
A0 A046 3fl WISCONSIN (*IIV M*DISCN NATICMATICS RESEARCH CENTER F/S 12/1
PERIOOXC INTERPOI.ATINS SPLINES MC THEIR LIMITS. (U)
ADS 77 A 5 CAVAR ETTA. D .1 NEWMAN 0AA529—75—C—0024

(RECLASSIFIED *C—TSR—1731 P4.

_ _ 0



MRC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ PERIODIC INTE LM~~~ ~s LINEs AND
Th E I R  LI M I T S . -~

~~~~~ jT~T~ C varetta~~ Jr a~~~~D J /Newman~

Mathematics Research Center
Universit y of Wisconsin — Madison
610 Walnut Street ID ID

~~~~Received July 20 , 1977)

*

Approved for public re lease
Distribution unli mited

Sponsor ed by

U. S. Army Research Office
P .  0. Box 12211
Research Triangle Park / l

North Carolina 27709

/~/ ~~ vA~J ‘J

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~~~~~~~~~

--
~~~~~~~~~~~~~~~~~~~~~~~~~ . - 

-



1 .

UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

PERIODIC INTERPOLATING SPLINES AND THEIR LIMITS

A. S. Cavaretta, Jr. and D. J. Newman

Technical Summary Report #1781
August 1977

ABSTRACT

Let (x
~~
y
~

) ,  V = 1, . . . ,k be points of interpolation with

0 < x
1 

< •. .  < X~~ < 2ir and let 1 < p < . We consider sequences {s }  of
2ir—periodic functions which interpolate the data optimally in the sense that

1j~~
(m) 

= minimum
. u t  p

The main results, which depend on the parity of k, concern the asymptotic

behavior of S (x) as m tends to infinity.

1. k = 2n + 1. Let T(x) be the unique polynomial

(1) T(x) = -

~~~~~ 

+ 

~ 

(a~ cos qx + b
q 

sin qx)

that interpolates the data. Then

(2) u r n  S (x) = T(x) uniformly in x
m

2. k = 2n. Among all interpolants (1) let T(x) be that polynomial such that

a
2 
+ b2 = minimumn n

For this T(x) again (2) holds.

AMS CMOS) Subject Classifications: Primary 4].A15; Secondary 42A12

Key Words: periodic spline functions, trigonometric polynomials, interpolation

Work Unit Number 6 (Spline Functions and Approximation Theory)

SIGNIFICANCE AND EXPLA NATION

We consider points in the plane which recur in a wave-like pattern. We
determine infinitely many curves passing through these points and indexed by a
natural number m. The index m indicates the smoothness of the curve; and
as m becomes larger the curves take on a limiting shape which is explicitly
determined in the report.
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PERIODIC INTERPOLATING SPLINES AND THEIR LIMITS

A. S. Cavaretta, Jr. and D. J. Newman

In 1940 J. Favard wrote “Sur l’interpolation,” a paper which has attrac ted some

attention during the past few years [2], [3), [8]. Favard ’s work raises many interest-

ing questions (e.g. [3)) and we would now like to address one which appears in the very

final paragraph of his paper: to wit, how does one handle interpolation of periodic
data by smooth rn-times differentiable functions and what is the asymptotic behavior of

these smooth interpolating functions as m tends to infinity. The present paper is

accordingly divided into two sections. In the first section we approach the interpolation

problem as a constrained minimization and obtain a sequence S
m 

of spline interjolants .

The asymptotic behavior of this sequence is determined in the second Section .

We deal always with uniform convergence on the period , while the constrained

minimization is posed in each of the L norms, 1 < p < ~~~. However the limit of the

Sequence S
m does not depend on p, but rather is completely determined by the given

data. The case when p = 2 has been settled earlier by M. V. Golitschek [6] and also

by I. J. Schoenberg [9]. The new ideas necessary to handle the case of p � 2, and

in particular p = , consistute the novelty of the presenL paper .

•~ Sect ion
~ ~e~~iDfl

‘‘~~~T 
‘ ‘

~~~~
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§1. Fix (x ,y), V = 1,..., k as the points of interpolation and assume

O < x
1 

< x
2 

< < x~ < 2s and k > 2. We denote by Wm the space of 21r-per iodic

functions whose ( m - 1 ) t h  derivative is absolutely continuous and whose mth_derivative

is in the Lebesgue space L(0 ,21T). Put

F Cf e W5’ f(x ) = 

~~~ 
v = l,...,k}

Our problem is to determine solutions of

(m)
(1.1) m3.n fif

feFp

For nonperiodic data the results for this interpolation problem are well known 14), [2],

and we merely adapt the effective approach of de Boor and others to the present case of

periodic data . When p = the result for the perodic case reads as

Theorem 1. Problem (1.1) has a solution S which is a periodic perfect spline function

of degree rn with at most 2[~ ) knots. More precisely

(x) = c

except at the knots and

i (m)
c = r n i n jt

feF

Moreovei if in > k the solution S is unique.

Remark : Except for the uniqueness statement, this fact has been observed by others,

notably B. D. Bojanov [1) and W. Forst [5).

Proof : We first convert our interpolation conditions into moment conditions. For every

integer j and v 1,...,k put

x . x + 2wjV+)k V

~
‘v+jk 

= 

~
‘v

Based on the nodes Cx )~ • construct the B—splines M of degree m - 1 defined
V

as the Peano kernels of divided differences of order in. Thus for any f E F and any

integer V

—2—
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v+m
(y ,.. .,y~~~) = J M (t)f~

m) 
(t)dt

Now form ~~~ (t ) = 

~ 

M
~~~.k

(t), V = l,...,k. Clearly the are 2w—periodic and

linearly independent.

Now for any f e F set

2w
(1.2) C = f ~ (~ ) f (m) (~)dt, v =

0

We now solve the constrained minimization problem

2w
(1.3) min~ g~l subject to f ~~ (t)g(t)dt = c , V = l,...,k

0

Let M denote the linear span of {~p~ }k
1
. We view M as a k-dimensional subspace

of L1(0,2ir), and on M we define a linear functional A by setting

c ,  V 1 ,...,k
V V

It follows from the Hahn—Banach theorem and the identification of L
1 

with I. that

there exists a solution g
~ 

C L (O ..2~) of the above minimum problem (1.3). Clearly

IIg~I~, 
= II A H .

To determine the structure of the function g~ (t), let us suppose that A achieves

its norm for the function S E  M. Thus f i s h 1 = 1 and As = h A i l . Suppose for the

moment that the periodic spline s vanishes on no interval . Then from Rolle ’s theorem

we conclude that s(t) has no more than 2[~ ] zeros on its period. Observe also

2w
(1.4) Ilg~I I .. = h A il As = f s( t)g~ (t)dt < ilg~hl ,,hl s hJ 1 = iJg~ll,,.

0

So equality must hold throughout and so

g~ (t) IIg~I l sign s(t)

except at 2 [~ J points or less where s(t) = 0.

Now if a > Ii it follows from the minimum support property of the B-splines M (t)

that s cannot vanish on an interval. so g~ (t) is in this case uniquely determined

—3—
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by sign 5(t). If m < k and s(t) should actually vanish on an interval, we need

some additional technical details in order to see that there is some solution g~~(t)

with constant absolute value and at most 2(i) sign changes. For these details, we

refer the reader to [2).

To conclude our proof of Theorem 1 observe first

2w 2~
f g(t)dt = f f

(m)
(~ )d~ = 0

0 0

So g has an a-fold periodic integral, defined uniquely up to an additive constant.

Let S
1

(t) be one such integral and put p(t) = S
1

(t )  — f ( t ) . Then

2w 2w . =

0 = 
(m) ~~~~~~ M

V
(t + 2wj ))dt

0 0

2w 
~(m) (t)M

~
(t + 2w j ) d t

j=—ø’ 0

2w(j+ 1)
= 

~ 
j p

(m) (t — 2 wj ) M ( t )d t
j=—°’ 2irj

= 25(j+l)
= 

~ 
j (a) ( t )M

V
(t ) dt

j=—°’ 2wj

(in) 
(t)M

~
(t)dt

ThUS the divided differences of p(t) vanish; hence on the nodes p(t) must reduce to a

constant p0
. So S(t) = S

1
(t) — p

0 
interpolates the data and yields the desired

solution of Theorem 1.

For arbitrary p, 1 < p < , we obtain by the same method as above the following

proposition. In case p = 2, the interpolating spline S is structurally characterized

as the interpolating spline with knots at the x,~,, see (8]; for other p the structure of S

is less transparent, but has been discussed to some extent by Golomb [7]. also by

de Boor (3).

—4—
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Proposition : For each p. 1 < p < , there is a unique S e F minimizing fis
Cin) I f .

This S is characterIzed ~~ the relation

(a) q-lS (x) = Is (x ) l sign s(x)
where q is conjugate to p and s is a ~p~ine in U.

Before leaving questions of interpolation, let us recall some results concerning

interpolation by trigonometric polynomials. For k odd, say k = 2n + 1, there is a

unique trigonometric polynomial T(x) of order n satisfying

(1.5) T(x
~
) 

~

‘

~~~
‘ V = l,...,2n + 1

It is convenient at times to write

(1.6) 
•
T(x) -

~~~ + 

~ 

(a
q cos gx + b

q sin qx)

or

2n+1
(1.7) T(x) ~ y f  (x)

v=l V

where t (x) are the Lagrange functions for the nodes x
l~~

.. . ,x 2 + l .

For k even , k = 2n , there is a one parameter family of interpolating nth order

trigonometric polynomials with

(1.8) T(x ) = V .  v = 1,.. .,2n

and Schoenberg (8) has suggested singling out the one with least amplitude for the terms

of highest frequency :

Definit ion: ~~g~g the T(x )  of the førm (1.6) and sat isfying the interpolation cond i-

tions (1.8) we determine the unique T(x)  which satisfies the condition that

a2 + b2 = minimum
it it

This ‘F is called the proximal interpolant.

2n x - x
Consider the function ~.(x) = f T  S]~fl 2 

V Eviden tly q, vanishes precisely at the
v=l

and so if T
1(x) satisfies the interpolation conditions (1.8) so does T1

(x) + Aq~(x)

for any value A. Using this observation one can easily establish the following lemma (9]:

— - 
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Lemma 1: The p~~~çimal interpolant T(x) is uniquely characterized as the interpolant

of the form

(1.9) ‘t(x) ~~ a0 +~~~ (aq cos q x + b q sin qx + u s i n (nx _
~~~~~~~~ x~ ) .
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§2. For the data (x ,y), V l,...,k, we solve the problem in Theorem 1 for

every positive integer in. This yields a sequence (S (x))~~1 of periodic perfect

splines, all of which interpolate the same data. Alternatively, obtain as in the

Proposition a similar sequence {S (x ) )~~~1 
which minimizes 115 (m) 1 1 ,  1 < p < ~~. In any

case, the following theorem describes the asymptotic behavior of these sequences.

Theorem 2: Depending on whether k is odd or even, let T(x) be the unique interpolating

trigonometric polynomial as determined in §1 ~~ (1.6) for k = 2n + 1 and ~~ (1.9) for

k = 2n. Then for every j = 0,1,..., we have

lim S~~’~ (x) = ~~~ (x) uniformly in x
m~~

§2.1. The number of data is odd: k = 2n + 1.

We need to write the Fourier series for our funct ions.  Since we will differentiate

the resulting series, it is convenient to use the complex form even though all functions

concerned are real. Accordingly, let

(2.1) S (x) = ~ c
s m e

iSx 
= 0 (x) + R (x) - ;

here we have set

n
V 15X V 1SX

U ( x ) = L c e , R (x) L c e
a s,m m s,m—n s>n

Lemma 2: For j = 0,1,2,..., u r n  ~~~~~~ = 0 uniformly in x .

Proof : Observe that

2w . 211 —ist
c = ~ j ~ (t)e

i5t
dt = 

~~~~ 
f s~~ (t) 

e 
dt

s,m 211 in 211 a . a
0 0 (—is)

so by Bolder’s inequality

Ic I < ~~~ hl s (m) hl5,51 iii ~1

Since ‘F also interpolates the given data, we have from the optiznality property of S~

that

—7 —
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(2.2) (hS
(m
~ fl ~~hlT

(m
~~h~ < n m fi~~f)

where the last inequality is that of Bernstein—Zyginund . Hence

(2.3) ICS,m I < I~1
hl ThI p

so

(2.4) lR~
(
~
1)I 

~~. Ic 1~h < 11T h
8 >n

Clearly as a tends to infinity, the right hand side of (2.4) tends to 0, and thus

the lemma is proved for j  = 0. For arbitrary j we find in exactly the same way

(2. 5) f R ~~~~(x)~ ~~. 
n3 hl TIl~ ~ 

m j  
~ > j + 1

I s i > n

which completes the proof. -

Using Lemma 2, the case of k = 2n + 1 of Theorem 2 follows quite easily. Indeed

S (x) = U (x) + P (x)
a Zn m

and from

h a  R (x) = 0
- rn~ 

a

it follows

him U(x
~
) = y

~, V = 1,...,2n + 1
m4~

But as y
~ = T(x

~
) and each U is a trigonometric polynomial of order ii, we conclude

h a  U (x) = T(x)
a

uniformly in x.  Finally observi ng that the operation of differentiation is continuous

when restricted to trigonometric polynomials of order n, we have

his S~~~~(x) = him ~~~~~~~ + him R~~~~(X) = him U~~~
’ (~~) = T~~~~(x)a 

m-~~

uniformly in x .

~~~~ The number of data is even: - k = 2n.

The even case is more subtle and to prov e the result we need the precise value of

. 1 <  
~~~

. =

—8—
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which is itself a result of independent interest. For convenience in what follows, we
take the norm to be

IfrhI~ 

2w 
Jf (x) i~dx) 1 < p  < =

ess sup f f x) f p =

As a preliminary observation in the case k = 2n we first pick a point x
0 ~ 

x mod 2w ,

V = l,...,2n. We then prove

Leaina 3: Fix 1 < p < = and let C S )  be the sequence of interpolating splines ~~

determined in §1. Then

(2.6) 5zn~~ O~ 
= 0(1)

Proof: Recall that S (x) = U (x) + R (x) and from Lemma 2 (which still applies as the

parity of the number of data points plays no role)

lint K Cx) = 0
a

Thus it is suff ic ient  to show

( 2.7)  fl
15 

S 0 ( x
0

) = 0(1)

Using the Lagrange interpolation formula, we have

U (X) = 
~~~ 

+ c~
’ )~~~~(x ) + i~~~0 (x)

where again from Lemma 2 = 0(1), V = l , . . . , 2n . Now for some a ~ 0 and ~~,

U sis(nx + ~) + lower terms .

Then the same argument which produced (2 .3)  yields 
-

2w
(2.8) / 5 (x) sin(yuc + ~ )dx = 0(1)

0

On the other hand

—9—
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2w 2wf S (x)sin(nx + ~)dx = f (U Cx) + R (x))sin(nx + ~)dx
0 m 0 in a

2w
~ f U (x ) sin (nx  + ~)dx

(2 .9)  0

2w 2n 2~
= I 

~ 
+ c’1’)i (x))sin(nx + F ) d x  + 

~~ 
f £0 (x ) s in (r t x  + ~ )dx

0 v=1 0

= 0(1) + air

Together (2 .8 )  and ( 2 . 3)  yield (2 . 7 ) .

Taken in conjunction Lemmas 2 and 3 guarantee that subsequential limits of the

sequence S (x) exist uniformly in x. In particular from Lemma 3 we have that the

trigonometric polynomials U are bounded at 2n + 1 distinct points and so the sequence

has subsequential limits. But from Lemma 2 it fL~~lOW 5 that any such limit (which

must be a trigonometric polynomial) is also a limit of the corresponding subsequence

• of S .  We f in ish  the proof of Theorem 2 by showing that the only such l imit ing

trigonometric polynomial is the unique proximal interpolant T singled out in §1. This

is proved by the following two l emmas , wher e we argue for subsequences without indicating

this in the notation.

Lemz~ 4: Let C s) denote any subsequence and suppose

lint 5 (x) = ¶5(x) 5 a sin(nx + w) + lower order terms

Then

—in Cm ) h a l u i
(2.10) him in f l i n s

51 
(x) hI ~ ~~

- 2flsin XlI q 
~ 

< 
~ + = 1

Proof: We argue for in even; in odd goes analogously . Clearly

2w 2w
him f S (x)sin(nx + w)dx = / T ( x ) s i n (n x  + w)dx = sQ
m-’~ 0 0

On integrating by parts a times we get

in 2w 5gm) ( x ) s i n(n x  + w)d x wa

-10-
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and since

I~
!... ~2w 

5
(m) (x)sin(nx + w)dx

l 
~~. hI s ~~~ (x) l

~
II ifl ( X e) 11 q 

= h I s
(m ) 

Cx )  I~~I h s i n  X~i q

the result follows.

Lemma 5: ~~~~~~~~ for some $ and t

0 ( x )  = B s in (nx  4 i) + V(x)

satisfies 0(x ) = y ,  V = l,...,2n; V (x) a trigonometric polynomia ! of r n — 1. 1n

(2.11) 1~~~~~~ hI~~_m5(m) (x)lI 
~ 2f1 sin Xh I q 

‘ 
1 < 

~

Proof: By a translation We can assume t = 0. Because of the m i n i m a l  na ture  ~f 5 (x ) ,

we need only produce for any given ~ > 0 an F(x) which interpolates and ~or which

IIF (m) 
(x) 1 < —

~~~

———-——— (IB I + e)

Also as seen in §1 h l s
(m) 

C x) II depend s continuously on the data and hence the F we

produce need only interpolate the data (x , y ) ,  V = 1, . . . , 2n w i t h i n  c and not

necessarily exactly .

For q conjugate to p . we consider the function

~ Isin 
~~~~~ 

A =
Sin X ‘ • q2 (j j s x n  x l i

- with i~ s Fourier series given by

J1
c5 sin sx

Form

(2.12) F(x) = 

s~=1 
c U(sx)

for p near 1- and U as in the statement of the lemma . Since

c ~- f x - ~~4-~-1-— sin x dx l
1 sln x

we have

—11—
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F(x) P0(x)  + 0
2

Thus F(x)  satisifes the interpolation conditions within  an error of 0(1 — p)  + 
o(

~-’~)
which is less than c for p close to 1- and m large, as they will be chosen.

Next observe from the uni form convergence of (2.12)  when p < 1, we have for a

even (a similar analysis wil l  hold if m odd)

(2.13) ~ (m) (x) = 

s=l 
~s0

(m) (sx) = (_ 1) 2
8~m 

~~~~~ 

sin nsx + 
s=l 

s
~~

(m) 
(sx)

Now observe that the series of the first term is the Abel sum for

q
V . si~n n x
L C sin s n x = A

S sin nxs=1

For the series of the second term, we have

~ (m) = 0(n — 1)51 
and c = 0(1)

and so the series is

0(
1
1 

. ( U
rn

)

Thus (2.13) is estimated by

(2.14) F
(m)

(X) = (_1)
2
8
~~in A + 0(1 - ~ )~ m 

+ 0(
1 

~~ 

(n -

We m ake the error in (2 .14)  less than sn m by f i r s t  choosing p su f f i c ien t ly  close to

1— and then choosing m sufficiently large. Taking the L norm we then have

(2.15) IIn
mF (m) 

(x) li~ < f B i  ) s j~ ‘:~ 
~~~~~~~ + ~

But as
I I

2w pqt P - 2 w  p
j Isin mci 

= x L~!_ f Isin x 1c9 = h l s in  x f1~ = 
1

2w 0 Isin nxi~ I ~2w 0 q 2 J f  sin X l l q

(2.15) implies (2.11).

Now Theorem 2 follows immediately from Lemmas 4 and 5 and the previous remarks. The

prowiaiai interpolant ‘F, by its very definition , provides a U for Lemma 5 with the

—12—
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smallest possible B. Thus (2. 11) holds with  this B . So by Lemma 4 in conjunction

with (2.1 1) no subsequence of S can converge to any other trigonometric polynomial

other than the proximal interpolant. It follows that the full sequence S
m 

converges

uniformly to T. We then can argue just as in §2.1 that for j 0,1,...

him ~~~ (x) = T~~~ (x) uniformly in x .

We will close with a corollary concerning the perfect splines of Theorem 1, the

case p = .

Corollary : Let P be the interpo]ant of our Theorem 2 and let a denote the amplitude

of the terms of frequency n in ¶5. Then

—m (in) •himn n hI s 11 = = — a  .

mn+= 4

Proof : This follows immediately from Lemmas 4 and 5 and the observation that when

q = 1, A = ~~
- .

— 13—
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