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We con51der the asymptotlc distribution of functionals associated with

normed sums of random plane convex sets. Methods involving symmetric statistics

and weak convergence of stochastic processes are used to examine area and |

perimeter in particular. <
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EXPLANATION

’ . iia o : d s
Minkowski addition and scalar multiplication of subsets of R are defined

respectively by

G = W & ¢
K+ K, {k1 ky + k€ K, k€ xz}
oK, = {akl : kl € Kl} . ;
{
If xl,xz,... are random subsets of mg then it is of interest to study the :

behavior of their averages
X =l[x S CRACH b G
n n
Following on earlier work, we consider the behavior of area and perimeter of
in when the xi lie in the plane.

Potential applications for this work include the modelling of biological

growth phenomena and techniques for two-dimensional image processing.
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ASYMPTOTIC AREA AND PERIMETER OF SUMS OF RANDOM PLANE CONVEX SETS

Richard A. Vitale

1. Introduction.

If xl,xz,... are random subsets of mﬁ, then we may form their successive

averages, Xn = % lxl + 00 xn], under Minkowski addition and inquire into their
asymptotic behavior. A first step in this direction was taken in [1] where a strong
law of large numbers for sets was derived. Our purpose here is to look at some
distributional considerations associated with this convergence in the case

when the xi are valued in the compact, convex subsets of the plane. Certain of our
results evidently have extensions to higher dimensions but we have chosen the restriction
d = 2 for uniformity of exposition. The assumption of convexity, on the other hand,

is central to most of the discussion.

The paper is divided as follows. In Section 2 we set down some notation and
preliminaries including a statement of the strong law. Section 3 presents a central
limit theorem which follows from the consideration of the support function of in as a
stochastic process. The asymptotic behavior of linear functionals such as perimeter
then follows directly. In Section 4 the area functional is considered from the point

of view of a symnetric statistic.
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2. Preliminaries.
Let K denote the collection of non-empty, compact, and convex subsets of mz.

With the introduction of the Hausdorff metric

d(Kl,Kz) = inf{e > 0 : K, CK

1 + €B, K,

<
Z—K

2 +CB}:

1
K may be regarded as a scparable, locally compact metric space. Here B is the closed

unit disc and scalar multiplication and Minkowski addition are defined as usual:

€K = {ek : k € K}

=
+
=

n

{k1 +k, : k. € K, k,€e K.} .

The norm of K is defined by

[Ix]l

max{ ||x|| : k € k}
or, equivalently, d({0},K).
To each K, we assign a support function given by
(2.1) s(6,K) = max{k-e(0) : k € K} e(8) = (cos 6, sin 0)

@¢ [0:2%] .

The map K * s(-,K) uniquely embeds K in the space C[0,2n]. Linear structure as

well as distance are preserved:

(2.2) s(-,aK) = as(-,K) a>0
(2.3) S("Kl + Kz) = s(-,Kl) + s(-,Kz)
(2.4) - d(Kl,Kz) =

st - sl

= max{|s(0,K) - s(8,k,| : 0 € [0,21]) !
il = llsc- i é

We shall regard a random set X as map, measurable in the Borel sense, from an
abstract probability space into K. In order to formulate the strong law of large
numbers, let us first define the expectation of a random set. By virtue of the inequality
Iste.x)| <[Ix]|
Es(0,X) is well-defined if E||X|| < =.

Definition. Let E"X|| < », Then the expectation of X, written EX, is that element ]

of K which uniquely satisfies




Pl g oot e e e "‘bw'w%wﬁnﬂﬂWWJT

s(6,EX) = Es(0,X) 6 € [0,2n]) .

Strong Law of Large Numbers ([1)). Let X ,X,,... be iid random sets with E”xi” < @,

Then xn converges almost surely to Exi.

e P e T S e T R e S RSSO SRS

P e s S o o e ntey | -\ 2000 L 9




3. Weak Convergence of the Support Function Process

To each random set X is associated its support function s(-,X), which may be

regarded as a random element of C[0,2%). Using (2.2) and (2.3) we have

- 1 n
s(O,Xn) w o~ 'Z s(e,Xi)
i=1
and the difference process
o n
(3.1) 8.(8) = s(8,X ) - s(0,EX)) = _121 [s(8,X.) - Es(0,X)] .

Theorem 1. Let X_,X

1 Xgreee be iid random sets with EHXJl2< o, Then, as n » o,

/;-An(e) converges weakly to the C€[0,2n]-valued Gaussian process A(8) with

EA(6) 0

Cov(A(Bl),A(OZ)) Cov(s(Bl,Xj),s(ez,Xi)) -

Proof. The existence of EX. is certainly ensured by the condition in E”xi”2 < ™,
In addition, this requircment together with the representation (3.1) of An(e) as a
sum of iid random values implies that the finite dimensional distributions of vn An(O)
converge to the appropriate Gaussian limits.

It remains to show tightness of the measures on C[0,2n] associated with the
/n An('). Accordingly, we verify the bound

2 2 2
(3.2) E(Yn 8 (0,) - /n 8,0 1° < Ellx ]l @, - 6

([2, p. 9515. We have

I

2 1 2
El/n 8 @) - /n 8,.(8))) E[s(0,,X,) = s(8,,EX;) = s(0,,X,) + s(0,EX,)]

1A

2
E[S(Oz.xi) = s(el,xi)) .

Now an easy application of the Cauchy-Schwarz inequality together with (2.1) provides
the general bound

Isto,.x) - scey,xr| < ||l o, - o]

which yields (3.2).




As an example, let us consider the homogencous line segment model which is constructed

' as follows. Let a be uniformly distributed on [0,27] and let L, independent of a,
be a non-negative random variable with EL2 < o, Then X is taken to be the line
segment of length L centered at the origin and inclined at an angle a to the
horizontal. It follows that s(6,X) = % |cos(0 = u)l and EX is the disc of radius

EL o 5 :
= centered at the origin. The covariance structure of s(6,X) and hence of A is

given by
2( . 2
Cov(s(0 + h,X),s(8,X)) = E%[S—‘—"#ﬁ-l- * (% - J-%-L}coslhl] » (E"E) )

Theorem 1 and (2.4) imply a rate estimate for the convergence §n + EX.
Corollary. With the assumptions of the theorem, vn d(in,Ex) converges in distribution
to [lac)]-

Unfortunately at this stage we know of no methods for investigating IIA(-)” in

even the simplest, non-trivial cases such as thé example just given.

The situation for bounded linear functionals is direct. Let T be a map
taking K into n3 such that T(a.l\’1 + BKZ) = aT(Kl) + BT(KZ) a,8 > 0 and
|T(K)| < C||K“ for some C > 0 and all K € K.
Corollary. With the assumptions of the theorem, a bounded linear functional obeys a
central limit theorem: vn [T(in) - T(EX)] converges in distribution to an N(O,Var T(Xi))
; variable.
The perimeter functional provides an example for this convergence. Here
per (K) = 12" s(6,K)d06 so that /;lper(in) - per (EX)] converges in distribution to a normal

0 2n 2 ]
variable with mean 0 and variance Var per(xi) = f f Cov(s(e,xi),s(Y,Xi))dadY. In
o 0

the homogeneous line segment model we can evaluate this expression directly by noting that

per(xi) = 2Li (the factor 2 enters since « line segment is regarded as a degenerate
polygon) and so Var'per(xi) = 4 Var Li'

Related linear functionals are T(K) = s(eo,K), the extent of K in the direction

90. and T(K) = s(eo,x) + s(eo + m,K), the width of K in the direction 90.
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4. Area.

Let us first remark that the continuity of the area functional ensures that
A(in) -+ A(EX) a.s. under the conditions of the strong law result. Evidently the mode
of this convergence must be investicated by mecans other than those in the preceding
section since area is not linear in the Minkowski sum.

Instead we use the representation

A v
(4.1) ME ) = = _Z A5,
n 3.k

Here A(xj;xj) = A(Xj) while A(xj;xk) (3 ¥ k implicitly) is the symmetric mixed area

of xj and xk ([4]). We shall assume throughout that EI!XjH4 < = which ensures a *

bounded second moment for each term of (4.1) (note O :_A(Kl;xz) i“IIKﬂ| ||K2|l).
The form of (4.1) suggests the use of standard techniques for studying symmetric

(or U-) statistics (as discussed, for instance, in von Mises [8], Hoeffding (7],

Filippova [5], Rubin and Sethuraman (9]). With some labor in the adaptation this can

be done. However, we shall take a different approach which is based on orthogonal

expansions (a general discussion of this method will appear in [10]).

Since
BAGR ) = 2 [{n° - RIEALR,X.) + nEA(X.)]
i ks 37 % 3
we have
A(Exl) = lim EA(Xn) = EA(XI;Xz)
so that
(4.2) 8§ = AX) - A(EX)
Lo
- [A(X.:X ) - ER(X.:%X ))
n2 j#k ¥k ik
1
+ — A(X.) - EA(X.
X z (A(x,) (x;))
. 3
+ L Ay - aEx))
n 1 1 2




We define

2
g = EX.[EX A(X

- EA(Xj;Xk)lz, j# K
Y k

X
5%
which is finife. The convergence properties of 6n will depend on whether 02 is zero
or strictly positive.

Theorem 2. Under the assumptions made above, Gn can display two types of convergence:

2 1/26
n

. 3 : 2
(i) If o > 0, then n converges in law to a mean 0, variance 4o

normal variable.

(ii) If 02 = 0, then n5n converges in law to a variable of the form
T 2
vzl e [z, = 11 + EA(X)) - A(EX))

where the Zv are independent standard normal variables and the <, form a square
summable sequence described below.

Proof. Before considering the two cases separately, we make the following observations.
Under either normalization the contribution of the second term in (4.2) is asymptotically
negligible. Moreover the bias eftect of the third term persists only in the second

case. Accordingly,we focus on the first term

1
(4.3) s == Y (A(X,iXx)) - EA(X X))
b n2 j#k e 3k

Each term of this expression is symmetric in its arguments and has bounded second moment.
This is sufficient to conclude a denumerable expansion (convergent in mean square) of
the form

n(xj;xk) - EA(xj;xk) = g cvwv(xj)wv(xk)

where Bwv(xl)vu(xl) = 6vu ([3, p. 1087)). We then have

-2
(4.4) . 0 = EIA(XiX) - BAGXSiX, )] = ?, c ¥y

2 2-2
(4.5) o = g e ¥y

where vv = pr(xl). Finally we have

e




wn
"

¢y (X, (X))
n2 JFKk v it Bk A

n

= fe ]
= c v (Xe (X)) .
n2 & v %K ", el T -

Case (i). With the insertion of the null term Z cv53 ((4.4)) we have
v
1/2 -3/2 { - -
n’/“s =n Lot @ (x) -0 )@ (x) -9
n v g ¥ 3 v vk v
+ 2(n - 22 | @, (X - vva
J

o n-3/2

Yell w.x) -0 (x) -0)]
. Y 5%k v v v 'k v

-3/2 - -
+ 2(n-1)n éc\;pv g (0, (X)) = @) .

Using the orthonormality of the vv, one can verify directly that the variance of the
first term tends to zero with increasing n (it is in fact bounded above by

-3 n 2 ; 2
4n (2) X Cv)' The second term is essentially

_]/2 - -

v =o2n ) e$ ) 0, () - @)
v J

for which we consider a finite truncation

N
n“1/2 z

v=1

(4.6) Vil =2

i X g (@ (X;) - v )

Again using the properties of the wv' one can find

BV =BV =0
2 T 2-2
(4.7) Biv, -V )" <4 ) Py
v=N+1
N N
2 2-2 -2
(4.8) EVE =4[] cvl - (] ce
. nN vel v Vv vl vV Vv

Hence V 5™ V  in mean square uniformly in n. Since the inner sum of (4.6)
n n

is over iid elements with zero mean and finite variance, we conclude that, as n =+ o,

\Y

nN




converges in law to a zero mean normal variable with variance given by (4.8).

With increasing N, (4.82) converges to 402. This is sufficient to conclude the result
(sece, for ;nstance, [2, Theorem 4.2]).

Case (ii). Here 02 = 0 so twhat by (4.5) ;v = 0 for all v. Again we use a trunca-

tion argument. Setting

1
Vv =ns ==Yc ¥ v (xov (x)
n n ng, Vv Kk AN TR Tl <
and
"f )
\'4 == c v (XDe (X))
nN n el v 7k v vk
we have
= =0
EVn EvnN
and
2 n} -2 © 2
9 Vo =N < >
(4.9) El " nN] __4(2)n Z <,

v=N+1
As before (4.9) provides a uniform bound on the truncation error (in mean square). Now

we may re-write

) ! : L [l
v o= - w(x.)) -2 w(x)]
nN ey ¥ [ r1/2 g Ve n 3 IS |
N 2 N
3 1 2
= 2 c ('———— z v (X.)) = 2 o z v o(X.) .
i v n1/2 v =1 VvV n j N2 )
N
By the law of large numbers, the second term converges to Z c,° Setting
v=1
Y =n-1/2 2 v (X.), we have :
nv L
EY =0
nv
EY Y =6
nv ny Vi

so that (Y ...Y ) converges in law to (Zl,...,zN) where the zv are independent

nl’’ .nN

N(0,1) variables. Hence, as n + o, VnN converges in law to a variable of the form

N
I ezl -1
v=1




which, with increasing N, converges to

and we are done.

As an example, let us again use the homogeneous line segment model. Here

L.L,
. = skt i - .
A(xj,xk) = |sm(mj uk)]

We have
(ELk)2 2 (ELk)2
e £ S e
and
L'BLk > L ELk
E, A(X.iX ) = %= ) X
X 3"k 2 n
k
so that
(EL )2
u2 e Var I. .
“2 k

1f Vvar Lk > 0, then 02 > 0 and the central limit theorem holds. That is,

12| - (EL.)2 5
n A(Xn)--——;l—_ converges in law to a normal vaviable with zero mean and variance 40

In the other case, let us suppose for concreteness that L = 1. Then we have the

ordinary Fourier orthogonal expansion

L}

1 5 i
A(Xj,xk) = En(xj,xk) 2 [I51n(aj ak)[ = E}szn(nj uk)]]

coSs va cos vak sin va, sin va

& it 7 e e L.
=2 2 2 e : v i m vV
V=2,4,... 1 =V

Since EA(xj) = 0, case (ii) provides the convergence in iaw

= = 1

nAG) -2y ] —oZZ-as@2-mn-iaaio 7 S

i v=2,4,... 1-v v=z,4,... v -1

where we have used I ~3¥L—— = % ([6, #6.1.37]1) and indicated by

v=2,4400. VvV =1

2

w =2
v v

+ 23} a collection of independent, mean 2 exponential variables.

-10-
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(3)

3 (4]

(5]

{6}

% (7]

(8]

9]

4 [10])
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