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ABSTRACT
Let A denote a strongly elliptic second order differential operator
and B be a first order boundary operator actinahan functions u defined on
y N = N : 2
QC R. Let f:0x R xR - R satisfy [f(x,&,n)]| <c(eh @ + [n]%).

Under suitable assumptions, it is shown how the set of solutions of the

problem

Au £ (x.u,Du)  in

(1)
Bu = 0 on 3f

satisfying u < u < U where u and U are, respectively, sub- and super-
solutions of (1) can be naturally identified with the fixed point set of a
self-mapping T of the order interval [G,ﬁ]. Moreover, T has many desir-

able properties from which existence and multiplicity theorems are obtained.

AMS (MOS) Subject Classifications: 35325, 35J6C

Key Words: semi-linear elliptic equations, nonlinear boundary-value problem,
monotone iteration schemes, positive mappings

Work Unit Number 1 (Applied Analysis)

\
A

\\A EXPLANATION

Boundary value problems for semilinear elliptic egquations are considered.
If the nonlinear terms do not grow too fast as a function of the gradient of
the dependent variable and ordered upper and lower solutions are known, then
maximal and minimal solutions can be obtained by an iteration procedure. Other
results concerning the existence of additional solutions follow from topological

principles.
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ON SOME EXISTENCE THEOREMS FOR SEMI-LINEAR ELLIPTIC EQUATIONS

Herbert Amann and Michael G. Crandall

Introduction
In a recent paper [23] one of the authors showed that the semi-linear elliptic
boundary-value problem (BVP)
Au = f(x,u,Du) in Q
1)
Bu = 0 on @
has one or several solutions provided that suitable sub- and supersolutions are known.
Here A 1is a second order strongly elliptic differential operator on the bounded
domain Q C RN, and B 1is a first order boundary operator of the sort which allows
use of the maximum principle. Moreover, Du denotes the gradient of u and
f:Q2x R x RN + R is required to satisfy certain assumptions detailed in Section 1.
In this paper we obtain (slight) generalizations of these results by an argument which
is considerably simpler and more direct than the presentation in [3].
The device used in [3) was to study the corresponding parabolic initial-boundary
value problem

du

3¢ *Au= f(x,u,Du) in Q x (0,®)
(2) Bu = 0 on 30 x (0,w)
u(-,0) = Uy on S

Roughly, it was shown that solving (2) yields an order preserving compact semigroup
{s(t) : t = 0} on the order interval [G,G] whenever ;.G are ordered upper and
lower solutions of (2). Rest points of S(t) are solutions of (1), and one can obtain

rest points of S(t) by applying abstract :esults to S(Z-n) and letting n + «. An

essential point in this program is to associate solutions of (1) with fixed points of

order preserving compact mappings with the same sub- and supersolutions as (1). A

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.




simpler idea which achieves this same end is the following: Let A > 0, h € CI(RN; RN)

and solve

g in @
(3)

.

{u + A(Au - f(x,u,h(Du)))
0 on N

Bu

for u when g in [G,G] is given. Denote the associated mapping by u = T(g). 1In
this paper (modulo technicalities) we show that A >0 and h can be chosen so that

T is well-defined, compact, order preserving, and the fixed points of T are solutions
of (1). This allows results for (1) to be deduced from standard abstract principles
applied to T. The auxiliary problem (3) is in fact suggested by (2), because expres-
sions like (3) arise upon approximating (2) with an implicit difference (in t) scheme.

A related scheme was used by Chandra and Davis in [6] for the case of an ordinary

differential equation which depends linearly on Du. We learned of the papers of Chandra

and Bernfeld [7] and Chandra, Laksmikantham and Leela [8] after our own work was
complete. These discuss ordinary differential equation cases in which f depends non-
linearly on Du and the equation is an infinite system respectively. However, assump-
tions are made eliminating the need for the analog of our truncator h in (3).

Beyond the facts that the proofs given here are simpler and more constructive than
those in [3], we expect the idea of the proof to be useful in other problems (e.g., non-
linear boundary conditions). Moreover, we are able to obtain a sharp result, Theorem 3,
which is not given in [3]. Finally, using Bony's maximum principle [5], we obtain
some new technical generality at no cost in complexity.

Section 1 contains notations, definitions, and the statements of the main results.

The proofs are given in Section 2.

-2-




Section 1. Preliminaries and Statements of Results.
N
Throughout this paper 2 denotes a bounded domain in R whose boundary T is
a c2 submanifold of dimension N - 1 such that $ 1lies locally on one side of T.

We denote by A the real differential operator

N
Au = - 2 a. D.D u
kw1 I T E
g N 2 _ .
where a, € C(?), a, =a . and ) a, (X)EE >0 for xe€ & and Ee€ R\{0}.
jk jk kj § k=1 ik

We also suppose that the boundary is the disjoint union of two closed subsets I‘O
and f'l each of which is an N - 1 dimensional submanifold of ]RN. Let

B € Cl(l‘l:]RN) be an outward pointing, nowhere tangent vector field on I  and

1

bo € CI(I‘I;IR) satisfy b0 > G. Then B denotes the boundary operator

u on l"o ’

B = du

—_ 4 ’

28 bou on T‘l
Thus B is the Dirichlet boundary operator on I’o and the Neumann or regular oblique
derivative boundary operator on I'l. Either I‘o or ]"1 may be empty.

In the following all function spaces consist of real-valued functions. Moreover,

throughout this paper p denotes a real number satisfying p > N. Hence the Sobolev
imbedding theorems imply that the usual Sobolev spac; wk'p(m is compactly imbedded
in '@ for k = 1,2.

The nonlinear term f in (1.1) will be a continuous function f : £ X R x RN +R.

A solution of (1) is a function u € wz’p

() satisfying Au = f(x,u,Du) a.e. on R
and Bu = 0 on [. One defines solutions of (3) and its variants below in the same
way. The notion of solution is independent of p > N by classical regularity results.
If the coefficients of' A, f and T are suitably smooth, then every solution of (1)
is a classical solution. A supersolution of (1) is a function u € Wz'p(ﬂ) such
that Au > f(x,u,Du) a.e. in 2 and Bu > 0 on TI. A supersolution is strict if

it is not a solution. Similarly, one defines subsolutions and strict subsolutions by

reversing the inequalities. (These notions evidently depend on p.)




If v,w: Q@+ R then v <w means v(x) < w(x) a.e. on 2 and Vv < w means
v < w and moreover v(x) < w(x) holds on a set of positive measure. The relation =
induces an ordering on each space considered below. Let [v,w] denote the set of
measurable functions u : @ * R such that v <u <w. If X is a Banach space of
real-valued functions on { we set [v,w]x = [v,w) N X and regard [v,w]x as having
the relative topology from X.

If f£(x,E,n) grows at most quadratically in n, the existence of an ordered pair
of sub~ and supersolutions implies the existence of a solution:
Theorem 1. Let f : X R X RN + IR be a continuous function such that 3f/3f and
3f/3n exist and are continuous where (x,£,n) denotes a generic point of Q x R x 15&
Assume moreover that:

There is an increasing function c : F¥ > Ig_ such that

(1.1)

£, 6.m ] <cdeh @+ |n|® for (x,6.m e fx R x R .

Let v be a subsolution and Vv be a supersolution of (1) such that v < v. Then (1)

has a least solution u and a greatest solution u in the order interval [v,vV].

Theorem 1 is a slight generalization of [3, Theorem (1.1)]. The next theorem is
the corresponding generalization of [3, Theorem (1.6)].

Theorem 2. Let the hypotheses of Theorem 1 hold. Suppose that ;j is a subsolution
and ;j is a supersolution for j = 1,2 such that ;1 < ;1 < ;2 <V, Assume more-

over that 31 and v, are strict. Then (1) has at least three solutions uj such

- -
that v, <u <u, <u <v

€ [v.,v £ j = 1,2.
1 1 3 2 and uj [vj,vj] or j 1,2

2
The next result is a sharp statement which was not obtained in [3]. It generalizes

the corresponding result for the case in which f is independent of Du’ (cf. (2,

Theorem (15.3)).

Theorem 3. Let the hypotheses of Theorem 1 hold. Let Vv be a strict subsolution and

v be a strict supersolution such that v<v. If u = u and u, = u are the least




and greatest solutions of (1) in the interval 13,01, vy # u2 and the BVP

N
Ah - 321 £, (xu; (x),Du; (x))DSh - £, (x,u; (x) ,Duy (x))h = 0 in Q

j E

Bh = 0 on T

does not have a positive solution for i =1 or i = 2, then (1) has at least three

distinct solutions in (;,Q].

The main new ingredient in our proof of the above results is the next proposition,

which is of independent interest. Indeed, Theorems 1, 2 and 3 follow at once from

this proposition and known abstract results ([2]).

Proposition 1. Let the hypotheses of Theorem 1 hold. Let v be a subsolution and V

be a supersolution of (1). Then there exist h € Cl(ngﬂ 135 and A > 0 such that

(a)

(b)

(c)

(d)

(e)

For every g € t;,G] the problem
u+ A(Au - f(x,u,h(Du))) = g
Bu = 0
has exactly one solution u satisfying u € [;,G]. This solution is denoted by
u = T(g) below.
A function u € [;,G] is a solution of (1) if and only if u = T(u).

Let C;(ﬁ) = {ue Cl(ﬁ):Bu =0 on T). Then T:[v,V] + [v,v] is

@) c ()
continuous, compact and strongly increasing (i.e. g < 6 implies T(g) < T(é)
and if g <g then T(§) - T(g) lies in the interior of {u € C;(ﬁ):u > 0}).
If we (;,GI is a strict subsolution (resp., strict supersolution) of (1), then

w < T(w) (resp., T(w) < w).

If v and v are strict sub- and supersolutions then [v,;] i has nonempty
CB(Q)
interior in C;(ﬁ). Moreover, as a self-mapping of [;,G) 1= T has a strongly
c_(Q)
” B - a
positive Prechet derivative T'(u) for u in the interior of [v,v] , .
c_(Q)
B

Pinally, for each fixed point u of T in [v,9), T'(wWh=h for he c;(n)




exactly when h is a solution of the linear BVP

N
ah ~ J £, (x,u(x),Du(x))h = 0 in Q

(x,u(x) ,Du(x))D.h - £

£

Bh = 0 on I .

Proposition 1 is proved by maximum principle and continuation arguments in
conjunction with the following a priori estimate:
Proposition 2. Let f satisfy (1.1). Then there is an increasing function vy : R, * R+

such that if u is a solution of (1) then

llull <vtlhulle gy -
w2'P () ca@

Moreover, Y depends onlyon A, B, 2, N, p and c.
While Proposition 2 is more or less known, we do not know an explicit reference

and give the proof in Section 2 for completeness.

-




Section 2. Proofs of the Main Results
First we show how Theorems 1-3 follow from Proposition 1. Then Proposition 1 is
established assuming Proposition 2. Finally, Proposition 2 is proved.

Proof of Theorem 1. If T is the mapping of Proposition 1, it follows immediately

from (a), (b), (c) of Proposition 1 that Gn = T“(G) decreases to an element u of
[V,v] as n-+® and u is the maximal solution of (1) in ([v,v]. Similarly,

u = Tn(;) increases to the minimal solution u. (Or see [2, Corollary (6.2)).)

n

Proof of Theorem 2. This result follows at once from Proposition 1 and [2, Theorem 14.2]

applied to T. It should be noted that the assumption 51 <v, can be weakened to

- < L -
% i, and v, *_vl (cf. [4]).

Proof of Theorem 3. The assertions of Theorem 3 follow from Propcsition 1 and [2,

Theorem 14.4]) applied to T provided that we can show the Frechét derivative T’ (u)
(here T is regarded as a self-mapping of [;,G] 1. and u is in the interior of
CB(Q)

) has a spectral radius different from 1 if u is u or u,. Since

v,vl "

c;(ﬁ) g
T'(ui) is a strongly positive compact endomorphism of Cé{ﬁ) by Proposition 1(e),

the spectral radius is an eigenvalue and it is the only eigenvalue with a positive
eigenvector. These assertions follow from the Krein-Rutman Theorem. Consequently, if
T'(ui)h # h for every h € C;(ﬁ) with h > 0 then the spectral radius of T'(ui) is
not 1. But, according to Proposition 1(e), this holds under the assumptions of

Theorem 3.

Proof of Proposition 1. Let v,v € W-'P(2) be sub- and supersolutions of (1) with

v < v. Let

RLE T

(2.1) m = max(llC" 1
(o} Q)

_ el

@ e
1, N N N cak

Let ¥ ={he c (R;R): |h(n)| < 2|n| for ne R'}. It follows from Proposition 2

and the imbedding theorems that there is a constant M with the following properties:

FIRETE




(i) m<M
(2.2) (ii) If he X and ue [v,v] is a solution of Au = f(x,u,h(Du)) in

2 and Bu=0 on T, then ”“”1_ <M.
C

Choose h € X which satisfies
(2.3) h(n) =n for |n| <M and h(RN) is bounded ,
and consider the problem

(2.4)
Bu = 0 on T

{u + A(Au - f(x,u,h(Du))) =g in Q
where 2 > 0 and g € [;,G]. If (2.4) has a solution u and u =g, then
"u" 1 < M by (2.2). By (2.3) we thus have h(Du) = bu and u is a solution of
(1).C (C‘:))nversely, any solution u of (1) with ue€ (;,G] is a solution of (2.4)
with g = u. We next show that (2.4) in fact has a unique solution u € [;,\;] for
every g € [\-l,\;] and the mapping g = u = T(g) so defined has the properties of
Proposition 1 provided that A is chosen suitably small.
set k(x,g,n) = £(x,£,9(n)) and let X > 0 satisfy
€2.5) 1 - Xk (x,E,m) >0 for xe Q, lg] <m, ne R .
It is possible to choose such a A since h(nN) is bounded and Kk, (x.£,n) = £_(x,E,h(n)).

3 €
As a final notational convenience we fix A as above and define G : Cl(ﬁ) > () by
(2.6) G(u) (x) = k(x,u(x),Du(x))
so that (2.4) may be abbreviated to
u+ A{du - G(u)) =g in 9
(2.7)
Bu = 0 on T .
To prove the existence and uniqueness of solutions of (2.7) we will use the following
form of the maximum principle:

Lemma 1. Suppose a, € L (Q) for j=0,...,N and a_> 0. Let u€ wz'p(ﬂ) satisfy

b 0
the inequalities
"
Au+2a.D.u+au>O in R
oy 9 o -
j=1
Bu > 0 on T .




Then u > 0. Moreover, if u# 0 then u(x) >0 for every x€ 2. If u#0 and

u(xo) = 0 for some Xy € I, then (BU/aa)(xo) < 0 where a is an arbitrary outward

pointing vector at X, which is not tangential to T.

Proof of Lemma 1. The assertion follows from Bony's maximum principle [5] by means

of standard arguments as given, for example, in [10].
Lemma 1 may be used to prove the following comparison result:

Lemma 2. Suppose that u,v € wz:P(Q) satisfy II“"c(ﬁ)' ”v”C(ﬁ)f-m and the inequalities
u+ A(Au - G(u)) > v + A(Av - G(Vv)) in @
Bu > Bv on T .

Then u > v. Moreover, if u# v then u(x) > v(x) for x € Q. If u#v and

u(xo) = v(xo) for some X, € T, then (au/aa)(xo) = (Bv/au)(xo) where a is an

arbitrary outward pointing vector at X which is not tangential to T.

Proof. Set W = u - v. Then the hypotheses imply the inequalities

N

Aw + z a,bDw+aw>0 in Q
e 33 o =
J—.

Bw > 0

where
1
a.(x) = - [ k_ (x,v(x) + Tw(x),Dv(x) + TDW(x))dT
J 0 nj

for 3 =1,...,N and

1
ag(x) = Xl e Meg (x,v(x) + TW(x),Dv(x) + TOW(x))AT .
0 -

We have a, >0 by (2.5) and hence Lemma 1 implies the desired conclusions. i
Lemma 3. Let g € [v,v]. Then the problem (2.7) has a unique solution u € v,v]. !
Proof. The uniqueness assertion follows at once from Lemma 2. Let g € {;,G] be

fixed and set

-

=V 4+ A@AV -G(V) - g .

<>

Since v is a supersolution and v - g >0 wec have y > 0. From the Lp-theory of elliptic

-9-




boundary value problems and Lemma 1 it follows that for every q € L"(m the problem

{(A+1)v=q in 0

Bw =0 on T

(2.8)

has a unique solution w = Kq € Hz'p(n). Moreover, K : Lp(ﬂ) ot Hz'p(ﬂ) is continuous.
Set 2 =-K(A+1)v and w=2+v. Then we w'P(@), (A+ 1)w=0 and Bw = BV.
Define H : C* (@) x m+cl (@ by

(2.9) H(u,T) = A(u - ™) + K[ - Mu - AG(uw) - g - T - AW .

Clearly, H is continuwously differentiable and

H(u,T) = K[u + A(Au - G(u)) - g - ]

2.10
( ) 2,p

provided u - Tw € W () and B(u - '(;1) =0 .

Hence H(V,1) = 0 and a solution u of H(u,0) = 0 is a solution of (2.7). We will
show how to continue the solution u = \‘;, 7T=1 of H=0 to a solution at 1 = 0.
Let D1H (u, 1) denot;e the Frechet derivative of the mapping u - H(u,71). Clearly
b, :ct @ » c'(@ is given by

Dlﬂ(u,'r)h = Ah + K[(1 - A)h = AG'(u)h]

n
where G'(u)h = 2 k (x,u,Du)Djh + k,_(x,u,Du)h. A function h € Cl(ﬂ) satisfies

=y s (3
D H(u, )b = 0 i b only if he w2'P(@), Bh=0 on T and h+ A(A - G'(u))h = O
in 0. Lemma 1 and (2.5) imply therefore that D H(u,T) is injective if ||u||c(§) < m.
Since K is bourded from LP(Q) to Hz'p(ﬂ), it is compact from tP@ to C1 Q@)
and it follows that Dlﬂ(u,T) is an automorphism of Cl(ﬁ) for (u,1) € Cl(ﬁ) x R

with ”u" < m. Therefore, by the implicit function theorem, there is a neighborhood

c(®)
VXW of (\;,1) in Cl(ﬁ) x R such that H(u,tT) = 0 has a unique solution u = u(r)
for 1€ W with u(t) € V. In particular, u(l) = v. Since IIG”C(‘-}) < m and
T * u(t) is continuous, we can assume "u(‘r) " <m by choosing W sufficiently small.
From H(u(t),T) = 0 and (2.10) we deduce that u(T) € w''P(a) ana
{um + Aau(r) - Gu(r)] = g + T

Bu(t) = mﬁlc TBV < BV

- -~

for teWN [0,1). Since also g + Ty _<_g+0-w‘;+X(A:/-G(G)) for such 1, Lemma 1

-10-




implies u(1) f_;. In a similar way we see that u(1) > vV for 1€ wn {0,1). -Using
in addition (2.3), (2.6) and the definition of h, it follows that G(u(t)) remains

bounded in LQ(Q). Then (2.9) and H(u(t),T1) = 0 shows that {u(t):te wnN [0,1]}

is bounded in wz'p(u) and hence precompact in Cl(ﬁ). A standard continuation argu-
ment now establishes the existence of a continuous mapping u:[0,1] -+ Cl(ﬁ) such that

H(u(t),t) =0 and v u(t) < v for Te [0,1]. Hence Lemma 3 is proved.

According to Lemma 3 we now have defined a mapping (;,3] 3 g+ u="T(g) where
u is the unique solution of (2.7) in [;,G]. From (2.2) and (2.3) the fixed points
of T are precisely the solutions of (1) which lie in the interval [;,G]. Thus (a)
and (b) of Proposition 1 hold. Moreover, as above, we see that T([;,G]) is bounded
in wz'p(n) and hence precompact in C;(ﬁ). To see that T 1is continuous as a mapping

T:l;,Q] ¥ [;,G] 1 we then need only check that it has closed graph, which

p ~
L™ () CB(Q)

follows at once from the uniqueness. The fact that T 1is strongly increasing follows
at once from Lemma 2. Thus (c¢) of Proposition 1 holds. Next let w be a subsolution
of (1) with w € [v,v]. The interval [v,v] may be replaced by [w,v] in the above
proof (w satisfies the same assumptions as v and ; <w 5_3 implies the choices of
A,m and h work for w in place of ;), so T((w,G]) g_[w,31 and so w < Tw. If

w 1is not a solution, then w#Tw so w < Tw. Similarly, supersolutions w of (1)
satisfy T(w) < w with strict inequality.for strict supersolutions. This establishes
(d). We turn now.to (). If v and ; are strict we have G > v. By (c), there is
an € > 0 such that if B is the ball of radius € about the origin in C;(ﬁ) then
T(v) - T(V) + B, C {ue C;(ﬁ):u > 0}. But then

(w01 2 (1,1 > L LIW 5

which skows that [v,v] has nonempty interior. To see that T is continuously

differentiable as a mapping from the interior of [;,G] (a set which clearly

cp @
contains the fixed points of T if v and ; are strict) to Cl(ﬁ), we need only

recall that T was obtained by applying the implicit function theorem. Indeed, let

-11-




N penge—

\

us write H(u,7t,g) to indicate the dependence of H on g in (2.10). Since H- is
of class Cl, H(T(g),0,9) = 0 and D H(T(g),0,9) is an automorphism of ¢! @), g + T(9)
is continuously differentiable. Calculating the derivative shows that T'(g)h = w
implies w € w2,p(m and

w + A(Aw - G'(T(g))w) = h in Q
(2.11)

Bw = 0 on I .
Hence Lemma 1 implies that T'(g) is a strongly positive linear operator. Finally, if
u=g is a fixed point of T and T'(uh = h, (2.11) reduces to the final assertion
of (e).

It remains to prove Proposition 2.

Proof of Proposition 2. The Proposition will follow at once from the next lemma.

Lemma 3. For every b € LO(Q) there is exactly one solution u € w2,p(m of the

problem
2 .
(A + 1u=>b( + |pu]®) in @
(2.12)
Bu = 0 on T .

Moreover, there is an increasing functicn YO:R+ - R+ such that

“u“ 2 < Yo( [Ie(l w ) - The function Yo depends only on A, 2, B, p and N.
w P q) L™ (@)

Indeed, if u is a solution of (1), it is also a solution of (A + 1)u =b(1 + loul?),
Bu =0, where b= (£(x,u,Du) +u)/(1 + |pul?). Thus if ve set v(r) = y (clx) + 1),
the asse-tions of Proposition 2 follow from Lemma 3.
Proof of Lemma 3. Let o,,0_, € [0,1] and assume (A + l)ui = b(o:.L + |Dui|2), Bu, = 0.

1"°2

Set w=u1-u2 and H=|01-0

2| [In] o * Then it follows that
L ()

N
(A+1)M-w -b jzl Dyluy + uy)Dy(M - w) = |(,1 =g "b"l‘-- (o, —0y))b>0 in 0,

and

BM ~w) =M on I‘o and B(M—w)&bong_o on 1"1.

Consequently, by Lemma 1, w < M. Similarly one shows that w > -M. Thus

-12-




(2.13) Mo, =wll = <o -a]llbl .
1 %2lle@ i e

In particular, if 01 = 02 then ul = u, and solutions of (2.12) are unique as a
consequence.

With the notation of the preceding step we also have

2 2
(A + 1w = (0, - 0,)b+ b(lDull - |Du2| )

1

2 2
« fo, = a.)b * b(IDull - |ow - pu [
in @ and Bw =0 on T. Consequently
2
fea + nwll < 2ffplf ,  Howl 7l
L () L (2) L ()

/p

2
s vl . @ P eaiion ) O
L (@) L (@ -

where up(R) is the Lebesque measure of Q. The Gagliardo-Nirenberg interpolation

inequality (see, e.g., [9, Theorem I.10.1]) supplies a constant Yy such that

2 < w w
o] ”me) <l ”L’(m : ”wz'p(m

Combining this fact with the above inequality, (2.13) and the existence of a Y, >0

such that [/ (A + l)wll ol "w“ , we find
¥ (@)

w2'P(q)

-1
(2.19) hay - u,li < loy = o,lvy v, livll llu, = u,ll
1 - 202 S R ]
+ v, (el elbegdl 4 0
- Ce o @
where Yzﬁmf * R, is nondecreasing in each argument. Choosing 0y, = o, u, = 0 and

an integer n > 0 such that n~171173llb“ o < 1/2, (2.14) implies that if
L (Q)

o, € (0.0 Y], then

(2.15) 2v, (o]l - O
L

Ha, |l <
272 P (g

All of the above estimates are equally valid if b is replaced by 7t for Tt e€ [0,1].

Next we attempt to solve
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(A +1u= b(,% + lDulz) in @
(2.16)
Bu = 0 on I .

If we are able to do so, we then set 02 =n , u, =u in (2.14) and use (2.15) to

2

obtain an estimate

o, I

<yl o
WP ~ 4 L™ @)

for 51 € [n.1,2n-1]. Continuing in this way the result is proved in n steps. To

show (2.16) has a solution, let T(t,¢) denote the solution v of

(a+v=1E+ |ov]|d in @
(2.17) “
Bv =0 .

As a mapping T:[0,1] X Cl(ﬁ) -+ Cl(ﬁ) T is compact, qontinuous and the solutions of
¢ = T(1,#) are uniformly bounded by the above estimates. Moreover, T(O,0) = 0 for
(4 Cl(ﬁ). Hence Tkl,') has a fixed point by the Leray-Schauder fixed point principle,
and the proof is complete.

The proof of Proposition 2 is based on methods deéveloped by Tomi {11] (cf. also
V. Wahl [12] and [3, Theorem 2.2]). We remark that our use of the Leray-Schauder

theorem above could have been replaced by a continuation argument based on the implicit

function theorem, thereby making the proof of Lemma 3 more constructive.

-14-
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