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ABSTRACT

We consider the asymptotic distribution of func tionals associated with

normed sums of random plane convex sets. Methods involving symmetric statistics

and weak convergence of stochastic processes are used to examine area and

perimeter in particular.
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EXPLANATION

Minkowski addition and scalar multiplication of subsets of iR
d 

are define~1

respectively by

K
1 

+ K
2 

= {k1 + k2 : E K
1
, k

2 
€ K

2
}

ciK1 
= {c&k : Ic

1 
€ K

1
)

If X1
,X 2 , . . .  are random subsets of IR

d 
then it is of interest to study the

behavior of their averages

i~ = 1 [X +~~• • + x 1 .
fl n 1 n

Following on earlier work , we consider the behavior of area and perimeter of

X when the X . lie in the plane.n 1

Potential app1icatio~s for this work include the modelling of biological
growth phenomena and techniques for two-dimensional image processing .
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ASYMPTOTIC ARE A AND PERIMETER OF SUMS OF RANDOM PLANE CONVEX SETS

Richard A. Vitale

1. Introduction.

If X
1

,X
2,... are random subsets of ]Rd, then we may form their successive

averages, Xn 
1 ix1 + • + x i ,  under Minkowski addition and inquire into their

asymptotic behavior. A first step in this direction was taken in Ill where a strong

law of large numbers for sets was derived . Our purpose here is to look at sane

distributional considerations associated with this convergence in the case

when the X . are valued in the compact, convex subsets of the plane. Certain of our

results evidently have extensions to higher dimensions but we have chosen the restriction

d = 2 for uniformity of exposition. The assumption of convexity, on the other hand,

is central to most of the discussion.

The paper is divided as follows . In Section 2 we set down some notation and

preliminaries including a statement of the strong law. Section 3 presents a central

limit theorem which follows from the consideration of the support function of X as a

stochastic process. The asymptotic behavior of linear functionals such as perimeter

then follows directly. In Section 4 the area functional is considered from the point

of view of a symmetric statistic. 
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2. Preliminaries.

Let K denote the collection of non-empty, compact , and convex subsets of m2.

With the introduction of the Hausdorff metric

d ( K
1

,K 2) inf{c > 0 : K
1 £ K2 + eB , K 2 < K

1 
+ eB)

K may be regarded as a separable , locally compact metric space. Here B is the closed

unit disc and scalar multiplication and Minkowski addition are def ined as usual :

CX = (ck : k E K)

K1 + K
2 ~~~ 

+ k 2 : k
1 

K1, k 2

The norm of )( is defined by

DX II max( 11kM k e K)

or, equivalently, d( (O L K ) .

To each K, we assign a support function given by

(2.1) s (O,K) = max{k~e ( O )  : k C K) e( O ) = (cOs 0, sin 0)

0 C ( O , 2nJ

The map K- ’ s(~ ,K) uniquely embeds K in the space C (O ,2111 . Linear structure as

well as distance are preserved :

(2.2) s(~ ,aK) = a s ( • , K) a > 0

(2.3) s(., K1 + K 2 ) = s (~~,K 1) + s(~~, K 2
)

(2 .4) . d(K 1, K 2
) IIs ( ,K1) —

= max (Is(O,K1
) — s (e ,K2 1 : O f  [O ,2~i)}

DX II =~~
s ( . ,K) II

We shall regard a random set X as map, measurable in the Borel sense , from a t,

abstract probability space into A’. In order to formulate t h e  strong law of large

number ’S , let us f i r st  define the expectation of a random set. By v i r tue  of the i n e q u a l i ty

I s( 0 ,X) I ~~. lIx il
E s ( O , X) is well-defined if EI IX I I  <

Definit ion. Let E l i x Il < =. Then the expectation of X, written EX . is that  element

of K which uniquely satisfies
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s(O ,EX) = E s(O ,X) 0 E

Strong Law of Large Numbers ( I l ) ) .  Let X
1

,X
2
,... be iid random sets with EIIX .II <

Then X converges almost surely to EX ..
It 3
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3. Weak Convergence of the Support Function Process

To each random set X is associated its support function s(~ ,X), which may be

regarded as a ~-andom element of C I O , 2 s ) .  Using (2.2) and ( 2 . 3 )  we have

i n
s(O,X )  — 

~~ s(0,X.)
1

and the difference process

(3. 1) 
~~~~~ 

= S(0 , X )  — s ( O , E X . )  = ~~ f s ( 0 ,X.) — E s ( O ~ X~~) ]  .

Theorem 1. Let X
1

, X 2 5 . . .  be iid random sets with E I I x . 1 1
2 < =. Then , as n -‘

~cA (O) converges weakly to the Ct0 ,2itI—valued Gaussian process A(O ) with

EA (0) = 0

Cov(A(0
1
),A(02)) = Cov(s(0

15X .),s(025X ))

Proof. The existence of EX. is certainly ensured by the condition in EIlX~II 2 < .

In addi tion , this requirement together with the representation (3.]) of A,~(0) as a

sum of iid random values implies that the finite dimensional distributions of ~~ A (O)

converge to the appropriate Gaussian limits.

It remains to show tightness of the measures on Ct0 ,2n) associated with the

/~ A () .  Accordingly, we verify the bou~’d 
V

(3.2) E[~’~~A ( O
2
) — A ($

1
fl2 < E~~X . M

2 (0
2 

— 01)
2

(12, p. 95)). We have

A (0
2
) — 

~~ n
(0 i ) 1 2 E(s(0

2
,X .) — s(0

2
, E X . )  — s( 0 1

,X .)  + s(0
1
,EX .))

2

< Ets (O ,X .) — s (O
— 2 i  i i

Now an easy application of the Cauchy-Schwarz inequality together with (2.1) provides

the general bound

I s ( 0 2
,K) - s(01,K~ I ~IIK II 10 2 - 01 1

which yields (3 .2) .
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As an example , let us consider the homogeneous line segment model which is constructed

as follows. Let a be uniformly distributed on LO ,2,tJ and let L, independent of a,

be a non-negative random variable with EL2 < =. Then X is taken to be the line

segment of length L centered at the origin and inclined at an angle a to the

horizontal .  It follows that s ( O ,X) = 
~~ I cos o - a)I and EX is the disc of radius

centered at the origin. The covariance structure of s(0,X) and hence of A is

given by

Cov(s( O + h,X ) , s(O ,X)) = ~~~
[
sinlh I 

+ ( -
~ 

— .1!iI )cos~~IJ 
(EL

)

2

Theorem 1 and (2.4) imply a rate estimate for the convergence Xn 4’ EX. -

Corollary. With the assumptions of the theorem, /~~d(X ,EX) converges in distribution

to MA (. !I .
Unfortunately at this stage we know of no methods for investigating I I A ( . ) I l  in

even the simplest , non-trivial cases such as the example just given .

The situation for bounded linear functionals is direct. Let T be a map

taking K into ]R~ such that T(aK
1 + ~K 2 ) = aT (K

1
) + 8T(K 2

) a ,8 > 0 and

1 T K  I < c I I K I I  for some C > 0 and all K C K .

Corollary. With the assumptions of the theorem, a bounded linear functional obeys a

central limit theorem: ~~~~ [T(X ) — T(EX)] converges in distribution to an N ( 0 ,Var T ( X . ) )

variable.

The perimeter functional provides an example for this convergence. Here
2w

per (K)  J s ( O , K ) d O so that ~cIper (X ) - per (EX)) converges in distribution to a normal
o 2w 2w

variable with mean 0 and variance Var per(X
1
) = f f Cov(s( O ,X . ) , s ( y , X . ) ) d Ody . In

0 0
the homogeneous line segment model we can evaluate this expression directly by noting that

per ( X .) C 2L . (the factor 2 enters since .~ line segment is regarded as a degenerate

polygon) and so Var p er(X . )  = 4 Var Li .

Rela ted linear functionals are T(K) = s(00
,K ) ,  the extent of K in the direction

and T(K) = s(8
05K) + s(Oo + w ,K), the width of K in the direction 0.

~~
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Let us f i r s t  remark that the continuity of the area functional ensures that

A(X ) - A (EX) a.s. under the conditions of the strong law r e su l t .  Evident ly  the mode
n

of this convergence must be investi’ated by means other than those in the preceding

section since area is not l i nea r  in the Mink owsk i  sum.

Instead we use the representa t ion

(4 .1) A ( X ) = -% ~ 
A (X.;X~)

n j,k 
V

Here A(X .~ X .) = A(X.) while A(X.;X
k
) (j * k iinplicitl~ ) is the symmetric mixed area

of X. and X
k 

((4]). We shall assume throughout that El~X .II 4 < = which ensures a

bounded second moment for each term of (4.1) (note 0 < A (K
1
;K
2
) < T I I K 1II IIK 2M

The form of (4.1) suggests the use of standard techniques for studying symmetr ic

(or U—) Statistics (as discussed , for instance , in von Mises (81, Hoeffding (7 1,

Filippova (5 1,  Ruhin and Sethur~tTuan (9)). With some labor in the adaptation this can

be done. However , we shall take a different approach ~.‘~ ich is based en orthogonal

expansions (a general discussion of thiS method will appear in (10 1 )

Since

EA (X ) = -
~~

- ((n
2 

— n)EA(X V; X  ) + nEA ( X . ) 1
n 2 j  kn

we have

V A (E x  ) = u r n  EA (X ) = FA(X ;X
1 n 1 2

so that

(4.2) 6 = A (X ) — A(EX
n it 1

= —
~j ~~ 

IA (X )
;X k

) — E A ( X
~

;X
k

) )
it

+ -~~~ ~ ( A ( x . )  - EA(x.))

+ ~~ (EA(X
1
) - A(Ex1

))

—6-
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We define

= Ex (Ex 
A ( X .;Xk

) — E A ( X . ; X
k

) ] 2 , j  * k
3 k

which is f in i te .  The convergence properties of 6 will depend on whether ~
2 

is zero

or strictly positive.

Theorem 2. Under the assumptions made above , 6 can display two types of convergence:

~j> If > 0. then n1~
’26 conv erges in law to a mean 0 , var iance  4~~2

normal variable.

(ii) If ~
2 

= 0, then n6 converges in law to a variable of the forts

v=l 
c ( Z 2 

— 1] + EA(X
1
) - A(EX

1
)

where the are independent standard normal variables and the C form a square

suminable sequence described below.

Proof. Before considering the two cases separa te ly,  we make the foflowing e v~~t I

Under either normalization the contribution of the second term in (4.2) is ~syrnptoti ,ally

negligible. Moreover the bias e f t e c t  of the third term persists only in the second

case. Accoz-dingly, we focus on the fi rs t  tern

(4.3)  S = -
~

-— 
~ I A ( X ;X ) — EA (X ;X ) )  .

~ it
2 

j*k 3 k  3 k

Each term of this expression is symmetric in its arguments and has bounded second moment .

This is sufficient to conclude a denumerable expansion (convergent in mean square) of

the form

A (X.;Xk
) — EA (X.;X

k
) 

~ 
C
~~~

(X.)
~~~

(X
k
) 

V

where l~p ( X 1
)~~~(X1

) = ((3, p. 10871). We then have

(4 .4)  0 = E ( A ( X . ; X
k

) — EA (X.;X
k
)) = 

~~

(4.5) 02 = 
~~

where 
~ 

~~ ,(X 1
). Finally we have

—7—
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S = 

~~~~ 
~ c~~~ (X.)~~~( X )

it j*kv

-4 ~ 
c 

~
it V 3*k

Case (i). With the insertion of the null term ~ c~~~ ((4.4)) we have

n U2s = ~~3/2 

~ 
c
v(L~ k 

v~~j
1

+ 2(n - l)~ ~
(x
~
) -

= 

~ 
c~ i~~ ~~~~ 

- 

~v
)(
~ V (xk

) -
V

+ 2 (n-l)n 
3,’2 

~ c~~ —

Usi ng the orthonorinality of the ~~~~~, one can verify directly that the var iance of the

fi rst term tends to zero w i t h  increasing n ( i t  is in fact  bounded above by

4n 3(~~) ~ c
2

) .  The second term is essent ia l ly

V
n 

= 2n~~
”2 

~ c~~ (~~~(X .) -

for which we consider a finite truncation

(4.6) V
N 

= 2n I
~
’2 

Il 
c~~ ~ (~~~(X .) 

-

Again using the properties of the 
~~~~~

, one can find

EV EV = 0
n nN

(4.7) E (V - V~~)
2 
~ ~ 

v=N+l 
c
2
~’
2

(4.8) 
v=l 

- 

v=l 
c
~~

2
)) . 

V

Hence V -* v it mean square uniformly in it . Since the inner sum of (4.6)
nN n

is over iid elements with zero mean and finite variance , we conclude that, as n -4 , V
~~

-8-
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converges in law to a zero mean normal variable with variance given by (4.8).

With increasing N , (4J’) converges to 402. This is s u f f i cient to conclude the result

(see , for instance , (2 , Theorem 4.2]).

Case (ii). Here ~
2 

= 0 so that by (4.5) = 0 for all V . Again we use a trunca-

tion argument . Setting

V nS ‘~~-~-~~~c ~it ~ ~~~ ‘~~j *k ~ V K

and

V~l 
C

V j~ k ~~~~~~~~~~~~ 

V

we have

EV EV = 0
n nN

and

(4.9) E(V — V
N I
2 

<4 {n )n
_2 

~
v=N+l

AS before (4.’)) provides a uniform bound on the t runcat ion  error (in mean square) . Now

we may t~~-wj.ite

V
~~ ~~~~ 

- ~ 
2
~x~~
]

= 

v=l 
~ ~~ (X .)) — 

v=l 
c~ ~~

- 
~

Sy t I s  l aw of l a rge  numbera , the second berm converges to 
~ 

C .  Setting

I n ’~
’
~ ~ ~ ( X V ) ,  we havenv - V 31

El = 0

El 1 = 6
fl’ J nU V~i

so tha t  (I ,. . . , Y ) converges in law to (Z ,. ..,Z ) where the z are independent

N(0,l) variables. Hence , as n , V~~ converges in law to a variable of the form

~ c~~(Z~~ — l ]  V

- . .~~~~.... • V j

- 
-- -~~~ V-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V
V-

~~~~~~~~~
V-

~~~~~ 
V~~~~~~ 

.V.~VV____ VV V



V V V -V- V -V V

which, with increasing N, converges to

c — 1)
v=l V V

and we are done .

As an example , let us again te;c- the le ir~~q e i e o~~~ u n .  seqcsV : 1 n~ d~ -l  . lIt-re

A ( X . ;X
k

) - I s i n (~~. -

We have

(EL
k
)
2 
2 

(EL
k
)
2

EA(X. ;X ) = — =2 w

and

L .EL L .PL

xk J k 
=

so that

2 
(EI.

k
)2

e = — -—--i—-— Var

If  Var Lk 
> 0, then > 0 and the central litsit theorem holds. That i~ ,

(EL

5
~~~
] 

converges in law to a n~ rmaJ vac i ab le  wi th  zero mean and var iance 40
2 .

In the other case, l e t  us suppose for concreteness th~it L C 1. Then we have tlic

ordinary Fourier orthogonal expansion

A(X .;X
k
) — EA( X.;X

k
) = 

~~ 
t I s i n ( ~ . — — ElsinIrt . —

coS VS cos ye sin Vs . sin va
1 k 

_ _ _  
k

= —V—i -V
~~77 V-VV7=~ V-VV-V +

v=2,4,. .. 1 — V

Since EA (X .) = 0, case (ii) provides the (-onvergence in law

~~~~~~~~~~ ~ 
— 

1 ~~2 — 1 + ~
2 

— 1) — = 1 — —
n it 2 v V ii 2 y

v=2,4,... 1 — v v 2 , 4,... V ~ 1

whore we have used —j-’
~~ 

= -
~~ ((6, 46.1.37]) and indicated by

v=2,4,... v — 1

(w + z2) a collection of independen t ,  mean 2 exponential variables.
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