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Orbital Bias Determination
for Accelerometers on
Atmosphere Explorer Satellites

1. INTRODUCTION

Atmospheric density measurements have been obtained from the accelerometer
experiments on the Atmosphere Explorer -C, -D, and -E (AE -C, -D and -E)
satellites. An important characteristic of accelerometer performance is its null
bias, or output reading in the presence of no acceleration input. Instrument bias
results from cross coupling of the suspension axis forces into the sensitive axis.

If the proof mass sensitive axis could be made exactly orthogonal to the cross axis,
then in principle no component of the suspension forces would be directed along the
sensitive axis. To accurately determine atmospheric density values, the bias
acceleration must be eliminated from the total sensor output. Preflight bias values
are necessarily calculated using a 1g suspension force. Postlaunch, the null bias
errors are considerably reduced by using a suspension force several orders of
magnitude lower consistent with the expected orbital accelerations. However, bias
values in a low-g orbit environment may be different from those deduced from
ground calibration,

This paper summarizes accelerometer bias data derived during the elliptical
orbit phase of the AE -C, -D and -E satellites. Results are applied to derivation
of density data from despun orbits in both the elliptical and circular orbit phases
of the AE missions.

(Received for publication 24 June 1977)




2. EXPERIMENT DESCRIPTION

The accelerometer experiment flown on the AE satellites has been described
by Champion and Marcos. 1 Three single axis instruments mounted in a triaxial
configuration were flown on each satellite. Each instrument had three essentially
identical suspension and constrainment ranges selectable by command. These
ranges are given in Table 1. A sample time of 0. 25 sec was used, and the maxi-~
mum instrument pulse rate on each constrainment scale was 8300 pulses/sec.
The notation XY, YX, and ZZ are used for the accelerometers in accordance with
the alignment of the sensitive axis with respect to the spacecraft coordinate axes

(X was along the velocity vector, Z was along the spin axis).

Table 1. Nominal Constrainment and Suspension Ranges for Atmosphere
Explorer Accelerometers

gy o

Range A Range B Range C

Constrainment 1.04 BB3 9.7 B2 415 B3
HE e HE

Suspension lg 1073 g 1074 g

A curve of drag acceleration vs altitude is shown 'a Figure 1. This curve
was derived using 0. 028 cn12 /gm for the AE area~to-mass ratio, density values
from the U.S. Standard Atmosphere Supplements, 2 1966 (COESA, 1966) 1000K
spring/fall model, and a value for (‘D of 2,2, Typical arag accelerations encoun-
tered during the elliptical orbit missions ranged from about 1 > 10_4 g at 140 km
to 2% 10°% g at 250 km.,

A complete description of the AE mission has been given by Dalgarno et al. L
AE-C was launched into an elliptical orbit in December 1973, Since December
1974 it has been in a circular orbit at various altitudes between about 200 km and
320 km. AE-D was launched into an elliptical orbit in October 1975, A failure in

the spacecraft power supply system in January 1976 resulted in a termination of

1. Champion, K.S.W,, and Marcos, F.A. (1973) The triaxial accelerometer
system on Atmosphere Explorer, Radio Sci. 8:297,

2. Committee on Extension to the Standard Atmosphere (1966) U. S. Standard
Atmosphere Supplements, 1966, pp 276-277, U.S. Government Printing
Office, Washington, D.C.

3. Dalgarno, A., Hanson, W.B., Spencer, N.W,, and Schmerling, E.E. (1973)
The Atmosphere Explorer mission, Radio Sci., 8:263.




i

data acquisition. AE-E was launched into an elliptical orbit in November 1975,

The satellite was put into a circular orbit in November 1976,
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Figure 1. Typical Aerodynamic Drag vs
Altitude Profile for the AE NMission

3. BIAS MEASUREMENT

3.1 Ground Calibration Data

Ground calibration of bias is accomplished using the 1g suspension mode. For
each constrainment range, the sensor is rotated until zero output pulse rate is

obtained. The sensitive axis is then rotated exactly 180°, Bias is computed from

Bias (ug) EuEe ".me (pps) o constrainment range scale Factor(”—g

2 pps

where bias is given in terms of the value calculated using a 1g suspension level.
Extrapolation to lower g suspension levels is made by assuming bias is directly

proportional to suspension level. Bias temperature dependence was determined

i S U A T L S WG VAN A W i 4 = i WO
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from data calculated at 30°F, 73°F, and 120°F. Values of bias at 73°F and the
bias temperature coefficient are summarized in Table 2. These values are in

units of ug/cross-axis g; hence, for a 10"3 suspension voltage the maximum
expected orbital bias for each instru...ent is three orders of magnitude below the
ground deduced values. The ground calibration value of bias (B) at any temperature

T is determined from the bias temperature coefficient (BT) using

Bias (T) = Bias (73°F) + By (T - 7321y .

Table 2, Bias and Bias Temperature Coefficient Ground Calibration Data for
Atmosphere Explorer Accelerometers

AE-C AE-D AE-E
B BT B BT B BT
XY +54. 3 +0). 05 +103 +0. 20 +112 0
YX +36. 9 -0.24 +35 -0.99 +52. 5 -0.26
27z +81 +0. 28 +110 -0.73 +93.8 -0. 46

B = bias in units ug/g .
>
where g, - suspension force in g units.

BT - bias temperature coefficient in units pg/gS/OF.

3.2 Orbital Measurements

For the spacecraft spinning at a fixed angular speed, the accelerometer output

may be expressed generally as

fm:S(B*adCOSLut*rwz‘N) (1)
where fm is the accelerometer output frequency, S is the scale factor, B is the
bias, ay is drag acceleration, r is the distance from the vehicle spin axis to the
proof mass sensitive axis, w is the spin rate, and N is any noise acceleration due
to either vehicle dynamics, motions of spacecraft sensors, or control systems.

Techniques for eliminating noise accelerations from the AE accelerometer data

10




have been described by Noonan et al. 4 For despun orbits at altitudes where air

drag is negligible, bias is determined from Eq. (1) in the form

=SB . (2)

Bias was calculated as the average value of 48 data points obtained above 360 km
on both the upleg and downleg portion of elliptical orbits. Data are presented for
the XY instrument on AE-C, and the VX instrument on AE-D and AE-E.

Orbital bias results obtained with the AE-C accelerometers in the B-constrain-
ment and B-suspension range are summarized in Figure 2. Part (a) of the figure
gives the bias (in units of 10.6 g) and the sensor temperature (°F) plotted vs orbit
number. Figure 2(b) is a scatter diagram of the bias and temperature data.
Except for several short term fluctuations, Figure 2(a) shows the bias for this
instrument to be nearly constant. The average bias value is 1,270 ug with a
standard deviation of 0. 133 ug. Hence, reducing the suspension force by three
orders of magnitude effected a reduction in the orbital bias by a factor of 43,

From Table 1, the bias determined from a ground calibration for a 10-3 g
suspension force is 0.054 yg. Assumption of an extrapolation of the ground cali-
bration value would consequently result in a 1.216 ug error in drag calculation.
This typically corresponds to an error in measured density varying from 1.5 per-
cent at 140 km to 60 percent at 250 km. Without orbital bias measurements, the
altitude range of useful density data in despun orbits is greatly limited. For an
individual orbit, bias can be calculated with an accuracy of about +10 percent from
"drag-free'" data. Assuming an error of 0.12 ug for AE-C bias data, the errors
in measured density are reduced to +0. 1 percent at 140 km and +6 percent at
250 km. For extension of these bias measurements tc the circular orbit phase of
AE-C, the error given by the standard deviation gives accuracies about the same
as those deduced for individual orbits,

In Figure 2(b), no dependence of the bias upon sensor temperature is evident.
From a least square fit to these data, the value BT = -0.0026 pg/oF was obtained.
This result is consistent with the relatively small temperature dependence
(+0. 05 ug/°F) found with the ground calibration data.

Bias measurements for the AE-D and -E YX sensors are shown in Figures 3
and 4, respectively. The average bias value for AE-D is approximately the same
as that found for AE-C, while the AE-E average value is about four times higher.
A bias temperature dependence was found for both the -D and -E instruments. This

4. Noonan, J.P., Fioretti, R, W., and Hass, B. (1975) Digital Filtering Analysis
Applied to the Atmosphere Explorer -C Satellite MES%" Accelerometer Data,

AFCRL-TR-75-0293, AFGIL, Hanscom AFB, Massachusetts.
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Figure 2, Orbital Bias Results Obtained With the AE-C XY Sensor.
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dependence can be seen by examination of Figures 3(a) and 4(a). Assun

! linear least temperature, coefficients of =0.0335 g “F and
-0, 0205 g for the =D and -E instruments, respectively,
Table 3 summarizes the orbital data from the three instruments studied. This
table gives bias values at 73°F and the standard deviations (in parenthe ), the

bias temperature coefficients, and the factor by which orbital bias was reduced as
a result of lowering the sensor suspension voltage to 10

The long term stability of the orbital bias data and its temperature dependence,

indicate that the above determined values can be used for reduction of density data
during the circular orbit phase of the AE satellites when routine bias measurements
are not possible. These results show that bias must be determined in orbit rather

than from ground calibration for accurate drag measurements in despun orbits,

Table 3. Orbital Bias and Bias Temperature Coefficient Results

AE-C AE-D AE-E

Bias 1.270 ug -1.130 ug -4, 632 g
(Standard Deviation) (0.133 ug) (0, 268 ug) (0. 054 ug)
Bias Temperature -0.0026 ug/F -0.0335 ug/°F -0.0205 ug, '

Coefficient
Reduction Factor 42,7 31. 0 5 s

from 1lg value
No. data points 400 300 334

Lo CONCLLESIONS

Accelerometer bias determinations have been made during the elliptical orbit
phase of the AE satellites. The accuracy of the data also permits derivation of the

bias temperature coefficient. The lower bias values achieved by reduction of the

instrument suspension force in orbit differed from the values deduced from ground
calibration. Improved knowledge of instrument bias and its variations provides
improved accuracy of atmospheric density measurements made during despun
orbits, Performance of orbital bias calibration extends the despun orbit measure-
ment capabilities of the highly successful accelerometer experiment,

For missions in which accelerometers are utilized in near circular orbits on
nonspinning spacecraft, a means for bias calibration is required. Rotation of the
sensor sensitive axis perpendicular to the spacecraft velocity vector allows bias
computation, The necessary rotation of the sensitive axis may be accomplished by
rotating either the sensor or the spacecraft,
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