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ABSTRACT

The existence of periodic solutions of Hamiltonian
systems of ordinary differential equations is nroved in
various settings. A case in which energy is prescribed is
treated in Section 1. Both free and forced vibration prob-
lems, where the period is fixed, are studied in Section 2.
The proofs involve finite dimensional approximation argu-

ments, variational methods, and appropriate estimates.

SIGNIFICANCE AND EXPLANATION

Qualitative theorems for the existence of periodic
solutions of Hamiltonian systems of ordinary differential
equations are obtained in various settings. Cases are
treated where either the period or the energy is prescribed
and where there is explicit time dependence (forced vibra-
tion) or not (free vibrations).
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Periodic Solutions of Hamiltonian Systems

Paul H. Rabinowitz”<

Introduction

This paper concerns the existence of periodic solutions of the

Hamiltonian system of ordinary differential equations:

L) S dg _
(0.1) o HL & - Hy

where H ¢ Cl(]Rzn,]R) and p,q ¢ R . Letting z = (p,q), (0.l1) can be

written more concisely as

Q

V4

(0.2) at

= QHZ

(L
where g = (I 0)

The search for periodic solutions of (0.2) will be carried out in two
different but related settings. In §l1 we look for solutions of (0.2) having
prescribed energy while in §2 the period is fixed. To be more precise, the

1

main result of §1, Theorem 1.1, states that if for some b# 0, m= H (b)
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2n -
is radially homeomorphic to S n=l

and ((),l-iz(g))mzn A0 for L e, .
i.e. M is appropriately star-shaped with respect to the origin, then (0.2)

possesses a periodic solution on I . Note that the period is a priori

unknown and one of the difficulties here is to determine it in the course of

the solution.

There does not seem to have been much work on this sort of

question in the literature. Seifert [1] showed if

dx N gy, sy
Q(X'Et_ = £ aij(x)-—at— at where @ is a positive definite quadratic

i,i=1
o

form, aij(x) and U(x) are real analytic in G R , U=E and Ux £ 0

on 8G, U<E in G, and G is homeomorphic to the unit ball in r" 5
then the Lagrange equations corresponding to Q - U have a periodic solution
with energy E . See also Berger [2], Gordon [3], and Clark [4].

More recently considerable progress has been made on bifurcation questions

for (0.2). In particular, A. Weinstein [5] showed if H - Cd(Rzn, R)

and HZZ(O) is positive definite, then for each small b ~ 0, H_l(b)
contains at least n distinct periodic orbits (see also Moser [6],
Chow and Mallet~Paret [7], and Fadell and Rabinowitz [8] for some
generalizations and related results.) Since HZZ(O) is positive definite,
the hypotheses of Theorem 1.1 will be satisfied for small b . We suspect
that M contains at least n distinct periodic orbits.

In §2 we impose conditions on H near z =0 and z = « to obtain
results on the existence of solutions of (0.2) having a prescribed period.
To illustrate, suppose (i) H(z) = o(‘z\z) at z = 0 while (ii) 0 = H(z) and

0 < H(z) = e(Z'Hz(z))]RZn for |z| > r where 0 ¢ [0,-L) . Then Theorem 2.1

Gt b i 4 L




states that forany T > 0, (0.2) possesses a nonconstant T-periodic
solution. A caveat must be added here: We do not claim that T is the
minimal period of the solution determined in Theorem 2.1. Indeed the
conclusions of the theorem are unchanged if (i) is replaced by the
assumption that HZZ(O) is positive definite and for this case it is easy
to give examples where there is an upper bound on any minimal period.
We suspect however that under the hypotheses of Theorem 2.1 there is a
nonconstant solution having any prescribed minimal period.

Some results have been obtained for bifurcation problems on the
existence of sclutions of (0.2) having a prescribed period by Chow and
Mallet-Paret [7] and by Fadell and Rabinowitz [8].

The arguments employed here for the prescribed period case work
equally well if H depends explicitly on t in a time periodic fashion.

For this forced vibration case, which will also be treated in §2 ,

nontrivial solutions are obtained having the same period as H(t, *)

Some stronger results of this nature in a more specialized setting have been
obtained for n=1 by Jacobowitz [9] and Hartman [10] .

As was pointed out to us by Jurgen Moser, Theorem 2.1 is related
to the Poincaré-Birkhoff Theorem in the following way: Suppose n=1,
He¢ CZ(RZ,R) , and H(z) > 0 if z# 0. Consider the mapping
¢t - o(T, t) where ¢(T,t) is the value at time T of the solution of (0.2)
which is initially at ¢ . Then by (i), for c sufficiently small, points
on H-l(c) undergo a small twist while for ¢ sufficiently large, points on

H-l(c) undergo a Jarge twist via (ii) . Hence by the Poincaré-Birkhoff




Theorem, ¢(T,-) has a fixed point for some intermediate value of ¢ and
this provides a T-periodic solution of (0.2) .

To obtain our results, we employ methods from the calculus of
variations. We try to find solutions of (0.2) as critical points of a suitable
functional. For example, in §1 we consider the action integral subject to
the constraint that an averaged Hamiltonian is prescribed. Since the action
integral is not bounded from above or below on this manifold, it is rather
subtle to obtain critical points for this problem. We do not know how to do
this in any direct fashion and instead use an approximation procedure.
Namely we minimax the action integral over appropriate subsets of a finite
dimensional manifold, the subsets being chosen to exploit the symmetries
inherent in this problem. For this purpose a cohomological index theory
recently developed by E. Fadell and the author [8] is very helpful.
Uniform bounds for the critical points of the approximating finite dimensional
problem allow us to pass to a limit and find a solution of (0.2).

Similar arguments are used in §2 . There the topological arguments
are simpler but an additional complication arises since we must avoid the
trivial solution z = 0 as well as any other constant solutions of (0.2).
Much of the motivation for the techniques we use, especially those of §2
was provided by our recent paper [lI] on free and forced vibrations for
semilinear wave equations. Indeed the results of §2 can be considered
to be the Hamiltonian analogues of [11].

We thank Jurgen Moser who encouraged us to work on the problem of
§1, Edward Fadell for many discussions on topological matters, ~»4 Charles

Conley and Michael Crandall for some suggestions.




§1. The prescribed energy case.

In this section we will find a periodic solution of (0.2) when the

‘

energy, H , is prescribed. Let (-, -)]Rj denote the inner product in R’

pP,q ¢ R" , and z = (p,q) . Our main result here is:

Theorem 1.1: Let He CYR®™,R). Suppose

1

’

(Hl) For some b#0, H-l(b) is radially homeomorphic to S°7~ and
v -l
(H2) (s,HZ(é))]R;_n# 0 for £ e H “(b) .

Then the Hamiltonian system

(1.2)

e
i
A
fos}

possesses a periodic solution on H_l(b) .

As is clear from (Hl) - (H2) , we need only assume H ¢ C1 near

The proof of Theorem 1.1 will be carried out in several steps. We
begin with some simplifications and observations. First we further assume
H e CZ(RZn, R) . The C1 case will be obtained by a limit argument later. ‘

On dividing H by b, we can assume b=1. Nextobserve that if

2n-1

U e C(H_l(l),s ) is the homeomorphism of (Hl), then

2n-1 FANRT A |

ve Y1), 8% Y) since He CB(RE™ R). Indeed #f e HX1), by

(H2) , Hz(g) # 0 so by the implicit function theorem we can solve for one




coordinate, say z) in terms of z = (ZZ' SO zzn) near { and

o | —

z) = X(z') is a €* function. Hence Wz) = (X(z*),z*)(X(z*))z + lz*|2)-
is also a C2 function. Now a new function H(z) is introduced as follows.
Set H(0)=0. For z#0, by (Hl), thereis aunique a= a(z) > 0 and
w = w(z) ¢ H_l(l) such that z= qw , namely w = qfl(z/lzl) and

a=lzl lokz/izlilt . Now define
(1.3) H(z) = a(z)? 240

It readily follows that H satisfies:

2

¢ (]RZn

(1) HeC \{0},R) n cl"HPR?" Ry,

1) HY) = FE X,
(1.4) = e
(i) (@), = 2H()

(iv) H(¢)| ¢! =% and IEZ(I;)I [¢] L e uniformly bounded .

These properties will work to our advantage later.

Lemma 1.5: For initial data o ¢ H_l(l) , (1.2) and

(1.6) = JE

have the same orbits. In particular they have the same periodic orbits.




R

Proof: By (1.4) (ii), H-l(l) is also a level set for H. Hence

H,(2) = 8(z)H (2) for z < H (1) where 0% pe CHH 1), R) .

Moreover since (1.2) and (l.6) are Hamiltonian systems, if ¢ H-l(l) -
the corresponding solutions z(t) , ¢(t) of (1.2), (l.6) remain on H_l(l) L
It then follows that (1.2) and (l.6) have the same orbits although their
parameterizations will be different in general. Indeed {¢(t) = z(r(t)) where

r satisfies
dr
(1.7 gt = Blz(r() , r(0) = 0

As a consequence of Lemma 1.5, to prove Theorem 1.1, it suffices to

find a periodic solution of (1.6) on H-l(l) . Stretching the time variable,

1 it

t -=7=2nT t=X"t, (l.6) isreplaced by

(1.8) z=\gH,
where -« denotes éi? and the unknown period appears explicitly as a
parameter via X . Thus we have reduced the proof of Theorem 1.1 to

determining a pair (X, z(t1)) satisfying (1.8) with z(t) 2m-periodic and

lying on H-l(l) . This will be accomplished by a variational argument.
The corresponding variational problem will be formulated next.

Let E denote the set of 2n-tuples of 27 periodic functions

z(t) = (p(t),q(t)) which have one square integrable derivative. The usual

Hilbert space inner product will be employed in E R




27

(z.0p= [ (&0, 81, +(z(1), 4(1)_, ] dt
E 0 ]RZn Rzn

For z=(p,q) e E,

278

(1.9) A(z)= [
0

Let

27

(p, c’x)]Rn

the action integral of E is defined as

dm .

H(z(1))dT = 1}

It is a straightforward exercise in the calculus of variations to verify that if

z is a critical point of Al S then =z
N\ appearing as a Lagrange multiplier.
H(z(t)) = b, a constant.

our desired periodic solution.

satisfies (1.8) for some \ # 0,

Since (l1.8) is a Hamiltonian system,

The definition of S then shows b=1 and we have

Unfortunately, we know of no direct method to find critical points of

Al g+ one difficulty being that A is neither bounded from above nor from

below on S .

However by replacing this variational problem by an

“pproximating finite dimensional one, exploiting the symmetries present in

A and S to obtain critical points of the new problem, and getting suitable

bounds for these critical points, we can pass to a limit to get a solution of

(1.8) on S.

To carry out this program, several preliminaries are needed. Let
e vty denote the usual basis in len O e = (0, oo Q) v o,
€n = (0, °+#,0,1)F « L&t




9
2n m
B = { Z, ('Z a ) cos jt +bjk sin Jt)ek|ajk,bjk e R}
k=1 j=0
f.e. E = span {cos jt e, sin jt eklo =j=m, l=k=2n}.

A convenient set of functions to introduce in Em is
( ‘ij = sin jt ek - cos jt ek+n
"pjk = cos jt ey + sin jt €in

0

ik sin jt ek + cos jt ek+n

L éjk cos jt e, = sin jt S

for 0O0=j=m, l=k =n. These functions form a basis for Em e}
E_ = span {‘pjk"l‘jk’ejk’éjk‘o wjem, 1=k =n}.

Note also that ¢, | = -0, | , Y, k= Lo g+ and

[ Algg )= 0 =AYy )

(1.10)

—

Aoy) = 31 = Al

L Ay) = -im = Al

For ze E, let Plz=(z1,"-,zn) and Pzz=(zn+l,---,z2n) .

i
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Lemma l.11:; If 3m = {¢jk’¢jk'9jk' gjkll <j=m, 0=k =n}, the functions

in 3m are both L‘2 and A orthogonal, i.e. if z,¢ eF and z# ¢ , then

fZTr
(z,¢) dt=20
0 ]RZn

2T s
and [(Pyz,0,0) _ +(PL,8,2) Jdr=0.
'/;) 1 2 an 1 % ]Rn

Proof: This is an easy computation. (We identify ?0 k and -00 w etc.)

It follows from Lemma 1.1l that 3m is an orthogonal basis for Em

and for 2,63, zZ L,

(1.12) A(z+L) = A(z) + A(L) -
Set
+ :
E = span {(P]lekalJ € N+, o=k = n} ’
- : +
E =span{9jk,§.jkh€1N,lsksn},
E° =

= span {¢0,k,¢0’k|1 =k =n}.

Then by Lemma 1.11 and (1.10) and (1.12), E', E*, and E° are L%
orthogonal subspaces of E with A > 0 on E+\{0} . A< 0 on E \{0},

and A= 0 on Eo.
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Next some invariance properties of our problem will be studied.
If z(7t) e span {‘ij'q’jk} , then Ltz = z(1+t) ¢ span {¢jk’¢jk} for all
t e [0,27]. This and similar observations imply that E . Em nEe , and
E N E® are invariant under {Lt! te[0,2m]} . These translations induce

an § action on E\{0} . Indeed we can write z ¢ E as
oo}
z(71) = : Z Y.e

where Y € c¢" and = 7}. - Then the S1 action on E corresponding
to the above translations is given by (p(p)(eiT) = <p(peiT) for p e S1 .
We call mappings of E to E which commute with this action or real valued
functions on E which are constant on orbits of the action equivariant
mappings. Likewise a subset K of E\{0} is called invariant if z e K
implies Ltz € K forall t ¢[0,27]. Since A(z) = A(Ltz) forall ze¢ E,
the action integral is an equivariant mapping. Similarly S and SN Em
are invariant sets. Note that our S1 action is not free. In fact E°
is a fixed point set for the S1 action and there are also isotropy subgroups
in S1 of arbitrary order.

i0 exploit the effect of our Sl action, an index theory is required.
The category theory of Ljusternik-Schnirelmann on (E \Eo)/s1 could be
employed; however it has several technical disadvantages. Instead we
will use a cohomological index theory developed recently in [8].

Let € denote the family of invariant subsets of E\{0} . The L2

orthogonal complement of a subspace F C E will be denoted by M.
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Lemma [.13: There is an index theory, i.e. a mapping i: € -INU {w}
A\
having the following properties. For K,Ke¢ €,

1° §(K) < » if and only if KN E° = ¢ .

N\
2° (Monotonicity) If there is an f ¢ C(K,K) with f equivariant, then

A
i(K) = i(K) .

3°  (Subadditivity) (KU K) = i(K) + i(K)

4° (Continuity) If K is closed, there exists a closed neighborhood K*
of K such that i(K")= i(K) -

59 (Normalization) If z ¢ E\Eo and Slz denotes the orbit of the action

through z , i(Slz) =N

6° If F is a finite dimensional invariant subspace of (EO)'L and 8 is the

unit sphere in E, i(FN §) = % dim F .

Proof: The proof of Lemma 1.13 can be found in §6-7 of [8]. Here we

will only give the definition of i(K) (which is denoted by Indexq: K in [8]).

p

Recall the Hopf fibration SZn+1 . CP" where CP" denotes complex

projective space. Set S = UJ SZn+1 i BN ¢P" . The circle
neIN ne N

group S1 acts freely on S” in the usual fashion (i.e. coordinatewise on

each San) and hence acts freely on S° x K. Therefore we have a

principle Sl-bundle g * S” x K - (8" x K)/S1 = §° % ) K and a classifying
S

map
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/\
T E s S s®
l q
(S s — s
N\
induced by the projection f . (The vertical maps are the usual maps into
the orbit space). Then i(K) = indexj;K +1 where

K
inderK = max {k ¢ IN| f*(ak) #0}

a being a generator of the rational cohomology group HZ(C[:P°°, Q)=0Q0Q
and f* is the induced cohomology homecinorphism.

With the aid of this index theory we can determine the existence of

critical points of A on SN Em = Sm . To do so, observe first that if
1 Zan
¥(=) = o fo H(z(1))dT ,

and E"(z)g denotes the Frechét derivative of ¥ at z actingon ¢ e E,

then by (iii) of (1.4) ,

1 27

(1.14) r'(z)z = — {) ('ﬁz(z),z)R_zn dt = 2¥(z) .

In particular if z ¢ Sm , ¥'(z)z=2 . Itnow follows from (1.4) that Sm

Lo EID

isa C manifold in Em which is radially homeomorphic to 8 N Em

Hence by 2° and 6° of Lemma LelSy i(S n (EO)L)- dim((E ) n Em)= 2mn .




Lemma l.16: For 1=j=mn, Y

There are some obvious critical points of A |

namely the points

Bl

at which A achieves its maximum and minimum on Sm . Unfortunately as
we observed earlier, A is not bounded from above or from below on S so
these critical points are not useful. However given the symmetries our

problem possesses and a corresponding index theory, there is a standard

way in which to attempt to find critical points of Al s - Namely define
m
(1.15) Y. = int max A(z), 1=j=2mn
J ke Sm 2¢€K
i(K) = j
and show that these numbers are critical values of Al s - This approach
m

will not succeed here without further qualification, the difficulty being the
presence of the fixed point set ES ot our Sl action. Indeed observe that
by 1° of Lemma 1.13, every neighborhood of SN EO contains sets of infinite
index while A(z)=0 if z ¢ Eo . Hence Yj =0 . Ingeneral 0 will not
be a critical value of Al s Therefore the only chance Yj has to be a

m
critical value is when Yj <00 .

is a negative critical value of Al
j Sm
Proof : The proof of Lemma .16 relies on the following standard lemma.

Let re R, G ={ze s |A(z)=r}, and
(A(z), ¥ (2))2 |
v

le' @i,

X, = {z ¢ SmIA(z) =r and A'(z) -
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Lemma 1.17: If H satisfies (1.4) , for any c ¢ R and any neighborhood 6
of h’c . thereisan € >0 and n e C([0,1] X Sm, Sm) such that

g n(s, ) is equivariant for each s ¢ [0,1],

O
2 | Q '
& T](l_,h \(,) C -

»0

3" If K. =¢, n(l.G_, )CG

+e c-g °
Proof: The lemma without 1° is well known. (See e.g. [12] or [13}]).
For completeness we sketch the proof indicating in the process why 1° is

also true. The function n 1is determined as the solution of the ordinary

differential equation

(A'(n),%'(n))Lz

(m) = V(n)
[ERC
(1.18) L

In (1.18), A', ¥' refer to the Prechét derivatives of these functions as

oy 4
elements of E’; = Em . Since He Cl’ Lip and ¥'(z)#0 for z# 0,

Ve Co' Lip near Sm . Therefore there exists a unique continuously

differentiable n satisfying (1.18) for small |s| . Since
d / =
as Y(n(s,2))=0,

the orbit n(s,z) lies on Sm and therefore exists for all s . Next observe

that
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(A "')l
d . dn - = hi
1.1 4 ,2)) = (A", s <0
(1.19) as Aln(s,2)) = (A g5) 5 ”A”L2+W;
T

by the Schwarz inequality and the right hand side of (1.19) vanishes if and
only if V(z) = 0 . Hence it is straightforward to verify 29 and 3%,
To prove P , we need only show V is equivariant. To check this, observe

that A(Ltz) = A(z) for all te<[0,2n] implies that

It

(A'(2), ¢) (A'(L,z), L.L)
‘-Lz =kt o

for all ¢ ¢ Em . Choosing ¢ L_tg and observing that Lt = L%-(t yields
(A'(z),L_E) , = (A'(L,2),8) , = (LA'(2),§)

for all £ ¢ E - Hence A'(Ltz) = LtA'(z) forall te¢[0,27] so A' and

similarly ¥' are equivariant maps. The equivariance of the remaining terms

follows in a more simple fashion.

Proof of Lemma 1.16: First we show Yj <0, l=sj=mn.

Since Yj = Yj+1 , all we need verify is that Yin = .0 and to do this, it
N\
suffices to produce a set f(\C Sm with i(K) = mn and maxk\A < 0. With
the aid of 6° of Lemma 1.13, this is clearly the case for f(\= Sm nNE .
Now to prove that Yj is a critical value of A | 3 for 1 =j =mn,
m

assume the contrary. Then by Lemma 1.17, there is an ¢ > 0 and

ne C([0,1] x 8,8 ) such that




17

Y.~ E

(1.20) n(l,Gyjﬂi)C G ;

Choose K¢ GY . such that i(K) = j . Since by 1° of Lemma 1 1T,
j
n(l, -) is equivariant, 2° of Lemma 1.13 implies that i(n(1,K)) =j .

Hence by the definition of Yj -

(1.21) max A =Y,
n(1, K) L

while by (1.20) ,

(L.22) max A= Y.,-€,
n(l,K) .

a contradiction.

Remark 1.23: If Yj = ... = Yj+r = vy, where j+r = mn, a standard
© of Lemma 1.17 shows

argument using 2°-4° of Lemma 1.13 and 1°-2
i(}(Y) = r+l . However we will not need this below. We also observe
that positive critical values of A can be obtained by working with -A
rather than A .

Set ¢ =Y . We will obtain upper and lower bounds for S
independent of m . This in turn will enable us to get uniform estimates
for any corresponding critical points zn and periods xm and show that a
subsequence of (xm, zm) converges to a solution of (1.8). To aid us in

this process we require:
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Lemma 1.24: Let KC Em with i(K) = mn . Let F be an invariant
subspace of Em containing £° and satisfying dim F = 2mn + 2n + 2 .

Then KNF# ¢ .

Proof: Since F is invariant, so is o E, - Let P denote the o
orthogonal projector of Em to FXn Em « I KAF=¢,

P, < C(K (F" n E_N\{0}) and P_ is equivariant. Hence by 2° of
Lemma 1.13, i(K) = i(Pm(K)). Projecting Pm(K) radially into S N P‘L n Em
and applying 2° of Lemma 1.13 again yields i(Pm(K)) =i(8nNn Fn Em) .
Since dim Em =4mn +2n, dim - n Em =2mn - 2 . Consequently
SNP NE)=mn-1 by 6° of Lemma1.13 and this implies

i(K) = mn -1, a contradiction.

Now the bounds for ¢, can be obtained. Let
= max H(¢); v= min H(L) -
2] =1 =1
The definition of H then implies that
Z - e o2
vigl® =H() = uitl

for all ¢ ¢ R?‘rl . Consequently for z ¢ E,

& &
5= |} =i} e Sl s 7=l 2| 2
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and in particular for z¢ S,

S 2n
1.25) 2T < |2)?, = 22
Lemma 1.26: = =¢c = -
TR v m I
Proof: As was shown earlier,
(1'27) c = mgx A(Z)

ZeE nsm
Let B denote the ball of radius r in E under -1l 3
L

Then by (1.25), (1.27), and the form of A,

(1.28) Chp = _ max Az) = -—
zeE NE_NB B
ottel

Zné
u)

since the maximum is taken on when

(—ZLTn)é N span {elk' glkl k=1,+-+,n} . For the lower bound on Cpy »
choose any Ke SN Em such that i(K) = mn and set

F=("n E)® E° ® span {ell't’ll} . Then F is invariant and
dimF=2mn +2n+2 . By Lemmal.24, KN F# ¢ . Therefore if

Ze¢ KN F (and a fortiori z e §) ,

A
min A(z) = A(z) = max A(z) .
ze FNS zeK
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Since K was arbitrary,

min A(z) = c

FNhS -
As in (1.27) - (1.28) ,

min  A(z) = min A(z) = -4
ze FN S sEFRB, 1 Ly
&)
Vv
Next let B ™ (pm,qm) denote a critical point of A/Sm
corresponding to n ° The Euler equation satisfied by 2 is
21
(1.29) 0= fo (P @) o + (P, )
- N lH(z ), p)]Rn + (Hq(zm)'Q)an]} dt
for all (p,q) € Em where )‘m is the Lagrange multiplier for our problem.
Choosing (p,q) = (pm,qm) and using (1.4) (iii) vyields
2m i 2m o
(1.30) 2 {) (pm,qm)an dr=2c =\ fo (2,0 Hz(zm)]RZn dt
=4T\N_ .
m

Combining (1.30) with Lemma 1.26, we have shown
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cm
R ==

- o &
2v m m 2

IA

Lemma 1. 31:

Note in particular that )‘m is bounded away from 0 and -«

independently of m .
Lemma 1.32: There is a constant M independent of m such that

(1.33) I zmllE =M.
Proof: We already have bounds for || zmll , independent of m .
L
Thus similar estimates are required for || :'z.mll , - Choosing
L

(p,a) = (g, -b_) in (1.29) and integrating by parts gives
(1.34) Nzpl 2= Iagl Izl 5 -
By (1.4) (iv),

F (0] =altl

1

for all ¢ € len where a depends on bounds in the C* norm for ¢ and

1

H restricted to H (1) . Therefore,

(1.35) I2pll 2 = alrgl lzgll 2




22

so (1.33) follows from (l1.25) and Lemma l.3l.

Completion of proof of Theorem 1.1: First we finish with the CZ case.

Lemmas 1.31, 1.32, and the Sobolev Imbedding Theorem imply that along
some subsequence xm -Xe (-»,0) and z ~converges weakly in E and

strongly in L” to z = (p,q) € S satisfying

zil

(1.36) o= [ {9
R

/\ . _— N\ }
3 o (p,q)]Rr1 = MHZ(Z),Z)RZn dt

A AN AN
forall z=(p,g) e U E
me IN

But the right hand side of (l1.8) can be assumed to be continuous.

Y This implies (\,z) satisfies (1.8) a.e.

Therefore z is also continuous and Theorem 1.1 is proved for this case.
Next suppose H ¢ Cl s et Hj(g) be a sequence of C’Z functions

which converge to H in the Cl norm in a neighborhood of H_l(l) .

Then we can assume HJ. satisfies (Hl) - (H2) and by the result just

proved, (l1.8) possesses a solution (/x\j,/z\j) with H replaced by —ﬁj .

A
Note in particular that )‘j satisfies the estimate of Lemma 1. 31 with

i1 and v replaced by

i, = max H({); v.= min H,((L) -
e T L

Since ﬁj(g) converges uniformly to ﬁ(?;) for ¢ € SZn-l 7

i

(1.37) =

= -

e 5
j 4

< |-
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for all large j . Since /z\j lies on H}l(l) , (1.8) and the Cl convergence

of Hj to H near H-l(l) then provide uniform bounds for H'z\j || 1
C
A\

Hence (1.8), (l1.37) and these bounds imply (/ij,zj) converge along a

subsequence to a solution (X\,z) of (1.8) with z(t) lying on H-l(l) "

The proof is complete.




§2. The prescribed period case.

This section concerns the existence of solutions of (1.2) when the
period is prescribed. The arguments given here are based strongly on those
used in a recent paper of the author [11] dealing with periodic solutions of
semilinear wave equations. As in [ll], these methods can also be applied
to the forced case where H depends explicitly on t in a periodic fashion.
We begin with a free vibration problem in which HZZ(O) vanishes. Then we
indicate the modifications necessary to treat the analogous t dependent
Case. Next we investigate the situation where HZZ(O) is a positive definite
matrix. Lastly the special case H(p,q)= Q(p) + V(q) will be studied.

The same notation as in §l1 will be used below.

Theorem 2.1: Suppose H ¢ Cl(]Rzn, R) and satisfies
2
(H3) H(z) = o(]z|") at z=0,

for |z| =T where GG[O,%) y

(H4) H =0 and 0 < H(z) = G(Z,Hz)Rzn

Then for any T > 0, there exists a non~constant T-periodic solution of

v

d
(2.2) ﬁ: JH,

Remark 2.3: Observe that z = 0 is a trivial periodic solution of (2.2)

and (H4) permits the existence of other such trivial equilibrium solutions.

Also note that if we write z=r{ with (¢ Sz'n-l , (H4) implies that
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dH _1
(2.4) === =i— (2, H )
r z'R

1

anerH

ig

for r =T and on integration (2.4) vyields

1
(2.5) H(z)zall.zle—a2

for all z € ]RZn where a8, = 0 are constants.
The proof of Theorem 2.1 is given as a sequence of lemmas.

1 1

Again making the change of variables 7= 27T t= A\ 't, it suffices to

find @ 27 periodic solution of

(2.6) z=\gH, .

For z € E, consider

2
2.7 S lp,@__ - AH(z)] dt .
0 R

A formal calculation shows critical points of (2.7) in E are solutions of
(2.6). A direct treatment of this variational problem encounters the same

obstacles as in §l1 with the further complication that z = 0 is a known

critical point. As in §l we use a finite dimensional approximation argument

attempting to find critical points of (2.7) restricted to Em and passing to

a limit as earlier. Additional care must be taken to avoid the trivial solution

z = 0 . Such a finite dimensional existence argument for (2.7) succeeds
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in determining approximate critical points but some difficulties in passing
to a limit due to the fact that there are no restrictions on the growth of H
at « lead us to replace H by a modified function which grows at a prescribed
rate (that we choose to be \z|4) at « .
Let K >T1 and select X ¢ Cm(R+,IR+) such that X(s)=1 if s =K,

x(s)= 0 if s =K+l , and X'(s) < 0 if s e (K,K+l) . Set
(2.8) Hy(2) = x(| 2 )H(z) + p(K) (1-x(| 2| Dz .

Lemma 2.9: HK satisfies (H3) - (H4) with 6 replaced by

A~ 1
0= max(e,z) provided that

(2.10) o(K) = (k+1)™*  max H(z) .
K=|z| =K+l

Proof: (H3) is obvious. To verify (H4), note that

(z, H L+ lzIxXH (K [4(1-0)| 2|4 - X'| 2| ®]

Kz)RZn = X(z, HZ)RZ

Thus for r = |z| =K,

while for |z| = K+1,

e e T Y T
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- 4—
(z, HKz’Rzn = 4p(K)|z|" = 4Hy .

Finally for K= lz| = K+1,

1

(z,H = 07 XH + 4 p(K) (1-%) | 2| ¥ + | 2| X' (H- p(K) | 2| %)

Kz)R?.n

min (0L, 4)H

v

K

provided that (2.10) is satisfied. Hence (H4) holds.
For what follows, we assume p(K) satisfies (2.10). Having
introduced HK . we replace (2.7) by

2

(2.11) Kz)= [ [(p,q) . - NHg(2)] dt
0 R

n

and seek critical points of I |E . This is a rather different situation than
m

the constrained variational problem of §l . Critical points will be obtained

with the aid of the following lemma. Here for
s< ., ]Rs={XGRJ‘X'-'(xlf°"lxslol'°‘lo)}l

: A :
(R = xe Rlx=(0,++,0,x ), -++,x)) and B = {xe R |x|<r}.

Lemma 2.12: Let Je CYR,R), k<j, and 1: R —R with

J(x) = I(x) for all x e ]Rj . Suppose

(I1) I(x) =0 forall xe le ’

(12) There is a constant p > 0 such that [ > 0 in (Bp\{O}) n (Rk)l

(I13) There is a constant R > p such that I =0 in R’ \BR ;

s RR—
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Then ] has a positive critical value characterized by

(2.13) b= inf max J(h(x))

hel xe_B;ﬂ]RkJrl

where
] — K+l _j R )
r = {heC(BRﬂR ,R)|h(x) = x if I(x) =0} .

Proof : A proof can be found in [11]

Identifying Em with le where j = 2n(2m+l), it is easy to verify
that the hypotheses of Lemma 2.12 are satisfied by I as defined in (2 .11)
with =1, k=2mn+2n, R'= E°@E)NE_, ®" =E"nE_, and
Rl P00 E @ span{e ) NE =V . Indeed (H4) implies (Il) and
(13) and (H3) implies (I2) . Thus (2.13) defines a critical value
b >0 of IlE where

m

r=r_ = {h e C(BR(m) n Vm,Em)lh(z) =z if I(z) = 0} .
The minimax characterization (2.13) will be used tb obtain a uniform upper
bound for bm which will lead in turn to an estimate for z,. 4 critical

point of I*!E corresponding to b .
m




29

Lemma 2.14: There are constants Ml’ M, independent of m and K such

that
(2.15) b =M,
21
(2.16) {) (2 . HKz(zm))RZn dr = M, .

Proof: Choose h(z) =z ¢ Fm . By (H4),
(2 177) 0 < bm = max I(z) = max I(z) .
Any function 2z(7) € Vm can be written as

z(T) = r(¢(t)cos w + (2m) (pll(T)Sin w)

o] —

O !
where { e (E° @ E")NE_ with ”‘-*“Lz =1, we[0,2m], and r= llanZ .
Choosing z ¢ Vm which maximizes the right hand side of (2.17) — such as

z exists via (H4) — and substituting in (2.17) yields

2m 1 2
(2.18) N[ Hy(z)dt s 3 2] 2
0

Hency by (2.5) (for HK) , (2.18) , and the Holder inequality,

Dl

2 2m
1
(2.19) ZHZH 3 = a fo lz(1)]° dt - 2ra, = a3llz|| -2ma

LZ




where the constants a.

implies a bound on |[z!| 2 independent of m and K, say |zl 2 BT
i E

2e Sy
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are independent of K . Since 6\—1 > 2, (2.19)

A

Hence from (2.17) and the form of z ,

(2.20)

IA
oo —

m

-

M

I

To obtain (£.16) , observe that at 2z, we have

(2.21)

for all ¢ ¢ Em .

I (Zm)l_’7 = 0

Taking ¢ = (¢,l) gives

27

(2.22) 0= fo [(pm,x‘u)an + (‘P'qm)Rn - )\(HKZ(Zm)r ‘;)]Rzn] dt

where z = (pm,q

yvields

(2.23) b

m

) -

2
TR [
0

2

s

2T

)

0

p(RI-X( 2z Mz [* 4 5 121X (12, Hz )= o) 2, [ )} dn

A
Tm

o e ER %
Choosing ¢ = Zn and forming I(zm) > I (zm)zm

[’é—(zm’ HKz(zm))n?.n g HK(zm)] dt

{(% - 9)x(| zml )z, Hz(zm))RZn +

(H(z,)) + (5 = 0) (2, Hy(2)) p) 1
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where T = {te[0,27]] lzm('r)l =Tt} . Hence using (2.10) we have

21

3 1 1 =
(2.24) by, = min((z - 6),7) fo (2,2 HKz‘zm”RZn dr - a,

where ay is independent of m and K so (2.24) implies (2.16).

The next step in the proof is to obtain bounds for ém L

Lemma 2.25: There is a constant M3 depending on K but independent
of m such that || z_| 2 =M, .
Proof: Choosing (¢, () = (—bm,qm) in (2.22) and using the Schwarz

inequality gives

: 3
(2.26) Iz, 2 = MHEgE)] 2 =3+ izl 2

via the definition of HK where ag depends on K. The right hand side

of (2.26) involves || zmH 16 for which we do not yet have an upper bound.
By (2.16) and the definition of HK >

(2.27)

s

[ 1459

where ag depends on K. The Gagliardo-Nirenberg inequality [14] implies
that
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7 1/3 2/3
(2.28) Iell = azlielg l!t..IIL4

forall ¢ ¢ E. Henceby (2.26) - (2.28),

, p& 1/6 /3
(2.29) l2g]l o = agtlizy| fﬁ L LU R L

IA

3.2 1/6 2
agl + [z | 2) =g+ zmHLw I zmHL4)

2 1/6
= a9+ l2g]%)

Consequently (2.29) provides an upper bound for || zmll ., independent of
m but depending on K . Returning to (2.26) , we get the desired bound for

-
#z_l 5 -
m LZ
By Lemma 2.25 and the Sobolev Imbedding Theorem, a subsequence of

z ~converges weakly in E and strongly in LY to 2y = (pK, qK) € E

satisfying

21
(2.30) 0 = {) [(pK,q,)]Rn + (o, qK)]Rr1 - k(HKZ(zK), L)RZH] dt

is a classical

forall ¢ = (¢,¢)e U Em . It follows as in §l that z

meIN K

solution of

(2.31) é:xyHKz.
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The following lemma enables us to obtain a solution of (2.6) from

(2.31) .

Lemma 2.32: There is a constant M4 independent of K such that

Nzl =M, .
K" {0 4
Proof : Suppose for convenience that K =T . By Lemma 2.9,
A
(2.33) Hy(0) = B(L H,(0) o + M

for all ¢ € ]RZrl where M5 is independent of K . Choosing (= zg,

integrating (2.33) with respect to 1 and using (2.16) (which is valid for

zK) gives

2T 5
(2.34) ‘to Hy(z,) dT = OM, +27M; .
Since z. is a solution of the Hamiltonian system (2.31),

K
HK(zK(1))=‘ constant. Hence (2.34) implies

N
o
(2.35) Hg(zg) =57 M, + Mg

and the lemma follows from (2.5) for HK -
Lemma 2.32 implies that for K = M4 . HKz(zK) = Hz(zK) and
therefore zg satisfies (2.6) . The next lemma completes the proof of

Theorem 2.1.
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Lemma 2.36: ZK‘ 1) # constant.

Proof : We use a comparison argument. By (H3) - (H4) for each ¢ >0,

there is a positive constant AF depending on K such that

A I A
. = !2. - R 4 4 -
(2.37) Hefz) =5 2] 4 i;l(pi +q;) = He(2)
i _ - Zn .
for all z< R Where a = (p: Q) = (pll NS, pnl q11 e 'lqn) -

For z € E, define

Zh 5
i(z) = [(p.q@) _ - NH(2)] dt .
JO R" K

By (2.37), J(z)=Iz) forall ze E. Itis easyto verify that for ¢

sufficiently small (and independent of m ) 7l E satisfies the hypotheses
m A

of Lemma 2.12. Therefore by that lemma, 7l E has a critical value bm
m

and by (2.13) ,

(2.38) 0<b_=b

N A
If z is a critical point of J| corresponding to b__ , then
m Em m

2m
g A e Ny A4

{2 39) bm= ](zm) —%](zm)zmz %AE f Zl (pi + qi)dT .
(2R
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Now suppose that ZK(T) is a constant. Since zy satisfies (2.31),
(v o]

Hy(zg) = 0 . Along some subsequence we have z i e zg and therefore

0 2
HK(zm)—L——:*HK(zK) . From (2.26) we see that zm-——L—>0 .

Observing that bm > 0, the formof I implies that

2m
(2.40) b =Lz, ) ==\ fo Hyl(zg) d7= 0

4
AN
By (2.38), bm - 0 along the same subsequence and by (2.39) , /z\m L—éo :

A\
Lemmas 2.14 and 2.25 applied to the ] problem show that {zm} is bounded

0

A
in E. Hence by (2.28), zm—L—-éo along our subsequence. We claim

this is impossible.
Indeed dropping the subscript m , we write Z= t + Z where
- ‘e o) ‘e o - .« e o + ¥ B
Q = (gll Ignl nll Inn) € E and z (Pll ’ Pnl Qll IQn) € (E O E ) n Em

Choosing (e,¢) = ¢ in (2.22) shows

L n 21
(2.41) ancelel® e a, T € +npn=ag L[ Le] - Pe 4
i= =;

3. 3
A ('ﬂi - qi)ﬂi] dt

Simplifying gives

21
2 2 .3
1fo [(3& 2, + 38,5 + F)E,

.I-Ih[_\ﬂ:

n
(2.42) 2n 121 (e,,‘i1 + n‘i‘) = -

2 pA 3
+ (3“101 + 3’11Qi +Qi)'f\i] dt .
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Consequently by the Holder inequality and some crude estimates
(2.43) lel =ollzl , =allzl -
From (2.22) again with (.4)= (Q,-P) , we get

2 2 PG 2 A b

(2.44) zll", = elzll , +aslzl _llzll ,=2elzll , +aylzl

LZ LZ 3 L™ LZ LZ -+ L=
where we used Young's inequality and a4 depends on & . For any
w € E+ ®E ,

T -
w(t) - w(t) = [ w(s)ds .
v

Integrating with respect to t shows
2m T .
2rw(t)= [ (] wi(s)ds)dt .
0 t
Hence
, . TR
(2.45) Iwli = lwl ;=@m lwl,
k& L L

Combining (2.43) - (2.45) yields

2.46 llZH2 22m)’ ||Z||2 ||ZH6
.4 = T + .
: ) L : L” 5 L

me
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-4 § : . & : -
Letting ¢ (211) , (2.46) implies {E| Amf! } is bounded away from 0 .
o0

4

y *3 ;s - = N . o0
£ 0 for then J(zm» . 0). Therefore zm cannot converge to 0 in L~

‘“m
ontrary to what was shown above. The proof is complete.

Next we study the effect of weakening the hypotheses of Theorem 2.1.
The ideas used here are similar to those in the proof of the above theorem so
we will be brief.

: PP il ) 2n } _ : =

Suppose first that He C(R X R, R), H(t, z) has period T in t,
and (H3)-(H4) are satisfied We then seek a T periodic solution of (2.2)
or making our usual change of variables, a 27 periodic solution of (2.6).
An examination of the proot of Theorem 2.1 shows that it carries over
essentially verbatim to this case with the exception of Lemma 2.32. Thus

we have a nonconstant 27 periodic solution z, of (2.31) for each K> 0

K

and it remains to show that for K sufficiently large, 2z, satisfies (2.6).

K

'e¢ do not know if this is the case without imposing further conditions on H

’

the difficulty being that (2.35) is no longer valid. However suppose we

() g 2o x.'ll -‘»" %‘(g,l{z(é)) ) 1

JKN“
for all R for some constants q,p > 0, i.e. the radial component of
3! annot get too small compared to !Hzf . Then we can obtain the

necessary pointwise bound for 2z

K Indeed by (2.34), (2.5) and the

Holder inequality,
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(2.47) I zKH LZ = Mg
where M6 is independent of K . Furthermore by (2.31), (H5), and (2.16)
| = | = <<
(2.48) Izl 1= MECozpl ) = My,

M7 being independent of K . Letting z, = + Z,, where S

g ki g

and Z,c ET®E, (2.47) gives a bound for |§K{ independent of K

K
while (2.45) and (2.48) provide a similar bound for | an e

This gives the desired estimate for || zKH = and we have shown

Theorem 2.49: Let H e Cl(]RX len,R) with H having period T in t

and satisfying (H3)-(H5). Then (2.2) possesses at least one nonconstant

T periodic solution.

Remark 2.50: Other hypotheses can be used instead of (H5) to get existence
results in the t dependent case. For example, consider the perturbation
situation where H(t,z) = H(z) + G(t, z) with H satisfying (H3)-(H4),

G = 0 and satisfying (H3) , and G is uniformly bounded in C1 over

R X IRzr1 . Then (2.31) has a solution zK as earlier and

- - 9G
a7 Hg(t zp) = 57 (Tozp)

Therefore
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H(1, 2(1) === || Ho(+, 20, + 128 (1, z, (1)
¢ teS T = R el T Mg S e B TR
N\
= eM‘2 + constant
via (2.34) . Hence (2.5) gives a K independent bound for || zKll )
. s
Next we study the effect of replacing (H3)-(H4) by
A A
(H6) H(z) = Q(z) + H(z) where H satisfies (H3)-(H4)
and Q(z) is a positive definite quadratic form.
Theorem 2.51: If H e Cl(len,R) and satisfies (H6) , then for any
T >0, (2.2) possesses a nonconstant T-periodic solution.
Proof : We will sketch the proof. Consider first the linear Hamiltonian
system
z. <
(2.52) w=7Q, w.

Since Q is positive definite, (2.52) possesses 2n linearly independent
periodic solutions. Indeed if |1 is an eigenvalue of 7Q,, with a correspond-
ing eigenvector £ , then |4 is purely imaginary and (2.52) has a solution

of the form wi(t) = e“tg with period Zniu-l . Since (2.52) is a real system,

w(t) is also a solution of (2.52) . Let &1, cen, an be linearly independent
eigenvectors of ngz with corresponding eigenvalues Mpe st My -
We can assume §j+n= F,j, l=j=n. Set




£ = eik’rg. " e-ikTE

o= ; Rl el 2 k .
Jk ] ]lJ ll Inl 6%

Then z = fjk satisfies

and

21

Lemma l.1l. Note that E_ = span {fjkil =} =2n lk| =m}.

2m A
I(z) = fo [P @), = MQ(2) + Hy(z))] d

L v - .

217
: 0y S
fo [P, @, - MAz)]dT = ‘uj \) fo Q(z)dt -

40

We can assume that the functions fjk(T) are A orthogonal in the sense of

Let
o Nt = span {fjk\-idsj >}
N = span {fjkl-iu—kj < &}
N° = span {fjklirkj = %}
Now as usual to get a solution of (2.2) we try to find critical points
of

-
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2\
where ﬁK = XH + (1-X)| z|41 and we have made our usual change of the time
variable. Applying Lemma 2.12 to I/, with R*~ (N @ N°) N E_ and

k+1 = O ol y
R =N ® N ¢ span {fﬁ(\} where k is the smallest positive value of k

such that tTk > N for some eigenvalue uj , we get a corresponding critical
value bm and critical point 2z, as in the proof of Theorem 2.1. With minor
modifications, the earlier proof then yields a solution z of (2.31) . It
remains to show z(71) # constant, i.e. we need an analogue of Lemma 2.36
for this problem. By the argument of Lemma 2.36 (modified by the inclusion
ofa Q termin J), fz\m —i—> 0 as earlier. Again we will show this is

impossible. Two cases are considered :
casei: N°= {0} .
Then

W= \¢ w
7 Qs

has no nontrivial null vectors. Hence the same is true of
N = \NJ q
w szzw + eNgw

A ]
for all & sufficiently small, say € < € . Equation (2.21) for J with

z=2z can be written as:
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where Pm denotes the Lz' orthogonal projector of E onto Em and

n
G(z) = % As Z (p;1 + q‘i}) . Since the left hand side of (2.53) is an
i=

isomorphism from e.g. E to L'Z , by the Sobolev Imbedding Theorem,

3

(2.54) 120l o = a2yl g = a2,

A A
with Qe ay independent of & provided that € = € . Consequently zZn is

bounded away from 0 in L” and this case is settled.

Case ii: dim NO >0 .

Replace Q by Qg(z) = Q(z) + 6|zlz where 6 > 0 . Let

2T

I(z)=Lz)- 6 [ |z]%dv
0

and define 16 similarly where ¢ is small compared to § Thus

{2 .55} ]6(2) = I6(z) = I(2)

forall ze E. Let

- 1%
N, = span {f'k|uj < N+ 6}, etc.
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Then N°® N C N and NG = {0} for small 6>0. If I(z ) ~0,
then Ié(zm) — 0 where z, isa critical point of I6IE satisfying
0 < }5(zm) = I(zm) . But the argument of Case i implies {” zm” L°°} is

bounded away from 0 . The proof is complete.

Remark 2.56: As was mentioned in the Introduction, Theorem 2.51 must

be interpreted with care since it contains no information on minimal periods of

solutions of (2.2) . 1[It is easy to give examples whecie any minimal period
is bounded from above. E.g. if H(z) = lzl2 + f(lzl2 = g(|z|2) , the

corresponding Hamiltonian system can be written in complex form as

(2.57) ¢ = 2ig"(lt] %)

where ¢ =p+iq. Hence (= {,OeZlg Y and if T is the minimal

period of (2.57) ,

T
=

s
provided that f =0 .
We conclude this section with a case of interest in mechanics which
is not covered directly by the theory presented thus far. Suppose
H(p,q) = Q(q) + V(g) where Q is a positive definite quadratic form and V
is non-negative. For simplicity, we take Q(p) = %Iplz . Then the

corresponding Hamiltonian system is




(2-59) a: ‘V

Treating the corresponding variational problem (for 27 periodic solutions)

involves studying

2T :
(2. 60) =/ flal® -\ wa) an

This functional can be dealt with in a more direct fashion than our previous

cases.

Theorem 2.61: Suppose Ve CYR®,R) and satisfies (H3)-(H4) .

Then for every T > 0, (2.59) possesses a non-constant T-periodic solution.

Proof: We will produce the solution as a critical point of I on
E= {(p,q) € Elp= 0} . No approximation argument is needed for this case.
We use the following generalization of Lemma 2.12.

Below (PS) denotes the Palais-Smale condition which means every

sequence u. such that I(um) is bounded and I'(um) -0 is precompact.
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Lemma 2.62 : Let X be a real Banach space, I¢ Cl(X, R) , and satisfy

\
(PS) . Suppose further that X = Xk ® X where dim Xk = k and

(14) .. =6,
lxk

A
(I5) There are constants p,aq > 0 such that I > 0 in (Bp\{O}) N X and

A\
I=q on aBpﬂX.

(16) For each finite dimensional subspace Y C X, there is an R = R(Y)

such that 1 =0 on Y\Bp -
Then I has a positive critical value ¢ in X characterized by

¢ = inf max I(h(u))

hel ueB n x
R(X, )~ k+l

where

I''= {h e C(B X)|h(u) = u if I(u) = 0}

15 SO
R(Xk+1) k+1

A
and X ., = X, @ span {¢} for any fixed ¢ < X\{0} .

Proof : The proof of Lemma 2.62 can be found in [15] .

Proof of Theorem 2.6l: Take X=E, Xk=E ME, and X=(E") O E -
Then it is easy to verify that I ¢ Cl(X,]R) and (I4)-(I6) are satisfied.

(E.g. (6) follows with the aid of (2.5)). Assuming (PS) for the moment,

B a o
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Theorem 2.6l is immediate since any critical point of q of I in E isa
classical solution of (2.59) and since ¢ > 0, q is non-constant.

To verify (PS) , first define

1
2

lally = dlal?, + slal*®

where £ >0 . Thus | -|l, is equivalent to | -|

6 7 Now suppose q is
a sequence in E with lI(qm)| = K and I'(qm) -0 . Then for m large
enough,
@.63) (Tt S IR b Py =2 v a|
. U9y ! = 1haglg = Bllay 12 4 (Apy q(qm))Rn T
= flapll g
Therefore
2 2T 2
(2. 64) X fo (U Vgldm)) o 47 = Hagllg + Taglg

For v € R" sufficiently large, by (H4) and (2.5) ,

2
Z.65 = 0(y, ;
(2.65) lyl (Ve Vg

Hence by (H4) and (2.64)~(2.65) , for some constant Yy independent of

m,




"r"
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1 B w2 % T

(2. 66) K=3lla, -%llqmz\Lz—x jo V(g,) dt
=diq 12 - £+ %en (gl + layl -

Choosing £ ¢ (0, )\2(1-26)) , (2.66) gives a uniform bound for || qu/E\ :

Thus a subsequence of q, converges weakly in E and strongly in L* to

E c E. Moreover along this subsequence the component of o in

EO n E , i.e. the mean value of q,, converges to the mean value of q .
A : f

Restricted to (EO) NE, I(q) is of the form g - &(gq) where & is

compact. Hence I'(qm) —- 0 implies T @(E) along our subsequence

and (PS) is verified.

Remark 2.67: If V depends explicitly on t in a time periodic fashion,

the above proof carries over unchanged and (H5) is not necessary here.
Likewise if (H3)-(H4) is replaced by (H6) (with Q(q) =3 |ql®) we get
the analogue of Theorem 2.51 directly via Lemma 2.62. Finally if El‘fﬂ -
is replaced by a positive definite quadratic Q and (2.58) is appropriately

changed, similar results obtain. However we will not carry out the details.
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