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ABSTRACT

The existence of periodic solutions of Hamiltonian

systems of ordinary differential equations is oroved in

various settings . A case in which energy is prescribed is

treated in Section 1. Both free and forced vibration prob-

lems , where the period is fixed , are studied in Section 2.

The proc~f~ involve finite dimensional aoproximation argu—

ments , ~‘~ riationai. methods , and aopropriate estimates.

S I G N I F I C A N C E  AND EXP LANATION

Qualitative theorems for the existence of periodic

solutions of Hamiltonian systems of ordinary differential

equations are obtained in various settings. Cases are

treated where either the period or the energy is prescribed

and where there is explicit time dependence (forced vibra-

tion) or not (free vibrations).
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Periodic Solutions of Hamiltonian Systems

Paul H. Rabinowitz*

Introduction

This paper concerns the existence of periodic solutions of the

Hamiltonian system of ordinary differential equations:

(01 k- -H. )  dt q ’ dt p

where H € C1(]R~~,1R) and p,q € 1R’~ . Letting z (p,q) , (0.1) can be

written more concisely as

dz( 0 . 2 )  
~:Jt~ = d Hz

~ 
10 — Iwhere 

~ 0

The search for periodic solutions of ( 0 . 2 )  will be carried out in two

different but related settings. In §1 we look for solutions of (0 .2)  having

prescribed energy while in §2 the period is fixed. To be more precise , the

main result of §1 , Theorem 1.1 , states that if for some b ~I 0 , H~~(b)

* This research was sponsored In part by the Office of Naval Research under

Contract No. N000l4-76-C-0300 and by the U .S .  Army under Contract No.

DAAG—29-75-C-0024. Any reproduction in ~~~t_or in full for the purposes

of the U .S .  Government is permitted . DO

C,,

4

~~~~~~~~~~~~~~~ _ _ _ _ _ _ _

-

~ 

--~—— --- -~~~~~~~ --~~~~~-~~~~~~~-.--- -- -~~~~~~~~~~ —~~~~~~~~~~~~—



2

is radial ly homeo morphic to ~nvi (~~, H C ) ; , ~ 0 ~~ ~L il

i . e. ~ . is appr opriately s tdr—sha p e d with r c s r / c i  to t l J  c i l j i i i , then ( 0 . 2 )

possesse s a periodic solution on ~ . Note Hiut H e  pt~i iod is a prior i

unk nown and one of the ~iif ~ icc It ie .~ her e is t J 1 n ! i f l ~ i t  in  t h e  c o u r s e  of

the solution .

There does not seem to have l een wu~ k~ VV~~1 o~ this  sort of

question in the l i t & - i c i t u i e  . ~~ i L ~~ t [1] ~how J if

dx . dx.
Q(x ,~~~) = 

L 
a. .( x ) -

~~
-
~~~ 

-
~~

-
~~~ w i t c i  t. 

~ 
p~~ ;iLiv :- ~ e f  ii it ~sdJ r u t (

form , d . ( x) and U (x)  are real j n a l v t H  G U = E and U 4 0

on ~G , U < E in G , and C~ i s l enu  He t~ tEa u n i t  ball  in I~~

then the Lagrange equation s i orr ~; ; c n  ~i : c  1 c’ — U h~~vt hor i odic  solu tion

with encr ~~ E . See also 1~ r g t  
~

] , l e e  [ l~ , ~sd I i 1~ [4 ] .

More recenUy considerable p r o J r t ’ss h~i~ L~ ~~~~~ ufl Ii ic at i on  ques t i ons

for ( 0 . 2 ) .  In part icular , A . We1n~; t L i n [ 5 J  s H w  -! i f  El T~~ ( 1(~~~~ , ~~)

and H Z ( 0) is positive def in i te , th~~~r i  for ~t b suci 11 b 0 , EI ’( b)

contai ns at least  n dis t inct  periodi c orbits (see a lso M es / r [ e J
Chow and Mallet-P aret  [7] , and Fadell and R ahin cwi tz  [8] for some

generali zations and related r e su l t s . )  Sinc e H (O ) is positive definite ,

the hypotheses of Theorem 1.1 will be sat i s fh  ~1 for smal l  b . We suspect

that  ~ contains at leost n dist inct  periodic orb~t s

In §2 we impose conditions on I-I n e / u  z = 0 i i H  - ~ to obtai n

results on the existence of solutions of ( 0 . 2 )  h u v i n q  a ç r s c r i h e d  period .

To illustrate , suppose ( I)  H(z) = o( ’ z~
2 ) at z = 0 whi le  ( i i )  U H(z)  and

0 <  H(z )  O ( z , H z( z )) 2 for ~~ > r where 0 [o ,~~) . Then Theorem 2 . 1
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states that for any T > 0 , (0.2) possesses a nonconstant T-periodic

e-Aution . A caveat must be added here : We do not claim that T is the

ir i r i lma l  period of the solution determined in Theorem 2 .1. Indeed the

iclusions of the theorem are unchanged if (i)  is replaced by the

assumption that H
~~

(O ) is positive definite and for this case it is easy

to give example s where th ere is an upper bound on any minimal period .

We suspect however that under the hypotheses of Theorem 2 .1 there is a

nonconstant solution having any prescribed minimal period .

Some results have been obtained for bifurcation problems on the

. X ist :Ice of soluti ons of (‘0 . 2 )  having a prescribed period by Chow and

Mallot— Paret [7] and by Fadell and Rabinowitz [8] .

The arguments employed here for the prescribed period case work

equal ly  well if H depends explicitly on t in a time periodic fashion.

For thi s forced vibration case , which will also be treated in §2

non trivial solutions are obtained having the same period as H(t , .)

Some stronger results of this nature In a more specialized setting have been

obtained for n = 1 by Jacobowitz [9]  and Hartman [10]

As wa s pointed out to us by J~irgen Moser , Theorem 2 .1 is related

to the Poincar~-B 1rkhoff Theorem in the following way : Suppose n I

H € C2 (R 2 , R) , and H(z) > 0 if z ~ii 0 . Consider the mapping

— q’(T, ~,) where *p(T , ~,) is the value at time T of the solution of (0 .2)

which Is initially at r~ . Then by (I), for c sufficiently small , points

on H~~(c) undergo a small twist while for c sufficiently large , points on

H~~(c) undergo a J~ rge twist via (Ii) . Hence by the Po 1ncar~-Birkhoff

- - ---4
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Theorem , ~(T ,~~) has a fixed point for some intermediate value of c and

this provides a T-periodic solution of (0 . 2 )

To obtain our results , we employ methods from the calculus of

variations . We try to find solutions of (0 .2 )  as critical points of a suitable

functional. For example , in §1 we consider the action integral subj ect to

the constraint that an averaged Hamiltonian is prescribed . Since the action

integral is not bounded from above or below on this manifold , it is rather

subtle to obtain critical points for this problem. We do not know how to do

this in any direct fashion and instead use an approximation procedure .

Namely we minimax the action integral over appropriate subsets of a finite

dimensional manifold , the subsets being chosen to exploit the symmetries

inherent in this problem. For this purpose a cohomological index theory

recently developed by E . Fadell and the author [8] is very help ful .

Uniform bounds for the critical points of the approximating finite dimensional

problem allow us to pass to a limit and find a solution of ( 0 . 2 ) .

Similar arguments are used in §2 . There the topological argument s

are simpler but an additiona l complication arises since we must avoid the

trivial solution z 0 as well as any other constant solutions of ( 0 . 2 ) .

Much of the motivation for the technique s we use , especia lly those of §2

was provided by our recent paper [11] on free and forced vibrations for

semilinear wave equations . Indeed the results of §2 can be considered

to be the Hamiltonlan analogues of [11]

We thank J~irgen Moser who encouraged us to work on the problem of

§1 , Edward Fadell for many discussions on topological ma tters , ~
- ‘-“-i Charles

Conley and Michael Crandall for some suggestions . 
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§1. The prescribed energy case.

In this section we will find a periodic solution of (0 .2)  when the

energy , H , is prescribed . Let ( . , .) denote the inner product in R~

p, q e Rn , and z (p, q) . Our main result here is:

Theorem 1.1: Let H e  Cl(]R Zn , IR) . Suppose

(Hi) For some b / 0 , H~~(b) is radially homeomorphic to 52n-l , and

( HZ ) (r ~, H ( r ~)) 2~~# O  for ~~ H 1(b )

Then the Hamiltonian system

dz(1. 2 )  =

possesses a periodic solution on H~~(b)

As is clea r from (Hi ) — (HZ ) , we need only assume H e C1 near

}r 1(b)

The proof of Theorem 1.1 will be carried out in several steps. We

begin with some simplificatlons and observations. First we further assume

H C2 (R 2
~ , R) . The C1 case will be obtained by a limit argument later.

Or dividi ng H by b , we can assume b = 1 . Next observe that if

C(H 1(l) , SZn1
~~) is the homeomorphism of (Hi) , then

€ C2 (H 1( l ) ,  S2
~~

4) since H e C
2(IR1’

~ , R) . Indeed if ~, € H 1(l) , by

( HZ) , H~ (~~)/ 0 so by the implicit function theorem we can solve for one

- -

- ---4
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coordinate, say z1 , in terms of z~
” a (z2, .. ~ Z~ r~) near ~ and

= X(z *) is a C2 function. Hence ~i(Z) = (X( z*), z*) (X( z*))
Z 

+ z~ 
Z ) 2

is also a C2 function. Now a new function H(z) is introduced as follows.

Set 1-1(0) = 0 . For z ~ 0 , by (Hi ) , there is a unique a = o(z) > 0 and

w = w(z) e H~~(l) such that z = ow , namely w = ~p~~(z/~ z i )  and

~~~= z~ l i ~~ ( z/ I z ~ ) j ’ . Now define

(1.3) H(z)= a(z)2 , z�0

It readily follows that H satisfies:

(i) H €  CZ (R Zr
~\{O}, R) 11 Ch s L1P(R Z

~ , R) ,

(ii) H 1(l) =
(1.4)

(Iii) Rl Z
(r
~
) )
R2fl = 2H( r~)

(iv) H(~,)~ rj 
-Z and H~

(r , ) I  I rj -l are uniformly bounded

These properties will work to our advantage later .

Lemma 1.5: For initial data ~ € H ’(l) , (1.2) and

(1.6) =

have the same orbits . In particular they have the same periodic orbits. 
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Proof : By (1.4) (ii) H~~(l) is also a level set for H . Hence

H (z) = p(z)H (z) for z e H~~(l) where 0 ~ € C1(H~~(l) , JR)

~<oreover since ( 1.2 ) and (1.6) are Hamiltonlan systems , if ~ € H
1(l)

the corresponding solutions z(t) , ~(t) of (1.2 ) , (1.6) remain on H 1(l)

It then follows that (1.2) and (1.6) have the same orbits although their

parameterizations will be different in general. Indeed ~,(t) = z(r(t))  where

r sati sfies

(1.7) ~~~= ~3( z (r (t) ) )  , r(0) = 0

a consequence of Lemma 1.5 , to prove Theorem 1.1, it suffices to

find a periodic solution of (1.6 ) on H 1(l) . Stretching the time variable ,

t - T = 27T T~~t X 1t , (1.6) is replaced by

(1 .8)  z =

where . denotes and the unknown period appears explicitly as a

parameter via X . Thus we have reduced the proof of Theorem 1.1 to

determining a pair (X , z ( t ) )  satisfying (1.8) with z (r )  271-periodic and

lying on H~~(l) . This will be accomplished by a variational argument .

The corresponding variational problem will be formulated next .

Let E denote the set of Zn-tuples of 271 periodic functions

z(t) = (p( t ) , q( t ) )  which have one square integrable derivative . The usual

Hu bert space Inner product will be employed in E , i .e .
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Z n
(z , 

~~ ~tL~ 
[(~ (‘r ) ,  ~(T) 2 

+ ( z ( t ) ,  
~‘~~~ RZn 1 dn

For z = (p, q) € E , the action integral of E is defined as

Zir
(1.9) A(z) = f  

~~~~~ n dT0 JR

Let

Zn
S = {z e EI~~ f  H( z (T )) th  1)

It is a straightforward exercise in the calculus of variations to verify that if
z is a critical point of A l 

~ 
, then z satisfies ( 1.8) for some X ~ 0

X appearing as a Lagrange multiplier . Since (1.8) is a Hamiltonian system,

H(z(t))  b , a constant . The definition of S then shows ~ = 1 and we have

our desired periodic solution.

Unfortunately, we know of no direct method to find critical points of
A 

~ 
, one difficulty being that A is neither bounded from above nor from

below on S . However by replacing this variationa l problem by an
.‘~pproximating finite dimensional one , exploiting the. symmetries present in

A and S to obtain critical points of the new problem , and getting suitable
bounds for these critical points, we can pass to a lLnit to get a solution of
(1.8) on S

To carry out this progra m , several preliminaries are needed . Let

e1, . . ~~~~ denote the usual basis in , I . e. e1 = (l,0,~~• ~., O), 
.

e2~ = (0 , . . , 0, 1) . Let
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Em = 

~k~~1 
(
j~~Ø 

aJk cos jt + bik si n jt) ek i aJk. bik € RI

i.e. E m span {cos j t ek, sin j t ek I 0 ~~~
j
~~~m , l s k s Z n}

A convenient set of functions to introduce In Em is

~‘jk = S~fl jt ek - cos Jt ek+n

~jk = C05 jt ek + sin jt ek+fl

0jk = 5~Lfl jt ek + COS jt ek +fl

— COS jt ek 
— 51fl jt ek+

for 0 ~ j ~ m , 1 ~ k ~~ n . These functions form a basis for E m so

E m = SPafl ~~~~~~~~~~~~~~~ ~ j ~ m , 1 ~ k ~ n}

Note also that 
~~ k - 

~0, k ~~~, k = 
~~~, k • and

= 0 = A(~ o k )

(1. 10) A(~ J~
) = = A(4ik)

A(O
Jk

) —j n =

For z €  E , let f’iz = ( z i,~~~~, zn ) and P
2 Z = ( Z  11~~~~~, Z

2 )

_ _ _ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-- -- - - -‘ - - ,-- ----
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Lemma 1.11: If = 
~~~~~~~~~~~~~~ ~j k I l  ~ j ~ m , 0 ~ k ~ n I  , the fu nctions

in 
~m 

are both L2 and A orthogonal, i.e. if z, T~ ~ ~ m and z ~ , then

(z , 
~~~2n dT = 0

Zn
and f  [(c 1zj )~,) + ( p ~r~,,~~ ± ) ] d T = 0 .

JR0 n

Proof : This is an easy computation . (We identify ~o k and ~~~ k • etc . )

It follows from Lemma 1.11 that is an orthogonal basis for Em
and for z , T~ € ~ m ’ z ~

(1.12) A(z+~) = A(z) + A(~ ,) .

Set

E~ = span 
~ ‘jk ’~~jk t

~ 
€ 1N~ , 1 ~ k ~ n)

E = spa n 
~°~k’~~Jk 1

~ 
€ fl’14 , 1 ~ k ~ n}

E°= sPan {c O k ,~~O k l l~~~
k
~~~

n}.

Then by Lemma 1.11 and (1.10) and (1.12), E~ , E , and E° are L2

orthogonal subspaces of E with A >  0 on E+\{0} , A < 0 on E \{0}

and A E  0 on E°
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Next some invariance properties of our problem will be studied .F if z(T) € span jk ’~~j k 1 , then Ltz z ( T + t )  € span jk ’~~jk 1 for all
t c [0 , 2 ; ] .  This and similar observations imply that E , E fl E± , and
Em 11 E° are invariant under {L

~i t € [0 , 271 ])  . These translations induce
an S1 action on E\ {0) . Indeed we can write z € E as

z( T) = Y ~~elJT E ~ (e
lT

)

where € an d = . Then the S1 action on E corresponding
to t he above translations is given by ( p p ) ( e lT

) = q,(pe
lT
) for p € S

1

We call mapp ing s of E to E which commute with this action or real valued
functions on E which are constant on orbits of the action equivariant
mappings. Likewise a subset K of E\ {0) is called invariant if z ~ K
implies L

~
z e K for all t € [O , Z n ]  . Since A(z) = A(Ltz) for all z € E

the action integral is an equivarlant mapping . Similarly S and S fl E m
are invariant sets. Note that our S1 action is not free . In fact E°
is a fi xed point set for the S1 action and there are also isotropy subgroups
in S1 of arbitrary order .

~o exploit the effect of our S1 action, an Index theory is required .
The category theory of Ljusternj k-Schnfrej mann on (E\E 0)/Sl could be
employed ; however It has several technical disadvantages. Instead we
will use a cohomological index theory developed recently in [8] .
Let ~ denote the family of invarIant subsets of E\ {0) . The L2

orthogonal complement of a subspace F C E will be denoted by F1

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~ -—-—-- - -•~~~~-~~~ •~~
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Lemma 1.13: There is an index theory, i . e .  a mapping  I : - IN U {cx }

A
having the following properties. For K , K € e

10 i(K) < if and only if K fl E°

o A
2 ( Monotonicity ) If there is an f € C(K , K) with f equlvariant , then

A
i(K) ~ 1(K)

o A
3 (Subadditivi ty) i(K U K) ~ i( K) + i( K)

4° (Continuity ) If K is closed , there exists a closed neighborhood

of K such that i(K*) = 1(K)

5
0 ( Normalization) If z € E\E ° and S1z denotes the orbit of the action

through z , i(S1z) 1

6° If F is a finite dimensional invariant subspace of (E 0)l and g is the

unit sphere in E , i(F fl~~)=~~ dim F

Proof: The proof of Lemma 1.13 can be found in §6-7 of [8] . Here we

will only give the definition of i(K) (which is denoted by Index~ K in [8]).
Zn+l  ~n nRecall the Hopf fibration S > ~EP where ~~~ de notes com plex

projective space. Set S~ a ~~ S2”~~ , ~~~~ U ~~P1
~ . The circle

n € E sI n € ] N

group S1 acts freely on S~ in the usual fashion ( i . e .  coordinatewise on

each ~~~ 4 i ) and hence acts freely on S~ X K . Therefore we have a

principle S1-bundle ~~~ S~ X K — (S~ X K)/S
1 S~ X K and a classifying

S
map
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S~~X K  -
~~~

(S~ x K)/5
’ ~

A
induced by the projection f . (The vertical maps are the usual map s Into

the orbit space) . Then 1(K) 1ndex ’
~ K + 1 where

index* K = max {k e n’il f*( k ) � o}

~ being a ge nerator of the rational cohomology group H2(~IP~, ~~) =

and f is the induced cohomology homomorphism.

With the aid of this index theory we can determine the existence of

critical points of A on S Ti Em Sm To do so, observe first that if

Zn
= 

~~~~ 
f  H(z( t ) ) d ~r

0

I —and (z)~ denotes the Frechet derivative of ~ at z acting on r~ € E

then by (i ii )  of (1.4)

(1.14) ~
‘(z)z = j

Zll 
(
~~z

(z)
~
z)

JR2n 
dT = Z~ (z)

In particular If z c 5m V ’(z)z = 2 . It now follows from (1.4) that Sm
is a ~~~ Lip manifold In Em which Is radially homeomorphic to 

g fl Em

Hence by 20 and 6° of Lemma 1.13, 
~
5m n (E 0)’t ) = ~ dim((E

0)1 U Em) = Zmn
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There are some obviou s critical point s of A , na mely the point s

at which A achieves its maximum and minimum on Srn~ 
Unfortunate ly as

we observed earlier , A is not bounded from above or from below on S so

these critical points are not useful.  However given the symmetries our

problem possesses and a corresponding index theory , there is a sta ndard

way in which to attempt to find critical points of A l Sm 
Namely define

(1.15) y. = inf max A(z) , 1 j ~ Zmn
K E S m z€ K
i(K) ~ j

and sh ow that these numbers are critical values of A l  Sm 
This approach

will not succeed here without further qualification , the difficulty being the

presence of the fixed point set E° ot our S1 action . Indeed observe that

by 10 of Lemma 1.13 , every neighborhood of Sn  E ° contains sets of infinite

index while A(z)  = 0 if z € E° . Hence ~ 0 . In general 0 will not

be a critical value of Al s Therefo re the only chance y .  has to be a

critical value is when < 0

Lemma 1.16: For 1 ~ j ~ mn , is a negative critical value of Al Sm

Proof: The proof of Lemma 1.16 relies on the following standard lemma.

Let r € R , G (z € S A(z) ~ r) , andr m (A ( z),  ~ ( z))  2
e Sm IA(z) = r and A’(z) — 

~ 
v ’ ( z )  = o}

l v  (z) Il
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Lemma 1.17: If H satisfies (1.4) , for any c c R and any neighborhood ~
of 

~c there is an e > 0 and 11 e C([0, 1] x Sm s 5m~ 
such that

I~ i~(s , ~) is equivariant for each s e [0 , 1],

2 0 
~~~~~~ ~ C E

If 1(l~G~ + ) ~

Proof: The lemma without 10 is well known. (See e .g .  [12 ] or [13]) .

For completeness we sketch the proof indicating in the process why 10 is

also true. The function 1 is determined as the solution of the ordinary

differential equation

~ d (A’(1), 
~

‘( 1)) LZ
~~~

-
~~~~~

= -A’(1) + 2 V(1)
2(1. 18) L

L ~(0 , z ) = z ,

In (1.18), A’ , j~~I refer to the Frechet derivatives of these functions as

. lements of E~ = E . Since H € C1’ Lip and ~‘ (z) ~ 0 for z ~ 0

v € c°’ Lip near Sm Therefore there exists a unique continuously

dif ferentiable ~ satisfying (1.18) for small s i  . Since

‘V(1( s, z ) ) a  0

the orbit r l(s , z) lies on Sm and therefore exists for all s . Next observe
tha t
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2
d d 2 (

(1.19) -
~-— A(i~(s,z)) = (A’ ,~~’) = — I I A’ ii , + 2 ~ 0
LAS uS L~ L’ ‘ v ’ j i

L

by the Schwarz inequali ty and the right hand side of (1.19) vanishes if and

only If V(z) = 0 . Hence it is straightforward to verify 2° and 3°

To prove l~ , we need only show V is equivariant. To check this , ob serve

that A( L~
z) = A(z ) for all t € [0 , 2 Zr ] implies that

(A ’(z) ,  ~ 2 = (A ’(L z) ,  L ~ 2L t t L

f or all r~ € E m • Choosing r~ = L t~
, and ob serving that Lt = L*

t 
yield s

(A ’(z) ,  L ~ 2 = (A ’(L z),  ~ 2 = (L A ’(z ) ,  ~ 2-t L L L

for all ~ € E m Hence A ’(L~Z ) = L~A’ ( z) for all t € [0,2;;] so A’ and

similarly Y ’ are equivariant maps. The equivan iance of the re maining terms

follows in a more simple fashion .

Proof of Lemma 1.16: First we show < 0 , 1 i ~ mn

Since 
~ ~~+1 , all we need verify Is that -c 0 and to do this , it

suffices to produce a set ~‘C Sm with 1(K) ~ mn and max~~A < 0 . With

the aid of 60 of Lemma 1.13 , th is is clearly the case for i~= Sm fl E

Now to prove that Is a critical value of A I Sm 
for 1 ~ j ~ mn ,

assume the contrary . Then by Lemma 1.17, the re is an ~ 
‘> 0 and

€ C([0 , 1] x Sm s Sm ) such that 

_
‘~~——- - - - -. - - - -  —.. - -.-_—. ---—- — - -  -
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(1.20) 1(l
~
G
~~÷~

) C

Choose K c such that 1(K) r~ j . Since by 10 of Lemma 1.17,

i(l , .)  is equivariant , 2° of Lemma 1.13 implies that i(1(l , K)) ~ j

Hence by the definition of

( 1.2 1) max A �
r1( 1, K)

while by (1.20)

( 1 . 2 2 )  max A s

a contradiction.

Remark 1.23:  If . = y , where j +r 5 m n  , a standard

argu ment using 2 0_40 of Lemma 1.13 and 10_2 0 of Lemma 1.17 shows

i( ..~~,) ~ r+l . However we will not need this below . We also observe

that positive critical values of A can be obtained by working with —A

rathe r than A . .

Set Cm = ‘
~mn We will obtain upper and lower bounds for Cm

independent of m . This in turn will enable us to get uniform estimates

f or any corresponding critical points Zm and periods 
~m and show that a

subseque nce of (X m l Z m
) converges to a solution of (1.8).  To aid us in

this process we require :
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Lemma 1.24: Let K C E m with 1( K) � mn . Let F be an invariant

subsp ace of Em containing E° and satisfying dim F � Zmn + Zn + 2

Then K f l F �~~

Proof: Since F is invariant , so is F1 fl E m Let P denote the L2

orthogonal projector of E1~ to fl Em If K fl F = c
€ C(K , (F1 fl E m )\ {0)) and 

~m is equivariant . Hence by 2° of

Lemma 1.13 , i( K) I (P m ( K)) •  Proj ecting Pm( K) radially into S fl 11 E m
and app lying 2 0 of Lemma 1.13 again yields I(P m( K )) S i(S ~ fl Em )

Since dim E m = 4mn + Zn , di m F1 11 E m S Zm n n - 2 . Consequently

i(~ fl F1 (Ti E m ) s mn - 1 by 6° of Lemma 1.13 and this implies

i(K) s mn - 1 , a contradiction .

Now the bounds f o r  C can be obtained . Let

= max H(r ~) ; v = mm H (T~)
l~ l = l

The definition of H then implies that

~~~ 5 H ( ~ ) ~

for all T~ € R
2

~ . Consequently for z € E

i;i~ II z I l  
~ 

F( z) Z n Z

_ _
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and in particular for z € S

(1 .25) s l z i i ~ s~ -~
L2 V

Lemma 1.26: - -~~ ~ C s
v m ii

Proof: As was shown earlier ,

(1.27) Cm S max A(z)
z € E  f l S m

Let B denote the ball of radiu s r in E under IIr
Then by (1.25)  , (1.27) , and the f or m of A

( 1.28) c s max A(z)m z € E f l E  f l Bm

since the maximum is taken on when

z € B 2~~~ fl span {o lk, ~lk ’ k = 1, . • , n} . For the lower bound on Cm

choose any K € S fl E m such that 1(K) � mn and set

F = (E~ fl Em) ® E° ~ span 
~°1l’ ~1l~ 

Then F Is Invariant and

dim F = Zmn + Zn + 2 . By Lemma 1.24 , K fl F 
~~

‘ 
‘p . Therefore If

~
‘€ K f l F  (and a fortlori z € S ) ,

A
mm A(z) ~ A(z) ~ max A(z)

z€ F flS z€ K 

-- .-- . —~~~~ —-- — -- —
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Since K was arbitrary,

mm A ( z ) S c
F f l S  m

As in (1.27) — (1.28)

mm A(z) a mm A(z) = - -
~~

z € F U S  z € F f l B  V

Next let Z
m = 

~~m ’ ~~~ denote a critical point of A/S m
corresponding to C

m 
The Euler equation satisfied by Z is

(1.29) 0 = f

2 f l  

~~m ’~~ JR n +

_ X
m [(H p(Z m ) S P )

pn + ~~q zm )l~~ JR n ]} dT

for all (p, q) € Em where Xm is the Lagrange multiplier for our problem.

Choosing (p,q) = (P ~~ i~~~~ ) and using (1.4) (iii) yields

Z n  27 1
(1.30) 2 f 

~~m ’ ~~~~~ dn = 2 Cm = X f (zm,Hz(zm)~~ n d-r

= 4ir X m

Combining (1.30) with Lemma 1.26, we have shown

— - -. .. - --- .~~~~~~~~~~~~ —— ~~—- -
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Le mma 1.31: -~~-~- S X = —~~~ ~~m Zir 2~j .

Note in particular that X m is bounded away from 0 and - cc

independently of m

Lemma 1.32: There is a constant M independent of m such that

(1.33) lI Z m il M

Proof: We already have bound s for II zm lI 2 independent of m .

L
Thus similar estimates are required for Ii 1 . Choosingm L
(p, q) = 

~~m’~~~m~ 
in ( 1 . 2 9 )  and integrating by parts gives

(1.34)  1 m~~LZ S X I  llHz(z m)II LZ

By ( 1.4) (iv)

lH~R)I al ~ I

for all ~ ~ JRZfl where a depend s on bounds in the C’ norm for ~ and

H restricted to H 1(1) . Therefore ,

(1.35) 11 m~ L
2 ~ alX m i km~ L2

_  ~~~~~~~~~~~~~~ - .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .1
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so (1. 33) follows fro m (1 . 2 5)  and Lemma 1.31.

Completion of proof of Theorem 1. 1: F irst  we f inish with the C2 case.

Lemma s 1.31 , 1.32 , and th~ SoLokv Imbedd ing Theorem imply that along

some subsequence X
m 

X € (- . , 0) and Z
m 

converges weakly in E and

strongly in L~ to z (p , q )  € S sat isfying

A - A

( 1 . 3 6 )  0 = {(p, q)  + (p. ~ ) - X(H (z ) ,  z) } d~~~fl JRfl Z

A A A
for all z = (p,q) € U E m This implies (X , z) satisfies (1.8) a.e.

m €’ IN

But the right hand side of (1.8) can be assumed to be continuous.

Therefore ~ is also continuous and Theorem 1.1 is proved for this case.

Ne xt suppose H € C1 
. Let H~(t ~) be a seque nce of C2 functions

which converge to H in the C1 norm in a neighborhood of H~~(l)

The n we can assume satisfies (Hi) - (HZ ) and by the result jus t

proved , (1.8) possesses a solution (X ~ z~) with H replaced by H1
Note In particular that satisfies the estimate of Lemma 1. 31 with

(1. and v replaced by

LL~ max iL~ ,) ; 
~
‘ . = mm H (~~) .

l~ l = 1  ~ ~ l~ l = 1  ~

Since H1
((~) converges uniformly to H(~,) for r~ € s2’~~

(1.37) -~~~~ S~~~ s
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for all large j . Since lies on H~~(l) , (1.8) and the C’ convergence

of H to H near H ’(l) then provide uniform bound s for l~’ I~
Hence (1.8) , (1. 37) and these bound s imply (‘~~,~~~) converge along a

subsequence to a solution (X ,z) of (1.8) wIth 2 (t) lying on H ’(l)

The proof is complete.

I
- - - -  - --.~ . . - -  ~~- - ~~~~~~~~~- —---- .-. - -- ..- --— —~~~~~-— -— - .-- - ,--..-.
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§2. The prescribed period case.

This section concerns the existence of solutions of (1.2 )  when the

period Is prescribed . The arguments given here are based strongly on those

used In a recent paper of the author [11] dealing with periodi c solutions of

semillnear wave equations. As In [11], these methods can also be applied

to the forced case where H depends explicitly on t in a periodic fashion .

We begin with a free vibration problem in which H 2(0) vanishes.  Then we

indicate the modifications necessary to treat the analogous t dependent

case. Next we Investigate the situation where H
~~ (0) is a positive definite

matrix. Lastly the special case H(p, q) = Q(p) + V(q)  will  be s tud ied .

The same notation as in §1 will be used below.

Theorem 2.1:  Suppose H € C1(1R2” , R) and satisfies

(H3) H(z) = o ( 1z 1 2 ) at z =  0 ,

( 1-14) H � 0 and 0 ‘~ H(z) s 0(z , H ) for I z i ~~r where 0 € [0 , -i )z

Then for any T > 0 , there exists a non-constant T-periodic solution of

dz(2.2) ~~~- =  ~H2

Remark 2 . 3 :  Observe that z 0 i s a  trivial periodic solution of ( 2 . 2 )

and (H4) permits the existence of other such trivial equ i l ib r ium solutions.

Also note tha t If we write z r ~, with ~, 
~ S2’

~~’ , ( I l - i )  im ~ 1it s that



25

( 2 . 4 )  ~~ =
~~~ 

(z,H~) 2~ �

for r a I and on integration (2.4) yields

1
2 . 5 )  H(z)  � a1l z l ° - a2

for all z € where a1, a2 � 0 are constants .

The proof of Theorem 2 . 1  is given as a sequence of lemmas.

Again making the change of variables -r = Z1T T 1t X~~t , It suffices to

find a Zn  periodic solution of

( 2 . 6) z =  X~~H

For z € E , consider

Z n
(2 . 7) J [(p . ~ ) — XH(z)]  dT

A formal calculation shows critical points of (2. 7) in E are solutions of

(2 .  6) .  A direct treatment of thi s variational problem encounters the same

obstacles as in §1 with the further complication that z 0 is a known

critical point. As in §1 we use a fInite dimensional approximation argument

attempti ng to find critical points of (2 . 7) restricted to E m and passing to

a limit as earlier . Additional care must be taken to avoid the trivial solution

z 0 . Such a finite dimensional existence argument for (2 . 7) succeeds 

—.~~~~ -.—. —---. -
~~~~~~~

—-
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lu dt t et m i i i i t ~ a(. pl ux l mate  critical points but some difficultie s in passing

to i l imit  due to the fact that there are no restrictions on the growth of H

at lead us to i- eplace H by a modified function which grows at a prescribed
4rat € ~ ( tha t  we choose to be I z ) at .

Let K > r and select x € C~(R
+, IR+) such that x(s) = 1 if s S K ,

x ( s )  t’ if s K+l , and x ’ (s)  < 0 if s € (K , K+l) . Set

(2.8) HK(z)= x(IzI)H(z) + p ( K ) ( 1 - x ( I z j ) ) 1 z 1 4

Lemma 2.9: HK satisfies (H3) - (H4) with 0 replaced by
,
~ 10 = max(0,~~) provided that

(2.10) p(K) ~ (K+l1
4 max H(z)
Ks z i  SK+l

P r :  (H3) is obvious. To verify (H4) ,  note that

(Z? HK2) Zn - X (z , H~
) 

2 i~ 
~ I Z I X ’ H + p(K) [4( l— X ) Z 1 4 

- x’ z 5
]

Thus for r S z ~ K ,

(z, HKZ) Zn (z , H 2 )~~~~ 0 1H = 0 ’HK

while for z I  � K + 1

_ _ _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -.
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(z , HK? ) 2fl = 4 p ( K ) 1z 1 4
= 41

~
1K

Finally for K ~~ z i  S K + I

(z ,H ) � 0 1xH + 4 p(K) (l-x) z 4 
+ z x ’ (H- p (K) z 1 4 )Kz RZn

~ 
min (0 ’, 4)}{K

provided that (2.10)  is satisfied . Hence (H4) holds.

For wha t fo llows , we a ssume p(K) satisfies (2.10) .  Having

introduced U K , we replace (2 .  7) by

•2r
(2 .11) 1(z) J [(p,~~) 

~ 
— XH K( z)] dn

0 F

and seek critical points of I I 12 This is a rather different situation than

the constrained variational problem of §1 . CritIcal points will be obtained

with the aid of the followIng lemma . Here for

s < j , = {x c JR 3 x (x1, . . . , x , 0 , . . . , 0)}

(JR 5) 1 = {x ~ ]R3 1 x =  (0 , ~~~~~~~~~~ ~i xj )} and B~ = {x € IR~I x l  < r}

Lemma 2.12: Let J € C’(R ~~, R )  , k < j , and I :  — J R  with

J(x) s 1(x) for all x € R3 . Suppose

(I l) 1(x) s 0 for all x € JRk

(12 ) There Is a Constant p > 0 such that J > 0 In (B \ {0}) 1) (JR k ).L

( 13) There is a constant R > p such that I s 0 in R~ \BR 

_. ,—-~~~~~
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Then J has a positive critical value characterized by

(2. 13) b = inf max J (h(x) )
h e F  x € B R f l J R

~~

where

r = {h € C(B R fl JR k+ l &) h( x) = x if 1(x) o}

Proof: A proof can be found in [ii]

Identifying E m with 1R~ where j = Zn( Z m+ 1) ,  it is easy to verify

that the hypotheses of Lemma 2 .12 are satisfied by I as defined in (2 . 11)

with J = I , k = Zm n  + Z n , = (E ° C E )  ~ 12m (JR
k
)
l 

E+ fl 12m and

= (E ° C E ~ spa n 
~~~ ~ 12m Vm Indeed (H4 ) implies (I l) and

( 13) and (H3)  implies (12 ) . Thus (2 .13) defi nes a critical value

b > 0  of l I E wherem m

F = F m = th € C(B R (m) fl Vm~ E m ) I h ( z) z if 1(z) o)

The mI n im ax characterization (2 .13)  will be used to obtain a uniform upper

bound for b m which will lead In turn to an estimate for , a cr i t ica l

point of I I E m 
corresponding to b m

_ _ _ _ _ _ _  -.~~~~~~~~~~~~~~~ -- - ~--._. - - ~~~~.-  ~~~~—.
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Lemma 2 .14: There are constants M 1, M 7 independent of m and K such

that

( 2 . 15) b s Mm 1

2 ii
(2 .16) [ (z , HK ( z )) 2 dT S M2

Proof: Choose h (z )  = z € F m By (H4 )

(2 . 17 )  0 < b s max 1(z) S max 1(z)
Z € B R O V  Z € V

Any function z( T) n V can be written as

1
2 -z( -r ) = r(t ,( t )cos w + (2 ;~) q,11(n )s ln  ~~)

w h r  - ~ € ( 12 e E°) fl E m with 
~ L2 = 1 , ~ € [0 , Z n ]  , and r = II z i

Choosi ng z € Vm which maximizes the right hand side of (2 .17) — such as

z exis t s  via ( H 4 )  — md substi tuting in (2.17) yields

2 . 18) X f HK ( z)dl ~~I z II
2

2o L

1{~~ri -y by (2 .  5) (for H K ) , (2 .18 )  , and the H~ lder Inequality,

1 1

(2 . 1 9) ~~ z I~~2 ~ a 1 f z(~ ) l ~~dt - Z n a 2 ~ a 3 z I °2 - 

—--~~~~.. ---.. -~~~ -~~~~~~-- - .-_ .—- .- .~~~~ -4
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\ ,~i i ~ r~ the constants d ) ,  3
3 

e i d~~u - 1 i J L n t  of K . Since 2 , ( 2 . 1 9 )

implies a bound on I z Il 2 indep € nd en t  of m and K , say I z I  s
L L2

Hence fro m (2.17) and th~- ior m of z

( 2 . 2 0 )  b -
, I

Tu obtain ~~ . 1~~- )  , oI ) s~ rv .  LHat at z ~ e hav e

(2 .2 1)  I’( z ) ~ = 0

for all r € E
m Taking ~, = (~~,

( 2 .2 2 ) 0 = j
~ ~m ’~~~JR n + 

m JRn 
- \(H

K (Z), JRZn ’ d-r

where Z = ~~~~~~~~ . Ch u c su i ~ ~ 
z~ and forming I ( Z m) — 

~~~ 
I ’ (Z m )Z m

yields

2 ir
( 2 . 2 3 )  b X f [~~(z , FJ KZ (Z m ))

JRZn H K (Z )l dT

1
2n 

~~~~~ - U ) \ (  z j  )(Z , H (
~ m )) 2 +

+ p (K)( l - \ (  Z~~~ )) i  Z
m~ 

~ + I Z m I x ’ ( l  Z m I 
~~~~~~~ 

p( K ) Z
m 

~~~

- x 
~~m 

(11( z )  4 (~ 
- 0) (z , H(Z )) 2 ) dt 

—---__ - - —-rn__---. - - _~~-~-
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where Tm = € [0 , 271 ] I Z m(T ) ~~r )  Hence using (2 .10) we have

(2 .24)  bm ~ min( (~ - 0),~~) 
Zn  

(z , HK (Z )) Z dT - a4

where a4 is independent of m and K so (2 .24)  implies (2.16).
The next step in the proof is to obtain bounds for Z m

Lemma 2 . 2 5 :  There is a constant M 3 depe nding on K but independent
of m such that II ~~I 

L2 < M 3

Proof: Choosing ( p , 4 )  
~~~~~~~~ 

in ( 2 . 2 2 )  and using the Schwarz
inequality gives

( 2 . 2 6 )  II z~~ L2 ~ X I  H~~
(z m ) II 

L2 s a 5(l + II z~~ L2

via the definition of HK where a 5 depends on K . The right hand side
of (2 .26) involves I z for which we do not yet have an upper bound .m Lu
By (2 . 16) and the definition of UK

(2.2 7)  I l Z m II 4 a6

where a6 depend s on K . The Gagliardo— Nirenberg Inequality [14] ImplIes
that

~

_ . . - -. -. --- - -

~

- . _ - . -

-~
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1/3 2/ 3(2 . 2 8 )  II~~I - 
— ô 7II ~ I I E ‘~ I I ~L” I L

for all ~ € E . Hence by (2 .26 )  — (2 . 2 8 )

2 . 2 1/6 2/3(2 .2 9) I Z m II S a 7( II zm II 
~ 

-f I I z m I I
LZ ) I Z  4

2 1/6 2 ~ 1/6
S a~ (1 + II Z m II ~ 

~~ a8(l + l I Z  m L4

2 1/6
sa  (l + II z

m L~

Consequently ( 2 . 2 9 )  provides an upper bound for z II independent ofm
m but depending on K . Returning to (2 .2 6) , we get the desired bound for

l I z  Im LZ

By Lemma 2 . 2 5  and the Sobolev Imbedding Theorem , a subsequence of

Z m converges weakly in E and strongly In L~ to Z
K = 

~~K’ ~~~ € E

satisfying

(2 . 30) 0 = f  [(p ~~~~ ) + 
~~~~~~~~~~~~~~~ 

- X (H K (z K ), 
~~JR 2n ’ dT

for all ~, = (q~,~4i ) c U Em It follows as in §1 that 2K Is a classical
m € T h ~

solution of

( 2 . 3 1) z =  X H KZ

-

~

--—

~

. .



33

The following lemma enables us to obtain a solution of (2 .  6) from

( 2 . 3 1)

Lemma 2. 32: There is a constant M4 independent of K such that

l i z  S M
K LOO

Proof: Suppose for convenience that K �I - By Lemma 2 .9 ,

( 2 . 3 3 )  HK(
~~

) S ,HKz(~
))  Zn + M 5

for all r~ € JRZn where M 5 is independent of K . Choosing r~ = z K

integrating (2.33) with respect to T and using (2.16) (which is valid for

Z K ) gives

, I ,

( 2 . 3 4 )  I H K(z K) dT S + 2ir M 5

Since is a solution of the Hamiltonian system (2.31)

H K(z K( t ) )  cons tan t .  Hence (2 . 34) implies

( 2 . 3 ~~) HK (z K ) S~~~~~ M2 + M 5

and the lem ma follows from (2 .  5) for H K .

Lemma 2.  32 implIes that for K ~ M4 , HKZ (z K ) = Hz(zK ) and

therefore z K satisfies ( 2 . 6 )  . The next lemma complete s the proof of

Theorem 2.1. 
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Lemma 2. 36: z~ i )  ~ constant .

Proof: We use a comparison argument . By (H 3)  - (H 4 )  for each e > 0 ,

there is a positive constant  A depending on K such that

,~ rA
E V ~ 4 “

( 2 .  37 ( HK ( Z )  S ~ I z ~~ ~ T ~~~~~~ 
+ q~~) H.K(z)

~~r all z € where z ( p , q )  ~~( p 1, ~
• • ,p ~~, q 1, ~~~~~~~~

1oi z € C , define

J( z) = [~ p,~~) 
~ 

- 

~~ K~~~
] dT .

0 JR

By (2. 37) , J (z) s 1(z) for all z E . It is easy to verify that for €

suff icient ly small (and indc p t ’i J ~ ut of m ) 
~

1 E satisfies the hypotheses

of Le mma 2 .12 . Therefore by that l~~mina , j I  12 has a critical value b m

and by (2 .13)

(2.38) 0- -~~b sb  -m m

If is a critical point of ~I E m 
corresponding to 

~ m then

l ’ ” ’~ X Z n ~~~ ~~~ 
,~4

( 2 . 3 9) b m = J( Z m ) _ 1 J ( Z m )Z m =~~~
A e f ~~~ + q ~~) d i . 

~~~~~~~~~~~~~~~~~~ ~~~~~~~~ .-- .-- -~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Now suppose that Z
K

(
~

r) is a constant . Since satisfies (2.3 1) ,

HK (z K ) 0 - Along some subsequence we have 2m 
L~ > 2 K and therefore

HK (Z m ) L ° > 
HK(z K) . From ( 2 . 2 6 )  we see that 

~m 
L2 

> 0

Observing th at bm > 0 , the for m of I implies that

Z n
( 2 . 4 0 )  bm = 1( z )  ~~~~~~~~~~~ f FIK(z K)d-r = 0

‘~‘By (2 .  38) , b — 0  along the same subsequence and by (2 .39 )  Z m > 0

Lemma s 2.14 and 2 . 2 5  applied to the J problem show that {zm } is bounded
“ L~in E . Hence by (2 .28 )  Z m 

—~-0  along our subsequence . We claim

this is impo ssible.

Indeed dropping the subscript m , we write z = T~ + Z where

~~~~~~~~ 

. ,~~~~~ ) € E° and z = (F 1,~ 
. 

~‘~~n ’~~i’ 
. , Q )  € (E + C E )  fl E

Choosing (qi ,~~) r~ In ( 2 . 2 2 )  shows

n n 27i
(2 .41) 2~~( € l  ~ 

2 + A~~ 

~~~ 

(~~~ + ~~)) = A 8 i~~ l 
- 

~~~~~ +

+ ( r ~1 
— q ~ ) -n~J dt

Simplifying gives

( 2 . 4 2 )  Z n ~~~~ - f [(3~~P .+ ~~~~~ + P~~~ .

+ (3 i~~Q1 + 3r~1Q~ + Q~ )~~i ] dT 

--~~-— .— —,— _  -~~~~ ... - - - . - . _ -—.-- -~~~~~-.~~~~~~ -~~~~~~~--- ._- —~~



F- _________

36

Consequently by the Holder inequality and some crude estimates

(2 .43)  l~ I ~ U 1II Z II
L4 ~

From ( 2 . 2 2 )  again with ~~~~~ (Q, -P ) , we get

2 3 2
(2.44 ) I z I  2 ~ € l Z l l  + a3 ii z lI l z l l  2~~ 

2€ z Il 2 + a4 ll z l l
L L Lc~ L L L~

where we used You ng ’ s inequality and ~2 4 depends on e . For any

+ -
w e E  C E

w(T) - w(t) 1

T 

~ (s)ds

Integrating with respect to t shows

Z n  -r .
27rw(T) = f ( f w(s)ds)  dT

0 t

Hence

1/2
(2.45)  w i  s I w ~ 1 s ( Z n )  I w l I  2L~ L L

Combining (2 .43)  - (2 .45 )  yIelds

2 2 6
( 2 . 4 6) l l Z I ~~) s 2 ( Zii ) € ll z iI~~, + cr 5 j I Z I  

—- j
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- - - - 1 . - I . - -
- , - 1 u p l u~~s 

{ ~ , 
- 
} is Iio~ nd~~1 dwdv from 0

t .\ L 
-Z ~ for  ~~~ - 

) -.. O j .  Thc~ ~fore z cannot cu n v ~-r~~i to 0 in L -

in
-~~~i - ~~ t~~ ~~i ic r wo~ ~~~~~~~~~~~~~ W~~ ) - - ~~ - The l~~ooi i s o r i i f ) 1 e r e .

.‘.‘~~ s tu u~’ th~.i tft ut  weakening Ui c hypot 1ies~~s of Theorem 2 .1 .

I L -  ~~~~~~~~~~ us 0 ~nu s i i i i i l ~~ to those in the ~nuo t  (it the ubove the or~~m so

~-‘~
-
~ .

- ~- !I I1  0~? -

~~~~~~~~~~~~ ~~~~ ~ ~~~ ~ R2r 1
~~~) } f(~~ , , )  

~~ ~~ r s:-J i in t

dII(I ( t ~~) - ( ~~i ) 
~~ 1 S  . i U S i i - J  ‘.V~ tb n st -€uc a T P I I I O I i C  -u t u t i c u  ~ ( 2 . 2 )

UI  ~~~ik J i i j - l i  :~~~uii — I icu j~~~C ~ t ‘‘ i i1:~b 1~~5, 3 L i i  ft - I LO (IIC ~0 l H i i U h  ~~~ 2 .

;i i 1  i Ii ! l.~~t i  A Li~ ~~~~~~~~~~~ ~~~ 1I .~- .r~~n 2 . 1  shows t o t  it ~ d I i 1 ~~ , Ov~0

e t u i l t y ‘ - -~~ L i t j i , 1~ mis case with  the uxcep t i~~ii of [iHlj i t id 2 .  ~.L. J ! u ~

W~~: ~ :, 1I - t - I ~~ o - j 1 t  S i  ei I i(h i !L~ solution .~f (2 . ~l) L r ~~ L K

~~~ ii ~~~~~~~~~~ 0. :-;!~~~~ tL~t fu~ K su±Hc ie t ( y  I n J ~~, sat i s f ies  ( 2 . h ) .

J.. 1. . t  ~~ ui i’- ~ if ens is be u~~ it without  I : i } -~~~Ii~~j t i j r t f t - r  coJ~Jj tj o r i s on H

U u -  c h i i  I~ - - . . ‘ .~~ i i ~~~~ t - 3~~ is  no 1on’~ - ‘~i I H .  i I , ’ ~~~- t I  s l tp p ) s c -  ‘.v ’

7 - r ~ —~ 
- (  L ( 1  ( t , > 1  4- pz

- i  Ut ( i - . ~ .si o.- 
~u., , 1 t ~; -~~~, p ~~ 

() , i . e .  the r~~1iu1 component of

I ,  c~ n o  . J t L  .~~~ ~~~n I  ~~~~~ n; H . Tk i n we can obtain the
Z

1- .~~~- i j v  i~~j j t , - I n e  Lo u t fu~ .-~~~. . Indeed by (2. ~-4), (2. ~) and thc

LI  ~- ‘ I ti I r .  -
~ 

I 1/ ,

—. - - - -- -- - . _ - -_—

~

- - --_

~

-_- ---_ ------ ~~~~~~ —--—— - -. - -_-— ~~~ -_ - -_  -- ._ -.
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(2 .4 7)  Z~~ I~ M
6

where M is independent of K . Furthermor e by (2.31)  , (H5) , and (2.16)

(2.48) Ii Z~~1j 
L’ 

X II  H
K Z

( . . z K ) 
L1 s M 7

M
7 

being independent of K . Letting Z K = 
~K + ZK where € E°

and Z K € E~ C E , ( 2 . 4 7)  gives a bound for I ~K I independent of K

while ( 2 . 4 5 )  and ( 2 .4 8 )  provide a similar bound for liz IiK L°
Thi s give s the desired estimate for I z II and we have shownK

Theorem 2.49: Let He C’( IR X ~~~~ R) with H having period T in t

and satisfying (H3) — (H5) .  Then ( 2 . 2 )  possesses at least one nonconstant

T periodic solution.

Remark 2. 50: Other hypotheses can be used instead of (H5)  to get existence

results in the t dependent case. For example , consider the pertu rbation

si tuation where H(t , z) = Ii(z) + G(t , z) with H satisfying (H3) — (I - 14 )

G � 0 and satisfying ( H 3) , and G Is uniformly bounded in C1 over

JR X . Then (2 . 31)  has a solution Z
K 

as earlier and

d aGa— H K(t , z K ) ~~ (T , zK )

Therefore

_ _ _ _ _ _ _  _ _ _ _
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‘~K~
-r ’ zK (-r )) S 

~~ II HK( .1 zK ) I L1 + II f~ (T , zK
(T) )  I L i

S 0M 2 + constant

via (2 . 34) . Hence (2 . 5 )  gives a K independent bound for l l z ~,Il
- 

I~

Next we study the effect of replacing (H3) - (H4) by

(H6) H(z) Q(z) + H(z) where H satisfies (H3) — (H4)

and Q(z) is a positive definite quadratic form .

Theor em 2. 51: If H € C1(JR 2” , R) and satisfies (H6)  , then for any

T -
~ 0 , ( 2 . 2 )  possesses a nonconstant T—p eriodic solution .

Proof: We will sketch the proof . Consider first  the linear Ha miltonian

syste m

(2 .52 ) w =

Since Q is positive defInite , (2 .52 ) possesses Zn linearly independent

periodic solutions. Indeed if .~ is an eigenvalue of with a correspond-

ing elgenvector ~ , then ~ is purely imaginary and (2 .52 ) has a solution
LLt -1of the form w(t) = e ~ with period Zir i tw . Since (2.  52) is a real system ,

~ (t) is also a solution of (2 .  52) . Let 
~l’ ‘~~zn be linearly independent

elgenvectors of 2Q with corresponding eigenvalues Il l, • •
~~

We can assume 
~j +n = ~ J < n . Set

_ _ _ _ _ _ _ _ _ _ _  _ _  - _ - - -
~~~~~

- . . .
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= e1”
~~ — e 1

~’~~ , j = i , ” ~, zn , k € ~

Then z 
~Jk satisfies

ikz = dQ zz z

and

2Tr Z n

J~ [
~~ ‘~~~~n - X Q( z) ] d T = ( - X) f  Q(z)d T

We can as sume tha t the functions f jk (T) are A orthogonal in the sense of

Lemma 1.11. Note that E m = spa n 
~~~ 

1 s j S Zn , k S m} .

Let

- 
N~~~ span {f j k I~~ 

> x}

N = sPan 
~ j k 1

~j  < x}

N° = sPan {f
~k~~~ 

x} . -

Now as usual to get a solution of ( 2 . 2 )  we try to find critical points

of

Zn
1( z) = f  ~~ n — X (Q(z)  + H

K
(Z ) )]  di

0 R

_ - .  _ . -  - -  . -~~~~~~~~ _ - - --- - -_ _-~~~~~ - -~~ -. -~~~ _
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,\ ,\ - 4where HK XH + ( l- \)  z I and we have made our usual change of the time

va riable. Applying Lemma 2.12 to I I E with (N d. N0 ) fl E~ and
k +i - 0 

,~rn
JR N ~ N C span {f 1~ } where k is the sma llest positive value of k

such that > X for some eigenvalue ~r .  , we get a corresponding critical

value bm and critical poi nt Z
m as in the proof of Theorem 2.1.  With minor

modifications , the earlier proof then yields a solution z of (2. 31) . It

r emains to show z( -r ) ~ cons tant  , i . e .  we need an analogue of Lemma 2 .36

for this problem. By the argument of Lemma 2 . 3 6  ( modified by the inclusion
“ L~of a Q term in J ) ,  Z m 

)- 0 as earlier . Again we will show thi s is

impossible. Two cases are considered :

- 0Case 1 . N = {o}

Then

w=

( I r IS  no nontrivial null vectors . Hence the same is true of

= X~~Q W  + cX 2 w

ill &. sufficiently small, say c . Equation (2.21) for J with

Z = Z can be written as:

( 2 .  ~3) - X~~Q Z  - X€ ~~~ ~~m z ~~m~

_ _ _ _ _  - - - - -.~~~~ -__ -_ ~~~~~~-_-- --—. -~~~ - - —~~~~~~~~~~~~~~~~~ --~~~~~~~~~— -_-. .
~~~~

.- .-
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where 
~m denotes the L2 orthogonal projector of E onto E m and

G(z) = A 6 
~~ 

(p~ + q~~) . Since the left hand side of ( 2 . 5 3 )  is an

isomorph ism fro m e .g .  E to L2 
, by the Sobolev Imbedding Theorem ,

,-~ 3
(2 . 54) l I Z  11 U l~~~m~~E 0Z Z rn~~Lco

with ‘
~l’ 

u2 
independent of e provided that c ~ ~~

‘
. Consequently 

~ m ~

bounded away from 0 in L~~
’ and thi s case is settled .

Case ii: dim N° 0

Replace Q by Q o(z) = Q(z) + b z 2 where 6 >  0 . Let

16( z) = 1(z) - 6 
2 

l z l 2 dt

and define J 5 similarly where c is smlill compared to 6 . Thus

(2 .55 )  j 6(z) ~ I~
( z) s 1(z)

for all z € E .  Let

N 8 = sPan {f
Jk l~~~~< X +  o} , etc. 

_ -- - - - -~~~~~~~- _ _  _
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Then N° ® N C N 6 and N~~= (o} for small 6 > 0 .  If I(Z m ) *0 ,

then J ö(z m ) — 0  where is a critical point of J~l E m 
satisfying

0 < j  (~~ ) s I(z ) . But the argument of Case i implies { I~ 
) isb i n m m Lco

bou nded away from 0 . The proof is complete.

Remark 2. 56: As was mentioned in the Introduction , Theorem 2. 51 must

be interpreted with care since it contains no information on minimal periods of

solutions of ( 2 . 2 )  . It is easy to give examples w n . ~~ any minimal period
- . 2 Z .. 2is bounded from above . E . g .  if H(z) = I z 1 + f ( l  z I ) = g( z I  ) , the

corresponding Hamiltonian system can be written in complex form as

(2 .57) ~~=

where r~ p + iq . Hence r, = ~,0e2
~~ ~ and if T is the minimal

period of (2 .5 7)

S n
g~( l ~~~~

provided that f’ ~ 0

We conclude this section with a case of interest in mechanics which

is not covered directly by the theory presented thus far . Suppose

H(p , q) = Q(q) + V(q) where Q is a positive definite quadratic form and V

Is non-negative. For simplicity, we take Q(p) = 4 i ~I 2 Then the

corresponding Hamiltonian system is

k 

~ - ~~_ -  _- - _ _  . -  - .  --- . . -  . -----
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(2 . 58) ~~ ~•Vq i d1 P

or

(2 . 59 ) ~Vq

Treating the corre sponding variational problem (for 2 7 periodic solutions)

involves studying

(2. 60) I(q) I
1 I H Z _ X 2 V(q) j dT

This functional can be dealt with in a more direct fashion than our previou s

cases .

Theorem 2 . 61: Suppose V € C1(IR~ , IR) and satisfies (H3) - (H4 )

Then for every T > 0 , ( 2 . 5 9 )  possesses a non-constant T-periodic solution.

Proof: We will produce the solution as a critical point of I on

= {(p, q) e El  p = 0) . No approximation argument. is needed for this case.

We use the following generalization of Lemma 2 . 12.

Below (P S) denotes the Palais-Smale condition which means every

sequence urn such that I(u
~~

) is bounded and I ’(u
m) — 0 is precompact.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - ------ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — .-~~
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Lemma 2 .62 :  Let X be a real Banach spac e , I c  C1(X, JR) , and satisfy

(PS) . Suppose further tha t X = Xk C X where dim Xk = k and

(14 ) I 1~~ 
s 0

k

(I~ ) There are constants p ,~ > 0 such that I > 0 in (B \ {0}) f l X  and

I � on 3B 1) Xp

(16) For each finite dimensional subspace Y C X , there is an R R(Y)

such tha t I s 0 on Y\BR

Then I has a positive critical value c in X characterized by

o m t  — 
max I(h(u))

h e F u BR(x ) fl Xk+l

wher e

= {h e C(B R(X ) fl Xk +l ,X) l h (U) = u if 1(u) ~ o)

and Xk+l X k 
(~ span {~‘) for any fixed q’ e 2\{o} .

Proof: The proof of Lemma 2. 62 can be found in [15] .

Proof of Theorem 2 . 61: Take X = E , Xk = E° fl E , and X (E°)1 fl E

Then it Is ea sy to verify that I € C1(X , IR) and ( 14)— ( 16) are satisfied .

( E . g .  (6) follows wi th the aid of ( 2 . 5 ) ) .  Assuming ( PS) for the moment , 

_ _ --- - - -- -  - _ - - ~~ - -



.-.~~~~~~~

46

Theorem 2 . 61 is immediate since any critical point of q of I in ~ Is a

classical solution of (2 . 59) and since c — 0 , q Is non-constant .

To verify (P S) , f irst  define

1
. 2II q I~ = ( II ~l I + HI ~II Z~L L

where ~~> 0 . Thus II ~~, is equivalent to 1 1 . Now suppose ~~ is

a sequence in ~ with I I ( q ~~) l  ~s K and I ’ (q~~) — 0  . Then for m large

enough ,

Zii

(2 . 63) I I ’ (~~~)q~~i II I  q~ I I ~~ 
- 

~~~ ~~II 
L

2 
- \2 f 0 ~~~~ Vq(~ m ))~~n dti

I~ rn ll~

Therefore

(2 . 64) ~
2 ~

2 11 

(q~~~ , Vq(~ m ))
JRn dT s II ~~II ~ + I ~~II ~

For y € 1R~ su fficientl y la rge , by ( H4) and ( 2 . 5 )

( 2 . 6 5 )  I y 1 2 s O(y, V (y ) )q JRn

Hence by (H4) and (Z.64)-(2.65) , for some constant y Independent of 

- _,- - -.- - .- - - - _--
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(2 .66 )  K ~~ ~~q~ l I~ - ~~~~~~ - X
2 J V(q~~) di

~~ I l q m it~~ (~~~+ X 2 ) e X 2 ( Ii q~~I l~~ + II~~ I i~ ) - V

Choosing ~ e (0 , X2 (l-Ze)) , ( 2 . 6 6 )  give s a uniform bound for II ~~~
Thus a subsequence of converges weakly in E and strongly in L~ to

q € . Moreover along this subsequence the component of in

E° fl E , i .e .  the mean value of converges to the mean value of ~

Restr icted to (E ) fl E , 1 (q) is of the form q — ~ (q) where ~ is

compact . Hence I ( q ~~) — 0  implies ~~ 
— ~ (q) along our subsequence

and ( PS) is verified .

Remark 2. 67: If V depends explicitly on t in a time periodic fashion ,

the above proof carries over unchanged and (H5) is not necessary here.

Likewise if (H3)-(H4 ) is replaced by (H6) (wi th Q(q) = f l q l 2 ) we get

the analogue of Theorem 2.51 directly via Lemma 2 .62 . Finally if ~ l q I 2

is replaced by a positive definite quadratic Q and (2 .  58) is appropriately

changed , similar results obtain. However we will not carry out the details.

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~— --- ——-- - - - ---- - - --~~~—--~~~~~~~~~ —-- -..
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