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ABSTRACT

In this paper the boundary value problem Au+xu+f(u,ux,uy)=0, u(0,y)=u(l,y;=0
; : . : . 2 : ;
1s studied in the sirip (0,1)xR, where £ 1s some C -function which, together
with its gradient, vanishes at 0, A 1is a real parameter. It is shown that, for
2 2 : S,

A between and 4w, all small solutions are veriodic in y . Moreover,

: " : 2 . : g ;
singular solutions exist as local H -limits of periodic solutions with large periods.

2

For values of X beyond 4n a formal argument suggests that almost all small

solutions are quasiperiodic. The equation is studied as a model for some important

but technically cumbersome bifurcation problems in fluid dynamics.

EXPLANATION

A nonlinear elliptic boundary-value problem which models aspects of the tech-
nically more cumbersome Taylor and Bénard problems of fluid dynamics is considered.
It is shown that all small solutions are periodic in one variable when a paramcter
(corresponding to a bifurcation parameter) is in a suitable range and indications
are given that all small solutions are quasiperiodic for larger parameter values
when the nonlinearity is analytic.
AMS (MOS) Subject Classification - 35360, 76DXX
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§ 1 Introduction

In this study we try to classify all smail solutions of
the boundary-value problem

AU + AU + f(u,DXu,Dyu) =0
(1.1}
0

it
n

u(0,y) = u(l,y)

il

in the strip @ {(x,y) € [0,1] x R)}. Here, & is the two-

dimensional Laplacean, » a real paramete:r and 7(u,p,q) a

real valued C2

-function of its real argunents which, to-
gether with its gradient, vanishes for u = p = g = 0. The
class of solutions considered consists of functions with

locally uniform HS-norm

sup  lull,s < €
pe H™(Ky)

where 0 < s < H® the usual Sobolev space, and where

25
KQ = [0,1] x [(2-1)p,2p] for some p > 0 denotes a sequence
of compacta covering Q. In view of the physical interpre-
tation given later, our assumption regquirces small energy

input per unit length.

The interest in this question arose from the effort to
determine &ll physically reasoneable solutions of the
Taylor- and ihe Bénard problem in fluid dynamics. In both
prcolems a basic (trivial) solution lcoses its stability
to nontrivial solutions which bifurcate at a critical
parameter value. In view of the underlying invariance,

the set of nontrivial solutions near this bifurcation point
is very large '11) but nothing is known about a charac-
terisation c¢f this sat. There is an extensive theovretic
literature (mathematical or physical) on these probtens
(sec [4) for an cxcellent survey), however, ail approaches

assume periodicity in the wvrnbounded varianles a priori.

Sponsored by the United States Army under Contract No. DAAG29-75-C-
0024.
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One might consider this investigation as a first step
toward a final answer of those questions, since (1.1)
can, to some ecxtent, be regarded as a model for the
Navier-Stokes equations - the stationary Burgers equaticn
is a special case of it -

The conjecture, derived from the linearized eauation,
that - besides a discrete set of a-values - all sclutions
are quasiperiodic is not true without further symmetry
restrictions on f as the one dimensional analogon

il + 2u + &3 = 0 already shows. Hence we further inpose
one of the two following assumpticns

flu,p,q)

1)

(a) f(u,p,-q)
(1.2)

(b) f(u,p,-q) = -f(u,p,q) and F(-u,-p,-q) = F{u.p.q)

1

Given property (1.2) we are able to settle the question

in the a-interval (n2,4n2) by proving that all small
solutions of (1.1) are periodic in y. The question beccmes
more delicate for i ¢ (nznz,(n+1)2n2) where quasiperiodic
solutions are expected. The method applied for the pericdic
case breaks down since the invertible part of the linearized
operator ceases to be continuously invertible. If the non-
lincarity f is real analytic then we can show at least,

that formally (considering formal power series) all small
solutions are quasiperiodic.

Unfortunately, the analogy to the fluid dynamical situations
is rather limited for » € (n2,4n2) since, for the Taylor-

as well as for the Bénard-problem, one expects two indepcncdent

frequencies wyswys for x slightly above the critical vealue.
Hence, the analogeus model case is ) € (4u2,9n2) and we
conjecture therefore that all small solutions in thuse Fluii-
dynamical prohiems are quasiperiodic. For indications ot

t17%

this Tact consult [ LlslolyiGltdel,
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! ¥ ()
follow t . ther
small, nontriv : oy £ or. the
‘J‘n"t_l’u7u'“ x_‘A' ! ¢ " .
Fourier-component ;s eit) stant
The result is natural a . , )
equations show. Genera) t t
replaced by a strongly ellij opereat v
are possible, but we aveid tnem here f t

To our knowledge, the problem under consid
been studied in the literature. There has be

interest in periodic solutions of nonlincar wav

(see [8] for a recent list of references) but there,
interest is directed towards the existence of speci

solutions and their regularity.

We start with an investigation of A+Xx in a space which
the inductive limit of weighted Sobelev spaces allowing
polynomial growth of any order. We show that a+)x is onteo
for every X, a fact, which justifies the choice of space
and which contributes the corner stone for the reduction
of (1.1) tc a finite dimensiconal initial value problem

- somewhat in the spirit of Liapunov and Schmidt
(sections 2 and 3). In section 4 we prove uniqueness in
Theorem 4.4 . Section 5 contains the existence of just
enough periodic resp. quasiperiodic solutions. Sectiion €
is devoted to the existence of singuar solutions as
envelopes of periodic ones.

We gratefully acknowledge discussions with W. Ecxhaus
and P. Fife about various topics of this paper.




§ 2 Spaces and their propertics

S ————— —— ———— ———.. - —— -~ ——

Let be 2 := (0,1) * R, x = (x,y) € 2", and K a nonempty

compact subset of ., By H (n) we denote the set of all
O ' g '
funktions u : g + R, with u € HS(1) fur al) c . M

. e : " 2
H™(K) is the usual real Soholev space with the norn

9
( & = (“l"l?’ € '.'é. e} = ’ll + 'l?)
g TR 1/2
T sup ( J 1D ui® dx ) R
' e fal<s K E N

0, -
C (%) is the Banach space of mtinucus, real valued

functions defined and bounded in @ couipped with the norm
'!'i,-g) = sSun IJ(\)I &

Furthermore, we need a seguence of Banach spaces X thich
K

are defined as follows

: 9 (¥) = max (Ly1%) , kem

0
2 1
Nal, , = sun ([ a.%(y) 19" x> ix )
’ lal<s 2

< ¢ S

| = u € H { i i ) ’

k . loc ) W - ’ : 0
Nbsorve that g = g, 9, holds

’ 3 'va “_ ) : ’
The spaces X, consist of functions with a qivea polvnomioa
growth at iufinity, Since ¥/ e ¥ ilgebraicslly and
topolegically, they fors a scale of nach spaces, The
boundary conditions u(9,v) {1,y ) define vis the ti
subspace of X: for s >1/2and cve, % . s lenantel

Os o8

Xk tw { y € Xk P u(o,v) 1{(1,v) ¥

’ 5 . : . ) .

Finally let X he the inductive limit of the fan €
S S ’ /S ‘ % :
Xk, k Q!HO, Yol A 2 0 X; is the locally convex toro-

.=0

1ogical (lct) vectorsnece equinped with the finest tono-
s ’ ¢ S

logy which induces on wvery XP a topologv coarscr than

given one ({2 },».429). Hence, 5% conteing oxactly thas

-4~
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lulg | = sup & 9;2 1DYy1? dy
,
(2.3) Osyss
Y3 = (ueHd (R) | 1ul < w )
)’ k loc s,k
LEMMY 2.3
0.
Set A: z !i ana Astume U ¢ K: for s = g,1,0r 2. Define
s 5 )
u = Je ;u((.-)Sl'\;"l jX.
v 0
then we have u ¢ YE for all ™ and
v
y 281 Y ? e | qu
(2.4) Flvn)® 0V 5 I‘Dx,),J I
for B,y ¢ NO < 8 5 % ¥,
Conversely, let (uv l u, e Y:) be a sequence for which (}
left side of (2.4) is finite. Then, the functions u_ are the
°
Fcurier components of some u in !: which satisfies (2.4).
Proof : u, € Y: follows from
0w = /7 [ 2Vu(x,*) sin vrx dx
v 0 y
and hence
Y 2 .
|0 uvlo.k <Hn J"O'k
Define
fgsin VX for 8 = 0
o;(x) = /2 4 €O0S vnx for 38 = |}
{-sin X for B8 = 2
Y

e ]
-
-
v
O

9:0: u{x,*) o,(x) dx




holds, and Parseval's idendity implies (2.4).

\Y

)
which is the

N
converges in Xg towards ufsY
0,0

N
For the proof of the converse set ubs Y= %(vn)BDYuvw

then ug'Y
weak Dﬁo;— derivative of u = u

u(0,+), u(l,+) vanish for s = 1,2.

Moreover the traces




Some Estimates

§ 3

The solution of equation (1.1) requires some knowledge about
the action of the twodimensional Laplacean in the spaces XS.

. 0?2 0
We define A ¢ X~ = X by Au = Au,

to lie in [nznz,(n+1)2n2) for some fixed n € NO.
e g s
Lv(k) = Dy + (A-vm %)

the Fourier components u, of u resp. fv

The parameter A is assumed
denotes the operator generated by A on
of f (see Lemma 2.3).

LEMMA 3.1

Let be fe X%, v € N and v > n+l. Then there exists a unique

i
solution u € Y2 of L (X)u_ = f . It satisfies the inequality
v 2 v v v

(3.1)

Proof

solutions,

10vu |
v

for some constant

Cl(k)

Since L (A)u =
s

the uniqueness

O,'Lf’VZ-Y H:\)‘O.k &

cl(k).which is independent of 2 and v.

0 has only exponentially growing

s trivial.

8y means of the Green's

Rt —

function
6 (¥} = — e (Y M) for g <y
2w
v
Gv(y,n) = Gv(n,y) " L vaZ = X

one obtains the solutions by the formula

(3.2) u ) f (n) dn

v v

(v) = ] G (y
R

Setting fv = qkhv, one obtains hv (3 LZUR) and, using Cauchy-

Schwarz's inequality, vy = 0 or 1

2 < m2v
= v

i0Tu_(y)l

\Y

[ 8tyamsgin) dn [ 6ly,n)ni(n) dn

2y-2
w

Y

i~

¢y (k) 92(y) I B(y,nyhi(n) dn

-10-




Here, we used an estimate for the first inteqral which can
be established by elementary calculations. Now, Fubini's
theorem yields

Y
1D u,l

2
0

A

< e (k) w272 [ hZ(ny (f a(v.n)ail (v) dy) dn
0 1 v RV R 2 -k

The inequality Ig;?k(y)l <1 for ¢ > k and all y € IR
implies
2 2y-4 2
|DYuvIo,2 < Clva & hv(n) dn for y = 0 or 1. I

The case y = 2 follows from the differential equation.
Observing W, vV completes the proof,

Define for s 0,1,2 linea

n
Q% = id - PS by Py = )

2 2 \)=1
continuous and P, Q% comm

2
APZ - POA resp. A2 = Q0A

the inductive 1limit of QSX
mentioned for X° in § 2

LEMMA 3.2

r projections P° : X% » x%

S S
and 07 are

uv(y) sin vex . P
ute with A in the sense that

) e S - 3
holds in X2. Moreover, 97X is

Z having all pronerties

Let 3, denote the restriction of A4)x onto OZXO. Then,

82 s 0 X2 - QOXO is a topological isomorphism. Furthermore,
(3:3) Hunz,k < cz(k) IIBZulio,k

)
holds for u € Q2X2.

The proof that BZ is bijective is a consequence of Lemma 3.1
vwhich, in addition, shows the continuity of Bél. The

continuity of B, itself is trivial (either direct or by the onen
Mapping principle). Inequality (3.3) follows from (2.4)

and (3.1) immediately.

«]]=




COROLLARY 3.3

Let f° = f(«,-+p), P € R, be the p-translation of f. Then,
for every f € X%, (85'F)° = B3l¢°

2
through its action on the Fourier comoonents. Ohserve that

For the proof use the representation of B given by (3.2)
GQ(y,n) only depends on the difference y-n.

LEMMA 3.4

Let o 2 1 be fixed and define X, = [0,1] x [(2-1)p,%p] for 2=1,2,...
and K, = 10,1] = [fp.(e+)l)p] for £=-1,-2, ... , 2' = 2 X {0}.
Assume

for some f € X°.

Then there exists a p-independent constant v, such that

1

0o
Sup HBZQ thZ(K

< v, sup lifll
9€2 " Py HO(K )

L
is satisfied.

Proof : Observe that 352 X 52 holds in Ky and use Lemma 3.2

to obtain

(2)p 2y

A

-1 L0 it 20
IIB2 ch "HZ(Kl) < 0B, 0 f “2.2 < ¢ 0,2

lfPol

n

2 -
Lt S WL HO (K, )

(y)! < min (1,1/(k-1)20 Y for il oy Kk

and in view of

=1

{'f
2

Since Igél

20
sup IHF®I,0
heg" HO (X

the inequality folilows immediately.

«]2e




It is useful subsequently to introduce

f = fxy . € X!
| 2 e
where Xk denotes the characteristic function of K%,
?
defined in Lemma 3.4. Instead of IIf, Il , we use the
|27 H(Ky)

less correct but unambigous notation |l fll .
H(K,)
LEMMA 3.5

Let be f € 0°X%, f(x,y) = 0 for (x,y) € S = [0,1] x (-=,0).

Then , u € Bélf restricted to Sp has the form

oo
= ] u,(e) sinvmx e
v=n+l

1

= wyy
B T,

Furthermore, the following inequality holds

-1 Bhdal™ T

”BZ f”HZ(K_l) =ne “32 f“HZ(Kl)
An analogous result is valid, when S, is replaced by [0,1] «x
(-p,*) and the roles of K.1 and K1 are interchanged.

Proot The representation of u follows by a straiaght-
forward computation. To obtain the inequality use Lenma 2.3
and the following estimates

By 2 : .28 2y 2 & 20y
“DnyUHHo(Kl) = v=§+1 (\ﬂ) wv Uv(p) -£ > dy
an+10 =
e 28 2v-1 2 ~2wyp
28 —— I (mTelT g (e) (17T
v=n+l
_ 2wpn41p BaY, u?
= e “DnyU“HO(K_1) ’ qed.
0
Now, we study the action of A+X on P2X2. The operator is still

onto but an estimate of the form (3.2) cannot be expected.
Li--——=Allowing a higher order growth we arrive at estimates
which are sufficient for the unigueness proof in the next

seclion.
-]3~




LEMMA 3.6

e

Let be f € XE for some k c'No, and assume v < n. Then,

Lv(x)u = fv possesses a solution which satisfies
v

Y i
10 u\)l().lf’ C3(k) lfu'ﬂ,k ’ y = 0,1,2
s 2.2 :
where 2 > k+x if X = n"n" and v = n, and ¢ > k+l otherwise.
Proof : Define © by L (2)w = 0, ®(0) = 0, 0'(0) = 1.
Consider first the case v < n or x > n2n2. Then ¢ and its

derivatives are bounded and

y
u,(y) = [ o(y-n) f (n) dn
0 \Y
is the desired solution. With fv = gkhv. one obtains

h, € HO(R) and, if vy = 0 or 1

5 1yl lyl
-2 2
0Yu 12 <o) [ a2 e dn) T hE(n) dn) dy
ki R 0 0
2 -2
& 20tw) VE 4 I
(@) v ok A qz-(k+7) ¥

"
wn

(k) IF 10 if 2> kel

Forv=n and 1 = n2n2 one has o(y) = y. The modified
estimation yields

10Yu |

\Y

2 2 2
g Sty B be e ] < cy(k) IF I

2
d.
1 Tvlo,k i Ta-(kel) O v'o

s & s K

D3 T A k+%. The inequalities for vy = 2 follow from the
differential equation, qed.

The proof shows that U is uniquely determined by the

initial condition uy(0) = uy{0) = 0. To put this into the
right framework define

~]d=

..Iﬁ-n-l---------------- . " . it e A i




. peld
Zl - P X
~ 09 . ) ]
P X7 > ker(A+r) Q =id - P
(3.4) ) V 1 bt
Pu = v/? Z sin \)'nX( f U(X,O)Sin voX dx cosyi-v w
V= (6]
1 1 g
4 — Dyu(x,o) sin vrx dx sin/a-vn© y
/ 22 o
A-v 1
it N > n2n2; otherwise, for A = n2n2, we write Pn | for the

above expression when n is replaced by n-1 and define

. ) 1
Pu =P ,u+ YZ sin nax( [ u(x,0)sin nux dx
' ]
{3.4"} 1
+y Dyu(x,n)sin nax dx )
0
. « . 07
Note that the trace Dyu(x,o) is well defined since u ¢ X°©
It is easily seen that P and Q are continuous projections,
p = 1 p = ] .F‘t X 20 -8 {X,;90)
p}ker(A+x) id and Pu 0 if and only i ;v( ,0) U, (x,0)

holds for 0 < v < n. Hence, according to our previous lenme

= (A+1) 5 éz - pY%°
!QZI 1

(3.5)

p=J
L}

4 (A+A)!§ZI : PZ - {0)

Byis a topological isomorphism, Therefore, the decomposition

(o} . = 0
X2 - b1, ¢ iz, ® n%x2

defines a decomposition of A+x in the form

(3.6) A +xr=A, 8, B =08

1 1

. . s ’)()7
where B is a top isomorphism between QZ1 & Q°x° and X°.

=15«
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THEORE™ 3.7

2.2

2
Assume that n"n" < A < (n+1)2n“ holds for some n Eluo. Then,

(1) dim ker (A + X)) = 2n

(ii) A+ 1r=A 28

1

= 0
where A1 and B are given through (3.5), B : 021 $ QZXZ + x°

is a topological isomorphism and the following estimate holds

luly o & c(k) WBuly ,  if &>k +3

The following two Lemmas estimate the influence of the
initial conditions u (0), ul(0) on the Hz(Kil)-norm of u,

which will be crucial for a continuation argument in the
uniqueness proof.

LEMMA 3.8

Adopt the notations of Lemma 3.4 assume ker(A+x) + {0}.
Then, there exists a p-independent constant Yo such that

+ 1Pyt

k |
"U“HZ(Kil) = YZQ (Htho(Ktl) 2’2)

holds for k = max(2,2), ¢ > 1, and f € P°X°, (A+x)u = f.
Proof : Observe that

(A+x)v = f, Py = 0, fl =0

1

0

9
yields vll = 0, since v € P"X2

and v _(0) = vi(0) = 0,
1 < v £ n. Hence

(B3 f)jy = BTF N

and we conclude from Lemma 3.6

-16-
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=y 8y -1 2, ,-1
-p = | !
Hu uth(Kl) JBI (fll)LHz(Kl) < Clp \IB1 f|1“2.2
2 = 2
)
In view of u € P2X2 we have
HﬁuH < C onﬁuH
HZ(KI) e L 2.8

for every 2 > 1, C3 independent of &; whence {

]
) + C3o “Puﬂz’l

2
NUHHZ(K = Coo ”f"HO(K

1 1

which implies the assertion (p > 1).

LEMMA 3.9

0
The following inequality is valid for all u € P2X2 and
3 .
£>?.
-l |
IIPulz’2 < y(k) Huth(K+1)
Proof Equation (3.4) immediately implies (0 < e+y < 2)
Byrs. 42 SRR 2 - PR
O MIE vzl (u,(0)+uy"(0)) % (y“+1)g,%(y) dy

From Sobolev's imhedding theorem one ohbhtains u(-,0),

Dyu(+.0) € L,(0,1) for every u € Ho(K ;). Hence

2

<
£

O SY—r—

[} 2 2
lu!(0)! 1D, u(x,0)1% dx < cz”””HZ(K_l)

and a similar inequality far |uv(0)I2. Thus, by Lemma 2.3
the assertion follows.

w]F=




§ 4 Uniqueness

OQur aim, to give a complete descriptfon of all small
solutions of (1.1), requires a proof for the fact that
there exists at most one "small" solution with agiven
projection Pu. The content of this section is a precise

formulation of this statement,

We use the notations of the preceding section, in parti-
cular the constants Y10Y21Y3 appearing in various Lemmas.
Equation (1.1 ) is now written in operator notation

0

(4.1) (A + A)u + f(u) = 0, u € X2

74
where X satisfies nzn“ <X 2 (n+1)2ﬂ2.

4.1 Assumptions for f

S o .
f H]OC(Q) < H?Oc(n) far some s, 0 £ s £ 2.
2 S = 10
f1 = leS(Kl) H (Kl) H (Kl)

is supposed to He differentiable in a neiqhborhoed of 0,
and its derivative fi should be continuous at 0. Further-
more, f,(0) = 0, fj(0) = 0, f(u®) = f7(u) for all o € R
is assimed.

Setting
plu,v) = PO(F(u)-F(v))
a(u,v) = 2%(f(u)-f(v))

We obtain from 4.1 quite easily, that for cvery 8§ > 0

there is a n > 0 - independent of 2 - such that

Ip(u,v)ti ’ < Sllu-=v I ’
PLY,¥) HO(K,) = HS (K, )

(4.2)

HQ(U,J)PHO(KR) < 5Wunvlﬂg




T ——

for all t € 7' and @ U 4V H, (n) with
”U] S 4 sl v HS /¥ \ R
H (ki) i ',"1
we have p(u ,v ) = p (u,v) imilay
For ¢ € N, k = max(2,¢) define con
fying the conditions
TR k,-1
: =9 m1n(1,(Y2Y3o Y 7))
1 a

p > max(- Inxy 1)
(4.3) “n+l

5 - min(a(zyzok)‘l,a2(12Y1)'1)

cm=ameo s so;2n

with n taken from (4.2). Observe that the sequence €
tends to 0.

4.2 Property T(m)

. s . : ’ .
The pair u,v € X is said to have pronerty (m), m €IN_, if
; \ (0]

g o]
Su 7 SR SRR Su v <
cp i LHS(KI) Op il HS(Kl) |

"u-VhHZ(Kj)

I
”
=
+
1
<.

holds forr J = £1, o =M

LEMMA 4.1

e St e o e

-

Let u,v € x5 have property T(m) for all n € NO. Then, for

Tt = +1 or T = -1, one has
T
| B} (u,v)l,2 1
VB jZZT a5 (usv)iy (K.) =8 “m+l
1T
| = f1 b . "
“Bz j/-‘-“r Q:j(u’V) ll7(KT) <:?;Lm+l i "] G]:O
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Proof : lie proceed by induction. N(0) implies
ﬂq(u,v)rHO(K') < (05 for all j € Z', In view of Lemma 3.4
and (4.3) tWe inequalities hold for m = 0, Let them be

satisfied for m-1, Since u,v have property N(m) one ohtains

Hq(u.v)fHo(K.) < & WO for 13l = 1,2, ... 2
Now,define Q e z u'j and similarly v. Dhserve that Qn.bg
=3
possess property n(m-1), whence
«} ¥ 5 =p 1
HB2 'Z” q:J(J WV )IHZ(V ) T n
J=c
Since we have ( § ay (&“.Q”)),k =0 for k = 1,0,-1,-2, .
j=2 '3 |

it follows, usihq Lemna 2.5, bH» assumnption

-l T '1 T n y
I8 I a (u,v)t,2,, hR T qf (wav)0,2, .,
- ] 4 2 , & ) 4
2 523 ) He(¥,) ¢ jz2 1) (‘_1)
_(nw"’l 71 a 4 o : l -oun'l
- 18,° 1 a4 (un vl 2y ) < gen @
Jue 1
Moreover 1./m-1) for u,v and Lemma 3.4 vield
=} ,
“;—’2 q 3\ v ) e N L n-1 ’
Hence, by (4.3), one ohtain-
-1 7 . N T, IR
"82 jZZ q!j(u’\)!q?(Kl) - '1‘ m- Em =B “mel

Similarly one shows

TEPe)

jeu qij(u’v)”HZ(K_l) = T %mel

Let x_ denote the characteristic function X{g.1]wm"+ OU
0, )
that u? = ux_, v? = vPx_ have property n{(n), i=nlying

-m -0

"'l ' '1 E (o] o] '
/B B gV 2 = !B TR b T W S
U IR T LT SR R Pt N
1
< ® *mal
The last inecuality for v = -1 follows quite similariv, qed.
- VN

R IEEIm—————— ; i i i




LEMMA 4.2

e e et

If u,v € X% have oroperty n(m), for all m EINO. then

1

g e
85 q(u.V)HHz(K’l) =7 “mel

holds for every m € mo.

Proof : Property 1(m) for u,v and (4.2) imnly
uq-lz (4.) < Sgﬂ. Thus, by Lemma 3.4, one has

"EI q,llH?(K . X 6vlcm. Therefore, in view of Lenma 4.1,

we obtain

-1

1

1l . . aa”l
187 a2 ) < 185

+ HB;l E

'“ ’ \
j=_1q-1 H?(-\ll

1 1
< GYlcr'\ * 3l =7 el

LEMMA 4.3

e e . e

02
Let m € P be fixed. Assume two soluticns u,v € ¥° of (4.1)

have property T(m) and satisfy Pu = Pv then,

2 Emel-131
p - !'1 i € s
s ")'H%‘j) T oy

holds for (1 = 1,2, ... ,m¢l

-~

Proof : Since Pn(ﬁo\) = (A+A)P" one nhtains
2
(A )P (u=-v) = plu,v)

Now, lemaa 3.3 yialds

P ' 1
ﬁ"z(w-:)ﬁnfr\ ¢ S T8 :;",-VHHQ(KI) + MP(u-v)Jz'i}

(4.4) (
\ }’

‘
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1.6) I
holds f
l: v

p)
WP (u
"\‘.'\A
)¢ )
Jd s ¥ 1
Hence, it
L¢3
WP®(ut
combhinin
)
lD‘
| {u
V' .
- NRE f v

" 1 1
i v
)
v
3
‘A‘ 4
v 1
re ‘b\ n ¢
'3 +
vV ol ) £
1o ¢
v ) .
A
(N
thie . 114
|
H L
+

—







& :
3=v I, 2 < % » for il =k m
' H (K.} m- 7 ey
AN i3}
Therefore u, v have property n(m) and the Theorem is proved.
CORDLLARY 4.5
Assume Theorem 4.4, Then for every u € R there exist nositive
: et & dal o et or s & by -
numders A (u}, a_{u) such that for ev-ry 2 {u LPRTE2 0
u € ker (A+u), there is at most one soluiion of (5.1)
satisfying Pu = G, sup Mu e,
o 1 Ky)
i
Proof : Consider in a neighborhond of (u,0) the mapping
C? 0

T 2 {au)*» Au % 3a ¢+ ¥l , T : R =« 3° = X"
The derivative of T at (u,7) is aiven by T°{0){a,u) = Ay + su
which has the kernel ker T'(0) = R » ker (A4u). Moreover,
(A,u) » (2,Pu) defines a continuous, linear projection from

02 . . : 2
R = X° into ker T'(0D). MNow the proof proceeds literally as

in Theorem 4.4,




§ 5 Existence of Periodic and Quasineriodic Solutions

- 0
While the last theorem proves that, for given 4 ¢ PXZ,
there is at most one solution u of (4.1) with Pu = 0,
which is uniformly small in ys

lioic
shown that there exists such a solution, The nature of

(2), it remains to he

this existence problem changes dramatically between the

¢ 437y and (n2w° (n+1)2n2

A - intervals (m Yo B 22,

For the first case we are able to prove, for arbitrary
s mappings f satisfying certain symmetry requirements,
that all small solutions are periodic in y. Moreover,

if a certain non-degeneracy condition is met, “singular"
solutions exist which are locally uniform limits of
solutions having arbitrarily large irreducible neriods
(see next section). In the case x € (nznz,(n+l)2n2),

n > 2, the question of existence is more delicate since
oroblems of small denominatiors are involved. For real
analytic f we are able to show that (4.1) can be solved
by a formal power series., Convergence and generalisations

to CLs functions f are still open.

We are going to concrete the abstract oroperties of f,
assumed in the preceding section. Let U be some neighbor-
hood of 0 inR and F : U x RZ = R be.a tP-map, p 2 2,
satisfying f(0) = 0 and Df(0) = 0 for its gradient. !le
consider the equation

AU + Au + f(u,Dxu,Dyu) = (
(5.1)
u(0,y) = u(l,y) =0

. 2 %
for » € R, Since H]oc(]) = hm,]OC(

locally L_~- functions. It follows imnediately that

©

f @ uw~ F(u,Dxu,Dyu) defines a C? - mapping from the

ol u,Dxu,Dvu are

reai space anc(n) into H?Oc(n) which, in narticular,

«25=




satisfies assumption 4.1 . Similarly, if f is real
analytic for lul < &, Ipl < &, lgl < & ¢then £, as a
mapping from HZ(K) into HO(K), is analytic in the sense
of [4]y pn.112 for every compact K ¢ q, if

i
“u”HZ(K) o fov

The case X € (nz,dvz) is considered first. f is assumed |

D : Sy, .

to be a C"-function, p > 2. Periodic solutions are

constructed via the ansatz u(x,v) = v(x,wv), where

v(x,z) is 2mn-periodic in z and where w varies near
0 t/2

?
wo oi= (A-77) One obtains the bhoundary-value

problem ‘for v

(F(w) + X)v + Flu,v) = 0
{5.2)
v(0,z) = v(1,z) = 0, v 2m-neriodic in z

T ——

where the following notations have been used

(5.2a)
Bl E s f(v,nxv,wDZV)

Although only real solutions are of interest we work, for
technical reasons, in comnlex Hi]bert—soacosl%;, the real
subspaces of which are denoted hy H;. Note that £ and F
are defined on real spaces; therefore we have alwavs to

assure that they act on real elements.

Set Ql = [0,1] x IR and define

2 {yv € HY $) / v 2n-periodic in 2z}
1

0
!
“# “ 1OC

with the scalar product

i 15e

102
EVE 5V )0 2 f Vo
(D, 1)%T
1
v denoting the Lebesaue neasure and T, the interval (0,27).

l
~26=




Furthermore, we introduce

2 2 0
HE = (v e H (a)) / v e M and v(0,+) = v(1,7) = 0 )

with the scalar product

1.2 _ a
(V sV ) - (D Vv
e |a|§.2

I’DGVZ)
0

Let V denote a suitable neiahbourhood of ©2 in 2. Then,
ne . 0. 4 s i
X and F map V x Hy 1nt0|H“,111s snooth in @ and linear

i v, F s @ Cn-mapninq satisfying F(w,0) = DVF(u,ﬂ) = 0.

2 2

,A1°), the kernel of L(«®)+% is spanned

by the:W;-orthcnormal system

For fixed X € (n

3 - 2 3 »
(5:3) wJ(x,z) — e sinfjinx e |, i = #1
where 2z . = 'Zj ner definition. Nefine p2 resp. P% in
b %
NE resn. iani by
(5.4) Py = ] (vso?) 0! . s =0 or 2
til=1

S 3 T S . " s s
P® is a projection commuting with £ in the following sense

POL(w) = L(w)p?

0')
. : 2 0
and which, restricted to the real subspaces H# resn., H# )
’ . N )
acts as a real projection. Set N° = id - ps then, for
0

sufficiently small |o - w |
= ( A
Lyle) = (X(w) + 2)) a0p

0
is a tonological isomornhism between N°YH, and GOH;. Setting

. i Y .
Cj = (v, )0 v WS R, C-j = Cj

( denoting complex conjuaation), one chtains

-l




(5.5a) Jz(m)w QOF(U, ) cjwj + W)

1j1=1

Since llF(m,v)lIo h
implicit funktion theorem, a unique solution w(w,c) € mﬁ
as a real CP-funktion of w € V(wo), e € Uf{0), whero V and
U are suitably chosen neighborhoods of wo and 0 € m

o(HvHZ) equation(5.5a) yields, via the

Furthermore, w satisfies

Hw"2 < Y|£|2

uniformly for € V(wo). Hence, near v = 0, w = w ,
equation (5.2) is equivalent to

(5.5b)  (L(w) + fe = POFka, I & w +w(w,c))
1j1=1 lit=1

For general F, existence of nontrivial solutions of
(5.2), and thus of (5.5), cannot be expected without
further assumptions Therefore, we require

a) Flw,v)(x,-2)
(5.6) or
b) F(w,v)(x,-2)

Flosv(x,-2))

“Flws¥(%Xs=2))s Fla,~-v) = Flo,Vv)

LEMMA 5.1

Assume c_; = ET, and define s.(c) = cje1ej, j o= +1,
0.5 = -85, then, the followina idendities hold
Pv(x,z,8{c)) = Pv(x,2+404,¢C)
(1) 5 g
w(x,z,s(c)) = w(x.z+01.£)
Pyi{xs2,€) = Py{x,-2,¢)
(i) _
W(x,2,c) = wix,-z,¢c) , 1if (5.6a) holds
Pv(x,2,-C) = =Py(x,~2,¢c)
£ 1) o
W(x,2,-€C) = =w(x,-2,¢) , if (5.65) holds
-8~
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Here, the w-dependence of w has been sunpressed, P
stands for any P>, and c denotes the vector (ET,C_I).

Proof : The proof for Pv follows by inspection. To
prove (i) for w one shows that Wy = w(-,-+01,£)

satisfies (5.5a) if ¢ is replaced by s(c)

) 0
The unique solvability of this equation yields (i).
Assertion (ii) is shown quite similarly. To prove

(iii) wo set w = w(.,=.,c) and obtain

Ly(w) (-w7) = -(0°F (w,Pvaw)) ™ = Q°F (w,(Pv) +w")

= 0°F(0,-Pv(-T) - (-w7))

= Q%F (w,Pv(-C) + W)
Again, the assertion follows, since (5.5a) is uniquely
solvahle,
g 2 (o 02 L
Setting t w ={w )" and G(t,c) = Fw,(Pvtw))(c)
equation (5.5b) can be written as follows

"

(5'7)3 'TCJ‘ i (r\l(T,E_),(DJ)O = 0 3 ] = i‘l

First, we scive (5.7); in the subspace ¢_; = ¢; = EI.
Since G(r,0) = 0,wve have in this case,

(G(r,g) . ',71.)

N —— e -

0 (03 ¢y = 0

i A
D (G(v,c),s )0 Hich; ¢y = 0]

as a Cn-l—function near T = 0, ¢ = Then, (5.7)1 yields,
unique noptrivial

n-

N
via the implicit function theorem, a
0 s ; ; 1
solution r(cj) which, for small !cll s 2 & ~curve.,

-20~




Observe that, in view of Lemma 5.1(i),

{6(zc) o0

1 is(c) 3 £

o

holds if cp * 0. Hence, by rotation, we obtain, from
the solution constructed above, a solution ¢(c) of

(5.7), for all small ici, ¢ € €% satisfying ¢, = TJ.

It remains to be shown that the solution t(c) of (5.7)1
solves (5.7)_1 as well.Property (5.6a) and its implication
in Lemma S5.1(ii) yields

(6(r,c) ") (F(w,Pvew) o' ) (2)
& e B
 (FluaPysw) (-2)000) (g)
=
(6(r.g) o))
=

The same equality is true if (5.6b) and hence Lemma 5.1(i11)
)

(
holds. Since we have 1(c) = t(c), equation (5.7)_y is satisfied.

THEGREM 5.2

Let be ) € (n2,4ﬂ2) and let F : V(mo) x Hi
c-map, p > 2, which satisfies (5.6a) or (5.at

for every sufficiently small |cl ¢ € €2, T - c_

n-1

% H; be a renl
b)

Than,

there exists a C -solution w(c), v(c) of

the form
w(c) = «® + 2(lcl)
R W ‘
v(c) = lj!zlcyq + o(ic!)
«30=




We are now able to complete the characterisation of all
small solutions by an existence result which conplemants
the uniqueness theorem 4.4 .

THENREM 5.3

Let he 1 € (n2,4n2), and let P he defined hy (3.4) (n=1).
Assume that : il x|R2
R - is a Cp-man, p > 2, satisfying f(0,0) = 0, nf(0,9) =
Suppose further that one of the following two conditions
holds

g -\

+ R - U some neighborhood of in

~ ~

(a) flusp,-q) = flu,p.q)

i}

(b) f(u,p,-q)

‘%(‘J,D,Q) and ?('U»‘Ps'”) = %(U,ﬂ,(l)

Then, for every u € ker(A+X) with sufficiently small norm

s

there exists a y-periodic solution u of (5.1) with Pu = 1.
Proof : Note that the assumptions for f quarantee that
Flw,v) = f(v,ﬁxv,m)lv) has pronerty (5.6a) or (5.6bH) and

fulfills the reqgularity reouirenents of the nreceding
theoren. Let w(c), v(c) be a solution of (5.2). Then
u(x,y) = v(x,wy) satisfies (5.1). '"oreover, Pu has the
form

~

Pu(x,y) = (alcos woy = elsin moy) sin ax + o(lcl) ,

al s

Cl = al + ]‘61

where the remainder o(lcl) is continucusly differentiable
with respect to a,8. Hence Pu = u can be solved usinc
simply the implicit function theorem aanain, q.e.d.

=31
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9
Now, we consider the ganeral case ) € (nzz‘,(n+1)2n2
with n € |1 satisfying n > 2, Setting u? = (A j2n2)1/2
we construct quasiperiodic solutions via the ansatz

u(x,y) == v(x,wly, Siche ,mny) where

(U’-‘- ,w)iS
o 1 n

r=periodic in every

: n , s
close to w 1inIR", and where v is 2

25 “v is 2n-periodic in z"), ith the notations

n >
;{’(g) =D + E wiwy, B
XX j,k=1 1K zJ.zk

Flu,v) = f(v,DXv,£~VZv)
we obtain the equation

(L(w) + A)v + F(u,v) =0
(5.8
v(0,z) = v(1,z) =0 , v 2n-periodic in z.

The formal similarity with (5.2) is not accidental;
rather the preceding analysis carries over to the present

case if WsZ,15T ) and 1jl =1 are renlaced by w,Z,
= 10,33 w RY, o = (0,25)" , and 43 = 1 .. 40, The
functicns
Ja=3 9 .
PRI G e s T R R D

form a Nﬁ-orthonorma] basis of the 2n-dinensional kernel

of JKEO) + A, & space which, quite obviously, consists of
quasiperiodic solutions only. The projections PS,QS as well
as zE(g) are defined sinilarly to the case n = 1. The
fundamental difference hore lies in the fact that i}{g).
though invertible, has no continuous inverse. Hence, the

analogue of (5.52)
5 n .
(5.10) L (w)w = 7°Flu, J ij] +ow)
& tit=1

cannot he solved as sinply as before.

-32-




Let us assume that f is a real analytic function of its
arguments., Then, since F then is a real analytic mapnping

from Hi into H;, one can solve (5.13) by a formal pouwer
series
a B
W o= ) Ll
lal>0 ap
I8i>2

- a8 €|‘lg, lak bal their Teagths, x = {rgs v-v +%,)4

2
rj = mg - w9~. Observe that, in view of the injectivity
of J}(ﬁo), the coefficients U . can be determined

recursively.The proof of convergence by standard arqu-
ments fails however since, with increasing 8 , the

; (6] 5 . . o

inverse of i%(g ) grows indefinitely in norn.

While the proof of unique solvability of (5.10) seens

to be a formidabie task - and we are not vet able to
accomplisa it - the solution of the system of bifurcation
equations analogous to (5.5b) is not. To show this, lct
us assume that (56.10) has a untque real analyiic solution
for sufficiently small Ici and izl, Ej = E; . The
following Lemma is an immediate consequence of this

assuiption.

Assume ¢c_. = E; for j =1, ... ,n and denote by
¢® € €™ 3 vector with c, = EZ =0 . Then, the solution
w(w,c)(#x,2z) of (5.10) is independent of Z,.

The bifurcation equations, coriesnonding to {5.5b),
are as follows :

-
(82}
.
—
—
e
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+
S
D
-~
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~
o
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p
-
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where n :
G({r:c) = Flay § <0 + wlasc))
o Tl T
Observe that Lemma 5.1 still holds for I1jl =1, ... ,n.
As In (B.7), We solyve (5.11)9u First for £ = 1, <us 0
and C-j = Cj = E}, B Al o G(l,EQ) is independent

of Z, according to the preceding Lemna. Hence (G(l,g),wg)o =0
1if Qg & Q. Thus

[ (6(x.c).0%),

-———‘;--——— i c£ £ 0
2
ng(l,_f;)
2 2
D, (6(z.c)s0"), ifc, =0

L
is an analytic map near t = ¢ = 0 and (5.11)2,2 Sk ) SV S
yields 1ucally a unique analytic solution t(c).

Again it follows, via Lemma 5.1, that

~ 2 1
(G(x.c)wo ), | (G(z.€)s0 )
— ‘ j = il L
c s{c
1 i (}_f,) Cl c
for every Cp # 0. Therefore, the systen (5.11)1,
£ =1, ... 4n , has a unique analytic solution z{c} in
: : 2n . : T
some neighyorhood of 2 ¢ ¢ i satisfying C.; = €
J o= 3y woe 4ti. The prooft, that =z T fulfil as well
the equations (5.11)2 s &= =L ive =R 5 procesds

literally as in the periodic case.

PROPOSITION 5.5

Let be x ¢ (nzn‘,(n+1)2u‘. 2 < neclland let P he

defined by (3.4). Assume that f : U « RZ + R be real
analytic necr the origin,satisfyina the conditions of
Theorem 5.2 . Furthermore, suppose that equation (5.10)
has a unique real analytic solution near ¢ =0 and

w = 20. Then there exists, for every u ¢ ker(A+x) with
sufficiently small norm, a solution u of [5.1) with

Pu = &, which is quasiperiodic in y.
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§ 6 Existence of Singular Soluti

In this section we consider the set of . . ;

A = n2. Either there exist nontrivial i f ;

fop A = n2 or there are solutions for
Hz-limits of periodic solutions with infinit

irreducibie periods.

We restrict X to the interval (ﬂ2,4v2). Accaording to

preceding section the set of solutions with small H”(¥,)-
norm consists of periodic functions exclusively which forn
a two~dimensional manifold over ker (A+X). Let be

By T (A—nz)l/z, u(x,y) = v(x,wy) and assume v(x,z} to be
2n~periodic in z. Define the real Hilbert-snacs HZ fior

arbitrary real s > 0 as follows

H3(2y) = (v e Hi(a)) | v(x,-2) = v(x,2))

0
Simglarly Hz(ﬁl), s > 1, denotes the corresponding suhspace
of Hf.
&

6«1 HYROTHRESHLS

Assume that f in (
that ?(u,p,—q) = f
that the mapping f : u » f(u,Dxu,Dvu) from Y

5.1) has the properties given there and
{(uyp,sq) holds. In additicn we supnose

S
0 1
”loc(ﬂ) is continuously differentiable near u = 0 for sone
real s < .

Under this hynothesis F(w,v) = f(v,va,wDyv) is continuously
diffeircntiable near v = 0 and satisfies (5.7a) as well as
F(w,ﬂ) ’

u with f(0) = Df(0) = 0 satisfircs the assurnntion 6.1 for

3 va(m,ﬁ) = 0, Observe that every polynomial 1

tn

n
~
£
l

Note that <'(w) defiged in (5.23) - has a continucus

; - 2 ; : )
inverse O l(w) Hg + H, which is compact as a mapping fron
7 : o G .

hﬁ into Hf. Honce, & "{w)F(u,*) defines a completely
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, : S . 2
continuous operator in H, ahich satisfies (w)fF{w,v) I
p ; + s
=0(JVIS) uniformnly forw in compact suhbsets of R, Equation
(5.2) can be written as follous
-1 e /
(6.1) v = -2 Y(w)v - (w)F(w,v)

We intend to apply the global result of Rabinowitz [10]

for fixed » and variable w . ARlthough our w-dependence 1%
somewhat more aeneral than L] , the alobal existence
. ) : 1) 2 e
stil)l carries over since, at u g ¥ -%") / ,» a simple
‘ -1 5 :
eigenvalue of -1i (w) in H. crosses at the point 1 the
unique circle with nonvanis 7 velocity.
) e S 3 ~t re ¢ —_— r . s - & {
Jenote by Lx resp. y the connected mopenents constructed
o ]
in [“, Theorem 1.40, which neet the point ( ’i" ,N) in
" . |
Y Hi' Then sach " them has one of the followine propertie
(1) C, is unbounded
. +
("]) (x meet 3 “ther T"int ( "“
s +
(iii) Cx meets t* ¢ e
Subsequently we will show that 2y iarnative (1)
ho]ds-lnoview of equation (6.1) we may nsider C. as subcets
+ 2 ] L N e
of R" x Y, having the same propertics as in _
<
Define & 1
+ 2 . -
S = {v € H, | ¥ & /Z [ v(x,) sin ax dx has exact]
<
Q

two simple zeroes 1in [0,2%) and vi(0) > 0}

similarly S™ with v9(9)< 0. Since we consider functions
wnich are even in z and since, for v ¢ ﬁg, Yy is continuously
differentiable in R, the sets s* are open in ﬁf. foreover,
near (wg’o)s C; P {mg-ﬂ} is a subset of RY » 57 and similarly

- ¥ + g 3 3 . 3
for CA. Ohserve that v € S° and v perindic in z implies that v
has the irreducible period 2+, i.e.2n is the larqgest nossibie

- ]
period. If u(x,y) = v(x,uy) then u has the irrnducible period &2
-36- S
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2

periods are

0 :
irreducible and the

C

1
|
|
i
1}
|
i
:
J
i

Ef (uo,ﬂ) is the only point in C: with v = 0, the assertion is

proved. Since, for some neighhorhcod I of (mg,ﬂ) C; n U and

C; n U are disjoint, C: cannot leave RY x 5 near (wi,ﬂ) and

hence everywhere. Up to herec, the proo% for C; is the same, 5
5 2 : : ; ok - 3

It remains to show that (uO,O) is the only point 1in C‘A = () n Cx

with v = 0. Assume the contrary: Then,there exists a sequence

(w5,v,) € €0 (R*x ), s = s* u s7, such that lv 1, » 0,

wg > 22 with 2 # qg. Therefore Vn,l(o) » 0, vnll(u) = 0 holds

which implies un’l(O) > 0, unll(O) = 0. In view of (3.4) and

Theorem 4.4 we conclude that uy must coincide with the solutions

constructed in Theorem 5.5 for large n. But those solutions have

period near %1 whereas U has period near 51. Since Vo € S5, the |

ontradiction follows.

Subsequently, the constants Ny and 10 are taken from Corollary 4.5
for p = wm .
LEMUA 6.4
Suppose that case Il holds. Then, for sufficiently smail X - w
; y + + 0 g ¥ . s
the projection of CA =R % Hé into iR~ forms an interval (0,b],
be s S0
: + : : : - =
Proof We show first that Cx is contained in some interval (0,b 7.
: : 2 ) 2 .
Otherwise, since w. < 3n~ for n? < A < 41, therec is a sequence
+ + . 2 iy
Cx T R e such that Cx intersects {3n"} X Hp for every n.
I s
n n
Hence, we have a sequence u, €T, with period 24//3% in y
“n
satisfying - in view of Il - E(un) + 0. Dividing (6.2) by T(un)
yields
u u flu )
. an 1( i d )
| F(
E(u, E(u,) E(u,)
As in the proof of Theorem 6.2 one obtains a subsequence
" 3 3 w0 g
Uy = un./L(un_) converqging towards some u in S Furthermore,
i i

, : O PRI ) RS
f(un_)/t(uni) » 0 in H]OC(Q), hence in Ky The

1

«39=

above ecuation




. . . 0 2 .
implies Wy > U in X2 and thus (A + w Ju = 0. Since a1l u.
1
have the irreducible period 22/.3% and since F(u.) = 1 holds
t 1 ’

u possesses the same pronerties. However, there is no such
2
solution in ker (A+x"). Therefore, the projection of C
+ . X . . .
R™ is containcd in some interval (9,h ].

s

0

2 . :
Now, let be x-x" < min (s(nn),\ ). In view of Il we have

[
SUpCECu) < nt whiaehs by 6. 3 e lidss
UET 4
A
sup Hvii, < i
2 2= TN
(w |V)(~,C+ 1 %
2 A
m.-G[a:bO]

for every a ¢ (ﬂ,ho), where the constant Cl only depends cn a.

. + e e

Therefore, Cx possesses nroperty P3. Since C) is connected and
: ; : s . + S

closed, the same is true for its projection on | which sroves

¢ £ - S =
the assertion for C). An identical argument holds for CA.

He call @ nontrivial solutiom @f (5.1) singular, if it is the
”?n»(ﬂ)~1iﬂit of functions in I, but does not belong to T
7~ A

Note that such a singular solution u is nonperiodic in y or

s
Uy 1S constant:

THEOREM 6.5

Let II and. hypothesis 6.1 he valid and assume 1=2% » 0 be
sufficiently small. Then, there is an interval J = (a,8) <R
containing 0 such that, for every a € J, there exists an
unique solution u of {5.1) with E(u) < o and u,(0) = a,

ui(ﬂ) = 0, Among these solutions, there are thoco of arbiirary

large period,

Furthermore, there exist two singular solutions u’ satisfying
1 2 ¥4 ¢ 0
Ul(O) = as !),(O) = R u)'(?)) = '), r.(!l\) < !\0. ne man a «» u
x o

from [a,p] into X~ is continuous.

Proof : According to II we have (6.4). The Tinecar map ¢:u » u,{0)
Z ’ 8- . = ; i 5
from HIOC(Q) into ® is continuous and injective by Corolliery 4.5,
Hence, & = is continuous., Since T, is connected and bovnaed in
2 i : S o . L <
HIOC(Q), J oz ¢r, is an interval with 0 € J. YWe show : ¢ is open,

A=




Take a curve S) in C: connectina (wl,vl) € Ci and (mé,o) and

let 9, {u € I/ ulnegy) = vfx,uy), (wz,v) G?sl} bg the trace

in Ty. Then ®o, is an interval (0,8, 1. If (w5,v2) € 55, we

obtain, in view of Corollary 4.5, for the corresponding interval
- ; . .

[0,32], By 31. Therefore ¢(u1) €J ( ul(x.y) = vl (x,uly) ) ard,

since a similar argument holds for C,, J is onen.

In view of Lemma 6.4., to every (mf,vl) € C: there exists a

?) € C;, (wg,vz) ¢ Sy and with 0 < mg < m%. Thus we chtain

+ f z : ek
a sequence u ERIN with u (0) » a having period 2n/w_ which
n A n,l1 n

(wg,v

increase indefinitely. Ye conclude - as in the proof of
Theoren 6.2 - that a subsequence u

:olution u1 oG5 NSy H?oc(ﬂ) satisfying

n. converges towards a
1

Similarly one constructs a solution u2 with

2

2, 2
(6.55) w((0) =8, uj'{0) = 0, E(u’) & n,.

The continuity of the map

$¢'1a for a € J

a :
L u? on the boundary of J

acting from [a,B8] into 22, follows in 8 from the continuity of
0'1. At the boundary we arque as follows : Every sequence u
)
in H?oc(ﬂ) since - by Corollary 4.5 - the ul's are uniquely
determined through (6.5).

n
satisfyieg u, ,(0) > a (or B8), converges towards ul (or u

To prove that the solutions uj are sinqular, i.e. ui é Fys W2
show that u{ is either constant or not periodic. ilote ihat the
orbits ¢ = {(ul(y),ui(y))/ y € R} of periodic functions u € T
in:Rz are simply closed curves enclosing the origin. Since,

according to Corollary 4.5, the iu's d0 not interscct and sin-e

-4l




r\ is connected in H (), the set U W ¢1 forins an
Ut ~ L
A
open neiahborhood of 0, The orhits of ul, i=1,2, must belong to
ui is not constant but periodic, it
posscsses at least two simple zeros per period. Since U{ is the

local Cl-Yi.it of functions with arbitrary large irreducible

the boundary 3U. Hence, if

period which have exactly two simple zeros per period, a
contradiction follows.
If hypothesis 6.1 b) is valid a similar result holds in the

space of odd functions

S ~ S )
Hﬁ( 1) {V 1 H( ‘l), .'V.\A\"\ 'V( )Z) }
O s
. * ) : - : .
Choose for S° the set of those v € H_ which have exactly two

simple zeroes in [0,2n) and satisfy vi(q) P e iR EhS
casc one obtains solutions u of (5.1) with u,(0) = 9, ui(O) = 3

for all a in the closure ¢l ¢ of J.

COROLLARY 6.6

Let f satisfy the hvpothesis 6.1 a) or 6.1 b). Horcover,
assume I1 to hold and take X-m~ > 0 sufficiently small. Then,
there exists an open neighborhood U of 0 in ker (A+X) and a
continuous map ¥ ¢ el U » X™ such that u = ¥(@), @ € ¢l U is
a solution of (S.1} with E{ua) = a .« For 4 € W, ¥(d) is

periodicy far 4 & 2y Y(@) is Singular.

Proof : According to Theorem 6.5 and the following remark a

25
component T, < Hy (9) of neriodic solutions u exist in each
A loc
case, satisfying E(u) < n_. Their orbits in the (u -piane

0
form alopen neighborhood of 0 in R, Since u 1§ als

for all o € R we obtain solutions u of (5.1) satisfving

ul(ﬂ) =3, ui(O) = e (EGU) S L for arbitrary (a,b) € U.
Now, consider the case (a,b) € IU. As in the nroof of

Theorem 6,5 we conclude, for every sequence (An,Hn) € U
converging toward (a,b), that the corresnonding periodic
'{?

SHOC
which, by Corollary 4.5, is uniqueiy determined, and which

solutions u. converge in (2) towards a solution u of (5.1)

-




I =4 3=
S —

satisfies ul(O) = a,ui(O) = b. Hence, the mapping (a,b) . u

! 2, 2
from [R™ into H]oc

of u in the (ul,ui)-plane lies in 3U; hence u is singular,

(o) is injective and continuous. The orbit

qed.
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