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ABSTRACT

Systems of partial differential equations governing the
motion of one-dimensional bodies subject to internal friction
are treated. The implicit function theorem is used to
linearize the eguations about an equilibrium solution, and
criteria are developed for the stability of the equilibrium

solution.

AMS (MOS) Subject Classifications: 35B40, 35K45, 73-35
Key Words: Dynamic stability, Rod theories, Viscoelasticity

Work Unit Number 1 (Apvlied Analysis)

EXPLANATION

This paper treats the general equations of rod theory; it does not
deal with any specific application. The assumption of internal friction
is introduced both as a better approximation to reality and to obtain
tractable (parabolic rather than hyperbolic) differential equations.
Under this assumption, we show that the desirable theorems for the non-
linear equations: existence, uniqueness, and stability, follow from the

analogous theorems for the linearized equations.
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the National Science Foundation under Grant No. MC%JS-1738S.
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DYNAMIC STABILITY OF ONE-DIMENSIONAL NONLINEARLY VISCOELASTIC BODIES

Russell C. Browne

In this paper we consider the problems of existence, uniqueness, and
stability for the quasilinecar partial differential equations governing
the motion of nonlinearly viscoclastic one dimensional bodies. These

equations have the form

3
R0 Blgesi U, + L8008 = o BN 0B, 08 05
¥ Blog o leasl = Fin inen 5]
for s, <s <s, and t > 0.

In equation (}.1l), u 4is a function of s and ¢ with values in RN,

a, m, n, and f are functions of the indicated arguments with values in
N 3 i ; 3 N N
o, and A is a funcltion with values in L(R ; R ), the space of

. P N
lincar Lransformations on R .

Boundary conditions for equation (1.1) may be stated parametrically as

(1.2) uls ,t) = q (v ,t), a=1,2
aga 39“
(1.3) '.’.“E’s"."'sL'E"§._x)'§°\;‘(;(vq't) = py(ug,usu ,t) m-(ya.t). a=1,2.

In eguation (1.2), v = v, © is an unknown function of t with values

v
¥ ~1 ~2
N N?

1

in R *R “, where 0 < N N, < N. In equation (1.3), p = P 2 P,

)
3 E . : ; ¢ 5 N N
is a given function of the indicated arguments with values in R @ IR .

Frequently, e 0 (a0 = 1,2), so that equation (l.2) specifies y(su,t)

complctely while equation (1.3) is vacuous, or Na = N so thHat equation

(1.3) specifies the value on m at (su,t) completely while equation (1.2)

wwm Pl
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"is vacuous. Intermediate values of NOl may arise when, for example, the

end of the body is constrained to move along a curve or surface in three-

3g
dimensional spacce. We assume that rank 333 = Na'
~a
Initial conditions for u are
i3 (1.4) u(s,0) = u (s), v (s,0) = u,(s).

Equations (1.1) to (1.4) are derived in BROWNE (1976); the correspond-
ing stationary equations, (1.10) to (1.12), below, are derived in ANTMAN
(1972, 1976a). The existence and reqularity of solutions to the stationary
equations is treated in ANTMAN (1976b). A special case of the problem
considercd here is treated in BROWNE (1977).

We assume the following conditions on the given functions:

(1.5) The functions A, a, m, n, f' and p are defined for
(Bs,g,gst,gtlslt) in an open subset of []RN]4 x [51,52] X R+,

and for each value of these arguments;

am
& . e o e
(1.6) 33; (gs,g,gst,gt,s)f L(R; R") is a positive definite
and symmetric transformation on RN,
o N, _N
(1.7) s=—— (u_,u,u_.,u ,s) ¢ L(R ; R) is a positive definite (but
Bust ~s'~'Ist’~t
not necessarily symmetric) transformation on mN,
(1.8) A(ug,s) e LRY; ®RY) is a positive definite symmetric
transformation on RN,
(1.9) the functions A and a are related by

w'A(u,s)w .

o
c
z
)
1"
Qv
: I°’

In this paper we construct solutions to equations (1.1) to (1.4) in

the neighborhood of a solution u*,v* of the stationary problem




(1.10)

Tg WIS An*. 0:0,8) * BT 7, 0,0:5) = £4u0.0%,8)
(1.11) g*(sa) = (va)
aqg aq;
. - o el Faal . el 8 e
(1.12) T(gg,g,g,p,sa) (Ya) ga(gs,g ) = (Yu) -
aY(‘( aYO.

Our main tool is the implicit function theorem. In this section we give an
explanation of our notation and the definitions of the Banach spaces

employed. In Section 2 we give criteria for the continuity and Fréchet
dif ferentiability of functions on these Banach spaces. In Section 3 we

study the linearized version of equations (l1.1) to (1.4), obtaining an

estimate on the decay of solutions as t * » . In Section 4 we combine
the results of Sections 2 and 3 to obtain solutions to the full nonlinear
problem. When these results apply we obtain existence and stability in
a single step and obtain the same decay estimate as t + » as obhtained
for the lincar equation. We obtain uniqueness from a similar argument.
We call the stationary problem conservative if there exist real valued
functions %"0, 'J], “‘24 such that
9 1}
@(\15,\_1,(2,9,::) = 5% k'o(gsllj;s) '
<s
(L. 13)
n(ug,u,0,0,8) = 50 vy(ug,u,s) o
— = 0
2
au‘: 1
(1.14) =
f*(u_,u,s) - ﬁ~ v, (u_,u,s) + ruiz_ P. (a_,u,s)‘u. + ~—§E~ s (a su,s)
— i STV e dudu, "1 ~s'=~! ~s dsdug 1 =gt
g " 3
3 a a _d 9
1.15 W, a) e (% & = — - ) S
( Yo el av., (v,) v, ¥y V) ) bug vy tugeu,s ) 3V, 5%

whencever (1.11) holds.

If hypothesis (1.13) ho

called hyperelastic.

-

lds the material may be




Hypotheses (1.14) and (1.15) are adopted to make eguation (5.1),
below, hold. To illustrate that such relations arise in practice, we
consider a rod with ends fixed and subject to a unit (force per deformed
length) pressure from above. If we take 1= (x,y) € R2 and locate the
center of the cross section at s at x(s)i + y(s)j, we may take
flug,u,s) =y i - XsJ. The loading is conservative, the potential energy
of a deformed configuration being given by the signed area between that
configuration and the reference (straight) configuration. Thus we take
Wl(gs,g,s) = %(xsy - xys). Then hypothesis (1.14) is valid while with our
boundary conditions hypothesis (1.15) reduces to the identity 0 =0.

In Section 5 we consider conservative problems. We show that the
eigenfunction criterion developed in the previous sections may be replaced

by the second variation test for stability. If the second variation of

the energy
%2 2
(1.16) E(w,v) = [ yylul + yjlulds + y, [v]]
s a=1
1
at u = u* is positive definite then u* is stable in the topology of
C2+a. Although the second variation test has been widely used for over

a hundred years, its mathematical validity is often cuestionable, even
in one dimensional problems (KNOPS & WILKES, 1973; KNOPS, 1977). 1f u - u*
is small in the C1 topology then tne second variation estimates

E(u,vy) - E(u*,v*) in terms of the norm of u - u* in the 0y topology.

A straight forward stability argument is thwarted by these distinct
topologices. But we shall show that if the second variation is positive

definite then all derivatives of u occurring in the equation remain close

~

to those of u*.

~

1.17. Notation.

~MAam A am s aaa

We represent elements a, b, of RN by lower case, bold face sans-

serif Latin letters. We denote the usual inner product of a and b on

4-




RN by a‘b and we set l[al| = Ya~a. If A 1is a linear transformation

of RN, 2 a€e D€ L(RN; B Vg then its value at a 1is denoted A-a

and the value of the quadratic form on A at a by 3-5-3. If g is

a differcntiable function on a domain in R"

then its derivative at a,
: n N ag 39
which is an element of L(R ; R ), 1is denoted by 5E(§)' Thus Si(é)'?

~

denotes the differential of g at a in the direction of b. On the

g e fi
other hand, c-gi(a) denotes the element of L(nf5 R) whose value at
ag T AT
§ is c- gi(a)-b). We use a similar notation for derivatives of other

kinds of functions. We use the same notation for elements of EN.

If (s,t) » u(s,t) 1is a function defined on [51’52] x RY  we denote

Ju
by u_ and we denote 5% by Uy - We denote the function s - u(s,t)

Ju
ds
b)’ (' ’

e
-+

). If (u,v,w,s,t) » g(u,v,w,s,t) is a function defined on

lRN]3X {sl,szl » RY  and the composition g(u,ug,u ,S,t) 1is of interest,

~
we denote this function by (s,t) » glul(s,t). We use the same notation

for other types of compositions.

1.18. Abstract Spaces.

~ O

4 :
Let TC R, 0 < T < and QT = Ex [0,T], ©or I X R if T = =,

and let 0 < a<1l. Then Ca(I;Rn) is the Banach space of R valued

functions on 1. with finite norm

luts;) - u(s,)|
(1.19) |g|u = sup |u(s)| + sup = - '
scI sjotyel [sy - 52|
a,%a n n
and C °© (QT:B?) is the Banach space of IR valued functions on O

with finite norm

Ig(sl,tl) = g(sé,tz)l

(1.20) |y = sup |ul(s,t)| + sup
01'2_ (s't)‘QT (slltl)‘OT la P 't - &

Isy = s, 1 2!




2 .
We define C +“(1;n{H to be the Banach space of all R"  valued func-

tions on I, twice differentiable in s, with finite norm

.2 = .
(1.21) fuls., = lol, + hud +fo .t
o a
2+u,1+-§—a = ]
and we define C (QT;IR ) to be the Banach space of R valued
functions on QT with finite norm
Gl e e Rl Ry R
L. 2 '2 "2 #2
a,%—d 2+a,1+%oz
For any real o we define Co and Co to be the spaces
of functions on QT with finite norm
(1.23) hghoy i mlgh G SRR e el g
050, 0 Oy =0t 2ta,; 1400 240, 1+
2 2 2 1 2
ot a ot
where v = e "u. We define the spaces X , X , etc. to be the closure
B = - 1
=) a G,*z‘(!
of the C functions in the respective spaces C , C ¢ ete.
m m

Let D denote an open set in either R X I or R X QT according
to the context. We define AQ(D;]Rn) to be the space of ]Rn valued
functions g on D such that there exists a constant K and function

w R++ ]R+ such that for all (gi,si) e D

(1.24) lgtu s < x,
a
(1.25) lg(u,s)) = gluy,s) | < Klug = uy| + wls; - s,[7)
(1.26) 1im, 200 - o
h-0
a,a . N
We define A (D, R’) to be the space of R valued functions g on D

such that there exists a constant K and function w : ]R+-> ]R+ such

that for all (u.,s.,t.) ¢ D
= Rl s




(1.27) lg(u,,sy,t) | <K

a
2
(1.28) lglu).s).t)) = gluysyuty) | < Kluy - wyl + wlls) - s,|°

1
a,5a
and equation (1.26) holds. We topologize a® and A 2 with the norms

lgu,,s)) - glu,,s,)|

(1.29) lg] . = sup|g(u,s)| + sup
o = 5P1EE D luy - u,l + |s) - 5,)°

gluy,s),ty) - gluyes,.ty)) o

(1.30) |g| 1 =sup|g(g,s,t)| + sup =
a,i-a D D = 5
- - + -
A [u EZI + |s1 52| |t1 t2|
: 1,a a 33 a :
We define A’ to be the subset of A such that 35 € A+ With the
2+a l,a,%q
obvious norm. We define the spaces A s A . etc. analogously.

a,%a l,a,la
o

Finally we define Ao « B 2 , etc. to be the subsets of the respec-

a,la l,a,%a

tive spaces A - s A + etc. such that the map (s, t) » g(g,s,t)
a,%a 2+a,1+la
is in the space C0 or Co as appropriate, with the obvious

norm.
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u,—2~(\
2.0. Calculus in X A
In this section we give criteria for the continuity and Fréchet
1
a,5a u.%a
diffferentiability of functions defined on X and X . Analogous
results hold for the other X-spaces.
Q,ECI n
2.1. Proposition. Let u e C (QpiR7). Then a necessary and sufficient
(!,%0. n + +
conditionthat u e X (QT;]R ) is that there exist a function 3 : R » R
such that for (si,ti) € QT
a
(o] 2
(2.2) Ig(sl,tl) Sulsyty)) | < wlfs) - s, [0+ [ty - t5[0)
(2.3} 1im, M) - o
h-»0

Proof. First suppose that u 1is given and that a function  satisfy-

ing conditions (2.2) and (2.3) exists. Extend u to all of ]R2 with
the same modulus of continuity. Let r?» ®r by a c” function

2

with support in {(s,t) e R“: |s|+ |t]“ <1}, and such that

[[ ¢(s,t)dsdat = 1

e
For € > 0, let
u (st} = ff e"3¢(§—€_l E—:El)g(l,T)dXdT
Rr? &
= §f 6"3¢(%,35)u(s - At - 1)drdr
Rr? &

Then u_ e C and

u-ul, =supluls,t) - u (s,t)]
%3% O
luls)it)) = u (s,t)) - ulsy,ty) + u(s,ty) ]
+ sup =
Q
T a 2
|sl = 8,]|" ¢ Ity - t,l
< w(e) + 2 sup 9‘—(El s
h<e
-g-




g a,%a
Thus u € X -
= u,%a .
To prove the converse, suppuse that u € C (QT;]R ), let
lu(s,,t,) - u(s,,t.) | a
v ~Yop ety 2 2 a &
(2.4) w(h) = sup 5 ¢ Isy = syln + |t -7 <hy
2

a
Is) = s, 17 + 1t} - ¢,

and suppose that

w(hh)=K>°

lim sup

h-o"

Let v e Cw(QT;]Rn) and suppose that v has Lipschitz constant L. Then

~

| (u=v) (s, ,t.)-(u=-v) (s,,t,) | g
[u-v| 1 > lim sup sup(—— L el E : lsl-sz|a + |t1-t2|2 <h
T %Ee pgt a 2
[sy=s b it e =t ]
1 =2 2
1
(=-1)
> lim sup E%FL -th® =K>0.
n-ot
1
(1,50
Thus u ¢ X . 0 1
b3 o e
2.5. Proposition. Let ¥ be a closed bounded subset of X ; (QT:]R) .

Then a necessary condition that KX be compact is that there exist a

function w : R+ »ZR+ such that for all u e X¥ and (si,ti) e Q

: T
a
a 2
(2.5) |1~1(sl,t1) - E(sz,tz)} < m(|sl = S| * Ity - ty%)
. (h)
(2.6) lim, &L = o .
hsot b

If T < = then the condition is also sufficient.

Proof. To prove that the condition is necessary, lct

w(h) = sup w _(h)
uex -~

where w, is the function w defined by cquation (2.4), and suppose that

~




lim sup wgr)
h-o*

=K >0

N R

Choose a sequence B e K such that w (%) >
~n
lu (s.,t )=u (s ,t.)-u (s,,t,)+u (s, ,t.) |
2.7 o -ul >6 (s.,6.) 5208 v G et W i e e s T e
-n .m nm 1’71

Q

1* & Je,~e 1%

IS =S 1 2|

1 72
By Proposition 2.1, for fixed m there exists a § > 0 such that

K

1
sup = w. (h) < = ;
h<§ 3 Um 4
Then for X < 8, |[u = u | >X  Thus the sequence u_ has no Cauchy
n ~n = LR WO =n
’
2

subsequence, so K is not compact.

Now suppose T < = and that a function w satisfying conditions (2.

and (2.6) exists. Let u, be a sequence in K. Then by the Ascoli

theorem there exists a uniformly Cauchy subsequence, also denoted by uy
1

ar5 a
We will show that u, is Cauchy in X e + thereby showing that yx is

compact. Let € > 0 and choose §, 0 < § < 2, so that

sup w(hh) < % '
h<s
and choose n and m so large that
[u (s,t) - u (s,t) ]|
(2.9) sup —= L —c £,
0 § 4
T
a
: a 2
Then for (s;,t;) e Qp, if |s1 - szl + |t; - t,]" < 6 we have

|9n(sl,t1)-gn(sz.t2)| h l&m(sl,t])—gm(sz,tz)l

€
U (8585) < % % =2
- a * am a B 2
Isl Szl i ltl t2l lsl szl * ltl tzl
&
1f Isl—52|0l + Itl—t2|2 > & we have
-10-

. Now for each (si,ti) € Q

)

T




Q (s;,.t.) < 'En(sl'tl)-gm‘sl'tl), + lgn(SZ'tZ)_gn‘s2't2)l <
nm i’7i 3 -

N
.

Thus in either case, Qnm(si'ti) < -;'— Then it follows from (2.8) and the

choice of & that Iun-um| y <€ Thus the sequence u is Cauchy. 0O
a,5a
2

G,%G

M QT' and let F

Let D be an open set in R (0;R™) be the se

of all u e X (QT;Rm) such that for all (s,t) € QT(g(s,t),S.t) e D.
1 1
a,za - a0 =
Clearly E (D;R) is open in X (QT;IR ).
a,%a n
2.9. Proposition. Let g€ A (D;R'). Then for ue E (0; ™,

o SRy e
A,z Q
g[\_xl € X 2 (QT;]Rln). The map (g,g) -+ g[g] is continuous on
a,5a a,50
A *2 OiRYSxE °

(0; R™ .

-~~~

Proof. Let K and mg be the Lipschitz constant and modulus of
2 1

a,>a

continuity for g in equation (1.28). Let u € E - (0; R™) and let wy

be the modulus of continuity for u given by Proposition 2.1. Clearly,

glul is continuous. For (s;,t;) € Qp we have

lglul (s).t))-glul(s,,t5) | < Kluls,.t))-uls, ty) | + “g(lsl'szla £ Jeg %]
| a
a 2
< (ng+wg)(|sl—52] + ltl t2| )
E
£ a 2
= wg[gl(lsl s2| + It:l t2| Y
wg[\jl (h) a,%a
Clearly, lim+ S 0, so glu] € X by Proposition 2.1.
h-+0 . i
u,%a

Now let u * oy, in E (D;]Rm); we shall show that g[gnl -+ g[uol

1
a,>a
X 2

in . Since the range of a convergent sequence is precompact, by

Proposition 2.5 there exists a function w satisfying conditions (2.5)

-11-

t

a
5




and (2.6) for all u - Then

(2.10) 1lim supl(g[uol - g[un])(s,t)l < lim sup Kl(uo - un)(s,t)l =0 .
n+e QT o e now QT -~ -~

Given € > 0 choose 6§ > 0 so that
w(h)

€
sup ST
h<é h .4

and choose n so large that (2.8) holds with m = 0. Then, repeating the

estimate on Qno(si,ti) in the proof of Proposition 2.5, for large n

we have
ftgiud = glin l(a, .t} = (alu.) = glu 1M (s,.t0 ]
(2.31)  BUp R R s =
a 2
o 2
Isy = 8,17 + |t; - t,]
1
0.5(!
By (2.10) and (2.11), g[un] > g[uol in X . Thus the map u =~ g[g]
a,3a
continuous on £ ¢
B
Now let f ¢ A (D; IR ) . We have
J£lul - glu)] , <sup|(f-g)[ul(s,t)]|
0.,-2—01 QT
|(§-g)[g](sl.tl) - ({-g)[g](sz,tz)l
+ sup =
Q Qa
& lu(s,,t.) - uls,,t,)| + |s,-s,|% + |t -t |2
it | Nl S22 X 2 2
a
-s,|® oot 12
lulsy t)) = ulsy,ty) | + |sy=s,|" + |t;-t,|
a
a r. 2
IE =81+ sy e
< |g—g 1 (l‘fl 1 + 1) .
0.,5(! G,Ea
A
aka
Thus the maps g - g[g] are equicontinuous on A for u in bounded
a,ta
subsets of E . Combining our results we have the required continuity
of the map (g,u) + glu] . 0
=yJ=

is

-



2.21. Proposition. The map (g,g) * g[g] is continuously Fréchet'

B L e

1 1
: l,a,50 n Mg m
differentiable in u on A (D;R’) x E (D; R") . The Fréchet
derivative is given by
3 ag Gl%’(! n
(2.13) m(ghil])y = (“B—G [l‘l'])-wf for w o€ X (QT;R )]
1,0,%a u.%a a.la
Proof. Let g e A and u € Z . Since E is open,
there exists ¢ > 0 such that if |w| ;| <e¢ then u+ we E. For such
= a3« = 4
w we have
ag 1 3g a9
glu + w] - glu] - Elgl‘l':{; 35 (4 + AW] - == [u])w drzol(w) ,
nd P bosit'o 2.9 applied to Bg shows that 1i ot} 0 Th
a ro 10n . pPplLl s im =5 . us
4 twi . »0 1 3y
4 a,5a
(1,5(! 2

equation (2.13) is correct. By Proposition 2.9, the derivative defined by

equation (2.13) is continuous. a
2.14. Proposition. Suppose for each (s,t) e QT' (0,s,t) € D, and the
set lu e R (u,s,t) € D} is starshaped with respect to u = 0. Let
u,%u m a,%a m
E, (D;IR") be the set of all u € X0 (QT;R ) such that (u(s,t),s,t) e D
for all (s,t) Qp- Then for all o > 0 the Tag (gsu) = g{~] is
. ke SR L m
continuously Frechet differentiable from A (D;R) x Eo (D;:R)
a,%a n >
into x0 (QT;II). The Frechet derivative is given by equation (2.13).
a,ia u,lu
Proof. The space xo is isomorphic to X upon multiplication
ot a'%“
by e 7; sec equation (1.23). Let g e Ao and let
p
a,sa

flu,s.t) = ectg(c-ctu,s,t). If ue Eg - and if v(s,t) = eotu(s,t)

~ =

then we have f[v](s,t) = eOtglgj(s,t). Thus we apply Proposi*ion 2.12 of f.

=13 =




Since D 1is starshaped with respect to the QT~axis and since the

1

sa
- +
map t * e ot , X2 (R ; R), we have
1 of of
l£0uy0sy0t)) = £luus,.65) ] = Ifo Rt T Tk L ("‘32'52't2’d"|
1 ag -gt ag -ot2
< % x= (Ae gl,sl,tl) - = (e gz,sz,tz)'dk
otl ot2
(2.15) + |le “g(0,s,,t;) - e “g(0,s,,t,)]
&
a 2
< Kl91 - 92! + w(lsl - 52] + ltl - t2| ) .
0 Ry
for some constant K and function w satisfying (1.26). Thus fea :
Also
of af
sg (Ellslltl) = 5; (?zlszltz)
ag -ot ag =&
(2.16) s (e gl,sl.tl) - 35 (e UyiSyet,)
<
< " 1 a o, 2
SKluy = upl +ells) - 5,17 + [t - 519
l,a,l-a
Thus £ € A . Repeating the final calculation in (2.15) and (2.16),
we have
| £ <Kl|g] *
= l,a,la S l,a,la
A 2 2
o
so the map g + £ is continuous, and Proposition 2.12 applies. 0
2+a,1+%a

Let E*(;®R™), E

o - 2+a,1+%a %
X' (I;R), X (QT;R ). etc. such that (u(s),s) ¢ D for all

or (g(s,t),s,t) e D for all (s,t) e QT’ whichever condition being
appropriate. Propositions 2.9, 2.12, and 2.14 extend to give

2.17. Proposition. The map (g,u) » g[g] is continuous on

~~~~~~~~

-14-

(D;Rm), etc., be the respective subsets of

S €

I




2+a,1+lo, 2+u,1+:—l-a

A%(D; R™) x 5% (0; R™) (or A # (0;R") x E 2 (0;R™), etc.) and is
continuouslx,Fréchet differentiable on Al'“(D;Rn) x E*(D; R™) (or
1,2+a,1+%u - 2+a,1+%a =
A (O;R) x E (D;R7), etc.). If o >0 and if the
hypothesis of Proposition 2.14 are valid then the map (g,g) " g[g] is
. 1,2+a,1+%a o 2+a,1+%a -
continuously Frechet differentiable on Ao (DiR) x E, (D:R) .

2.18. Remark. Natural conditions for continuity and differentiability
on the spaces c® are difficult to obtain, as the following example
illustrates. Let

glu,s) = min{|s|%, |ul} .

Then the map u + g[u] takes Cu(O,l;m) into itself, but is discontinuous.

In fact~ gl[0] = 0 but, for every constant function € # 0, |g[€]|a > 3

-15=




In this section we consider the linear initial~boundary value problem

(3.1) . P, - Rw, - Sw = £,
(3.2) wig, -9 ¢ Range H ,
~Is, 2 e
+ (3.3) Bw + Dw = p ,
(3.4) Y('IO) T Yol Yt('lo) == Yl

In equation (3.1), P ¢ L(Xa(sl.sz;IRN); Xa(Slfsz:lRN)) is given by
(3.5) Pw(s) = Po(s)'w(S) P

a
where I:o e X (sl,s2

symmetric for each s; while R and S e L(x2+a(sl,sz;]RN):X“(sl,s2;]RN))

sL(RY; RY))  ana P,(s) is positive definite and

are given by

(3.6) R = By T 01 % T 7Y
2k 89 = R e T 0y 22

a N N E ek
where gk'§k (S ¢ (sl,sz,L(]R ; R)) and I}o(u) and §0(s) are positive
definite for each s while So(s) is symmetric. In condition (3.2),

By . o2, ol oF N, N s
H=H, @ H, ¢ L(R @ R “; R ® R ). We identify R & R with the

~ ~1 ~2

set of functions {sa} > IRN, so that condition (3.2) is a restriction

on the boundary values of w analogous to condition (1.2). Rank

| H = N

a a’
: N N .
g In equation (3.3), B, D€ L(X1+a(sl,sz:RN); % Tup Y e given BR
(3.8) Bw(s,) = By(s ) wo(s,) + By(s )-wis,) .
‘ (3.9) Dw(s,) = Dyls ) -wyls ) + D, (s,) wis,)
% N
| O

. N, L
where fjk(sa), l?k(sa) e LR IR ). Rank I}o(sa) = N_.

Q

We consider f, g, p. wo, and w, as given functions with

-16-




e Q.
24> a
qe X ({s } x rY; N o V)
(3.10) ‘i’ &
5 Q N N
peXxl (s ) x®Riclec?

2+a .mN
Wor Wy € X (sl,sz,c )

We seek w satisfying equations (3.1) to (3.4) with

a
(3.11) w € YO(QN)
. 2+a,143 a 4
where YO(QT) is the space of functions u e xo (QT;G ) such
2+a,l+%cx N

that ut's X (QT;E ) with norm

lul 4 = lul +ug | .

~'a = =

Yo 2+G,1+%ﬁ,0 5 2+a,1+%a,o

In addition, we seek an estimate of the form

(3.12) |w| < K(|£] + g +|p| +|w,. ] + |w, | )
& Yg - a,%a,o 2+1 o i %ﬂ,u =0 2+a 1 2+a

2
In this section the letter K denotes a generic constant, whose value
need not be the same on each occurrence. We permit K to depend on a,
o, |52 - sll, the functions B, D, P, R, and S, and, when we specifically
admit the possibility, on the time T. In this section all Banach spaces
are complex.
e e b b
In order that W satisfying conditions (3.1) to (3.11) exist, the

data must satisfy the following compatibility conditions:

‘Y°|Sa - 3(0) ¢ Range H ,

Yllsa - gt(O) ¢ Range H ,

(3.14)
gal,(Ry + Swy + £) (s, ,0) ¢ Range H ,
Bfl + Dyo = Q(O) #
-.17-.




[ :

I
|
I
|
|

|

We denote by F_ the set of all (£, q, p, Wor wl) satisfying condi-
tions (3.10) and (3.14). Then F is a Banach space with norm indicated
by the right hand side of inequality (3.12).

3.15. Lemma. Let (f, q, Py Wy yl) € F, be given. Then there exists

w € Yg satisfying conditions (3.2) and (3.4), and there exists a constant

K such that estimate (3.12) is valid. 1f f' = f - Pytt # Ryt + sw and

p' SREHE 28 BY s DY then (g’l 91 P.I 9: 9) € F

Thus we need only consider data of the form (£, 0» pPs 0. 0).

Proof. Let

vy(sit) = [(s; - s)gls),t) + (s - 5))q(s,,t)1/(s, - s)) ,

o= = !
vyls,t) = e "“lwy(s) - v,(s,0)] ,
v, (s, t) =t9—0'tlw (s)y = vy, €5,0) = = (s5,0)] where o' > o
==L ' ~1 ~1t =2t :
Then W=y, + v, Y is the desired function. It is clear that an

~1 ~2
3
estimate of the form (3.12) holds and that £* and p' satisfy (3.10).

We observe that since f and p satisfy (3.14) we have g'(su,O) = /0

and g'(sa,O) = 0, so that (3.14) is satisfied by (£'s 0z p", 0, 0). 0

3.16. Construction of w.

3.17. Theorem. ILet (flg,g,yolyl) e P

be given. Then for each T < =

there exists a” w € Yg(QT) satisfying equations (3.1) to (3.4). There

exists a constant K, depending on T, such that

-~ a

(3.18) [w] < K[ (f.q.pywoow) |
Yo QT o

Progf. The spaces Y:(QT) are clearly equivalent for T < o, thus
we consider only o = 0. By Lemma 3.15, it is sufficient to consider data
of the form (er:QIQIQ)- Let v = wt(f,g) be the solution of the

parabolic system

-18-




PYt - Ry = E ;

~

Yls € Range H ,

(3.19) %
Bv = p ,
v(s,0) = 0 ;
and let
t
(3.20) w(f,p)(s,t) = [ W (f,p)(s, a1 .
r.p . L.P

Equation (3.19) is parabolic because Po and R, are positive definite

while Po is symmetric. From the theory of parabolic systems
(LADYZENSKAYA & SOLONNIKOV, 1967), equation (3.19) has a unique solution in
2+a,1+L o

C s (QT;mN) and there exists a constant K, such that

(3.21) lvi i SRUEL 4 = fply -
i 2+0.,1+'2—(! = 0,5(1 5

N[

The constant K depends on a, S, = Sy T, H, B, the Holder norms of the

functions PO and Rk' and on the minimum eigenvalues of PO and of

the symmetric part of RO' If we approximate these functions by c”

functions, and likewise approximate f and p, the solution to equation

] .5 . i 2+a,l+%—a
(3.19) is C and, by (3.21), approximates v in C .  Thus we

~

1
2+u,1+7u N
see that v € X (QT;¢ ). From (3.20) and (3.21), we have

-~

Hw 1l <K,
t 1 Qa Nl N2 2+a,1+%a N
e )X (QT:E ))

N =~

(QT:G:N) x X ({sa} x R'; ¢

(3.22) | |
|wl] <K .
1 1
a,5a o N N
2 N 2 L S (N
(QT,¢ ) xX ((su} x R ; C "oC ).YO(QT))
We observe that the solution of equations (3.1) to (3.4) may be

characterized as a fixed point of the transformation on Yg(QT):

~19-




(3.23) w > W(f + Sw,p - Dw) = W(f,p) + Wiw ,
where for w ¢ YQ(QT)
1 I
a,=a 5 Q N N
Jw = (Sw,-Dw) € X 2 (@) x x° ((s )} x Rie e @ ?)
To construct such a fixed point, let w0 € YG(OT) and define
Yn = W(f,p) + WJYn_l, =, 0. .
A simple calculation gives
n Rel k n 0
(3.24) woo= §  (WJ)W(f,p) + (WJ) w .
% k=0 Sl &
Let us show inductively that
(3.25) ewa) ™ < w1 ali "2 /nt, n=0,1,2,... ,
(3.26) ||WLJ(WJ)n|| < llwtl|"||J||"'r“'1/(n-1)g, n=1,2,....

Inequality (3.25) is true when n = 0. Since HthH <|lthHJ|L ineqguality
(3.26) for n = k + 1 follows from inequality (3.25) for n = k. Integrat-
ing inequality (3.26) for n = k + 1 gives incquality (3.25) for n = k + 1.
Thus inequalities (3.25) and (3.26) are proven.

Then we may pass to the limit in equation (3.24) as n » «® to show

that " converges to

€3.27) W =

w) ¥w (£, p)
. fip

e~ 8

0

Inequality (3.25) shows that the sum converges absolutely in YG(QT) and
gives the estimate (3.18). Since w 1is the limit of Yn, and since the
transformation (3.23) is continuous on Y“(QT), W is a fixed point of

the transformation (3.23). Since the limit is independent of- the choice

of wo, the solution is unique. 0

From the proof of Theorem 3.17 we have

3.28. Cg{gllagy‘ Let (f,g,p,g,g) (500

P o be given and let W be defined

by (3.19) and (3.20). Then the solution w of equations (3.1) to (3.4)

is given by equation (3.27).

=0 =




29. Asymptotic Behavior of w.

~~~~~~~~~~~~~~~~~~~~~~

In this section we obtain an estimate on |w(-,t)[2+a as to- w.

We begin by examining v = (WJ)nw(f,p). Since v is the solution of a

linear evolution equation, v can grow at most exponentially in t. By

(3.25), v is Holder continuous. Thus we may construct v by Laplace

-~

transforms. Doing so, we obtain

t atiow
1
/

a-

(3.30) !(-,t) e

e(t"T)C(‘;(c)J)n‘;(c) (f(',r):P(T))dCdT .

O

1™

where w = W(g) (£,p) 1is the solution of

(QZP - R)w = £ ,

(3.31) wils € Range H ,
; ~1s, -
Bw = p ,

and we now view J as an element of L(X2+“(sl,sz;¢N);
N N .

Xa(sl,sz:EN) x € 1o C 2). Then W 1is an operator valued analytic func-

tion of .

We observe that W(z) (f,0) = P(gI - P 1r)”!, where the inverse is

taken among the functions satisfying homogeneous boundary data in equation

(3.31). If v 1is the solution of equation (3.19) with homogeneous f

~

and p but with Y(s,O) = vo(s) then the Schauder estimates for parabolic

systems (LADYZENSKAYA & SOLONNIKOV, 1967) give

1
-5 3]
byt o)y, < Kivgl €27, 3=0,2.
a

These inequalities and that c¢” is dense in X% are known to imply

(FRIEDMAN, 1969; PAZY, 1974) that for some positive constants_  a, and b
and for
tedJ:={ge€: R(g)>a=-Dblimg)]}

3-2
- < Klel 2 |£]

-1 - T
| (z1 - P 7R) f|j+a L5 j = 0,2 .

=21




Thus

j-4
T

(3.32) lwey g, 0l <xlel © I£l,0 ey 5 =0,2.

Qa

We shall obtain slightly weaker estimates for non-zero p.

By Mooy oy
Choose T € L(C ® ¢ “;C © € ) such that BO - T=1I, which vwe

may do because go is of full rank. Let ¢ be a smooth function on

R*x R” satisfying

1
¢(x,y) =1 for x < %y @ '
1
¢(x,y) = 0 for x >y : '
0 e < K2, 5= 01,2
Let
2 L
3 y - 3 e ¥ Ao 2 _ 2 .
(wl(c)g)(s) = uél ¢ (s sa,lcl)[s s, * (-1)7|z| (s su) B NP

Observe that for sufficiently large |z], tBW,) (t)p = p and that

" 5k
(3.33) |wl(c)g|j+a < K|z ¢ lel. j=0,2,]z] > 4/(s, - sl)2 b
Then .
(3.30) W@ (£,p) = WD) (£ - (£ - CRIW ()p) + W (L)p .

Taking a larger if necessary, we have from (3.32), (3.33), and (3.34)

. e |
(3.35) W) (£p) [, < Klel 2 (gl + IpD » te v, 3=0,2
It follows that
S j-n-3
(3.36) LW ) (£,p) 1y, < el 2 (gl + leh .

Then we may shift the path of integration with respect to ¢ in (3.30)

to the path 3J. Let us further shift the path of integration in (3.30)

-22-




1
to a contour I agreeing with 3J for large |f| but such that Iclf >

on I, where K is tle constant in inequality (3.36). Then if w is
given by equation (3.27) we have
€

(3.371) w(,8) = 2= |
0

I~ 8

f e i ¥ui) (£(-, 1) L p())dcar
I k=0 i e
the sum converging absolutely on I.

Let W = Z(z)(f,p) be the solution of

(czP - ZR - S)Q =i

(3.38) ils € Range H ,
~'s, =
(B + D)w = p

~

Then 2 1is an operator valued analytic function of . One can show,

-5
in a fashion analogous to showing that (I - A)—1 = Z Ak for ||A|] < 1,
k=0
that for ¢ e J and |Cl2 3 K
w© 5 - 5
(3.39) I M3 wig) = z(z) .
k=0

Combining our results, we have

3.40. Lemma. Let (f,O,p,O,Q) € F0 be given. Then the solution of

equations (3.1) to (3.4) is given by

1
= & <
vl ey (£, 1 o)) dudr |

! A

}H

(3.41) wie,t) =

N

where 2 is defined by equations (3.38). There exists a constant K

such that for ¢ ¢ J and |Z] > K

i3
(3.42) 120y (£.p) 44q < Kl2l 2 (UEly + 0D, 5= 0,2

To obtain (3.41) we estimate (3.39) by (3.36) and sum the geometric

series.

~

3.43. Lemma. Suppose 2 is analytic for Re(f) > -0.. Let o < % and

ity 0
(E’g'?’YO'Yl) € Fc be given and let w be the solution of equations (3.1)

-23-




to (3.4). Then there exist

S a constant K such that for all t > 0

leotw(-,t

3,
( 44) |e0t
By Lemma 3.15,

(£,0,p,0,0) ¢ F_. Let I

be the contour in (3.41), and deform I

Mg K"g'Q'E'Yo'Yl)’FO ¢

\:«'t(',t)|2+a < K‘ (frgugl‘fol‘fl) ]F

(¢]

it is sufficient to consider data of the form

il 2 o into a
f = FY U B ‘here ' - - = =
contour J Iy I, where lz] < K on I1 and Bg < =04 syp Re (L)< -0
il
while |¢| > K and Re(t) = a - b Im(Z) on I'. Let ¢ : RV » [0, 1]

be a smooth decreasing function such that

¢l(t) =0 on [3,9). Let

first integer greater than

C(t—1)r~

= Wiy (o 5, TY 4 YZ(' e By

The function wl

data estimated by f and p

inequalities (3.44) are valid for w

By (3.41)
] t-1
wz(-,t,T) :‘tf~f /
i L 8 1
0 Z
1
R
We have
t-.
o ’ :
(3.45)
< K](flo

Using (3.42), for t > 1 we

2 il

¢1(t) =1 on [0,2] and

¢2 =1 -d.. For ¢ >0 Ilet

&
t, then by (3.41)

T be the

Z(E) 18 (T = 1) + ¢,(T - 1] (£(-,1),p(1))dedr

T)

is the solution of equations (3.1) to (3.4) with

and supported in [T - 3,T]: therefore

1 by Theorem 3.17.

e(t'1)cz(c)¢2(T = 1) (f(-,1),p(1))dedr

+ YZZ(-,t,T)

: f le(t—1)(c+o)
7

o OTT . -
. 2(e)e” (£(,1),pl1))],, diat
&
ll'?lglg) ]F
o
have
_24_




t-1

. 4 r .
le®fuyy Cutam,, < 5;16 !, le (=T e 7 ()& (£ (-, 1) up (1) |, dcar
2
t-1 :
- -5 (t—r)(o—cl)
(3.46) < K| (£,0,p,0,0) lF f (t - 1) “e dr
o 0
K| (£,0,p,0,0) |, .

a
Combining (3.45), (3.46), and our estimate on Wy we have the desired
estimate on y(-,t) in (3.44). The estimate on Yt("t) is obtained
in the same way. 0O
3:52. ???9{?@' Let oo be as in Lemma 3.43, and let o < 00. ESE

(f.9.p/wy,w)) € F o be given and let w be the solution to equations

(3.1) to (3.4). Then there exists a constant K such that

fwi < K| (f,p,q,w,,w,) ]|
~Y0(Qw) Sl GG | F‘O

Proof. One obtains an equivalent norm on the Holder spaces if one

restricts oneself to |t; -t

is sufficient to estimate w on each interval n <t <n+ 2. If we

2] < 1 in the H6lder quotients. Thus it

let w;(s,t) = w(s,t + n) and make similar definitions for f;. q;. and

pé, then, by Theorem 3.17,

] ' ' - .
(3.48) [vnl < K| (£2,q,p) w(-,n),w (-,n)) |
Y- (0,) 0
c =2
Multiplying (3.48) by " and using Lemma 3.43, we obtain the desired
estimate. D

~

223 ZiAGRRR Elosi0r e,
Contrary to the experience with first order evolution equations, the

"resolvent" Z 1is not generally meromorphic in €. But we do have:

3.59. Theorem. Let

-oo = inf{o e R: det[cRo(s) + §o(s)] # 0 for

(3.51)

$; < s <s, and Rel(z) > o} .

Then o, > 0, and 2 is meromorphic in ¢ for Re(y) > -o4. If
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Re () > -o0 and Z has a pole at Co then there existz a finite dimen-

sional, non-trivial vector space of functions w such that

2 =
(cop - LOR - S)w = o,

~

(3.52) w| ¢ Range H ,

S
a

(K,OB + Dlw = 0 .

Thus we may verify the hypothesis of Theorem 3.47 by solving the eigen-
value problem (3.52).

Proof. Since the matrices Ro(s) and §0(s) are positive definite

while So(s) is symmetric, the determinant in (3.51) is non-zero for

Re(¢) > 0. Since these matrices are continuous in s, we have 00 > 0.

The solution to (3.38) is given by

(3.53) Y(s) = E(c)(f,g)(s) = f ’91(5,5,5)-§(£)dg + gz(s.a)'g
s

for some Green's functions G1 and G2 which are meromorphic in ¢ when-

ever the determinant in (3.51) does not vanish, thus for Re(z) > =0g-

We apply Morera's theorem to show that Z is meromorphic: If (7 - co)nGk

is analytic in ¢ in a simply connected neighborhood of then we

o
integrate (7 - co)ni(c)(f,p) about a closed contour and use (3.53) to

show that the integral vanishes.

~

Now suppose that Z has a pole at CO’ and that

« 5 PR P
lzeall Ny Wy g ORI HE gy
L{X xC “°o@ “;X" )

Then there exist £ and p such that for small ¢ > 0

x4

3 2%i I /l (¢ - Co)n-li(t)(f,g)dc #0 .
L=Cn (=€ <
0

< 2 . <
Then, since P - LR - S ¢ L(x2+“;x“) is a smooth function of ¢,

- B




of - " = i 2 _ o yn-1;
3 (2gP = ZoR - Slw = 5= [, IRgE - LR ~ 8)tw - )P Ee) (£, phag
|C-C0|—c
= 7 I (e’ - R - 8) (0 - g™t + 0dle - tol™1-
lc-co|=c

2(0) (£,p)dL

0(c) (e = 0}

Since ¢ may be arbitrarily small, (ch - LOR - S)Y = 0. Similarly,
(COB + D)Y = 0. Thus equations (3.52) have non-trivial solutions. But
solutions to (3.52) coincide with solutions to the eigenvalue problem
(AP - coR - S)Y = 9 with Lo fixed at X = gg; therefore the solutions

to (3.52) are finite dimensional. 0




4.0. The Nonlinear Equation.

Let wu*, v* be a solution to the equilibrium equations (1.14) to

(1.16). Without loss of generality, we take v* = 0. Let
U= o= uEyv s uRE S W) et R = (f -~ BF.g ~ g®,p - p*,u0 =ik A )
and write Wy = Yo - u*, Wy o= U Then we may write equations (1.1) to

(1.4) in the form F(U,A) = 0 with F = (FO’FI'F2’F3'F4) where

Fo(UuA) = Alul-d + alul - gimlul+ nlul - £lal
Fya) = ul, = gi¥l .
Qa
aw
(4.1) Fy(U,n) = (T[gllsu - Q[Q]).§§lyl.
Fy(U,A) = w(-,0) - Wo !
Fa(U,A) = yt(-.O) - W,

To apply the results of Sections 2 and 3, we consider

9 & ‘ll* - Yo('o) »
s 2450 4+ o N_ N
veX ({sa) x R; R e R)
If u* ¢ x2+q then there exists an open set D of values of u,v,

derivatives of u appearing in (4.1), s, and t, existing in the
appropriate product of IR and (3 30 containing the Q. axis, and such
that F(U,0) 1is defined when the graph of u, v, and the derivatives
of u is in p. (To be precise, we should list seven distinct sets D,
we prefer to be slightly ambiqguous.) Making p smaller if necessary we

may satisfy the starshaped hypothesis of Proposition 2.14. We take A

in the following product space:
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1
l.0.50 N
{—g*el\o (2; ) ,
X
2,243 a
g -q* ¢ K, 2(D;]RN@]RN),
4.3
( ) 1,%0 N1 N2
P-p*ecA, " (iR R "),
2+a A
Wgr¥y ¢ 2 e, .50 R )

We denote by P the set of A satisfying (4.3) and the following compat-

ibility condition:

1
P
(4.4) There exist U e YO (Q ) x X such that F(U,A)(s_,0) = 0.

We require the following regularity conditions on the remaining func-
tions in equation (1.1):

€ Al'a(l}: l;(lRN: JRN)) '

1,a

e

€ A ([);]RN) -

A2,1+(1 (D; ]RN) A

Y

(4.5)

(5

3

e B ppaplly

5=

Let D be the Banach space of functions (f,q,p,wo,wl) satisfying
conditions (3.10) with CEN replaced by IRN.

To state Lemma 4.6 we introduce the following notation: For any func-

tion f of (gs,g,gs ,gt,s,t) or subset of these and for any functions
€
u, w of (s,t) we let
af af af 3f af
30 A el R B L e TR A
~ -~ -~ ‘»t

4.6. Lemma. Let D,P and D be as above and let the regularity conditions

R + ®) > P into D and

(4.5) hold: Then F maps 20 ) x X2+a &
0 "o o

is _continuonsly differentiable in U. The derivative at U =0, A = 0 is

given by
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(4.7)

where

Plee =

(4.8)

— i e e

[aFo ]

TET(O'O) (w,v) = Pw - Rw, - Sw ,

PaF W

p 1 a4 l = Hi

L§U4010) (YIY) Y s = Y ’

Q

oF, ¢ L a’q
|55 (0:0) [(w,y) = BY + Dy + (i) - prlut)) ——5l0)ey
'ap3 i ~

| 550001 flw, 0} = w0} ,

oF, .

?ﬁr‘°'°’ (Wey) = w0} ,

P, R, S, B,

L
Byt + DY =
H =

In particular,

(4.9)

~ A

We write out the term gtm
S ~

have the form given in (3.5) to (3.9).

am an

) ~ L .
Bl e = Sy e 'y Y

om ap*
5T§T[g*]-[ysl -.algllg*l'ly]'g '
ag*

v [9]

- *
P, = Alu ey
am
R, = 5u, lu*] ,
e
om
S, = —-[u*] ,

=<0 Bus po

-~

o2)
|

om 9gq
- 2 * b ==
-0 Ju [B ]ls avlgl
~st =

in (4.1) using the chainrule.

We have

of*
e e *] .
ATy

Under

our hypothesis, Proposition 2.17 applies and justifies all formal computa-

tions.

u = u*.

The derivatives of A

By (1.9)'

are multiplied by Uipr

a is quadratic in ug
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which is zero when

so that its derivatives drop




am
out when u = u*. The terms resulting from expanding 5; are regrouped

to give (4.8). 0
Let D0 be the subspace of D satisfying the following compatibility

-

condition:

o 2O
(4.10) If & € D0 then there exists U € Yd x X such that

[;%(0,0)]U(s0,0) = A(s,.0) .

Whether A ¢ D is an element of Do is actually determined by the values

of the derivatives of the components of A at (sa,O). Since D0 may

be characterized as the kernal of a bounded linear operator on D, D0

is a Banach space.

}}. Lémma. There exists a function (A,A) e D x P w» G(A,A) € D,

~~~~~

:

continuously differentiable in D, such that

(i) G(0O,A) =0 for all A e P,

(i) 2%(0,0) is the identity on D ,

(iii) If A = F(U,A) for some U then G(A,A) € D0

Proof. Given (A,A) ¢ D x P, we construct U(A,A) such that if

A =F(U,A) for some U then A - F(G(A,A)A)(SQ,O) = 0. Let
lj-l € L(]RNG’ ]RN; 1RN1@ ]RNZ) be a left inverse to H. Let ¢ : R > rY
be a smooth functich, #te) =1 for k< 7 and 6(t) =0 for t > 1.
Using the definitions of FO' F3, and F4, we solve the equation
F(U,A) = A for Wor Wyr Wy the initial value and first two initial
derivatives of w. We then take

Wi, t) = 6(t) (w, + tw, + 2¢2w ) (., 8)

~ ~0 ~1 2 =~

¥ A

G(A,I\) = WY .

If F(U,A) = A the initial values and first two initial derivatives of

U and U(A,A) agree; thus A - F(U(A,A),A)(sa,O) = 0. By Proposition 2.17,




T

~

U 1is a continuously differentiable function of A. Note that U(0,0) = 0.

Let
I o dF =
Gy (8, M) = & - Fu(a,m.0 + [E0,0] 06,0 -

If A = F(U,A) for some U then GO(A,A) ¢ D In faet, if

0
(a - F(U,A))(SQ,O) = 0 for some U then GO(A,A) € DO' By

definition of P, (4:-4), GO(O,A) € D Thus we may take

0
G(a,A) = Gy(a,A) = Gy(0,A)

Conditions (i) and (ii) hold by construction, G 1is continuously differ-

entiable in A by Lemma 4.6 and the composition of differentiable func-

tions, and condition (iii) is readily verified. 0

.| ~

4.12. Theorem. Let 2 be the operator defined by (3.38) and suppose 2

is analytic for Re(:) > =05+ Then if 0 < ¢ < 0o there exists a neighbor-

hood ¢ of 0 in P such that the equation F(U,A) = 0 has a solution

U for all A e 0, and U depends continuously on A,

Thus if U = (y,y) then (g,y) = (u* + w,v) 1is a solution to
equations (1.1) to (1.4) with data related to the stationary data by (4.3).
All derivatives occurring in the differential eqguations are Holder

continuous and the solution decays to u* at an exponential rate e~°t.

Proof. Ve apply the implicit function theorem to the equation

(4.13) G(F(u,N),A) =0,
wherc G 1is the function given in Lemma 4.11. By Lemmas 4.6 and 4.11, the

function in eguation (4.14) is continuously differentiable in U and maps

yg R e Py into Dy. By part (i) of Lemma 4.11, equation (4.14) is

equivalent to the equation F(U,A) = 0. By part (iii) of Lemma 4.11, we

need only show that %5(0,0) has a bounded inverse. 1f

(4.14) [23C00.,0] w,v) = &

then v = “—liws where B © is as in Lesma 4.11. We eliminate v from

ey




equation (4.15), obtaining equations (3.1) to (3.4) with

4.15 5 . iioa 2% -1
(4.15) Dw = Dw + (m{u*] - p*[u*]) —=[0]-H "-w]_ .
~ a
We observe that the spaces D0 and Fo are equal. By conditions (1.6),
(1.7), (1.8) and by (4.9), the conditions on Po, Ro, and B0 in Section 3

are met. Then equation (4.15) has a solution and estimate (3.12) holds.

But |v]| 1 <lm-1|]- lwlY . Therefore %%(0,0) has a bounded inverse.
2+5 fiem ol
2

The continuous dependence of U on A 1is part of the implicit function
theorem. 0

4.16. Theorem. Let the functions A, a, m, n, f, q, p, uo, and u1 have

— -~

the regularity specified in (4.3) and (4.5), and suppose that u e Y&(Q

2+%—a
and v € X (0,T) are a solution of equations (1.1) to (1.4). Then u

1
2+§a
and v are unique i Y
and v are unique in Y, and X

)

T

1
pe 2+ a
Proof. Let u' e Y (QT) and Y' e X ° (0,T) be solutions. We

shall show that, for some T'> 0, u=u" and v =v' on 0 <t < T".

The set of T' having this property is then none-empty and, by repitition
of the argument, open, but the set is clearly closed in (0,T], thus is
the entire inte;le.

We may linearize equations (1.1) to (1.4) about the solution (u,V)

and apply the implicit function theorem to show that if (u',v') is another

1
2+§Q
x C (0,T') then |u - u'| e v = v'| 1 2 K{T" )~
= - g b b 2+50

(For finite T our argument does not depernd on the constant coefficients

solution in YG(QT.)

in equations (3.1) or (3.4).) We may arrange that K is a non-decreasing

function of T': Recall that in the proof of the implicit function theorem

T
(DIEUDONNE, 1960) one examines the function (%5(0,0)) g%(0.0)U - F(U,A))-
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If K

(4.17)

=]
and if A 1is further restricted so that %%(0,0)) F(0,A) <

function is a contraction taking the ball of radius K

solutions of F(U,A) =
In our application, for

non-decreasing function

is so small that when

oF
“56(0'0)0 - F(U,A)

sup{|lU|l.l|Al]} < XK then

=1y =1
1]|[ 3F
<30

%K then this

into itself;
for given A exist in this ball and are unique.
fixed K the left hand of inequality (4.17) is a

of T' while the right hand side is a non-increasing

function. Thus K may be chosen a non-decreasing function of T'.
Since u and u' agree when t = 0, sup|u - u'| < 27, Using
QT'
Proposition 2.1, one then shows that lim |u - u']| 1 = 0. Treating
s i) 5 0:50
(o (o,T')
the derivatives in the same way, lim |u - u'| i = 0. Then, taking
T"’O i & 0150
Al
Y (QT )
T' small enough, we may conclude that u = u' on QT" Likewise, Vv = v'
on [0,7']. O
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In this section we suppose that the stationary problem (1.10) to (1.12)
is conservative as defined by equations (1.13) to (1.15). In this case we
shall show that the eigenfunction criterion for stability developed in
Theorems 4.13 and 3.49 is equivalent to the second variation test for
stability. Thus the stability or instability of g* is determined by the
elastic part of the linearized equation, no knowledge of the dissipative
mechanism beyond the validity of hypothesis (1.7) and (5.2), below, is needed.
We remark that only the equilibrium problem need be conservative; our results
hold under small non-conservative perturbations.

Let E(u,v) be the energy defined by eguation (1.16). We consider
» g 2+a My < By .
E as a functional on X x R -2 R ~. By Proposition 2.17, if the

reqularity assumptions (4.3) and (4.5) hold then E 1is twice continuously
Fréchet differentiable. Let 1 - (9(1),y(1)) be a path on which the
boundary condition (1.11) is satisfied and such that u(o) = 9*, Y(O) = A
Then, using equations (1.10), (1.12), (1.13) to (1.15), (4.8) and (4.15),
we have

2 e

(5.1) P2 El el (891)'91ds + {Du, ) -V,

dt s1

= (K
( ET'BBI) £ (91'D91))1=0

Being the value of a continuous second derivative, the quadratic form in
(5.1) is symmetric.
We require

(5.2) (w,Rw) + (w,Sw) > 0 for all w # 0 such that wls € Range H ,
a 5

where the quadratic form in (5.2) is defined by analogy with (5.1). Condi-
tions ensuring hypothesis (5.2) are given in BROWNE (1976). Essentially,

(5.2) is valid for bodies in which every non-rigid motion suffers internal
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friction if the position boundary conditions (1.11) do not admit

a deformation u having the interpretation of a rigid motion.

5.3. Theorem. Suppose

(5.4) (w,8w) + (w,Dw) > 0 for all w # 0 such that w|s
a

¢ Range H ,

and that hypothesis (5.2) holds. Then 2 is analytic for Re(g) > 0.

Thus we may take % in Theorem 3.47 to be positive, and there exists

a o for which Theorem 4.12 holds.

Proof. By Theorem 3.50, 2 is meromorphic for Re(g) > 0. Suppose

Z has a pole at [U' Then by Theorem 3.50, there exists a non-trivial W

satisfying equation (3.52). The function w defined by

ot
(5:.5) w(s,t) = Rele Yw(s)
solves
) -_— — =
Pen e - B = 0
(5.6) w[q ¢ Range H ,
=8, &
3w, + Dw =
By + De = 0 :
Taking the inner product of the first and last equations in (5.6) with W
and using that P and S + D are symmetric, we obtain -
1 d

[{w, ,Pw,) + (w,Sw) + (Y'D‘f)] + <‘3t'R‘ft) + (Y.’t'B‘ft> = 0

2 at SE4TCE S

Then, by hypothesis (5.2),

v
(5.7) 1 é%'[(Wt’th) 4 (Y'SY) + (Y'DY)] < @ £for Yt#:g .
But (5.4), (5.5), and (5.7) are contradictory unless Re(CO) < 0 ©or CO = 0.
But if Lo = 0 then (5.4) can not hold. 0

We finish with a converse to Theorem 5.3. h
5.8. Theorem. Suppose 9* € x2%a is _an isolated solution to the stationary ]
equations (1.10) to (1.12), that the stationary problem is conservative,
that hypothesis (5.2) holds, and that there cxists w e Xz+0l such that y
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(w,Sw) + (w,Dw) < 0
(5.9} w]s ¢ Range H
~'s, s
Then u* 1is not stable in x2+°.

Proof. We shall consider only perturbations in the initial data.

Suppose, for the sake of contradiction, that for every open neighborhood
01 of (u¥*,0) in X2+a x x2+“ 0

such that for all (uo,ul) [3 00 equations (1.1), (L.4), (1.11), and (1.12)

there exists an open neighborhood 0

have a solution u, and for all t > 0 (u(t),ut(t)) € 01. Taking the

inner product of equation (1.1) with ug and integrating by parts gives

S

2
g% Bla(, 0+ [ Unle) - nlat,01 g,

(5.10) &

+ [nlul - nfuC-,t))1-u tds + [mlu] - mlu(-,t)])ug s,

{where Tlg(',t)] represents T(Hsl9'9'9'5))' Tf 01 is suitably small

) + (gt,Bg

we may estimate the integrand in (5.10) by <ut,Ru ), and

t t

conclude from (5.2) that

(5.11) §3 Bude,£) < 0 GE wp# o

Now let 0 < B < a, and for any ¢t > 0 let

19} = C]2+6{(9('r-t)lu (';i)) & T 2 t}

t =

24 R

where C]2+8 represents the closure operator in the topology of C

x2+6'

Since X2+0 imbeds compactly in Q2 is compact, and Q_ = N q
t % £50 t

~

is non-empty. If u is the solution of equations (1.1), (1.4), (1.11),
and (1.12) with initial data ({,,0,) € 8, then (A(-,t),u.(~t)) €

for all €. Since E(GO) = lim E(u(-,t)), E is constant on Q_. Then,

torw

by (501}, GO is a stationary colution, and, taking 01 small enough,

so that, by 5.11,

A

Uy = u*, But if (5.9) holds then we may choose Uy

E(uy) < E(uy) < E(u*) ;

then u, # p*. 0
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