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ABSTRACT

A fully symmetric duality model is presented which subsumes
the classical treatments given by Duffin (1956), Eisenberg (1961)
and Cottle (1963) for linear, homogeneous and gquadratic convex
programming. A wide variety of other special objective functional
structure, including positive homogeneity of any nonzero
degree, is covered as well. The model is valid in spaces
of arbitrary dimension and treats explicitly systems of both
nonnegativity and linear inequality constraints, where the partial
orderings correspond to nonpolyhedral convex cones. The approach
is based on augmenting the Fenchel-Rockafellar duality model
(1951, 1967) with cone structure to handle constraint systems
of the type mentioned. The many results and insights from
Rockafellar's general perturbational duality theory can thus be |
brought to bear, particularly on sensitivity analysis and the
interpretation of dual variables. Considerable attention is
devoted to analysis of suboptimizations occurring in the model,

and the model is shown to be the projection of another model.
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EXPLANATION

The paper treats optimization problems of the form minimize
f(x) subject to the side conditions x > 0 and Ax > b, where
the function £ 1is convex in the vector variable x, the
transformation A is linear, and the inequality relations may
be determined by general convex cones. An essentially equivalent,
or "dual", formulation of this problem is developed which reflects
rather explicitly various possible structural features possessed
by f. This dual problem provides the theoretical basis for an
indirect way of approaching the original problem computationally,
and in particular one which can provide lower bounds on the optimal
value sought. A distinguishing feature of the duality model, or
theory, presented here is that the alternate problem generated by
it remains within the same gualitative realm of difficulty as the

given problem. The paper can thus be viewed as a rather broad

extension of the classical theory of dual linear programs, to
cover dual pairs of nonlinear convex programs sharing the same

qualitative level of difficulty.
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SYMMETRIC DUALITY FOR STRUCTURED CONVEX PROGRAMS

L. McLinden

1. Introduction. Consider the problem of minimizing a function f(x)

subject to constraints of the form x > 0 and Ax > b, where the function
f 1is convex, the transformation A 1is linear, and the partial orderings
are determined by convex cones. Often it is important to take into account
the sensitivity-of this problem with respect to small changes in the vector
i b. In addition to the special form of the constraints, the function £

may also have special structﬁre, such as linearity, quadraticity, positive
homogeneity, etc. This extra structure ought usually to be reflected
rather explicitly in dual approaches to the problem. Further, it may be
essential to consider such an optimization problem in some infinite dimen-

sional real vector space rather than in R", and to regard the inequalities

as determined by order cones not necessarily finitely generated.

{ The aim of this paper is to provide a duality model which deals fully
with each of the above considerations, and which is also symmetric, in
the sense that the dual problem generated will enjoy structural character-

istics of the same qualitative type as the original problem. The goal of

| such symmetry is motivated not simply by aesthetics or by the proof-
theoretic power which it provides, but mainly by its algorithric implica-
tions. By symmetry one is guaranteed in advance that the character of
the dual problem given by the model will be qualitatively no worse than the
original problem.
In 1956, R. J. Duffin [3] gave such a model to handle the fundamental

case of f 1linear, though it was not apparent at that time just what the
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connection with sensitivity was. Duffin's model is the natural, infinite
dimensional extension of the celebrated Gale-Kuhn-Tucker [6] symmetric
treatment of linear programming duality. Working in finite dimensions

and using polyhedral order cones, E. Eisenberg [4] in 1961, and R. W. Cottle

{2] in 1963, gave symmetric duality models for the basic nonlinear cases

of f positively homogeneous and quadratic, respectively. The case of a
positive definite quadratic functional in Hilbert space occurs very

implicitly in a 1965 paper by J.-J. Moreau [12], although there the concern

is not with constraints per se. In 1967, R. T. Rockafellar [17] provided

a symmetric duality treatment for completely general convex optimization
problems, by broadening and extending the finite dimensional model presented
by W. Fenchel [5] in 1951. It was here that the issue of sensitivity

under perturbations was first dealt with and its intimate connection with
the dual problem explored. Constraints were covered, but only implicitly,
by the presence of extended-real-valued functions and a highly useful

linear transformation. In 1967 also, Rockafellar presented the outlines

of his subsequent extremely broad, and symmetric, perturbational duality : 1
theory for convex optimization problems. Details of this, a wide variety
of applications, and further references may be found in [20].

In the present paper, the basic Fenchel-Rockafellar model is augmented

! with explicit cone structure, so as to handle directly general constraint
systems of the form x >0 and Ax > b. This is done in a manner which
maintains the complete symmetry of the original model. The resulting

framework forms a direct bridge, as it were, between the Fenchel-Rockafellar

model for general convex problems, on the one hand, and the treatments
given by Duffin, Eisenberg, and Cottle for the particular classes of
linear, homogeneous, and quadratic problems, on the other hand. We

indicate how these cases, as well as many other classes of problems having




special structure, can be handled in the present framework. This requires
providing conjugacy and subdifferential formulas for various special
functional structures of interest. This we do for two '.-'oad classes of
functions. One consists of generalized, convex "distance" functions:
Minkowski gauge functionals composed with Young's functions on the half-
line. The other class is the natural, concave analogue, consisting of

what might be viewed as generalized, concave "utility" functions. Taken
together, the two classes include, in particular, positive homogeneity
structure of any nonzero degree. The Lagrangian minimax problem associated
with our primal and dual problems has explicit "nonnegativity" constraints
in each of the two arguments. (Additional, implicit constraints might

also be built in via the extended-real-valued saddle function.) The present
results can thus also be interpreted as bearing on such constrained two-
person zero-sum games.

A topical outline follows. In §2 notation is established and the
Fenchel-Rockafellar model recalled briefly. 1In §3 a simple principle is
observed for introducing further structure into the problem in a symmetric
fashion. Based on this, the three problems forming our cone-augmented
model are presented. It is indicated here how the various classical
models can be recaptured from the present one. In §4 the main results
rela:ing the primal and dual problems are developed, and the issue of
suboptimization partially addressed. In §5 the extremality conditions
and the associated minimax problem are treated, and the issue of sub-
optimization analyzed further. It is shown, in particular, that the trio
of problems being treated, regarded both collectively and individually,
can rightly be viewed as the projection of another trio having no sub-
optimizations but "twice as many" variables. In §6 the projection

phenomenon is analyzed further and seen to be actually quite a general
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“"construction", suggesting further issues for investigation. 1In §7
conjugacy and subdifferential formulas are indicated for the generalized
convex distance and concave utility functions mentioned above, enabling
such functions to be employed freely in the model. 1In §8 are some
concluding remarks about possible variations and refinements in the present
framework.

Although the thrust of the present paper is towards (possibly infinite)
linear inequality constraint systems over cones, we should mention that
a symmetrized duality model is also available for constraint systems
consisting of finitely many convex inequalities. This was first presented
by E. L. Peterson in 1972 for closed problems in the finite dimensional
setting [14,15], and has recently been broadened by McLinden [11] to cover
nonclosed problems in general spaces, as well as polyhedral refinements in
the finite-dimensional case. In that model, too, symmetrization is seen
to be intimately tied to suboptimizations. On this point those papers

serve as a useful complement to the present one.

To highlight the many symmetries appearing throughout, we work in the
setting of locally convex real topological vector spaces paired in duality
(see, e.g., [1) or [7]). Readers unfamiliar with this setting may, for
convenience, integpret all spaces as Euclidean with the usual topology,
or reflex.ve Banach under the norm topologies. We use freely standard
facts from the theory of conjugate convex functions (see, e.g., Moreau [13]

or Rockafellar [18,20]), and also general facts about perturbational

duality theory contained in Rockafellar [20].




2. The basic Fenchel-Rockafellar model. This involves the following

ingredients:
X & > U
% k
oh | X
[~ +] 2 [~e, 4]
* *
h k
*
e A Y

Here X and V are locally convex Hausdorff topological vector spaces
over the real numbers R and are paired in duality by a real bilinear

form (x,v) » (x,v). The situation is analogous for the spaces U and Y.
The functions h and k are extended-real-valued convex and concave,
respectively, and h* and k* are the functions conjugate to them under '

the Fenchel transform (in the convex and concave sense, respectively).

The transformations ©oh and Bk* are the subdifferentials of h and k*,
respectively. They send points into'closed convex sets and are generaliza-
tions of gradient mappings, to which they reduce in the presence of
differentiability. The transformation A is linear and continuous with
adjoint A*.

The model is designed to treat the initial problem of interest, the

primal problem

min{h(x) - k(ax)} , (P
X

by means of its close interrelationships with two other optimization
problems: the dual problem

* * *
max{k (y) - h (ay)} ., (D
Y

and the Lagrangian problem

b=




minimax{h(x) + k*(y) - (Ax,y?} . (L)
x y 0

The variables in (LO) are restricted to lie in the product set dom h x dom k*.
It is helpful to think of (Lo) as a sort of bridge linking (Po) with (Do).

Throughout the paper we make the nondegeneracy assumption that the

lower semicontinuous hull of h is finite somewhere and the upper semi-
continuous hull of k is finite somewhere. (In the Euclidean case this is

satisfied if h and k are merely proper convex and proper concave, respec-

. . . x s * *
tively.) This implies that h, k, h , k are proper and moreover satisfy

lsc h=clh=h"", usc k =clk=k
From the properness, note that the extended arithmetic in (PO), (Do), and (Lo)
never invoclves adding =-® to +%,
The subdifferentials 3h, Bk* serve as vehicles for expressing the

extremality conditions, or abstract Kuhn-Tucker conditions, associated

with this trio of problems:
AX € ak*(y), A*y € dh(x)

A pair (x,y) satisfies these conditions if and only if it solves (Lo), in
which case x solves (Po), y solves (DO), and all three optimal values
coincide. Conversely, under any of a variety §f hypotheses ("constraint
qualifications"), in order that a vector x solve (Po), it is necessary that
there exists a vector y such that (x,y) satisfies the Kuhn-Tucker conditions.

An important feature of the model is its relevance to sensitivity
analysis. Briefly, the function being optimized in (DO) precisely mirrors
the sensitivity of (Po) with respect to a certain class of perturbations,
which herc correspond.to "horizontal" translations of the graph of k.
This relationship between primal sensitivity and the dual problem was
first observed in [17] and is explicated thoroughly in [18,20]. Details
of this, as well as other general relationships concerning the three
problems just introduced, may also be obtained by appropriate specializa-

tion of the cone-augmented version of the model which follows.

-6-




3. The underlying idea and the cone-augmented model. Our method of

obtaining symmetry is based on a very simple idea. The idea is also quite
natural, in view of the basic properties of the Fenchel transform.

We proceed in a quasi-formal manner, introducing two nonempty families,
A and B, of extended-real-valued functions. The members of A4 are
required to be convex with lower semicontinuous hull somewhere finite,
and those of B are required to be concave with upper semicontinuous hull
somewhere finite. These families will serve to single out special type§
of problem structure such as linearity, quadraticity, and even cone
constraint structure, as we shall see shortly. When the functions h and

k ih (PO) satisfy h e A and k € B, we say (Po) is of type (4,B).

For symmetry, conditions are needed which will imply that (DO) is of the
same type as (PO), up to closures and minus signs. Clearly, the above
restrictions on h and k imply that h* € A* and k* € B*, where the
notation C* denotes the family obtained from (¢ by forming the conjugates
(in the appropriate sense) of the members of (€. (Similarly for the nota-
tion cl ¢ and -C to follow.) Since this means that (Do) is of type 1
(B*,A*), the conditions needed to ensure that (Do) is of the same type
as (PO) are simply that 4 and B satisfy
A*= -cl B and B* = -cl 4 . (3.1)
In this terminology, the general Fenchel-Rockafellar problems (PO) and

(DO) are each of type (4,B) for the largest possible choices of 4 and

B, namely B = -4, where A is the family of all convex functions having

lower semicontinuous hull somewhere finite. With this choice, conditions
(3.1) follow immediately from the basic properties of the Fenchel transform.
We shall see below, in terms of the cone-augmented model, how other, more |

special choices of the families A and B yield symmetric duals having

specific structure.




We now apply the above idea to see how to handle in a symmetric
fashion systems of both nonnegativity and linear inequality constraints
over cones. Consider, for example, the problem posed at the beginning of
the Introduction, namely, to minimize f(x) subject to x € P and
Ax - be Q, where P and Q are nonempty convex cones determining the
orderings. This can be cast as (Po) by letting h = f + wp and k = -wQ+b'
(We write wC to denote the convex indicator of a convex set C.) Notice
that incorporating the constraint Ax > b into the k(Ax) term of (PO)
ensures that the dual problem will yield information on the particular
sensitivity in (PO) of interest to us, namely the effects of perturbing
the right-hand-side vector b by small amounts (cf. remark concerning
sensitivity at the end of §2). Now how can the preceding (4,B) - develop-
ment be brought to bear, at least heuristically? Since h is of the form
h = hl + h2' let us take for 4 all the convex functions "having this
form.” Then the clements of 4 have the form of h'=cl(h} O hy),
under suitable circumstances, where the symbol 0O denotes the operation of
infimal convolution on convex functions. 1In view of the first requirement in
(3.1), this suggests choosing for B all concave functions %k of the form
k = kl a k2, where here the symbol O denotes the operation of supremal
convolution'on concave functions. The members of B* then look like
k* = k; + k;, so that, again under suitable conditions, the other requirement
in (3.1) is met. Now consider what happens when h, is of the special form
h2 = WP for a convex cone P. The fact that h; = wpo, where P° is the
polar cone, suggests taking k2 (in the elements of B) to be of the special
form k2 = —wQ for some convex cone Q. This, of course, yields

* . *
k2 = -on(—-) = -y ,, where Q is the dual cone (i.e. negative of the polar).
Q

This outlines a rather general scheme, in which the three optimization

problems assume the form




ey - o " - -
- " ¥ - * e " el L Ui % e TR A RS " i g

min{(hl + h,) (x) - (kl @] k2)(Ax)} . (3.2}
* * * * *
max{ (k] + k,) (y) = (h] O hy) (A'y)} , (3.3)
y
and
minimax{ (h, + hy) (x) + (xI YKk (y) - (Ax,y)) (3.4)
X y

* *
and the functions h2’ k2’ h2’ k2 can be restricted to be the indicators

of certain cones. Of course, all this is only heuristic, since the above
"derivation" glossed over key technical issues in several places. It
does, however, serve to illuminate the origin of the cone-augmented model
below.

To clarify further, consider once more the problem from the Introduc-
tion. We can apply the above scheme to it by choosing hl = £, h2 = wp,
kl = _w{b}' k2 = —WQ. In view of (—wb) O (—wQ) = _WQ+b’ problem (3.2)
is then just’

min {E(x)}
x>0,Ax>b

and its "dual" problem should be something like that given by (3.3), i.e.

* *
max{ ((b,y) ~ ¥ ,(y)) - (£ OYp)(Aay)} .
y Q :

By drawing the inf-convolution to the outside, this can be rewritten as
“ .

max sup {b,y) - £ (v)} (to find y only) ,
y>0 v>A'y

where the partial orders are the natural ones induced on V and Y by
* *
P and Q . The associated minimax problem ought to be (3.4), i.e.

minimax{f(x) + (b,y) - (Ax,y>} .
x>0 y>0

Notice in the "dual" the appearance of a suboptimization over an auxiliary
variable v. This reflects the fact that the original, primal problem

we started with is actually asymmetric in a certain sense having to do




with the particular class of perturbations involved. The statements of

all the results below can easily be specialized to such asymmetric cases.
Now let nonempty convex cones P C X and Q C U be given and fixed,

once and for all, and let h, k, and A be as in the beainning of §2. The

cone-augmented extension of the Fenchel-Rockafellar model which we shall

study consists of problems (3.2), (3.3) and (3.4), where

hy = h, hy = ¥, ky = ko ky =~y

Thus, our primal problem is

min{ (h + vp) (x) - (k O- ) (Ax) )} ,

(]
- (0]
which, by drawing the sup-convolution to the outside, can be rewritten as

min inf {h(x) - k(z)} (to find x only) . (p)
x>0 Ax>2z

Our dual problem is

* * *
max{(k = ¢ ,)(y) = (h O ype)a y)} ,
y Q

which, by drawing the inf-convolution to the outside, can be rewritten as

* *
max sup {k (y) - h (w)} (to find y only) . (D)
y>0 w>A'y

The associated Lagrangian saddlepoint problem is

*
minimax{h(x) + k (y) - (Ax,y)} ., (L)
xeC yeD
where
* *
C=PNdomh, D=Q N domk . (3.5)

Notice first of all that with the choices P = X and Q = {0} these
three problems coincide exactly with the problems (Po), (Do), and (Lo)
*reated by the Fenchel-Rockafellar model. The various hypotheses we
shall invoke in §§4,5 in proving results for the cone-augmented model all
reduce, for this particular choice of cones, to the "standard" conditions

reqguired in the original Fenchel-Rockafellar model.

-10-




Next, notice that Duffin's model r¢ .ults when the cone-augmented
model is restricted to problems (P) of type (4,B), where B = —A* and A
consists of all continuous linear functions. This follows from the fact
that the (convex) conjugate of a function of the form x -+ (x,a) has the
form v wa(v). Thus, if we take h and k to be of the form
hix) = {(x,c)}Y and k{a) = —wb(u), then the three problems assume the
special form

min {x, ey
x>0,Ax>b

max 4 {(b,y>} ,
y>c,c>A y

and

minimax{{ x,c) + (b,y) - (Ax,y)}
x>0 y>0

The above two cases can be regarded as the "extreme" cases of the
cone-augmented model. They are the only cases in which the suboptimiza-
tions "disappear" from both (P) and (0).

Symmetric duality for various types of nonlinear objective functional
structure can be obtained by using the conjugacy (and subdifferential)
formulas, presented in §7, together with the results in §8§4,5 for (P),

(V) and (L). For example, Eisenberg's treatment of the homogeneous case

is extended by considering those problems (P) of type (4,B), where

B=-4" and 4 1is chosen to be the family of (closed) gauge functionals.
Corollary 13B in §7 provides the essential facts for this. As another
example, Cottle's treatment of the quadratic case is extended by consider-
ing those problems (P) of type (4,B), where again B = -A* but this

time A is chosen to be the family of all functionals of the form

X * (%)Yc(x)z, where Ye is the closed gauge associated with a "polar" set
C. Convex quadratic forms, or more generally, pth powers of norms, can be re-

presented by the appropriate specification of C. The essential conjugacy (and




subdifferential) formulas are provided by Corollary 13A of §7. A number
of other interesting objective functional structures likewise admit

symmetric duality treatment with the aid of Propositions 13 and/or 14 of

§7, combined with the results which follow in §§4,5.




4. Relationships between (P) and (P). 1In this section we establish

mild conditions under which the duality between (P) and (D) implied in §3
is in fact the case. We shall see that in the absence of such conditions,
the two problems bear only a weaker, subduality relationship to one another.
The difficulty is that certain closure or semicontinuity properties may
in general be lacking.
Our objective is to work towards placing our trio (P), (D), (L) in
the general perturbational duality framework developed by Rockafellar [18,20].

Toward this end, we introduce functions F, G and K defined by

(h + wP)(x) = (k B=0_)i(Ax + u) if xe C
F(x,u) = Q
oo if X ¢ € .,
* * * .
(k -y *)(Y) - (h D wpo)(A y + v) 2% o ] D
G(y,v) = Q
and
(h + ) (x) + (k" =¥ ) (y) - (Ax,y) if xe C
K(x,y) = 0
-+ 0o if x g¢C ,
where C and D are the sets in (3.5). (Any product spaces occurring

will be assumed to be paired in the obvious manner. Thus, for example,
X x U and V x Y are regarded as paired under the bilinear form
((x,u),(v,y)) » (x,v) + (u,y).) These can be reformulated as

inf {h(x) - k(z)} if x >0

F(x,u) = Axt+u>z
+ S otherwise ,
* *
sup {k (y) -h (v} if y>o0
Gly,v) = W>A y+v
- otherwise ,
and
*
h(x) + k (y) - (Ax,y? if xe C and y € D
K(x,y) = - if xe C and y ¢ D

+ @ if 27 C .




In terms of these functions, the problems (P), (D) and (L) can be expressed

as
min F(x,0) ,
X
max G(y,0) ,
Y
and

minimax K(x,y)
X y

In view of the similarity in notation between the above and the
development in [20], it would appear that we can apply the results from
there immediately. That would be incorrect, however, as it has not been
established that the present functions F, G énd K bear the same
relationships to each other as do Rockafellar's corresponding three func-
tions. The relationships among F, G and X presumed by the development

in [20] all stem from two key identities:

G(y,v) = -F*(v,—y) (4.1)
and
K(x,y) = inf{F(x,u) + (u,y)} (4.2)
u

(cf. [20, equations (4.17) and (4.2)]).
It is easy to see that one of these, (4.2), holds here without any
additional conditions. Indeed, from our definitions of F and K it

is satisfied trivially when x £ C, while for x € C we can compute that

inf{F(x,u) + (u,y’} = inf{(h + wp)(X) - (k D‘WQ)(AX + u) + (u,y’}
u u
= (h + wp)(x) + inf{(u,y> - (k D-wQ)(Ax + u)}
u
= (h + yp) (x) + in€(Cu',y) = (k O-yy) (W) - (Ax,y)
u'

]

(h + 9) () + (K = ¢ ) () - Cax,y) .
0

-14-




The iden

one can obtai
for the remai

nondegeneracy

tity (4.1) is a more delicate matter. 1In general, the best
n is the inequality in Proposition 1 below. For it, and
nder of the paper, it is convenient to make the following

assumption:

C+#¢ and D # ¢ . (4.3)

This simply has the effect of eliminating from the discussion certain

trivial situa
be shown that
throughout th

PROPOSIT
and

Furthermore,

proper concav
PROOF .

of the first

*
-G (u,-x) =

where

tions which would be awkward always to carry along. It can
D =¢ if and only if the function usc(kO - wo) is 4+
e set cl(dom k + Q).
ION 1. The functions F and G satisfy
Gly,v) < -F" (v,-y)

*
F(x,u) -G (u,-x)

(BY

F is proper convex with 1lsc F never =-«, and G is

e with wusc G never + «,
We give the proof for the second inequality only, as the proof
one is quite similar. Computation yields that

—inf{¢ (u,-x), (y,v) ¥ = Gly,v)}
YV .

sup{-(u,y) + (x,v) + G(y,v)}
Y,v

sup sup{-(u,y) + (:,v) + k" - VoL (y) - (" o wpa)(A*Y + v)}
YD v Q

sup{(k* = U L1y} = Cu,y? * alx;v)}
yeD Q

* *
sup{{x,v) - (h O Ype ) (Ay + v)}

a(x,y)
* v

]

* *
sup{{x,v') - (h O bpe) (V1)) - (x,Ay)
vl

* * *
(h O Ype) (x) - (x,Aay)

[

* * *
(h + U‘poo)(x) - (x,A y) .




If x¢ C, then F(x,u) = +* and the desired inequality is satisfied

trivially. If x e C, then a(x,y}] 1is finite and we have

* * & * *
: =G (u,=x) = (h  + $peo) .x) + sup{(k =~ ¥ ,)(y) - Cu,y) - (x,A y))}
yeD 0
* x . *
] = (h + wpqo)(x) ~ inf it Re + w,y) = (k = @ . ¥Yiv)}
1 yeD 0
. * % * *
= (h 4 wpnux) = (k = @ ) (Bx + u}
Q
* % * * - g
Since h =+ Yge<h + y, and (k - ¢ ) > k D—¢Q. the desired inequality
follows. Next, we claim that G cannot be identically -« . Indeed,
*
D # ¢ implies that G = -« if and only if h 0O Ypo =+, which

*
happens if and only if h = +« ., But the latter cannot occur, because

lsc h is assumed finite somewhere. Now since G # -« , the first
inequality implies that F* £ +«, from which it follows that 1lsc F is
never -« ., In a similar way, using C # ¢, one shows that F £ + o .
From this and the second inequality it follows that G* £ -o, so that
; usc G 1is never +«. Finally, F 1is proper because of

-~o < 1lsc F < F & +o,
and G 1is proper because of

-® £ G < usc G < +eo

COROLLARY 1A. One always has the estimate
F(x,0) > G(y,0) .

Moreover, equality is attained by a pair of vectors x and y if and

only if x solves (P), y solves (D), and min () = max (D).
PROOF. From either of the inequalities established in the proposition,
one can obtain the general inequality
"F(x,u) ~ {x,v) > G(y,v) - (u,y)
The corollary follows by specializing this to the case u = 0, v = 0.
The inequalities in Proposition 1 say that F and G are always

subconjugates of one another (up to minus signs), and thus one can always
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view (P) and (D) as subduals of each other. But in general (D) will not
furnish as tight a lower bound on (P) as one would hope for, unless the
identity (4.1) is satisfied. In addition, most of the nicest duality
relationships between (F) and (02) require that the function F(x,u) be
closed in the u argument at least, and some even require F to be
closed in (x,u) jointly (cf. [20]). As the next proposition shows, these
types of regularity depend on the following condition's being met:
* *

(h + vp) =h DOy, ()

or

* *—kD'
(k - wQ*) = Vg - (Hz)

In the case of the basic Fenchel-Rockafellar model (i.e. P = X and
Q = {0}), the first of these is met trivially, while the second amounts
simply to having k closed. A similar remark appliecs to conditions (Hi)

and (H;) used in §5. Proposition 8 at the end of this section furnishes

a number of conditions implying (Hi), as well as the (Hi) and (H;) occurring
later on, in the case where the order cone structure is nontrivial.

PROPOSITION 2. If (Hl) holds, then G 1is closed (jointly) and
satisfies the identity

Gly,v) = -F (v,-y) . (4.1)
3£ (Hé) holds, then F(x,u) 1is closed in u for each x, and if in addition
h and P are closed, then F 1is closed (jointly) and satisfies

F(x,u) = -G*(u,—x) .

PROOF. We prove only the latter two assertions, as the proof of the
first assertion is similar. If x ¢ C, then F(x,-) = +o, which is
trivially closéd. If x € C, then (h + wp)(x) is finite, and so the
closedness of F(x,-) 1is equivalent to that of (k D-wo)- But this func-
tion is closed, since by the assumption (HZ) it is a conjugate function.

To prove F is closed jointly, it suffices to establish the identity,
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since that exhibits F as a conjugate function. The identity itself
follows from an examination of the proof of the corresponding inequality
in Proposition 1. 1Indeed, if h and Wp are closed, then

h.‘ + WP.. = h + wp, and from this it follows that

*
-G (u,-x) = +o = F(x,u), Vx £ C ,

6" (u,=x) = (b4 Y () = (k° - ¥ ) (Ax + ), Vxc C
Q

Under the hypothesis (H2), the desired identity then follows.
COROLLARY 2A. If (Hl) holds, then

G(y,v) = inf{K(x,y) - ¢(x,v)} ,
x

and so in particular
sup (D) = sup inf({lL)
If (HZ) holds, then

F(x,u) = sup{K(x,y) - (u,y>)} ,
y

and so in particular
inf (P) = inf sup (L)
PROOF. If (Hl) holds, then the proposition yields (4.1). But also

*
-F (v,-y) = inf{F(x,u) - (x,v) + (u,y)}
X,u

inf{inf{F(x,u) + (u,y’)} - (x,v)}
X u

inf{K(x,y) - (x,v)}
x

by (4.2). This establishes the first identity. Next, observe (4.2) can
be rewritten as
*
K(x,y) = -F(x,*) (-y) ,

and so

“) g
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*
sup{K(x,y) - ¢(u,y?} = sup{-F(x,-) (-y) - (u,y)}
y Y

sup{(u,-y) - F(x,')*(-y)}
Y

* %
F(x,-) (u)

Since the last expression equals F(x,u) when F(x,*) is closed, we are
done by the proposition when (HZ) holds.

In view of Proposition 2, we are in a position to harvest immediately
from [20] five additional propositions containing a great deal of informa-
tion concerning our trio of problems. These could, of course, be established
"from scratch", working directly with the model's ingredients h, k, P, Q
and A, but that would serve little purpose besides lengthening the paper.

The first of these provides a great deal of information concerning the
precise relationship between (P) and (D). It relates the optimal value
function in one problem to the objective function in the other problem.

The primal objective function is

infih(x} - k(z)|ax > 2} if =x e C
f(x) = F(x,0) =
+ ® if X f C .

the dual objective function is

sup{k*(y) - h*(w)Iw > A*y] if ye D
gly) = G(y,0) =
- - if Y / D .

the primal optimal value functicn is

¢ (u) = inf F(x,u) = inf{h(x) - k(2)|x > 0, Ax + u > z} , (4.4)
X

and the dual optimal value function is

*
0, w>2ay+ v} . (4.5)

v

* *
Y(v) = sup G(y,v) = suplk (y) - h (w)]|y
Y

Notice that
dom ¢y = dom k + Q - AC # ¢
and

* * *
dom y =domh ~-P =-AD¢®%#¢ ,
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where the nonemptiness follows from the nondegeneracy assumption (4.3).

PROPOSITION 3. (a) Assume (Hl) holds. Then
* *
g = (-¢) and -g =cly
In particular,

supD) = lim inf ¢ (u) , (4.6)
u+0

except in the case where 0 fcl dom ¢ and the function 1sc ¢ 1is nowhere
finite. (In the exceptional case, sup(D) is -« , while the limit is
+© and 1lsc ¢ = -« on dom lsc ¢ =cl dom ¢.)
(b) Assume (H2) holds and that h and P are closed. Then
* *
£ =) and -f =cly
In particular,

inf (P) = lim sup y(v) , (4.7)
v>0

except in the case where 0 fcldom y and the function usc y is nowhere

finite. (In the exceptional case, inf(P) is -+« , while the limit is
- and wusc Y = +® on dom usc y=cl dom Y.)

(c) Assume (Hl) and (HZ) both hold and that h and P are closed.
Then both (4.6) and (4.7) hold, except in the degenerate case in which
all of the following properties are present:

¢ (0)

+®, 1lsc ¢ = - on dom lsc vy=cl dom ¢ ,
Y(0) = -, usc Y = +© on dom usc y=cl dom Yy .
PROOF. Parts (a) and (b) follow from (20, Theorems 7 and 7'}, together
with Proposition 2. Part (c) then follows from (a) and (b), with the aid
of [20, Theorem 4].
The next result involves in part the extremality conditions associated
with the trio (P), (D), (L). By virtue of the saddlepoint characterization

of them which obtains "usually" (i.e. under suitable constraint qualifica-

tions), they can be introduced as the abstract Kuhn-Tucker conditions:
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(0,0) € B3K(x,y) (4.8)

(cf. [20, page 39]). The pairs (x,y) satisfying (4.8) are precisely the
saddlepoints of K, i.e. the solutions of (L).
In the case of the basic Fenchel-Rockafellar model, the Lagrangian

saddle function is

hiE) & Bty o~ fhayy AEw e dom
(x,y)~ (4.9)
+ © if x £ dom h ,
and from this it is easy to see, using the definitions, that conditions
(4.8) are equivalent to the conditions
A'y € an(x) and Ax e 3k (y) . (4.10)
Now in the cone-augmented model, observe that the Lagrangian saddle func-
tion K coincides with what one obtains by substituting h + wp and
k G-WQ in place of h and k, respectively, in (4.9). It follows by
simple substitution in (4.10), then, that the Kuhn-Tucker conditions for

the cone-augmented model are equivalent to the conditions

A*y € 3(h + y,)(x) and Ax e a(k* - ¥ ) (y)
Q

Corollary 12A in §5 will provide a further break-down of these conditions.

PROPOSITION 4. If (Hl) holds, then the implications

(a) <=> (b) => (c) => (d)

hold émong the conditions:

(a) inf(p) = sup(Dp) ;

(b) ¢ (0) =clep(0) ;

(c) the saddle value of the Lagrangian K exists;

(@)  Y(0)=cly(0) .
1f (#,) holds,” then (b) and (c) are equivalent. If both (Hl) and (Hz) ]
hold and h, k, P, Q are all closed, then (a), (b), (c), (d) are all
equivalent. Furthermore, if (Hl) holds, then the implication

(e) => (f)

=




holds between the followin¢ conditions, with actual equivalence when (Hz)
is also satisfied:

(e) x solves (P), y solves (D), and inf(P) = sup(D) ;

(f) the pair (x,y) satisfies the Kuhn-Tucker conditions.

PROOF. By (20, Theorem 15], together with Proposition 2.

COROLLARY 4A. Assume (H.) holds and that inf(p) = max (D) £ Ew g

i
inf(P) = sup(l) and there actually exists a solution to (p)). Then a
necessary condition in order that x solve (P) is that there exist a vy
such that (x,y) satisfies the Kuhn-Tucker conditions. This condition
is also sufficient when (H2) holds, or more generally, when

F(x,0) = cluF(x,O).

PROOF. All but the very last remark follows directly from the
proposition. The sufficiency under the assumption F(x,0) - CluF(x,O)
follows upon a closer examination of the proof of [20, Theorem 15].

PROPOSITION 5. Assume (Hl) holds. Then the following conditions on
a vector y are equivalent:

(a) y solves (D) and inf(P) = sup(D) ;

(b) =~y € 3¢ (0) ;

(c) inf(P) = inf K(x,y) .
x

PROOF. By [20, Theorem 16]), together with Proposition 2.

COROLLARY 5A. Assume (Hl) holds and that ¢ (0) = inf(P) 1is finite.
Then the following are equivalent:

(a) inf(P) = max(D) ;

(b) 1lim inf ¢'(0;u') 1is finite for some u.
u'-»u

PROOF. By the equivalence between (a) and (b) of the proposition,
together with (20, Theorems 1l(b) and 4] applied to the function

6(u) = ¢'(0;u).
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PROPOSITION 6. Assume (Hl) holds and that ¢ 1is bounded above on
a neighborhood of 0. Then each of the following holds:

(a) .inf(P) = max(D) ;

(b) In fact, for every real g the set {ylg(y) > B} is closed,
bounded and convex, actually equicontinuous and hence weakly compact
(in the weak topology induced on Y by U). Thus, every maximizing
sequence for (D) has weak cluster points, and every such cluster point
solves (D).

(c) If the optimal value(s) in (a) are not -« , then

¢'(0;u) = max{(u,-y)|y solves (D)}

(d) A vector y solves (D) uniquely if and only if y = -Ve¢(0),

that is,
¢'(0;u) = —(u,y) ,

and in this event every maximizing sequence for (D) converges weakly to vy.

(e) The maximizing sequences for (D) all actually converge in the
designated topology on Y if and only if ¢ is differentiable at O
in relation to that topology.

PROOF. By [20, Theorem 17) and Proposition 2.

PROPOSITION 7. Each of the followiﬁg conditions is sufficient for
¢ to be bounded above on a neighborhood of 0 (and hence continuous at 0):

(a) There exists an x suca that the function u » F(x,u) is
bounded above on a neighborhood of 0. (Or more generally, for some
continuous mapping 6 : U » X the function u » F(6(u),u) 1is bounded
above on a neighborhcod of 0.)

(b) U = R? =Y and 0 ¢ core dom ¢ (where "core" denotes the
algebraic interior).

(c) X and U are each Banach spaces (in the designated topologies),

0 ¢ core dom ¢, h and P are closed, and (Hz) holds.




(d) U =R" =Y, at least one of the level sets {y|gl(y) 23RS s
nonempty and bounded, and (Hl) holds.

(e) Both (Hl) and (Hz) hold, h and P are closed, and there
exists a neighborhood N of 0 in V and a real number R such that

the set

{ylav e N, G(y,v) > B}

is nonempty and equicontinuous.

PROOF. By [20, Theorem 18] and Proposition 2. Concerning (c), the
fact that it suffices to assume just that X 1is Banach, rather than V,
is shown in [16, Corollary 1].

COROLLARY 7A. Suppose that condition (e) of Proposition 7 holds,
but with equicontinuity replaced by the assumption that the closure of

{y]dv € N, G(y,v) > B}

is weakly compact. Then ¢ is bounded above in a neighborhood of 0 rela-
tive to the Mackey topology on U, and hence all the conclusions of

Proposition 6 are valid if interpreted in that topology.

PROOF. Analogous to that of [20, Corollary 18'A].

Dual versions of all these results from Proposition 5 onwards could
also be stated. One would simply impose the blanket hypothesis that both
(Hl) and (Hz) hold and that h and P are closed. These assumptions
guarantee, by Proposition 2, that F and G bear the needed relationship
to each other and that F is actually closed.

In Propositions 2 through 7, heavy use has been made of the conditions
(Hl) and (H2)' We now give a number of sufficient conditions for these
to hold. 1t so happens that the sufficient conditions to be given actually
ensure considerably more. 1In particular, they ensure attainment in the
convolutions appearing in (Hl) anad (Hz). They also ensure closely related
subdifferential formulas which, as we'll sce from Corollary 12A in §5, come

into play in simplifying the extremality conditions for our trio of problems.

L




In order not to take up
easy task of adapting to the
proposition which are of the

tion as easily applicable to

excessive space, we leave to the rcader the
present context those conditions in the next
most relevance to him. To make the proposi-

(H2) as to (Hl) notationally, we formulate

it in terms of "neutral" paired spaces Z and W. Notice that in order

to guarantee (Hz) via these conditions, one needs k and Q to be closed.

In specific instances, though, it just might be possible to argue that

(H2) holds by ad hoc methods not requiring this.
In the proposition conditions (f) through (i) are stated in terms of

*
the recession functions in+ These are given by

* 4 I g * : *
(£,07) (w) = sup{f, (w' + w) - f (w )[w' ¢ dom £,1

*
and serve to describe the growth behavior or asymptotic nature of fi

(cf. [18, §8]).
PROPOSITION 8. Let f1 and f2 be extended-real-valued proper
convex functions on 2. Then

(£, + £5)7 (w) = min{fI(wl) +Eo ) W= w +w

1 }

2

and
a(f1 + fz)(z) = afl(z) + afz(z)

hold whenever any one of the following conditions is fulfilled:

(a)

there exists a

z € dom fl in a neighborhood of which f2 is
bounded above;
(b) 2 =R"=W and 0 ¢ core S, where
A

‘S = {(zl,zz)lzi € Z and ¢ # (z; + dom £.)} ;

i=1

(c) 2 1is a Banach space (in the designated topology compatible with

the pairing), fl and f2 are closed, and 0 € core S for S as in (b);
(d) 2 = R" = W, and for some w and some real a the set
* * *
) =
{(wl,wz,lwi € dom £, w=w +w,, f(w) + fy(w,) < al

is nonempty and bounded;
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(e) f1 and f2 are closed, and for some open set M in W the set

* * *
{(v.»,'l,\'lz)lw.1 ¢ dom fi' w, +w, e M, f_(w,) + t2(w2) < &}

1 2 ) i |

is nonempty and equicontinuous;

BN

n

(f) 2 =R =W and ¢ + ri dom fi' where the relative interior

i=1

"ri" may be deleted for either index i for which fi may happen to be

polyhedral;
(g0 2z =R" =W, and for all w the condition
*+ * 4
(£,0°)(w) + (£,0 ) (-w) < O
1 2 -
implies
* *
(£107) (=w) + (£500) (W) < 0 ;
(h) 2 =R" = W, fl is polyhedral, and whenever w satisfies
*+ * 4+
(£.0 )(w) + (£,0 ) (-w) < O
1 2 =
and

(£,0%) (=w) + (£,01) () > 0
it follows that
x4 * 4
(£,0%) () = (£50") ()

(i) 2 =R =W, f1 and f2 are polyhedral, and

(£70%) () + (£,0%) (=w) > 0
PROOF. The sufficiency of conditions (a) through (e) is proved in
[20, Theorem 20)]. The refinement that reflexivity is unnecessary in (c)
follows from [16, Corollary 1l]. The proof under condition (f) follows by
combining Theorems 16.4, 20.1 and 23.8& of [18]). Finally, conditions (g),
(h) and (i) can be seen to be the dualized versions of the threce conditions
contained in (f). For (g), one uses Corollary 16.2.2 of [18] directly.

For (h), one uses Theorem 13.3 and Corollary 20.2.1 of [18], reformulating
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in slightly "weaker" form the condition given in Corollary 20.2.1. (The
condition as stated there is only sufficient, not necessary and sufficient.)
For (i), we shall sketch the proof that, when both fl and f2 are

polyhedral, the condition

# dc n
¢ dom fl dom f2
is equivalent to

(£,0%) (w) + (£50%) (-w) > 0

By using the same technique employed in the proof of Corollary 16.2.2 of
{18), we see that it suffices to establish a polyhedral version of
Lemma 16.2 of {18). That is, it suffices to show that if L 1is a subspace

of R"

and f is a proper polyhedral convex function on Rn, then
¢ # L N dom f
if and only if
(£0") W) > 0, we rt
But this can be established by modifying the proof of Lemma 16.2 of FX8Y .,
appealing to the polyhedral separation theorem (18, Theorem 20.2] in place

of the usual finite-dimensional one (18, Theorem 11.3). This concludes

the proof of the proposition.
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5. The meaning of the suboptimizations over auxiliary variables. 1In

this section we treat in some detail the issue of the suboptimizations
occurring in (P) and (?). It will be shown that (P), (P) and even (L)
actually arise as the projections, both individually and as an optimization
trio collectively, of another optimization trio. The precise connection
between the optimal values and solutions for the three pairs of correspond-
ing problems is given, as well as a comparison of the respective extremality
conditions. The primal and dual problems of the new trio involve no
suboptimizations. This feature comes at the expense, however, of having
essentially twice as many problem variables and perturbation variables.
Still, since the new, "expanded" problems involve a fuller class of
perturbations, and hence entail additional sensitivity information, there
may be situations in which one might prefer to work with the new problem
trio instead.

The new primal problem is

min {h{x) - k(z)} (to find both x and z) , (Pl)
x>0,Ax>z
and the new dual problem is
* *
max . {k (y) - h (w)} (to find both y and w) . (Dl)
y>0,w>A y

First, we ecilablish the connections bcetween these and our earlier
problems (F) and (D), in which the variables 2z and w are merely
auxiliary. Half of this correspondence requires the following strengthened

[ .
forms of (ll) and (”2)'

(h + wp)*(v) min{h*(vl) + wpo(vz)[v1 * Wy = vl & (Hi)

* *
(e =W o) (u)
0

I

max{k(ul) ~ 'JvQ(uz)[ul +u, = {5 3 (Hé)

Notice that a variety of conditions sufficient for each of these to hold

is furnished by Proposition 8.
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PROPOSITION 9. The optimal values satisfy
inf (P) = inf(Pl) and sup(D) = sup(Dl).

If (x,z) solves (Pl)' then x solves (P). Conversely, if x solves
(P) and if (Hé) holds, then there exists a 2z such that (x,z) solves
(Pl)' If (y,w) solves (Dl), then y solves (D). Conversely, if vy
solves (D) and if (Hi) holds, then there exists a w such that (y,w)
solves (Dl).

PROOF. It is straightforward to check that

inf{inf {h(x) - k(2)}} = inf thix) = k(z)} ,
x>0 Ax>z x>0,Ax>z

so the optimal values in (P) and (Pl) agree. It follows that if (x,2z)
yields attainment of the infimum on the right, then x yields attainment
of the outer infimum on the left. Now suppose, conversely, that X yields
attainment of the outer infimum on the left and that (Hé) holds. Then

inf{h(X) - k(z))}
Ax>2z

inf(Pl)

h(x) - sup {k(z)}
Ax>z

h(x) - sup{k(Ax - z) - wo(z)} 3

5 )
By (Hé), the latter supremum is actually attained at some 2z, where
without loss of generality (considering the possibility that the supremum
is = trivially) we can assume that 2 € Q. Hence,

inf(P)) = h(x) - k(Ax - Z)
for some % € Q. This shows that the pair (%,z), where z = AX - z,
solves (Pl). The assertions concerning (D) and (Dl) are established
similarly.
COROLLARY 9A. 1If min(Pl) = max(Dl), then min(P) = max(DP). The
converse is valid when both (Hi) and (Hé) hold.
Our next aim is to show that (Dl) is indeed a dual of (Pl) in the

sense of Rockafellar's perturbational duality theory [18,20], and to




identify, moreover, the saddle point problem (Ll) corresponding to (Pl)
and (Ul)' For this, it is necessary to parametrize (Pl) "convexly" in
such a way that the general theory in (20] yields (Dl) as the dual problem.
To do this, we shall exhibit functions Fl' Gl and K1 satisfying
identities analogous to the key identities (4.1) and (4.2).

Define Fl on X x U x X x U, Gl on V x Y xV xY, and Kl on
X x U xV xY by means of

Fl(x,z,s,u) = h(x) + wQ(z) + wp(x + 8) - kiAx - z + n} .,

G W,y vit) =K (y) =~ ¥ 4w = § ,(y =€) -h Ay +w+v),
P 0

and

K, (x,2z,w,y) [h(x) + y.(2)] + [k*(y) =Y 4 (w))
1 Q p

- [{x,w) + (AX,y) - (z,y)]
if (x,z) € dom h x P and Kl(x,z,w,y) = +o if (x,z) £ dom h x P. It
is easy to see that

(P,) is min Fl(x,z,0,0) '

X,2

1

{Dl) is max Gl(y,w,O,D) ‘

YW

and that K1 determines a saddle point probiem over the product set

(dom h x P) x (Q x dom k*). We define this saddle point problem to be (Ll).
The fact that (Dl) is actually the dual of (Pl) and that (Ll) is the

associated Lagrangian minimax problem follows from [20] and the two

identities to be established now.

PROPOSITION 10. The functions F G and K satisfy the identities

R 1
*
Gl(wIYIvlt) = _Fl(VItI‘WI'Y)
and

Kl(x,z,w,y) = inf{Fl(x,z,s,u) + {(s,u),(w,y))} .
s,u

-30~




PROOF. These can be derived most easily in stages. First suppose
q 1is some function convex on X x U and that B : X - U is a continuous
linear operator. If H 1is defined as
H(x,u) = gq(x,u + Bx) ,

it is routine to check that

* * *
=8 (v.~¥) -q (v + B y,-y) i
and

inf{H(x,u) + (u,y)} = inf{g(x,u) + (u,y)} - (Bx,y) .
u u

Now apply these identities with the choices
q(x,z;s,u) = h(x) + wQ(z) + wp(s) - k(u)
and J
B(x,z) = (x,Ax - 2z) . {
It is routine also to check that q* and B* are given by :
G (vibiwug) = B v & boo () + Ypolw) - " (-y) |
and
* *
B (w,y) = (Ay + w,-y) .

Upon substitution we see that H becomes Fl, etc., and the desired

T ———

identities follow from thosc already noted for H.
COROLLARY 10A. One always has the estimate

F, (x,2,0,0) > G,(w,y,0,0)

Moreover, equality is attained by pairs (x,z) and (w,y) if and only
if (x,z) solves (Pl)' (w,y) solves (Dl), and inf(Pl) = sup(Dl).

PROOF. Similar to that of Corollary 1A.

We turn now to the connection between the two Lagrangian problems
(L) and (L;).
PROPOSITION 11. Assume P is closed. Then

sup inf K, < sup inf K < inf sup K < inf sup Kl

1
If in addition (Hl) and (Hz) hold, then the two lower saddle values agree

and the two upper saddle values agree.

3=




PROOF. The middle inequality is always true, as can be easily

verified.

The assertions about the "sup inf" expressions follow from the

computations
*
sup inf K, = sup inf {h(x) + k (y) - Xx*w - Ax-y + z-y}
wW,Y X,2 wsp** ze(Q
yedom k xedom h
*
= sup {k* (y) - sup (x-(Ay + w) - h(x) + sup z-(-y)}}
wePR ™ o xedom h z€Q
yedom k
* * *
= LSUP sup*{k (y) = h (Ay + w)}
yeQ Ndomk  weP
* * *
=sup {(k - ¢ L)(y) - (h Ul,’lPo)(A y)}
yeD 9]
and
sup inf K = sup inf {h(x) + k (y) - (Ax,y)]
Yy X yeD xeC

= sup {k (y) - supl{x,A"y) - h(x)}}
yeD xeC

* * *
= supl{(k - ¥ ,)(y) - (h + ¥) (A y)]}
yeD (o]

(where we have abbreviated the bilinear pairing functions by the "dot"

notation

* *
to shorten the formulas). Since in genersal (h + wP) < (h D x.'/p,),

it follows that

sup inf K sup inf K

1 —

always holds, while if (!/l) holds we actually have equality. For the

"inf sup"

assertions we proceed similarly, calculating that

*
inf sup K; = inf sup {h(x) + Xk (y) ~ x.w - Ax-y + z-y)
X,2 W,y Z2€Q) weé P

x€domh yedomk

*
= inf {h(x) - inf ,{(Ax-2).y - k (y) + inf, x-w}}

2€Q ye dom k we P
xe dom h
= inf inf{h(x) - (€1 k) (Ax - z)}

xe(clP)Nn domh zeQ

= inf {(h + ¢ ) (x) = (cl k O-y ) (Ax)}
xe(@ P)n domh SLE Q
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and

*
inf sup K = inf sup{h(x) + k (y) - (Ax,y)}
X Y x€C yeD

= inf{h(x) - inf{¢Ax,y) - k" (y))}}
Xe C yeD

= dnfl(h + y) ) - (k" =y 0 @) .
x€e C 0

Now in general one has

WQ)

* *
(k' = ¥ ) =cl(k O-y5) > (el k O-y,) > (k O-
Q
Thus, if P is closed it follows that

inf sup K, > inf sup K

0
If in addition (#,) holds, then (k* -9 *)*= (cl k D—WQ), and so we
actually have equality. .

COROLLARY 11A. Assume P is closed. If the saddle value in (Ll)
exists, then so does the saddle value in (L) and the two values coincide.
Conversely, if the saddle value of (L) exists and (Hl) and (H2) hold,
then the saddle value of (Ll) exists and the two values coincide.

The connection between inf(P), sup(D) and the lower and upper saddle
values of (L) was noted in Corollary 2A. ‘The parallel assertions concern-
ing (Pl), (Pl) and (Ll) are that

inf(Pl) = inf sup(Ll) if P and k are closed,

while

sup(Dl) sup inf(Ll)

always holds. These facts follcw from the identities of Proposition 10
and [20, pages 18-19].
Now consider the abstract Kuhn-Tucker conditions corresponding to
(Pl)[ (Dl) and (Ll):
(0,0,0,0) ¢ 3K(x,w,y,z) .

These are characterized and contrasted with those corresponding to (P), (D)

and (L) in the next result and its corollary.
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PROPOSITION 12. Vectors x and y satisfy (0,0) € 2K(x,y) if

and only if

Ay € 9(h + ¥,) (x) and Ax € 3(k' - ¢ ) (y) . (5.1)
0

Vectors x, 2z, w, y satisfy (0,0,0,0) € aKl(x,z,w,y) if and only if
*

% € -cl P, weP, Cx,w) = 0, (5.2)
*
Z e @, yeQ, (z,¥y) = 0 , (5.3)
* *
Ay +we d3h(x) and Ax - z € 3k (y) . (5.4)

PROOF. The first assertion was established following (4.10). The
same approach used there can be used to obtain the second assertion. In
(4.10) replace h by the function (x,2z) » h(x) + wQ(z), replace k
by the function (s,u) -~ —wp(s) + k(u), and replace A by the linear
transformation (x,z) > (x,Ax - z). Then A* becomes the transformation
(w,y) ~ (A*y + w,-y) and k* becomes the function (w,y) - (‘WP)*(w) + k*(y)-
Substitution of these ingredients into (4.10) yields that

(0,0,0,0) € Bxl(x,z,w,y)
if and only if

A*y + we dh(x), Ax - z ¢ ak*(y), -y € an(z), X € a(—wp)*(w) .

Finally, it is routine to show that x € 3(-wP)*(w) is the same as (5.2)
and that -y ¢ awé(z) is the same as (5.3).
The .converse part of the following corollary establishes hypotheses under
which the extremality conditions (5.1) can be broken down into (5.2),
(5.3) and (5.4). 1Its statement utilizes the conditions

d(h + wP)(x) = dh(x) + awp(x) ’ (Hl)

Bk = ¥ iy
Q

ok (y) - W () . (i)
0

Notice that Proposition 8 provides a variety of sufficient conditions
ensuring that these hold.
COROLLARY 12A. If (x,z,w,y) solves (Ll) and P 1is closed, then

(x,y) solves (L). Conversely, if (x,y) solves (L), Q 1is closed, and

w3




both (H;) and (H;) hold, then there exist vectors 2z and w such that
(x,z,w,y) solves (Ll).

PROOF. Suppose first that (x,z,w,y) solves (Ll). Then the proposi-
tion yields (5.2), (5.3) and (5.4). Now (5.2) is the same as -w ¢ awp(x)
when P is closed, and (5.3) implies -z € 3y ,(y). In view of the
general inclusions

3h(x) + 3y (x) C Blh + yp) (x), 3Kk (y) = 9y ,(y) € a(k -y (¥ .
Q 0

(5.4) then yields (5.1). Now suppose conversely that (x,y) solves (L).
If (H;) and (H;) both hold, then by (5.1) we know there exist vectors =z
and w such that -w e awp(x), -z € BWQ*(y), and (5.4) hold. Now

-W € awp(x) implies (5.2), and -z € 3y ,(y) is the same as (5.3) when
Q 1is closed. Hence the proposition imp?ies, in the presence of the
assumptions mentioned, that (x,z,w,y) solves (Ll)'

It is interesting to examine the primal and dual optimal value func-

tions associated with the duality between (Pl) and (Dl):

vl(s,u) = inf Fl(x,z,s,u)
X,2
= inf{h(x) - k(2)|x + s > 0, Ax + u > z}
and
Yl(v,t) = sup Gl(w,y,v,t)

W, Y

= sup{k*(y) - h*(w)ly >t W > A*y + v}
Comparison of these with ¢ and Yy, given in (4.4) and (4.5), shows that
the new trio of problems, involving more explicit variables, is based on
perturbing the "nonnegativity" constraints in addition to the "linear
inequality" constraints. Thus, the sensitivity information given by the
model with more (primal perturbation) variables is more comprehensive,
though at the price of having to deal with additional (dual problem)

variables.
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One might reasonably inquire, therefore, which model problem, (/)
or (Pl), is the more appropriate on which to focus the main attention.
The answer would seem to depend mainly on the role being played by the
nonnegativity constraints in the actual problem being studied. If, as is
quite often the case, the nonnegativity constraints are deemed relatively
inviolable, then the original cone-augmented problem (7)) seems indicated.
On the other hand, if one has some need for sensitivity information
concerning discrepancies in satisfying the nonnegativity constraints, and
is at the same time willing to admit into the calculations additional

explicit dual prcblem variables, then the model involving ({F.) seems

1
indicated. Either (P) or (Fl) will, of course, yield sensitivity informa-
tion concerning the general linear inequality constraints.

The reader can formulate with little difficulty the parallel versions

of Propositions 3 through 7 for the trio (Pl), (Dl), (Ll)'
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6. One optimization trio as the image of another. Results in the

last section show that (), (P) and (L), taken individually, are the

"projections" of (Pl), (Dl) and (L,). Now we show that, in a precise sense,

1
the entire optimization trio (P), (P), (L) is the image of the trio (Pl),
(Dl), (Ll) under a certain type of projection transformation. This will
yield an alternate formulation of the question whether identity (4.1) holds,
one which reveals much more clearly the connection with the suboptimiza-
tions occurring in F and G. The transformations involved are more
general than the ordinary projection linear transformations; namely, they
are particularly simple types of convex processes (see [18, §39] for
definitions). The "self-dual" form of these transformations will help to
explain why the extreme symmetry possessed by the trio (Pl), (Dl), (Ll)
is passed on intact to the image trio (P), (D), (L).

Consider first the convex process

M ¢ X XU x X x U > X XU

defined by 1

{(x;0)} if s =10

M(x,z,s,u) =

¢ if s # 0,
where we assign M the supremum orientation. It is not hard to see that
the sup-oriented convex process

k-1
M ¢ W XY XV XY e XY

is given by

*-1 ; {(v,iy)} if t=0
M (v, t,w,y)
¢ if £+ 0

*
Now let N be the convex process having the same graph as M . but
which is assigned instead to the infimum orientation. Then the image of

Fl under M 1is F, while the image of Gl under N 1is G. Indeed,
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inf F

(Mpl) (x«u)
-1
M " (x,u)

1

inf{Fl(x,z,O,u)}
2z

F(x,u)} ,

and

(NGl)(v,y) sup G

1
N 1(v,y)

"

SUP{Gl (w,y,v,0) }
w

Gly,v) ,
where the last equalities in each case are straightforward calculations.
From these identities, we see that it is the self-dual structure of M

that permits the symmetry between F and G

1 1 to be passed on to F and G.

One also has that

-G(-y,Vv) -sup{Gl(w,—y,v,O)}
w

inf{—Gl_(—w:‘Y: v, O) }
w

*
inf{Fl(v,O,w,y)}
w

,inf F)
M (v,y)

*-] * |
(M Fl)(vey) . ‘

Together with the two earlier identities, this shows that the underlying,
central issue of
2 *
G(YIV) = =p (V'—y)
is actually equivalent to the question

*-1

* 2
M Fl =

)*
(MPl .
The problem of providing general conditions ensuring that such a duality

identity holds between a convex function and a convex process was first
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dealt with by Rockafellar [18, Theorem 39.7]. The infinite-dimensional
case is treated in McLinden [10]}, where the associated subdifferential
formula is also derived.

Finally, let us see how the passage from (Ll) to (L) can also be
viewed in similar terms. For this, regard the ordinary projection
; Ll(x,z) = X as a sup-oriented convex process and likewise regard the
projection L2(w,y) =y as an inf-oriented convex process. It can be
checked that each of the two saddle functions

(x,y) » inf sup Kl

and

(x,y) » sup inf Kl
-1 -1
L2 y L1 X
] has effective dowmain C x D and agrees with K there. It follows that

each of these two possible ways of forming the image of K under the

1
"product convex process" L = L1 x L2 gives rise to (L). Notice also
that M and N can be expressed in terms of Ll and LZ as
*_1 a *-] 5
= x =
M Ll L2 an N Ll L2 '

e

1
The above furnishes an outline which could clearly be extended to

*
1 provided we interpret L2 - as sup-oriented and L as inf-oriented.

product convex processes more general than M, resulting in a general

treatment of the effects of "projecting" one trio of optimization problems

onto another. Of particular interest would be the associated suboptimiza-
tions (the counterpart of the 2z's and w's here) and also the ways in !

which various classes of perturbations would be transformed.
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7. Special functional structure. In this section we give conjugacy

anc subdifferential formulas for certain useful objective function
structure. This information, when combined with the symmetric cone
constrained duality model developed above, provides the basis for treating
symmetrically a variety of specific classes of model problems. 1In §3 we
indicated how one would obtain quadratic and homogeneous programming. The
same approach applies, using the tcooles which follow, to provide duality
treatment for functions homogenecous of any nonzero degree. (Of course in
general, one need not necessarily pick the family B to satisfy

B uh : Gge §3.)

The class of functions to be treated first (in Proposition 13 below)
may be heuristically viewed as a rather broad generalization of convex
"distance" functions, such as the function x » (l/Z)HX'F in a normed
space. Here, the role of the norm will be played by the gauge of a convex
set containing the origin, and the role of the gquadratic "scaling" func-
tion will be taken over by a generalized Young's function on the half-
line. Before giving the result, we recall from Rockafellar [18] certain
relevant material.

The polar of a nonempty convex subset C of X is

ce = {v|tx,v) <L, ¥x e € .

It is a basic fact that C°° 1is the closure of the convex hull of C and
the origin. Consequently, if C 1is itself closed and contains the origin,
then C°° = C. We shall call such a set a polar set. A gauge on X is

a positively homogeneous proper convex function on X which is nonnegative
and vanishes at the origin. The polar of a gauge Yy is the function

Y°(v) = inf{0 < p < +» [(x,v) < u « y(x),¥x} .
This is a closed gauge on V, and one has Y°°=cly. The closed gauges

on X are in one-to-one correspondence with the polar sets in X via
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T Trveres . b e e ”y ——
d g 3 w' 3
v 2 g bt ™ v L ——— " . . e .

Y(x) = inf{0 < u < +«|x € uc}
and
c = {x]|y(x) <1}

It is convenient to write for the gauge corresponding in this way

Yo
‘ to a polar set C, and one has (yc)° = YC°' A function f : X »+ [-® ,+ =]

is called gaugelike provided f(0) = inf f < +« and the various level sets
X

{x|f(x) <o}, £(0) < a< +=,
E are all proportional (i.e. can all be expressed as positive scalar multiples
of a single set). If ¢ : [0,+») » (- ,+>=] 1is a nondecreasing convex

T function which is finite at zero, then its monotone conjugate is the func-

tion AR [0,+®) » (-» ,+>] given by

¢+(T) = sup {01 - ¢(0)} .
I 0:0(-{-00

This is another such function, and moreover it is lower semicontinuous.
++ . 2 :
One has ¢ = 1lsc ¢, the lower semicontinuous hull of ¢. If ¢ is
g +
nonconstant and finite somewhere on (0,+®), then ¢ has these same

properties. From the definition of v+ it follows that one always has

] v (o) + w+(r) > oT, Yo, T € [0,+w)

: The subdifrerential of ¢ is the multivalued mapping 3¢ : [0,+=) > [0,+ =)

defined by |

T € Jd¢ (o) if and only if ¢ (o) + w+(1) =GN s |

|
|
1
|
|
|

The set 3¢ (0) amounts to simply the derivative at points o where ¢
is differentiable. Monotone conjugacy for functions on [0,+®) may be
viewed as the natural generalization of the classical facts concerning
Young's functions. We are now in a position to present the first result.
. PROPOSITION 13. A function f is a gaugelike closed proper convex

E function if and only if it can be expressed in the form

f(x) = ¢(y(x)) ,




where Yy 1is a closed gauge and v is a nondecreasing, lower semicontinuocus
convex function on [0,+«) which is nonconstant and finite somewhere
on (0,+«)., (Here ¢(+«) 1is to be interpreted as +« in the formula
for f.) In this case f* is gaugelike, too, and in fact
f*(v) = v+(y°(V))‘
where ¢+ satisfies the same conditions as ¢. Moreover, one then has
v e 9f(x) if and only if
(x,v) = y(x) - y°(v) and Y°(v) € 3de(y(x)) ,
and the sets
{x|y(x) <1}, {v|y°(v) < 1}

are polar to each other.

PROOF. See Rockafellar [18, Theorem 15.3, .or the original, finite-
dimensional presentation of this result. The proof given there extends,
in broad outline form, to the general case; see McLinden [9] for details
in the infinite-dimensional case. :

"Quadratic" convex functions are included in the case p = 2 of the
following corollary. The case in which Yy 1is a norm is also quite
important.

COROLLARY 13A. A function f 1is closed proper convex and positively

homogeneous of degree p, where 1 < p < +«, if and only if it is of

the form

£(x) = (1/p)v(x)P
for some closed gauge Y. In this case f* is positively homogeneous
of degree g, where % + é = 1; in fact,

* q
£f (v) = (1/q@)ye(v)
One then has
*
(x,v) < lpf(x)]l/P + [qf (v)]l/q, V¥x ¢ dom £, ¥v ¢ dom f* "

and the sets
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{x|£(x) < % Y, (vlf*(v) < =}

1
q
are polar to ecach other. Moreover, v e 3f(x) if and only if
(x,v) = y(x) = y°(v) and y°(v) = Y(X)p_1 .

PROOF. If f(x) = (1/p)Y(x)P for some 1 < p < +» and closed gauge
Y. then f =9v¢ o Y, where v (0) = (l/p)op has the properties described
in the proposition, and hence f is closed proper convex. On the other
hand, if f is closed proper convex and positively homogeneous of degree
p for 1 < p < +«, one can deduce that 0 = £(0) = inf £, the set

X
C = {x|£f(x) < 1/p} 1is closed convex containing the origin, and that

{x|f(x) < a} = (ap) {x]e o yo(x) < a}

for every 0 < a < +=, where ¢ (o) = (l/p)op. It follows that £ = ¢ o Yoo

The remainder of the corollary now follows from the proposition, upon

noticing that for this ¢ one has ¢+(1) = (l/q)'rq for 1 + 1 = 1.

p q

Ordinary positive homogeneity (i.e. of degree p = 1) for convex
functions is handled by the basic correspoﬁdence relating indicator func-
tions to support functions, which is readily accessible from the general
conjugacy correspondence. (See also [18, Theorem 13.2].) The next
corollary deals with nonnegativity combined with positive homogeneity. The
case in which C€ and C° are the unit balls of polar norms is of
particular importance.

COROLLARY 13B. Let C be a polar set. Then Yo = w;o and yé = Ygo-
Moreover, v € 3yc(x) if and only if (x,v) = yc(x) . YC°(V) and either

Ye(x) =0 and vy, o(v) <1

or else

Yc(x) > 0 and YC°(V) =1 .

[

PROOF. The proposition applied to f = ¢ o Yor where ¢ (0) i

g * + . + L5 " *
yields £ = ¢ o Yeo- Since ¢ (1) = w[O,l](T)' this means s wC“'




is closed.

Taking conjugates then yields the first identity, since Yo
The subdifferential characterization follows by the proposition from the
fact that 1 ¢ 9v (o) if and only if o =0 and 0 <t <1l or o >0
and T = },

we have promised coverage of positive homogeneity of any nonzero
degree p. For p < 1, this clearly puts us most naturally into the realm
of concave functions. What we shall do is present a natural, concave
analogue of Proposition 13. It turns out that the class of functions it
treats can be heuristically viewed as concave "utility" functions, much
as those of the previous discussion were convex “distance" functions. To
formulate this concave analogue (Proposition 14), we require appropriate
analogues of the concepts and facts used earlier. For more on the follow-
ing material, see McLinden [9].

Let C be a nonempty convex subset of X such that 0 ¢ cl C. The
antipolar of C is

ev = {vlixwy 5 1, ¥ e € .
(Here, and below, we rely on the context to indicate whether the symbols
o, +, *, and c¢l are to be interpreted in the earlier, convex sense or
in the present, concave sense.) It is a basic fact that C°° 1is the set
cl{Ax|A >1, x e C}. Hence, C°° =C if and only if C is a nonempty
closed convex set which excludes the origin and satisfies the condition
Ax e € for all X > 1 and x e C .

We call such a set an antipolar set. (A particularly nice example of an
antipolar set in X = R is the "hyperbolic" set C = {(él..--.ﬁn)lii >0
each i, and glcz CHAL £n 5 %}. This has the self-dual property C° = C.)
An antigauge on X 1is a positively homogeneous proper concave function on
X which vanishes at the origin and is nonnegative but not identically

zero on its effective domain. The antipolar of an antigauge Yy is the

function
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Y°(v) = sup{0 < w<+ef(x,v) > Uy (x), ¥Vx € dom Y} ,

where we use the convention sup ¢ = -« , This function is a closed
antigauge on V, and one has Y°°=cl y. The closed antigauges on X are
in one-to-one correspondence with the antipolar sets in X via

sup{0 < u < +w|x € uC} if x ¢ cone C

y(x) =0 if x e asym C

- if x £ rec C

and
C = {x|y(x) > 1}

Here rec C denotes the recession cone of C (i.e.
rec C = {z|x + Xz ¢ C, ¥x ¢ C VA > 0}), cone C denotes the projecting
cone of C (i.e. C = {Ax|x e Cc,x > 0}), and asym C consists of what
might be thought of as the asymptotes of C, namely asym C = rec C \ cone C.
(Some feel for asym C may be gained by considering a few simple examples
in the plane. If ¢, = {(E],EQICZ > 1}, then asym c, = {(Cl.O)lﬁl € R}.
2 = {(Ellﬁz)léz

3 = $ee; 8500 « &

1f C

|v

1,¢£, > 0}, then asymC {(51.0)[51 = 0F. Tk

2:

C 1< El€2’ or else 1 < 51,52}. then

A

v

asym C, = {(51,0)151 0} v {(0,52)|52 > 0}. The set

D, = {(Cl,Cz)liz > e by in not antipolar, but C, = DJ° is. One can
check that C, = {(51,62)152 5 eE1 and &, <1, orelse g, >ef; and
1 <&}, so that asym C, = ((&1,0)|£1 < 0}. The set

D, = {(§;,&,) ¢,

g = 168,808,

1+ Ei} is not antipolar, but Cg = D5° is. One has

1+ &f and |£l| <1, orelse &, > 2|£l| and

|v

C

|v

|€1| > 1} and asym Cg = {(0,0)}.) It is convenient to write for the

e
antigauge corresponding in the above manner to an antipolar set C, and
one has (YC)° = Ycor We shall call a function f : X + [-® ,+®] anti-
gaugelike (admittedly, a verbal monstrosity!) provided that, on the set
{x|f(x) > ==}, £ is nonconstant and bounded below by f(0), and that

the various level sets

al 5=




{x|f(x) > a}, £(0)<a < sup f
X

are all proportional (i.e. can all be expressed as positive scalar multiples

of a single set). If ¢ : [0,+©) > [-= ,+~) is a nondecreasing concave
function not identically -« , then its monotone conjugate is the func-
; + ;
tion ¢ : [0,+t®) > [-» ,+=) given by
+ .
¢ (1) = inf for = ¢(a)}
0<0<+ w

This is another such function, and moreover it is upper semicontinuous.
One has ¢++ = usc ¢, the upper semicontinuous hull of ¢. If ¢ |is ]
nonconstant, then ¢ 1is also nonconstant. From the definition of ¢+
it follows that one always has

e(0) +¢T(1) <o, Vo, T € [0,4%) .

The subdifferential of ¢ is the multivalued mapping 3¢ : [0,+=) =+ [0,+x)

defined by
T € d¢(o) if and only if ¢ (o) + w+(r) = 0T
As before, d¢ (0) amounts to simply the ordinary derivative at points
o where ¢ is differentiable. Armed with these notions and facts, we
can proceed to the concave analogue of Proposition 13.
PROPOSITION 14. A function f is an anéigaugelike closed proper

concave function if and only if it can be expressed in the form

f(x) = o(y(x)) ,
where 7Y 1is a closed antigauge and ¢ is a nondecreasing, nonconstant,
upper semicontinuous concave function on [0,+®). (Here ¢(-«) is to
be interpreted as -« in the formula for f.) 1In this case f* is
antigaugelike, too, §nd in fact

£ (v) = sty
where ¢+ satisfies the same conditions as ¢. Moreover, one then has

v e 9f(x) if and only if
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(x,v) = y(x) * y°(v) and vy°(v) ¢ 3¢ (y(x)) ,
and the sets
{x]y(x) > 1}, {v|y°(v) > 1}
are antipolar to each other.

PROOF. See McLinden [9]).

The following corollary completes the treatment of positive homogeneity
of nonzero degree p. (The case - < p < 0 corresponds to the dual
version of the corollary.)

COROLLARY 14A. A function f is closed proper concave, nonconstant
on its effective domain, and positively homogeneous of degree p, where

0 <p <1, if and only if it is of the form
1 p
f = —_
(x) (p)Y(X)

*
for some closed antigauge Y. 1In this case f is positively homogeneous

of degree ¢, where é + % = 1; in fact,
s @yed if yow) > 0
f (v) =

-~ otherwise
One then has
Cx,v) > (pf (01 /Prge® (v)1/9 5 0, vx ¢ dom £, wv ¢ dom £,
and the sets

uuu);§,{ﬂHW)z§

are antipolar to each other. Moreover, v e 3f(x) if and only if
Y(x) > 0, v°(v) > O,
(x,v) = Y(x) * y°(v) and v°(v) = y(x)P71 .

PROOF. We proceed in a manner quite similar to that for Corollary 13A.
First, suppose f is of the form f = (%)Yp for some 0 < p < 1 and
closed antigauge Y. Then it is clearly nonconstant and positively homo-
geneous of degree p, and furthermore, for (o) = (%)op it is of the

form treated by the proposition, and hence is closed proper concave. On
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the other hand, suppose f 1is closed proper concave, nonconstant on its
effective domain, and positively homogeneous of degree p for some

0 <p € 1. One can deduce routinely that f£f(0) = 0, that £f(x) > -«
implies f(x) > 0, and that C = {x|f(x) > é} is an antipolar set. (The
nonconstancy assumption is needed to show C 1is nonempty). Then for each
0 <a < +« one can show that

{x|£(x) > a} = (up)]/pc = {x|¢ o Yo (%) 2 a} o

where vy (0) = (%)op. From this it follows that f = ¢ o Ye- The remainder
of the corollary now follows from the proposition, since ¢+(1) = (%)Tq
for 0 < 1 < + and ¢ (0) = -w.

*
COROLLARY 14B. Let C be an antipolar set. Then o = (—wc°) and
*

C [

and either

Yoo == Moreover, Vv € BYC(x) if and only if «(x,v) = Yc(x) SEE e ()

CO

v
it

Ye(x) = 0 and yqo (V)

or else

i
—

Yc(x) > 0 and yco(v)
PROOF. The proposition applied to f = ¢ o Yor where ¢ (0) = o,
ields f* = g’ @ Since +(I) = =y
Y ¥ Yco- v I qlll"’“’)
*

Yo ' -wco. Taking conjugates then yields the first identity, since

(1), this means
Re
is closed. The subdifferential characterization follows by the proposition
from the fact that 1€ 3 (0) if and only if either o =0 and T > 1
or else o >0 and T = 1.

The situation treated in Corollary 14B amounts to tgé concave version
of positive homogeneity of degree p = 1.

In terms of viewing the functions in Proposition 14 as concave
"utility"” functions, still other choices of the "scaling" function ¢

th

besides p powers are of interest. We shall cite just three, leaving

it to the reader to formulate the corollaries corresponding to these

wf G




choices as well as others. These three each have the nice feature that
w+ = ¢ + a, where o 1is some real constant. Upon replacing ¢ by

¢ - a/2, one could thus obtain complete self-duality, i.e.

(v + a/2)+ = ¢ + a/2. Of course, 3(¢ + a/2) = 3¢. In general, the ¢'s

which are self-dual (up to an additive constant as above) are precisely

those whose subdifferentials are symmetric upon reflection through the

c " 2 2
axis o = T 1n R+.
Example 1. Take ¢(0) =¢n o for 0 < 0 < +®® and ¢(0) = -«

Then ¢+ = ¢ + 1. The graph of the subdifferential 3¢ here is

{(o,1) € RiIOT = 1}. By comparing this graph with the graphs of the sub-
differentials of the pth powers appearing above, one sees this as the
natural limiting case corresponding to p = 0. See McLinden [9] for more
on this point. The subgradient formula one obtains from Proposition 14
for this choice is V e 3(¢ o YC)(x) if and only if
(x,v) = Yc(x) . YC°(V) = 1.

Example 2. Take ¢ (o) = 0 for 0 <o <1 and ¢(o) =1 for
1l <o < &=, Then v+ = ¢ - 1. Here the "utility" function ¢ o Yo
increases linearly as x moves from the origin towards C and becomes

constant once x gets inside C.

Example 3. Take ¢ (0) = 0 - 02/2 for 0 <0 <1 and ¢(0) = %
+

i

for 1 < 0 < +». Then v ¢ —%. Here the "utility" function ¢ o Y

increases quadratically as x moves from the origin towards C and

becomes constant once x is inside C.
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8. Concluding comments. We wish to emphasize the open-ended nature
of the present framework. For each of our model problem's elements - the
cones P and Q, the functions h and k, and the transformation A -

there are, of course, many specific, basic structural forms of potential
interest and i1mportance. When one contemplates further to consider inter-
mingling these various structural forms, the possibilities become virtually
endless. 1In view of this, we have chosen in this paper to concentrate

on developing a general framework (§83,4,5,6) broad and versatile enough

to encompass a variety of specific problem types of known value, and
secondarily to indicate (§7) the essential facts necessary for applying

the framework in the broad cases of convex "distance" and/or concave
*utility" structure in h and k.

Note, too, that our entire approach has in effect been based on a
simple but very general "symmetry principle” (§3). This principle might
be kept in mind as a potentially powerful conceptual aid in deciding how
to formulate a class of problems initially so as to achieve various
desirable duality effects.

We close by mentioning a few of the other possibilities which might
be combined fruitfully with the present framework.

First, alterng h or k by affine or "conjugate affine" terms does
not materially alter the framework. It simply has the effect of removing
the normalizations (with respect to the origins) which we imposed for
purely notational convenience. See [18, Theorem 12 .3].

Second, additive separability in h or k and A is a powerful
feature, on which decomposition into smaller subproblems might be based.
See [8]) for an illustration of how the decomposition principle can be
formulated in the context of Fenchel-Rockafellar duality. Quasi-separability

could also be useful, particularly in conjunction with faithful convexity.
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See [19], where both these notions are defined and studied in the context
of finitely many convex inequality constraints.

Third, structure present in the cones P and Q might be exploited.
Finitely generated or polyhedral cones would admit sharpenings of some
{ results (by Proposition 8(f), for example). Intersection or finite sum
4 structure could also be useful, at least insofar as computing P* and Q*.

Finally, the type of transformation A treated in the model can be

broadencd considerably with the aid of slightly stronger assumptions. In
[10) it is shown how the present model extends quite naturally to handle
A's which are closed convex processes (see [18, §39]) for the definition).

In particular, densely defined single-valued linear A's having closed

graph are covered there.
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