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ABSTRACT

For any n-times differentiable function f with uniform bounds on f and

(n)

ot :
f , we study the pair of values (f‘J)(t), f(]+1)

(t)) for an arbitrary reail

t and a prescribed j = 0,...,n - 1. A given value of f(J)(t) determines

f(j+1)

admissible values for (t). These values are exactly determined in terms

of the Euler spline fn(t). Special differentiation formulas of cardinal inter-

polation type are developed to solve the problem.
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SIGNIFICANCE AND EXPLANATION

A simple physical application of the problem solved in this paper is the
following: Given a motion f(t) constrained to lie always in a certain
interval and always with a bounded acceleration f"(t), best possible bounds
for the velocity f'(t) can be given. It is intuitively clear that the bound
on the velocity f'(t) at time t depends on the position f(t). We study

this situation, and more generally the case of pairs of derivatives of higher

order.




A REFINEME

NT OF KOLMOGOROV'S INEQUALITY

A. S. Cavaretta, Jr.

§1. Introduction.

In 1939 Kolmogorov [4) proved a sharp inequality between the supremum norms of the
s i 1 i

. S . - 4 ' (n)
successive derivatives of a function. With n > 2 and values for Hf” and [!f Il

he found best possible estimates for I}I'())H, 1 <3j<n-1 here, and in all that

follows, the norm is the supremum norm taken over the entire real axis. 'The inequality
is intrinsically tied up with the so called Fuler spline function FE (s) and can be
n

considered as a characteristic property of F . In fact, if we set

n
Fre
,0|L‘\]‘l| S =g
y]” | ; i e J grieba g TY

then the Kolmogorov Theorem takes on the following form:

Suppose f has an absolutely continuous (n-1)th derivative and satisfies

¥
= I
Then also
) 90 v
CE.2) !1 | s j b T ¢ i
in

These inequalities are best x ible as they are equalities for ¥ (s).
m=—— - 3 ' e e = n

The constants Y can be rcadily computed from the Fourier series of F (s). B

J1 n
a chauge of scale in both axes we can always arrange to have (1.1) for any given
function f£. The Euler spline F occurs most naturally within the context of cardin
n

4 ) ; \
spline interpolation where it appears as the unigue interpolant of the secguence (-1)

we refer the reader to [9]) pages 39-40 and also to [8] for background information on
these remarkable functions. Most importantly, we neced the following three propertics
of E (s):
n
Y B (s)|l =1
g
v

(1.3} ii) Hr(\)) = (=1) for all integers v;

iii) if n is even and Vv any integer,

S)‘()n_sc;fr.-d l»)}- the Uniled States A my under Contract No. DAAG29-75-C-0024. i




»(n) - ; L 2 S
(-1) bn (s) = Nnn when v > <8 < N+ 3

if n is odd and Vv any integer,

n-1
—+ Vv
2 E(n)

n

(-1) (s) = v when v -1 <s <v.,
nn
These properties characterize En(s) and are sufficient for our purposes.
For conveaience, let us denote by Fn all those functions f satisfying the
hypotheses (1.1) of the Theorem. Now for each 3 =0,1,...,n - 1, define

45 = (e 5y, 9 )y

where f ranges over the whole class Fn and s ranges over the whole real axis.
Since Fn is ipvariant under shifts of origin, we may set s = 0 or any prescribed
value t if convenient. When we view Aj as a subset of the x - y plane with

o gH (G4

X (s) and y = (s) ,

several geomctric features become immediately obvious. Each Aj is convex. Also as

£ € Fn implies *f(*s) ¢ Fn' we easily establish that Aj is symmetric in each axis.
And from the Kolmogorov Theorem we conclude that Aj is a bounded set; more precisely,
it is circumscribed by the rectangle determined by the lines x = !an and y = in+l,n'
A completgsdescription of Aj is given by the following

Theorem 1: Let 0 < j <n - 2. The boundary of 4, is given parametrically in t by
the curve

x(ty = D) vy
n

= e Cgel)
y(t) = En (t)

Since En(t) is periodic with period 2 the boundary of Aj is parameterized over the
finite interval [0,2) and is, of course, a simple closed curve. For j = 0, the

result is already implicit in Kolmogorov's paper of 1939 [4]. This case is formulatcd

there as an auxiliary inequality used in the induction proof of the 1.in result (1.2)

-2=




on norm inequalities,

The case j = n - 1 is exceptional in that A)—l rcduces to
a rectangle. The contribution of the present paper lies in its methods and the cases

j=1,...,n - 2. In §2 we present certain interpolation formulas of cardinal type and

use these to give a proof of Theorem 1. We derive these formulas in §3.
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§2. Some formulas of cardinal type; a proof of Thecrem 1.

We could define the sets Aj for function classes other than Pn. For example,
let B" denote all entire functions of exponential type m which when restricted to
the real axis are uniformly bounded by 1. As above, put
&~ {(f(s),£'(s)) |f € B, S reall
For j we have a
Proposition. The boundary of ; is given parametrically by the curve ({cos nt, -m sin mt).
This proposition is implicit in earlier work of Duffin and Schaeffer [3], and indeed
follows quite easily from a formula of Pélya-Szeg; [7; 111, 165]). Our use of this

formula demonstrates the method by which we will derive our Theorem 1.

Proof. We exploit the following formula, valid for any f € B and any t, real or
s n

complex:
T sinznt
(2.1) wcosnt £(t) - simnt £'(8) == ] (-1) =—5 £
V== (t-v)
= ) Af(
Vi -

where the last equality merely serves to definc the coefficients Av of the formula.
Note that when t 1is real
v
sign A = (-1)
Y
unless t is an integer for then all but one of the A vanish.
Y
Now as in the introduction A is viewed as a convex subset of the x - y plane.

So A has a supporting line with normal vector (a,B), see Figure 1, and the position

of this line is determined by

2.2 max{ax + By [(x,y) ¢ A} .
Setting
(2.3) a = mcosTt, B = -sinmnt

for an appropriate t, we see that the corresponding quantity in (2.2) becomes

(2.4) wcosnt f(s) - sinnt f'(s)

~4=




y = f'(s)

x = f(s)

(a,B)

Figure 1

which must be maximized over all f € Bn and over all real s. But B11 is invariant

under shifts, so we may just as well take s = t in (2.4) and so recover the le{t hand

side of (2.1). Given the alternating signs of Av’ formula (2.1) then makes clear that

(2.4) with s replaced by t is maximized when the function f(s) 1is cosws; hence
(cosmt, -wsinmnt) € BA

This result persists for every ¢t, and varying t we generate every normal direction

(a,B) as seen from (2.3). Thus (coswt, -usinmt) describes the full boundary of A4,

as was to be shown.

After this short digression, we return to our main interest: the function class ¢
and the corresponding sets A,, 3 = O,...,n - 2. Our main goal is a class of formulas
analogous to (2.1). The existence and character of these formulas is the content of

Theorem 2: Fix n and j with n >4 and 0<j <n- 2. Also fix a real value t.

Then for any f € Fn we have

w© @

et = T oAt o [ k™ sras

V=~ -00

_ gD

R I T 5D
(2.5) B2 (exshE ter = B

where
i) (-1VA_ > o0
v
ii) K(s) 1is, except for a discontinuity at t, a cardinal spline of degree
(2.6) n - 1 with knots at the integers; Eng_discontinuity at t ii iﬂ

K(n-J-l) K(n-)—Z);

and

‘ iii) for n ecven

afa




f

n
i ==

(-1) 2K(S) 200 AL k= % < g < v + é ;
for n odd
v+E§l
(-1) K(s) >0 if v -1<s <v;

iv) both A and K(s) tend exponentially to 0 as [v| ana |s]
tend to infinity.
Remarks. The Av and K(s) both depend of course on t, but we do not indicate this

(n)

in the notation. Formula (2.5) is valid for every f with f esscntially bounded

f(n—l)

and absolutely continuous. The case j = 0 and t an integer is exceptional

as then the left hand side of (2.5) collapses to a multiple of f(t).

The proof of Theorem 2, which is technically complicated, we defer to §3. Here
instcad we give in detail some special cases and then indicate how (2.5) and (2.6) are
us prove Theorem 1. We observe that the very existence of formula (2.5) with

(2.6) is enough to establish the extremal property of Fn(s) given in

For our first example of the type of formula contained in Theorem 2, set n = 3
and j = 0. We find that for 0 < t <1
1

(2.7) E (t*l YE* () = E'(t+1 yE(t) = 4(t—l)2f(0) = 4L2f(1) + f K (s)f
2 2 2 2 0 5

(3)(s)ds

where
2((-1)232 Ol s <t

2
2t (s—])2 t s <1
Note that Kt(S) > 0. There arc formulas similar to (2.7) for other values of t; but

due to the symmetries of AO , (2.7) is sufficient for our needs.

For n=3, j=1 and 0 < t <1 the required formula is

1
' 1w " 1,60 ; (3) .
(2.8) Eylte5067(0) = EX(e+ )£ () = 8£(0) - BE(1) + |k (e)f7 (s)as

0

where s

o




—T

452

K, (s) = »
s 2
4(s-1) t<s 1

o
1A
1)
| A
(24

A

When t = 0, we infer by continuity that the coefficient of f'(t) in (2.8) is -8;

(2.8) thus reduces to the Taylor expansion for f(1) about the origin.

The case n =3 and also n = 2, which we omit, are exceptional in that our
formulas are finite in nature. The situation changes for n > 4, for then we have the
full for_ce of Theorem 2 and the formulas are truly of cardinal type, involving all

| integers Vv as nodes and kernels K(s) supported on the cntire real axis. The first

| such we encounter is for n =4 and j = 0:
. ; e - es L 5 -
| (2.9) Ej(e+5)£'(8) - Ep(t+5)E(E) _Xm A £(V) + L K(s)f' ' (s)d
[ where
i al(t)l;. v > 1
? 4 A\J = v
| - < -
’ alor, V<=l
' i en e i

Al 11 + 2v30 - .045548, Xz )&1
f ,
' (L ¥ 2 |
‘ ii) for 0 < t <3 and u = e

(2.10) ) i
) N | Gl o R
a tey = B} 2 € At 1) & (1) el B, 4w 1,2
i 2 A A
] 1

| AO = Au(t) = —3(4t2-]) + ut2(4t2+3)

iii) K(s) 1is a cubic spline with knots at the integers and at t; and
v 1 X
= s) > 3 o e A AT e
(=1) K(s) C for v 5 s >
An easy calculation from ii) shows that
a (ty >0, 4i=1,2 and A_(t) >0 ;
b 0
hence with )i <0, 1 =1;2;, 1) implies

(-1)“A“ >0 for all v .




Concerning the sign regularity of K(s) given by iii), we make a series of remarks.
From our construction of K(s) in §3, it will be clear that K(s) bhas simple zeros
1

at every point v + 3" Once K is constructed (2.9) emerges when we integrate by

parts the remainder
i (a
[ xts1£' (s)as
-0

It follows that

K*''(1+} = K'*'(1=) = =A_ >0

Lt SHE R 0 1 J % 8 € 2
and in particular
K'll(_‘z} N0 .
2

Anticipating considerations of §3, we find three (weak) sign changes in the sequence

21 3] wl2h 3

which then forces

2] 0
2] - 5
£

: : - 1 3 . :
This together with the simple zcros of K(s) a v + 3 yields the particular sign

pattern iii) of (2.10).
i ; i 1 b 3 £ e :
When t = 2 (2.9) becomes a formula for f (2 s it is, after multiplication by
-1, precisely the formula given by Schoenberqg in [8) and again in [9], as is seen when
(2.10) is evaluated for ¢t = ;. More generally the formulas of Theorem 2 reduce to
formulas of C. de Boor and 1. J. Schoenberg [1) when
L 1
jJ even and ¢t = i

or when

j odd and t = 0 .

In the case j =0 and t = %. the formula has also been established by C. A. Micchelli

For n=4 and j =1 the formula is

4)

Py e tig K gig S I :
(2.9, Ej(+ 507 () = E5(e+ 0 (0) = [ A £ + [ k(e (s)as

- -

-.8-




with Av and K(s) given just as in (2.10) except that ii)

Ay st g Rl
(2-10), a (t) = 3u|—5— @t?41) + (-1)° —— 4t
1 1

0

1
Clearly Ao(t) > 0 as are ai(t), QESEtaC 3
sign pattern (-l)vAv 0

And as a last example for n =4 and J = 2 we nave

o«
U l v - VU (g l " —
(2.9), Eple+ )0 00) = Bt e e _Zw B E(V)
where now ii) of (2.10) is replaced by
3 = X
al(t) = az(t) = =24y ‘~—'—)“1‘
(2.10);
AO = 48y

Having thus concluded our examples of some of the formul
we now use the gencral formula to prove Theorem 1. The argum
like those used above to derive the Proposition concerning /-1
formula (2.1).

Proof of Theorem 1. Each Aj is a convex set and so can be
terms of its lines of support. Just as in the proof of the P
position of the supporting lines in a given direction with no

maximizing

.(3) e () _ platl) ik
(251} E i3 (e = B 2 i terglE
over all f € Fn. For ¢f e Fn we evaluate (2.11) via (2.5)
(2.12) ] afow+f rsie™(sy@ms < §J [a ] ¢
V=00 N ~-0 V=~ X/

where the ineguality follows from conditions (1.1) defining t

equality occurs in (2.12) if and only if f satisfies both

. Thus the A of (2.9)
v L

is replaced

By = A () = eniaeH), ocesZ .

©

+ f kst (s)as

-0

as contained in Theorem 2,
ent 1s along lines very

from the Pélya-Szcgs

completely described in

have the desired

roposition, determining the

rmal  (a,B) amounts to

Y ()

as
©

o | 001

~00

he class Fn. Clearly

TR

T T

R ——————




f(v) = signum A, = (-])V
and
f(n)

(S =iy signum K(s&) a.e.
nn

But by comparing (1.3) with (2.6), we sec that these last two conditions are

satisfied by the Fuler spline F , and in fact these conditions characterize F . So
n

n
. 3 dy % e 8t : ] %o (3) (3+1)
(2.11) is maximized when f(s) = En(s). This implies that the pair (En (t), En (t))

is on the boundary of Aj, and as we vary t we generate the entire boundary. We

mention in passing that the ratio

takes on cvery extended real value and so maximizing (2.11) gives supporting line< in
every possible direction. L

From the uniqueness comments made above in the proof of Theorem 1, we obtain the
following remarkable property of the Euler spline:

Corollary. Assume n >3 and f € F . The equations

1 it n
£ = B0
n
) EGE:
gl gy o g% gy
n
can occur simultancous)y at some point t only if

g£(s) =k (s)
n

for all real s. 1f j=0 we exclude from our assertion any integral value of t.

In other words, the pair (f(])((), f(j{l)(t)) is ﬁ!ﬁﬂﬁ:iﬂ.fﬂf interior of Aj

unless f is the Eulcr spline FE in which case the pair is always on the boundary of
f G AN AR L g 2t AU L S

-10




§3. A construction of the formulas of Theorem 2.

We will carry out the construction for n even; for the case of n odd, small
variations are necessary. Our main task is Lo construct K(x) with the properties
given by (2.6). The formula (2.5) then emerges easily by integration by parts.

There are two main tools involved in the construction, tools from the thcéry of
cardinal spline functions. Our references for this material are [9] of Schoenberg and
{1] of de Boor-Schoenberg to which we refer the reader for details; also to [5) and [6]
where C. A. Micchelli has developed some of these methods to provide an "optimal
estimator" for f£'(t).

The eigensplines. These are cardinal splines S satisfying the functional equation
Sx+1l) = AS(x) .

The number X is called the eigenvalue. We need two classes of such eigensplines,

those vanishing at the integers Vv and also those which vanish at the points v + %;

in both cases the knots are to be at the integers.

When n = 2m the degrece of K is 2m - 1 and according to (2.6) K must have

. i} ; ; : %
sign changes at Vv + > for every integer Vv. We find in [9] 2m - 1 eigenvalues “v

and corresponding eigensplines
(3.1) Si(X)' PN e 2m =)

of degree 2m - 1 satisfving

(3.2)
8,1y = 4,8, (x) for all x ,
3 AN

We note that for i =m+ 1,...,2m - 1

lim S,(x) = 0 ;
xro T

and for this reason these S (x), (i = m+l,...,2m-)) are sometimes called the "decreasing"
i

eigensplines. Among the eigensplines (3.1), Sm(x) is the only one which is bounded.

-11~-




When n = 2m + 1, we again find (9] 2m - 1 eigcenvalues

o e N <A = -1 <A S <0
A]. B m-1 m 4 m+1 2m-1

and corresponding cigensplines
2.0, §i(x), ie k.. etm-1
of degree 2m satisfying

S, (0)
1

]
o

€3.2), 2 N
S.(x+1) = A,S,(x) for all x .
i 6l |

The Budan-Fourier Theorem for splines. For a given spline function f, we let Zr(u,b)

denotc the number of zeros of f, counting multiplicity, on the open interval (a,b).

(n)

If f is of degrece n, f is piecewise constant and 2 (n)(a,b) is defined as the
f
number of strong sign changes on (a,b); thus an interval where f(n) vanicshes
identically is ignored. In addition
SRR, (a1
denotes the number of sign changes in the sequence f(a),...,f(n)(a) where zeros are

ignored. Similarly,

s (e a) e onit ™ (2l
counts the sign changes with zeros taken positive or negative o as to maximize the count.
With these notations we state the useful
Theorem. Assume that the spline f 1is of precice degree n and has a finite number

of simple knots in (a,b). Then

|

(3.3) Zela,b) < 2 (ot + B Rl v awert PV ae & B e )

c(m
There are many references to this result; perhaps the most accessible for the prescnt
purposes is [1) or [6].

The use of the Budan-Fourier Theorem in the presence of eigensplines is very much

facilitated by the following proposition which plays a very important role in our

construction.

-12-~




Proposition. 1. The eigensplines S‘(x) of (3.1) satisfy for every integer V

<(2m-1) )

s'(si(wi),..., (Vv¢2)) =i -1

i 2
(3.4) -
st vt 1y, .. s' N ot g
1 2 1 2

2. The eigensplines ﬁ'l(x) of (3.1), satisfy for every integer v

(2m)

S U8, (0)) cvierS (V) i
1 h
(3.4), r .
S T0he s v Bty = 4
1 1

The proposition appears in [1] and alse [6); it is proved on the basis of the

Gantmacher-Krein Theorem on oscillation matrices.

Determining the kernel K(x). Set n 2m, m > 2. Fix j and t as in Theorem 2. For
simplicity we assume 0 < t < b clearly this represents no essential restriction. Also
if j =0 weexclude t = 0 as indicated in the remarks following the statement of
Theorem 2. Put
m-) :
. Y 2m-1-) 2m-2-
K, (x) - ) a. .S, (x) + ax + b(x-t) S (= t0) J, x < X
l atn 1 1 4 + + e
1=1
(3.5) K(x)
2n-1
K, (x) )‘ a.s. (x), x >t
2 o ke i
i=m+]
for an appropriatc choice of the 2m + 1 parameters
v a wia sl a,b,c}
(ll' "“m-1" " m1’ D oS
to be determined presently. Note that in (3.5) each S].(x), i =1,...,m -1, is extended

; 2m+1
from the interval (-1,0) to (-1,1) without a knot at O0; instcad the term ax,

provides the knot at 0 for K(x). To check that K(x) is well defined by (3.5) as a
single valued function, both definitions of K(x) given by Kl(x) and l\'z(x) must agree
on the overlap (t,1). So when restricted to the interval (t,1), K’ (x) and K2(x)

must be identically the same polynomial. Equivalently

. (2)
5

(L) :x;“m L =0,...,2m - 1

for any fixed t with t <t < 1. After a little rearrangerent, these conditions yield

a linear system of 2m equations in the 2m unknowns

-1 3~
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.,Aa ,b,c}

'3 BRI a
L 2m-1

m-1""m+1’"°

: 3 . 3 2m-1 =
with a right hand side given by the term ax, evaluated at x = t.

To determine a solution of the above linear system, consider first the

homogencous system obtained by setting a = 0. Suppose there were a nontrivial solution.

Then the result is a K(x) defined by (3.5) on the entire axis but with no knot at 0

since a = 0. Now it is easily seen that the sum

2m-1

(3.6) K(x) = 5 a.s. (x), X >t
o fedy =
i=m+1

is nontrivial. In addition, the functional equations (3.2) and the ordering of the ecigen-
values “i together imply that for large values of the arqument x the sum (3.6) is

dominated by Sm (x). Thus from (3.4) with v large we have

)
+ -
(3.7 st Ty ket vedy, Lk el cma
2 2 2 =
Similarly
(3.8) s'(x(-w;),K'(—wé)....,sz_l(-w;‘)) Sm-2

. i = 1
Now using these two estimates, we apply on each of the intervals (-v+} ,t) and

(t,v+ i) the Budan-Fourier Theorem (3.3) to K(x) given by (3.5) with a = 0. When

the resulting two inequalities are added together, we obtain

2v-1<2v-1+8 (Kith), K (t4) oo KD (i) = 8T (kE=) K (80, kPPTD) (e
(3.9) + (m=2) = (m+1)
< 2y = L+ 2k m=2) = (mFl) =2y = 2

The second inequality of (3.9) follows because the two sequences

K(?m—l)

K{t+) ,K'{(t+) poe., (t+)

REE=) R8T 0 un K D)

(t-)
can differ (by (3.5)) only in two consecutive entries; hence the corresponding difference

in (3.9) is at most 2. Now (3.9) is a contradiction, implyino that the homogeneous

system has only the trivial solution.
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Now set a =1 and so obtain a unique K(x) defined by (3.5). To this function
K{x) we again apply the above arguments leading to (3.9) but now with the one change
that 0 1is a knot. The result, valid for all large integers v, is
(3.10) 2V =0 S 20k R (m=2) = (mkl) = 2y = 1
So we must have equality in (3.10) which forces equality in (3.7) and (3.8). From these
equalities we can ecasily derive all the properties asserted for K(x) in Thecorem 2.
Properties of K(x). ii) of (2.6) is clear from (3.5), as is the exponential decay of
K(x). From (3.2 and (3.5}, K(v#; ) = 0 for all integers v; that these zeros are

simple, and that K(x) has no other zeros, follows from (3.10). Thus K(x) changes

: . : 1]
sign at each point Vv 4 7
. (2m-1) e : 5 b NS ,
Again from (3.10), K (x) must change sign across every integer and when
: . ; ,(2m-1) : e
j > 1 these are clearly the only sign changes of K (x). For j = 0 there is a

possible sign change at t, but we will climinate this possibility shortly. Formula

(2.5) emerges by integrating by parts

j“‘ k) £ (x)ax
—
Thus the Av of (2.5) are given by
(3.11) A, = =k o - kP o)
So
(3.12) A\) strictly alternates in sign

and we normalijze by

sign A_ > 0 .
0

This normalization implies

K(?m—l](x) >0 for -l s X X0

Iy -
K(..m 1)(x) %0 for =2v =~ e x <& =207

in particular

K(2|n—1)

1
(3.13) (-2\)-‘2) >0

=15~




Now equality in (3.8) combined with (3.12) yields

(3.14) sign K'(—2v—%) - 2T e s
So

-1)™k(x) >0 for -2v - % < x € =2y + %

and due to the simpli~"‘y of the zeros of K(x) we find

(3.15) 2)™Vkix) >0 for v - % < % € v+ %

valid for all v. Th.s ~-tablishes iii) of (2.6).

Concerning the case j = 0, we see from (3.5) that K has a double knot at t;

3 s : 2m- o o £

this allows a possible change of sign in K( the<l) at t, and we must eliminate this
JEm o ) = . ] .(2m-1)

possibility in order to preserve (3.12). Given the sign changes of K at every

integer, a sign change at t would entail

K(2m-1)(2\)_%) 0

for large positive v. Following the same line of reasoning which resulted in (3.15),
we would arrive at
+ 1
D™ VRix) <0 for v-Lex<cu+ .
2 2
: v ; ; ,(2m-1) {
This contradicts (3.15); hence there is no sign change of K at t.
Thus we have established formula (2.5) with a right hand side described by (2.6).

From (3.5) and the integration by parts, it is clear that the left hand side of our

formula is of the form

at Ity + ge ' (¢

We have yet to determine a and B, or more precisely the ratio R/a, as our
formula is determined only up to a multiplicative constant.

Recall the sets Aj of §1. For every s

(3+1)

(3)
(En (5),En

(s)) € A, ;
J

3 and in fact on the basis of all the properties (2.6) of formula (2.5) and the correspond-

ing properties (1.3) of En(s), we can already conclude as in §2 that

1

~16-




L()+1)

&9 (5,8 (s)) € 34,
n n )

With
i E(J)(s), y = E(J+l)(s)
n n
we find
ay ity pltD (1,
Ay U R el M S
ax ~ S TG T T,
das BT ey 0 BN s)
n n-1
And from Figure 1 it is clear that
o dy
B ax e
= At 1 SO ekl 1
So we have g = En—l(t* 2) and « En-l (=t 2).

The odd case n = 2m + 1 is settled in exactly the same way with the even degree
eigensplines éi(x) given by (3.1), and (3.2), replacing the Si(x). One then argues
on the integer points x = v, as indicated by (3.4),-
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