One can deduce routinely that 1(0) = 0, that f(x) > —

impl ies  t ( x )  > 0, and t h a t  C = (xjt (x) > ~~) is an antipolar set. (The

noncons tam i cy  assumpt ion  is needed to show C i s  none mmm pt y I . Then for each

0 < a ~ + one can 01)0W t h a t

{xl f Cx) > ci) = (up ) 1”
~ c = ~xk ° ~r c

( x )  > a )

where ‘(a) = (-~-)a~~. From this it follows lh 0t f = ° 1~~. The remainder

of the corollary now follows from the propos ition , s i n c e  ~~~~ ( T )  = ~~~~~~~

fo r 0 < i < + ‘  and ~~~~0) =

COROLLARY 1413 . Let C be a n an t i p o l a r  se t .  Then 1C = (
~~~co ) and

IC = 
~~~~~~~~ 

Moreover, v 
~
y
c~

x) if and only if (x ,v) = yc (x)

and e i t her

= 0 and yco
(v)  > 1

or else 
•

> 0 and Ic o C v )  1 .

PROOF . The propos i t ion  app l ied  to f = ° where ~ (a) = a ,
* + +yields f = a 1C°~ 

Since ~ ( t )  
~

m4 I U +  = 
C T ) ,  this  means

IC = 0 . Taking conjugates then y ie lds  the f i r s t  i d e n t i t y , since

is closed. The subdifferential characterization follows by the proposition

from the fact -‘ - t  T c ~‘~m ( a )  if and only  i f  e i ther  a = 0 and T > 1

or else 0 > 0 imi d T 1.

The situation treated in Corollary 1413 amounts to th~ concave version

of positive homogeneity of degree p = 1.

In terms of viewing the functions in Proposition 14 as concave

“utility ” functions , still other choices of the “scaling ” function ~

besides pth powers are of interest. We shall cite just three, leaving

it to the reader to formulate the corollaries corresponding to these
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choices as well as others. These three each have the nice feature that

= ~ + a , where ci is some real constant. Upon replacing ~‘ by

p - a/2 , one could thus obtain complete self-duality, i.e.

(~~~ + a/2)+ = ~ + ct/2. Of course , 
~~

(,p + cz/2) = ~~~~. In general, the p ’s

which are se l f—dua l  (up to an addi t ive  constant as above ) are prec ise ly

those whose subdifferentials are symmetric upon reflection through the

axis a = t in R~ .

Example 1. Take ~o (cm) = Qn a for 0 < a < + and ~~(0) = —

Then = p + 1. The graph of the subdifferential ~p here is

( ( o ,T) € R~~IOT 
= 1). By comparing this graph with the graphs of the sub-

differentials of the ~th powers appearing above , one sees this as the

natural limiting case corresponding to p = 0. See McLinden [9] for more

on this point. The subgradient formula one obtains from Proposition 14

for this choice is V e 3 (v ’ a y~ ) Cx) if arid only if

= Ic(x) 
. IC0 (v )  = 1.

Example 2. Take ~ (o) = a for 0 < a < 1 and p (a) = 1 for

1 ( a < + . Then — 1. Here the “utility ” function ~ a

increases linearly as x moves from the orig in towards C and becomes

constant once x gets inside C.

Example 3. Take ~o (a ) a — 0
2,2 for 0 < a < 1 and p (ci ) =

fo r 1 < a < + = . Then ‘p —
~~~~. Here the “utility ” function ‘p o

increases quadratically as x moves from the orig in towards C and

becomes constant once x is inside C.
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8. (‘enc I mmmi m m’ em ~u e n t s  . We wish to em ha si ze the j mm—c ’rJe c ! na LUI

of t he pm ~-~;~ - m m  t I r i i : ,. wo k . For each of our nmc,del p r o b l e m ’ s 0 l e men  t — t . h -  -

cones P amid 0, the func tions h and k , a nd t h e  t r a n s f o r m m m a t i o n  A —

there arc’, of cour se , mimany specific , basic structur al forms of ~~ t & i t icu l

interest, and im Th r tam ic e . When one contemp lat en f u r t h e r  to cons ide r  i n t e r-

m ing l i n g  t ! m m Sc various structural forms , the  possibilities become virtuall y

e m m d l e s s .  I n vi -m ~ of th i s , we have chosen in this paper to concentrate

on deve lih i n y  a q e m m e r a l  f r amework  (~~~3 , 4 , 5 , 6) broad dnd  v e r s a t i l e  enough

to e m m c o n m j - . m * .  a v a r i e t y  of spec i f i c  prob lem types  of known v a l u e , and

s e c o n dar i l y t~~ i o - I i c a t e  (~~7) the e s sen t i a l  f ac t s  necessary  fo r  app ly ing

the fram u- -wei l~ in the broad cases of convex “distance ” and/or concave

“utility ” st r u c t i m i  0 ici h and k.

N o te , t o o  t ha t . our  entire approach has  in e f f ect been based on a

simnmp le but very qmo~t’cal “symmetry principle ’ (~~3). This principle mi ght

be kept in m i n d  as a potentially powerful conceptual aid in deciding how

to formu late a class of problems initially so as to achieve var iou s

desirable duality effects.

We close by mentioning a few of the other possibilities which mi ght

be combined fruit full y with the present framework.

First , alt~~i ‘Jig h or k by affine o ‘conjugate affine ” terms does

not m a t e r i a l l y  a l t e r  thc f ramework . I t  simply has the effect of removing

the n o r m a l i z a t i o n s  (wi th respect to the ori g ins)  which  we imposed for

purely not atmoc al convenience . See (18 , Theorem 12 .3].

Second , additive separability in h or k and A is a powerful

f e a t u r e , on which  decomposi t ion  into  smaller subproblems m i g h t  be based .

See 18] fo r  an i l l u s t r a t i o n  of how the decomposit ion p r inc ip l e  can be

formula ’ed in the context of Fenchel--Rockatellar duality . Quasi—separability

could also be useful , particularly in conjunction with faithful convexity .
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See [19], where both t l m t ~~ & ’ n o t i o n s  are defined and studied in the context

of finitely many convex in c-quality constraints.

Third , structur e prcn ,-nt iii the cones P and Q might be exploited.

Finitel y generated or ol y lmi - d i a l  cones wo”ld admit sharpenings of some

results (by Proposition 8(f), for example) . Intersection or finite sum

* *structure could also be useful , at least insofar as computing P and Q

Finally, the type of transformation A treated in the model can be

broaden -i considerabl y with the aid  of s l i g h t l y  s t ronger  a s sumpt ions .  In

(10] it is shown how the present model extends quite naturally to handle

A’s which are closed convex processes (see [18 , §39] for the definition).

In particu lar , densely defi :mcd single—valued linear A ’s having closed

graph are covered there.
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