
~~~~~~~~~ o4o 39o wz~~~~ SIN!v MADIs: MAT~~ MATI~~~ RESEARcH cENTER Fn s2,1
EQUATIONS. (U)XISTENCE T

UNCLASSIFIED 

ON S O E E  
~~CR~~OALr 

SEMI—LINEAR ELLIPT

END

___ 12 - 77 I
I
I
II
‘
II



10 2 8

:: ::~ !IIII~
.2

1 1 
~ ~

~~
~

llHI125 IHU~?11i~
ITh
~

#

NATIONAL BUREAU OF STANDARDS
MICROCOPY RESOLUTION TEST CHART



-- _
~~if~ ~~~~~~

. —
.

MRC Technical Summary Report # 1772

ON SOME EXISTENCE THEOREMS FOR SEMI-
LINEAR ELLIPTIC EQUATIONS

Herbert Axnann & Michael G. Crandall

Mathematics Research Center
University of Wisconsin —Madiso n
610 Walnut Street r3 0 (._‘
Madison , Wisconsin 53106 ~~~~~~~ r~ 4~\

~ov iS ~9~T•?

July 1977

( cP’ F
> (Received June 2, 1977)

.__J

~~~~LL~-. Approved for public releas e
IJIUI3 Dis tribution unlimited

Sponsored by

u. S. Army Resear”h Office
P. 0. Box 12211
Resear ch Triangle Park
North Carolina 27709



UNIVERS ITY OF WiSCONSIN - MADISON
MATHEMATICS RES EARCH CENTER

ON SOME EXISTENCE THEOREMS FOR SEMI-LINEAR ELLIPTIC EQUATIONS

He rber t  Amann and Michael C .  Crandal l

Technical Summary Report # 1772
July 1977

ABSTRACT

Let A denote a strongly elliptic second order differential operator

and B be a first order boundary operator actin~~~ n functions u defined on

~~C ~
N 

Let f : p x ]R x ~~N 
-~ 

~ satisfy If(x,~ .n) I < C (l ~~~)(1 + l n I ’ ) .
Under suitable assumptions , it is shown how the set of solutions of the

problem

Au = f ( x ,u , Du) in P
(1)

B u 0  on ~P

satisfying u < u ~ where u and ~ are , respectively, sub— and super-

solutions of (1) can be naturally identified with the fixed point set of a

self-mapping T of the order interval (u ,u). Moreover , T has many desir—

able properties from which existence and multiplicity theorems are obtained.

AMS CMOS ) Subject Classifications : 35J25, 35J60

Key Words: semi-linear elliptic equations, nonlinear boundary-value problem ,
monotone iteration schemes, positive mappings

Work Uni t Number 1 (Applied Analysis)

EXPLANATION

Boundary value problems for semilinear elliptic eluations are considered.

If the nonlinear terms do not grow too fast as a function of the gradient of

the dependent variable and ordered upper and lower solutions are known, then

max imal and minimal solutions can be obtained by an iteration procedure. Other

results concerning the existence of additional solutions follow from topological

principles.
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ON SOME EXISTENCE THEOREMS FOR SEMI-LINEAR ELLIPTIC EQUATIONS

Herbert Azrann and Michael G. Crandall

I ntroduc t ion

In a recent paper [3) one of the authors showed that the semi-linear elli ptic

boundary—value problem (BVP)

r Au f(x,u,Du) in £1
(I) (

t_ B u 0  on (~

has one or several solutions provided that suitable sub- and supersolutions are known.

Here A is a second order strongly elliptic d i f f e r en t i a l  operator on the bounded

domain fl C and B is a first order boundary operator of the sort which allows

use of the maximum principle. Moreover, Du denotes the gradient of u and

f : I~ x -* 1~ is required to satisfy certain assumptions detailed in Section 1.

In this paper we obtain (slight)  generalizations of these results by an argument which

is considerably simpler and more direct than the presentation in [3)

The device used in 13) was to study the corresponding parabolic in i t i a l -boundary

value problem

+ Au = f (x ,u.Du ) in ~ x (O ,~ )

(2)  Bu = 0 on ~) x (O ,~~)

u ( . ,O) = u
0 on ~l

Roughly, it was shown that solving (2) yields an order preserving compact semigroup

(s(t )  : t > o)  on the order interval (u ,uJ whenever u ,u  are ordered upper and

lower solutions of (2) . Rest points of s ( t )  are solutions of (1) , and one can obtain

rest points of S( t )  by applying abstract results to S(2 ~~ ) and letting n • ~~~. An

essential point in thi:s program is to associate solutions of (1) with f ixed  points of
4 %

order preserving compact mappings with the same sub- and supersolutions as (1). A %~~
‘ ‘~~
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simpler idea which achieves this same end is the following : Let A > 0, h e Ch
(R

N. RN)

and solve

+ ) (Au — f(x,u,h (Du))) = g in I)
(3)

B u = 0  on ~P

for u when g in (U ,~~) is given. Denote the associated mapping by u T(g). In

this paper (modulo technicalities) we show that A > 0 and h can be chosen so that
— T is well—defined , compact, order preserving , and the fixed points of T are solutions

of (1). This allows results for (1) to be deduced from standard abstract principles

applied to T. The auxiliary problem (3) is in fact suggested by (2), because expres-

sions like (3) arise upon approximating (2) with an implicit difference (in t) scheme.

A related scheme was used by Chandra and Davis in 16) for the case of an ordinary

differential equation which depends linearly on Du. We learned of the papers of Chandra

and Bernfeld [7) and Chandra, Laksxnikantham and Leela (8) after our own work was

complete. These discuss ordinary differential equation cases in which f depends non-

linearly on Du and the equation is an i n f in i t e  system respectively. However, assump-

tions are made eliminating the need for the analog of our truncator h in (3).

Beyond the facts that the proofs given here are simpler and more constructive than

those in (3 ] ,  we expect the idea of the proof to be useful in other problems ( e .g . ,  non-

linear boundary condi t ions) .  Moreover , we are able to obtain a sharp result . Theorem 3,

which is not given in (3) . Fina l ly ,  using Bony ’s maximum princ i ple ( 53 ,  we obtain

some new technical generality at no cost ~n complexity.

Section 1 contains notations , definitions, and the statements of the main results.

The proofs are given in Section 2 .

—2—



Section_1.. Preliminaries and Statements ~f Results .

Throughout this paper I) denotes a bounded domain in ~
N 

whose boundary F is

a C2 submanifold of dimension N - 1 such that I) lies locally on one side of F.

We denote by A the real differential operator

N
Au~~~ - a . D D u

j ,k~ 1 3 1 ( 3 k

where a.k C C(~2), a .k = a1( . and 
~ 

a~ 1( (x) > 0 for x i  I) and ~ e R~~ (0) .
3,k~’1

We also suppose that the boundary is the disjoint union of two closed subsets F
0

and r1 each of which is an N — 1 dimensional submanifold of RN. Let

8 C cl (r
1

;]R B) be an outward pointing, nowhere tangent vector field on F
1 and

b
0 

C1(F 1;]R) satisfy b
0 

> 0. Then B denotes the boundary operator

l u  on

on F
1

Thus B is the Dii- ichiet. boundary operator on F
0 

and the Neumann or regular oblique

der iva t ive  boundary  operdtor on r
1
. Either F

0 or F
1 may be empty.

In the followi ng all f un ct i on spaces consist of real-valued functions. Moreover,

throughout this p~~~r p denotes a real n umber satisf ying p > N. Hence the Sobolev

imbedding theorem s imply that  the usual Sobolev space Wk
~

1)(0) is compactly imbedded

in for k = 1,2.

The nonlinear term f in (1.1) will be a continuous function f : 13 X R x R
N 

R

A solution of (1) is a function u c W2~
1)
(13) satisfying Au f(x,u,Du) a.e. on 13

and Ru 0 on r . One defines solutions of (3) and its variants below in the same

way. The notion of solution is independent of p > N by classical regularity results .

If the coeff ic ients  of A , f and F are suitably smooth, then every solution of (1)

is a classical solution.  A supersolution of (1) is a function u i W2 ’~~(0) such

that Au > f (x ,u, Du) a.e. in 1) and Eu > 0 on I’ . A supersolution is Strict if

it is not a solution . S imi la r ly ,  one def ines  subsolutions and strict subsolutions by

reversing the i n e q u a) i t i es .  (These notions evidently depend on p.)

— 3— 
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If v ,w : (7 -, R then v < w means v(x) < w(x) a.e. on 13 and v < w means

v < w and moreover v (x )  < w ( x )  holds on a set of positive measure. The relation <

induces an ordering on each space considered below. Let (v ,w) denote the set of

measurable functions u : (2 -, R such that v < u < w.  If X is a Banach space of

real-valued functions on 17 we set (v ,wJ = (v, w) (‘~ X and regard Iv, wl as having

— 
the relative topology from X.

If f ( x ,~~, fl) grows at most quadratically in ~~ , the existence of an ordered pair

of sub— and supersolutioras implies the existence of a solution: - .. -

Theorem 1. Let f : (2 x ~ x R1
~ -

~ ]R be a continuous function such that 3f/~~ and

af/ an exist and are continuous where (x , 1, r i) denotes a generic point of (2 x R x ~~~

Assume moreover that:

There is an increasing function c : ~ 
R+ such that

(1.1) (

L.. If (x ,~,n)~ ~ c (k ~) ( l  + for (x,~~,n )  C x R x RN

Let v be a subsolution and ~ be a supersolution of (1) such that v < v. Then (1)

has a least solution U and a greatest Solution u in the order interval [v ,v J .

Theorem 1 is a slight generalization of (3, Theorem (1.1)1. The next theorem is

the corresponding generalization of 13, Theorem (1.6)1.

Theorem 2. Let the hypotheses of Theorem 1 hold . Suppose that v , is a subsolution

and v~ is a supersolution for j = 1.2 such that v1 
< v

1 
< v

2 
< v

2
. Assume more-

over that and v2 
are strict. Then (1) has at least three solutions u. such

that < u1 
< u 3 

< u
2 

< “2 
and u . C ( ,v . J  for j — 1,2.

The next result is a sharp statement which was not obtained in (31. it generalizes

the corresponding result for the case in which f is independent of Du~ (cf. (2,

Theorem (15 .3 ) ) .

Theorem 3. Let the hypotheses of Theorem 1 hold . Let v be a strict subsolution and

be a strict supersolution such that v ~ v. If U
1 

u and U
2 ~ u are the least

—4—
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and greatest solutions of (1) in the interval (;, ] ,  U
1 
* u

2 
and the BVP

• 
- 

j=1 
f n j

( u .  ,Du~~~~~~D .h - f
~~

(x
~

u . ( x )
~~

Du . ( x ) ) h  0 in (7

B h - 0  on F

does not have a positive solution for i = 1 or i = 2, then (1) has at least three

distinct solutions in (v ,v].

The main new ingredient in our proof of the above results is the next proposition,

which is of independent interest. Indeed , Theorems 1, 2 and 3 follow at once from

this proposition and known abstract results ( ( 2 ] ) .

Proposition 1. Let the hypotheses of Theorem 1 hold. Let ; be a subsolution and ~

be a supersolution of (1). Then there exist h s C1(3R~~ 
pH) and A > 0 such that

(a) For every g e (V,V] the problem

u + X (Au - f(x,u,h (Du))) = g

has exactly one solution u satisfying u € [v ,~~) .  This solution is denoted by

U = T(g) below.

(b) A function u C [v ,’~) is a solution of ( 1) if and only if u = T(u).

Cc) Let C1
O~) = (

~ C C
1(13) :Bu = 0 on F) . Then T:(v ,~’) -

~ 
( , ~

] 
~B L~ ((2) C
E

CIl)

continuous , compact and strongly increasing ( i . e .  g < g implies T(g)  < T( g)

and if g < g then T(g)  — T(g) lies in the interior of Cu £ C~~(l7 ) :u > 0}).

Cd) If w C (V ,V J  is a strict subsolution (resp., strict supersolution) of (1) • then

w < T (w) (resp., T(w) < w ) .

(e) If v and V are strict sub- and supersolutions then (v ,vJ 1 — 
has nonempty

c8U2) -

interior in C~~(~~) .  Moreover, as a self—mapping of ~~~~~ 1 — 
T has a strongly

-
positive Frechet derivative T ’(u ) for u in the interior of (v , ) .

Finally, for each fixed point u of ‘F in (v,vJ , T’ (u)h — h for h € C~~U2)

— 5— 
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• exactly when h is a solution of the linear BVP

N
Mi — f (x ,u ( x ) ,Du ( x ) ) D . h — f~~(x , u (x ) ,D u ( x ) ) h  = 0 in (7

j~ l ~~ 3 .

j~~Bh~~~ 0 on F .

Proposition 1 is proved by max imum principle and continuation arguments in

conjunction with the following a priori estimate:

Proposition 2. Let f satisfy (1.1). Then there is an increasing function y :

such that if u is a solution of (1) then

II U IJ 2~~ ~ ‘~~~ IIuIIC(~3) )

Moreover , y depends only on A, B , (7, N, p and c.

While Proposition 2 is more or less known, we do not know an explicit reference

and give the proof in Section 2 for completeness.

—6— 
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SectiOn_2. Proofs of the Main Results

First we show how Theorems 1— 3 follow from Proposition 1. Then Proposition 3. is

established assuming Proposition 2. Finally, Proposition 2 is proved.

Proof of Theorem 1. If T is the mapping of Proposition 1, it follows immediately

from (a) , (b), (c) of Proposition 1 that i~ — T~~(v) decreases to an element ~ of

(v ,v) as n + ~ and U is the maximal solution of (1) in (vM. Similarly,

u T”(v) increases to the minimal solution u. (Or see f 2, Corollary ( 6 . 2 ) ) . )
n

Proof of Theorem 2. This result follows at once from Proposition 1 and (2. Theorem 14.2)

applied to T. It should be noted that the assumption v
1 

< can be weakened to

< and V
2 ~~ 

(ef . (4]).

Proof of Theorem 3. The assertions of Theorem 3 follow from Proposition 1 aid (2,

Theorem 14.4) applied to T provided that we can show the Frech~t derivative T’(u)

(here ‘F is regarded as a self-mapping of ~~~~~~~~ 1 - 
and u is in the interior of

C
5 ~~

fv ,v) 
~ - 

) has a spectral radius different from 1 if u is u or u
2. Since

C5
(I3) 1

T (u .) is a strongly positive compact endomorphism of C~ (f2) by Proposition 1(e),

the spectral radius is an eigenvalue and it is the only eigenvalue with a positive

eigenvector. These assertions follow from the Krein-Rutman Theorem. Consequently , if

T’(u.)h � h for every h e C~~((2 ) with h > 0 then the spectral radius of T’(u
1
) is

not 1. Rut, according to Proposition 1 (e) , this holds under the assumptions of

Theorem 3.

Proof of Proposition 1. Let v ,v C W2 ’~~(fl) be sub-- and supersolutions of (1) with

v < v. Let

(2.1) in — max ( Ilv Il ~ — •u~ii 
~ — + i

C (fl) C U))

Let X = {h C C2 (1R~; ]R
1
~): Ih(n) I ~ 2~ T~ for i i i  ~N} ~~ follows from Proposition 2

and the imbedding theorems that there is a constant M with the following properties:

—7—



m < M

(2.2) (ii) If h i  ~C and u C (v ,;) is a solution of Au = f ( x , u, h(Du) ) in

£7 and Eu ~ 0 on r, then IIu I~ 1 < M
C ((2)

Choose h i ~C which satisfies

(2.3) h (~ ) = 
~ for 

~~ 
< N and h(JtN) is bounded

and consider the problem

(u + A (Au - f(x,u,h(Du))) = g in (2
(2.4) (

L B u = O  on F

where A > 0 and g e (v ,~~]. If (2.4) has a solution u and u = g, then

< M by (2.2). By (2.3) we thus have h(Du) = Du and u is a solution of
C CI))

(1). Conversely , any solution u of Cl) with u C (v ,v) is a solution of (2.4)

with g = u. We next show that (2.4) in fact has a unique solution u C (V.V1 for

every g € (v ,v) and the mapping g + u = T(g) so defined has the properties of

Proposition 1 provided that A is chosen euitably small.

Set k(x,~~,ri) f(x,~~,g(n)) and let A > 0 satisfy

(‘2 .5) 1 — Ak~~(x,~~,~~) > 0 for x C £)~ ki ~~. m~ n e

It is possible to choose such a A since h (R N) is bounded and k~~(x .~~,n )  = f~ (x,F ,h(T1)).

As a ti~~il notational convenience we f ix A as above aid define G : C
1 (fl) -e CU ))  by

(2.6) G(u) (x) k (x . u( x ) ,D u ( x ) )

so that (2 .4 )  may be abbreviated to

( u  + A (Au — G ( u ) )  = g in £7
(2.7)  (

L su 0 on F .

To prove the existence and uniqueness of solutions of (2 .7)  we will use the following

form of the maximum principle:

Lemma 1. Suppose a~ c L~~U3) for j 0 ,... ,N and a0 
> 0. Let u £ W2

~l’((1) satisfy

the inequalities

p N
IAu -f ) a D .u + a u ~~~ O in (7

j~i 
3 )  0

B u > 0  on r

—B—
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Then u > 0. Moreover , if u * 0 then u(x) > 0 for every x C (2. If u * 0 and

u(x
0
) 0 for some x

0 
C I’, then (au/an ) (x 0

) < 0 where a is an arbitrary outward

pointing vector at x
0 which is not tangential to 1’.

Proof of Lemma 1. The assertion follows from Bony ’s maximum principle (5) by means

of standard arguments as given, for example, in (10].

Lemma 1 may be used to prove the following comparison result:

Lemma 2. Suppose that u,v £ W2’~~(I)) satisfy flUIIC(~)~ 
IIV I~C(~) 

< in a rid the inequalities

u + A (Au — G (u)) > v  + A (Av — G(v ) ) in £2

Ru By On F

Then u > v. Moreover , if u * v then u(x) > v(x) for x e (7. If u v and

u(x
0
) = v (x

0
) for some x

0 
€ r, then (au/an) (x) - (av /~a) (x0) where a is an

arbitrary outward pointing vector at x0 
which is not tangential to F.

Proof. Set w = u — v. Then the hypotheses imply the inequalities

Aw + 
•
~~~~~ 

a~ D~w + a
0
w ~ 0 in (2

B w > 0

where —

1
a - (x) = — J k (x ,v ( x )  + rw (x) ,Dv (x )  + rDw(x) )dt

for j=l,...,N and

1
a0

(x) A
_i / (1 — Ak~~(x, v ( x )  + rw(x) , Dv (x)  + tDw ( x ) ) d r

0

We have a
0 

> 0 by (2.5) and hence Lemma 1 implies the desired conclusions .

Lemma 3. Let g ~ (V ,V ]. Then the problem (2.7) has a unique solution u

Proof. The uniqueness assertion follows at once from Lemma 2. Let g C (v ,v) be

fixed and set

= + A (A’ - G (’ ) )  — g

Since ; is a supersolution and v - g > 0 we have i~ > 0. From the L~ —theory of elliptic

-9-
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~‘1

boundary value problems and Lessna 3. it follows that for every q € L1’(Q) the probi cm

((A + l)w ’. q in £7
(2.8)

~w - o  on r

has a unique solution w Kg I W
2 1’U2). Moreover, K : I?U2) -e W

2’
~~((2) is continuous.

Set z -K(A + l); and ~~~~~~~~~~~~~~~~ Then ~~i W
2’~
’((2), (A+i )w 0 and

Define H i C1 U)) ~ * + C1 U)) by

(2.9) H(u,t) — A (u — r )  + K((l — A)u — AG(u) — 9 — r($ — A ))
Clearly, H is continnously differentiable and

H(u,T) = K(u + X (Au — G(u)) - g — r~)
(2.10)

provided u - 1w E W2’
~~(I)) and B(u - -rw) = 0

Hence H(v,l) = 0 and a solution u of H(u,0) 0 is a solution of (2.7). We will

show how to continue the solution u v, t = 1 of H = 0 to a solution at i = 0.

Let D
1
H(u,T) denote the Frechet derivative of the mapping u -e H(u,r). Clearly

D
1
H(u,T):C1 (Q) + C1(Q) is given by

D1ft(u, r)h = Ah + K[Cl — A)h — AG’(u)hJ

n
where G’(u)h = k (x ,u ,Du)D h  + k (x ,u,Du)h. A function h e  C1UI) satisfies

j=l 
~ 2

D
1
H(u,1)h 0 if and only if h i  W ~PU)), Eh = 0 on F and h + A(A - G’(u))h = 0

in £7. Lemma 1 and (2.5) imply therefore that D1
H(u,T) is injective if 11u 11~~1~~ 

< in.

Since K is bounUed from IP(I)) to w2’~ (I2), it is compact from L~ (I)) to C3 (Q)

arid it follows that D
1
H(u,T) is an automorphisin of C’i(2) for (u, r) e C’((l) x P

with lIUIIC(~) < in. Therefore, by the implicit function theorem, there is a neighborhood

V X W of (v,1) in C
1C12) x p such that H(u,r) = 0 has a unique solution u = u (t)

for i e W with u(t) € V. In particular, u(l) = ;. Since IIV II C(a) < in and

t + u(T) is continuous, we can assume ~Iu(T) ~f 
< in by choosing W sufficiently small.

From H(u(T),1) — 0 and (2.10) we deduce that uCt) I W
2’~~CQ) and

fu (r) + A(Au(r) — C (u ( i)) I  = g +

B u (t ) 1 M v 1 - T B v < B v

for rew fl (O,lJ . Since also g + r~, < g  + — + A (~v 
- G(v)) for such T ,  Lemma 1

—10—



implies u ( t )  < v. In a sisular way we see that u(t) > v  for ~ c ~~~~ (0,1). -Using

iii addit ion ( 2 . 3 ) ,  (2.6) and tSn definition of h, it follows that G(u (-r)) remains

bounded in L (~1) . Then (2.9) an~ H(u(t) ,~~~) = 0 shows that {utr ) :~ i W ~ (0 , 11)

is bounded in W2’~~(~ ) and ti~ n ’e precompact in C’UH. A standard continuation argu-

ment now establishes the existence of a continuous mapping u:(0,1] -e C’(fl) such that

H ( u ( r )  , r )  = 0 and v -
~ u(T) -

~ v for t e [0,1]. Hence Lemma 3 is proved.

According to Lemma 3 we now have defined a mapping (v ,v] ~ g -e u T(g) where

u is the unique solution of ( 2 . 7 )  in (v ,v] .  From (2.2) and (2.3) the fixed points

of T axe precisely the solutions of (1) which lie in the interval [v ,’~3 . Thus (a)

and (b) of Propouition 1 hold . Moreover, as above , we see that T ( [v ,v ) )  is bounded

in W
2’
~~ .~ and hence precompact in C~ (I7). To see that T is continuous as a mapping

T:(v,v] -~ (v ,v] 
~ - 

we then need only check that it has closed graph, which
C
R W)

follows at n~~ from the uniqueness. The fact that T is strongly increasing follows

at once f r o m  x~~mir~i 2. Thus Cc) of Proposition 1 holds. Next let w be a subsolution

or (1) with w C (v ,Vj . The interval (v ,v] may be replaced by (w,V] in the above

I~r r f  (w satisfies the same assumptions as v and v < w < v implies the choices of

A ,m and h work for w in place of v), so T((w,~~)) C (w ,v) and so w < Tw. If

w is not a solution, then w#Tw so w < Tw. Similarly, supersolutions w of (1)

satisfy T(w) < w with strict inequality for strict supersolutions. This establishes

(d). We turn now to (e). If v and v are strict we have v > V. By Cc), there is

Sri > 0 such that if B
~ 

is the ball of radius C about the origin in C~ (~7) then

T(v) - T(v)  + B
~ 
C (

~~ € C~~(~~):u 
> o). But then

[, vl D ITV,FV) ~ 
‘I’(v) + T(v)  

+ ~

which sl-...ws that fv ,~~J has nonempty interior. To see that T is continuously

differentiable as a mapping from the interior of ~~~~ 1 - 
(a set which clearly

C5 
(I))

contains the fixed points of T if V and V are strict) to C’((2), we need only

recall that T was obtained by applying the implicit function theorem. Indeed, let

—11—
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us write H ( u , T ,g) to indicate the dependence of H on g in (2 .3.0) . Since H is

of class C1, H (T (g) , 0 ,g) = 0 and D
1
H(T(g),0,g) is an autoinorphisa of C’(~ ), g -, T(g)

is continuously differentiable. Calculating the derivative shows that T’ (g)h = w

implies w e W2~F’(Q) and

1w + A (Aw — G’(T(g))w) h iii (2
(2.11) -. ç

Bw = O  o~ r.

Hence Lemma 1 implies that T’ (g) is a strongly positive linear operator. Finally, if

u = g is a fixed point of T and T’(u)h h, (2.11) reduces to the final assertion

of (e).

It remains to prove Proposition 2.

Proof of Prcppsition 2. The Proposition will follow at once from the next lemma.

Lemma 3. For every b C L U)) there is exactly one solution u e W2’~~((2) of the

problem

f (A + l)u b(l + JDu I
2
) in (2

(2.12) ç
t~B u 0  on r

Moreover, there is an increasing function 10
:P+ 

.4 such that

(fu(( 2 p ~~~ jjbf( 
I . The function y

0 
depends only on A. £2, 5, p and N.

W ’ ((2) L ((2)

Indeed, if u is a solution of (1), it is also a solution of (A + l)u = b(l + IDu I
2),

Ru 0, where b = (f (x ,u, Du) + u)/(l + IDu I
2) .  Thus if we set 1(r) = y

0
(c(r) + r),

the asse.tions of Proposition 2 follow from Lemma 3.

Proof of Lemma 3. Let O1~
O2 

€ (0,1) and assume (A + l)u1 
= b(a~ + IDu~ I 2 ) ,  Ru.  = 0.

Set w = u - u and N = to  - ° I Ilbil = 
. Then it follows that

1 2 1 2 L U ) )

(A + 11 CM - w) - b I D~ (u
1 

+ u
2

)D
j

(M - w) = — 0
2

1 IIbH — 
~°i 

- 02
)b ~ 0 in C)

and

8(M - w) M on and B(M - w) b014 > 0 on F1

Consequently, by Lemma 3., w < M. Similarly one shows that w > -N. Thus

—12—
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(2.13) Vu1 
— U

2 t1 C(~~) ~~ ~~ 
— 

~~~~~~ j f b f l

In particular , if 0 = 0
2 

then u
1 

= u
2 

and solutions of (2.12) are unique as a

consequence.

With the notation of the preceding step we also have

CA + l)w = (a~ — o2
)b + b(IDu1 l

2 
— 10u21

2

= (o~ — o
2
)b + b (1Du1 1

2 — I DW — Du11
2
)

in (2 and Sw = 0 on F. Consequently

I~ (A + l)wlI 2 fIb Il II lr’~I~ Ii
IYW) L ((2)

+ flb ll (~~U))l/P + 3 IIIDU~I
2II )

L ((2) LOU))

where p ((l) is the Lebesque measure of (2. The Gagliardo-Nirenherg interpolation

inequality (see , e.g., [9, Theorem 1.10.1]) supplies a constant y~ such that

IlJ r,.,,1
211 v~ Ilw J I lIwV 2

L U)) W ’ ((1)

Combining th is  fact with the above inequality, (2.13) and the existence of a 13 
> 0

such that (I~ + l)wtI ~ y3 IIwll 2 , we find
W

(2.14) — U
2 ) I 2~~~ — 1 

- 0
2

11
; 

1
1 

II b ll~~~(2) 1 
- u2II 2 ,~

+ y ( Ilb il ,llu~ lI 1 —2 L U)) CU))

where y
2
:P~ -‘ is nondecreasing in each argument.  Choosing 01 

= 0, U
1 

= 0 and

an integer r > 0 such that n
1
y
1
1y
3 Il b II < 1/2 , (2.14) implies that if

-1 
LU ))

(0,n ) ,  then

(2.15) flu ~ 2 
< 2y (Ilbil ,0) .

2 w •P((2) 2 L ((2)

All of the above estimates are equally valid if b is replaced by Tb ~or I i  (0,11.

Nex t we attempt to solve

—13—
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f (A + l)u — b(1 + JDu I
2 ) in (7

(2.16) ç
(,B u 0  on F .

If we are able to do so, we then set 0
2 

~~l
’ u2 u in (2.14) and use (2.15) to

obta in aa estimate

IIU3. II 2 p ~.Y4
( Ilb il = 

)
W ’ (12) LU))

for 
~l 

~ (n~~,2n~~j. Continuing in this way the result is proved in n steps . ‘l’o

show (2.16) has a solution, let T(r ,~ ) denote the solution v of

f (A + 1)v Tb(! + lv~’l
2 

in (7
(2.17) ç

L~~B v= O

As a mapping T:(0,l) x C1CCI) -e C~i() ) T is compact, continuous and the solutions of

= T ( r ,~~ ) are uniformly bounded by the above estimates. Moreover , T( 0,~p )  = 0 for

~ e c
1
~~~~~ . Hence ‘r(l , •)  has a fixed point by the Leray-Schauder fixed point principle,

and the proof is complete.

The proof of Proposition 2 is based on methods developed by Toni (Ill (cf. also

V. Wahl (12) and (3, Theorem 2.2)). We remark that our use of the Leray-Schauder

theorem above could have been replaced by a continuation argument based on the implicit

func t ion theorem , thereby making the proof of Lezimia 3 more constructive.

—14= 
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