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ABSTRACT

Let (xv,yv), v=1,...,k be points of interpolation with
0 < X) < +e+ <% <27 and let 1 < p < . We consider sequences {Sm} of

2n-periodic functions which interpolate the data optimally in the sense that

“s;m)|lp = minimum .

The main results, which depend on the parity of k, concern the asymptotic
behavior of Sm(x) as m tends to infinity.

l. k=2n+ 1. Let T(x) be the unique polynomial

a, n
(1) T(X) = — + 2 (a_ cos gx + b_ sin gx)
2 &yl q q
g=1
that interpolates the data. Then
(2) lim Sm(x) = T(x) uniformly in x .

>

2. k = 2n. Among all interpolants (1) let T(x) be that polynomial such that

2 2 o
a + b = minimum .
n n

For this T(x) again (2) holds.

AMS (MOS) Subject Classifications: Primary 41Al15; Secondary -42A12
Key Words: periodic spline functions, trigonometric polynomials, interpolation

Work Unit Number 6 (Spline Functions and Approximation Theory)

SIGNIFICANCE AND EXPLANATION

We consider points in the plane which recur in a wave-like pattern. We
determine infinitely many curves passing through these points and indexed by a
natural number m. The index m indicates the smoothness of the curve; and
as m becomes larger the curves take on a limiting shape which is explicitly
determined in the report.
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PERIODIC INTERPOLATING SPLINES AND THEIR LIMITS

A. S. Cavaretta, Jr. and D. J. Newman

In 1940 J. Favard wrote "Sur 1l'interpolation," a paper which has attracted some

attention during the past few years [2), [3], [8). Favard's work raises many interest-
ing questions (e.g. [3]) and we would now like to address one which appears in the very
final paragraph of his paper: to wit, how does one handle interpolation of periodic

data by smooth m-times differentiable functions and what is the asymptotic behavior of
these smooth interpolating functions as m tends to infinity. The present paper is
accordingly divided into two sections. 1In the first section we approach the interpolation
problem as a constrained minimization and obtain a sequence Sm of spline interpolants.
The asymptotic behavior of this sequence is determined in the second section.

We deal always with uniform convergence on the period, while the constrained
minimization is posed in each of the Lp norms, 1 < p < «. However the limit of the
Sequence Sm does not depend on p, but rather is completely determined by the given
data. The case when p = 2 has been settled earlier by M. V. Golitschek [6] and also
by I. J. Schoenberg [9]. The new ideas necessary to handle the case of p # 2, and

in particular p = ®, consistute the novelty of the preseni paper.

ACCESSION for
;P weite Section
5 .f Section O
i |
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§1. Fix (xv,yv), v=1,...,k as the points of interpolation and assume
0 < x1 < X, < see g Xy < 2r and k > 2. We denote by wg the space of 2m-periodic
;. th x 5
functions whose (m-1)th derivative is absolutely continuous and whose m -derivative s

is in the Lebesgue space Lp(0.2ﬂ). Put
R {f e Hg|f(xv) =y, v =1k}

Our problem is to determine solutions of

(1.1) min ™) .
fer p

For nonperiodic data the results for this interpolation problem are well known (4], (2],
and we merely adapt the effective approach of de Boor and others to the present case of
periodic data. When p = @ the result for the perodic case reads as

Theorem 1. Problem (1.1) has a solution S which is a periodic perfect spline function

of degree m with at most 2[%] knots. More precisely

; Is™ ] = c

except at the knots and

c = minlk(m)”w s
feF

Moreover if m > k the solution S is unique.
Remark: Except for the uniqueness statement, this fact has been observed by others,
notably B. D. Bojanov [1] and W. Forst [5].
Proof: We first convert our interpolation conditions into moment conditions. For every
f integer j and v =1,...,k put
; xv+jk =% * 3%y
yv+jk s
Based on the nodes {xv}:=-w, construct the B-splines M = of degree m - 1 defined

as the Peano kernels of divided differences of order m. Thus for any f € Fw and any

integer v




xvﬂn (m)
yeeen¥yd = M0 (0)ae .

X
v

Now form ¢ (t) = Z M,

=—0

linearly independent.

jk(t), v=1,...,k. Clearly the ¢v are 2mn-periodic and

Now for any f € Fn set

2n
(1.2) c, = (I) o (0)E

(m)

(t)at, V=1,..0k o

We now solve the constrained minimization problem

27
(1.3) min||gl|, subject to [ ¢ (t)g(t)at
o .

c W PR SRR
\,l ’ ’

Let M denote the linear span of {vv}:_l. We view M as a k-dimensional subspace
of L1(0,2n), and on M we define a linear functional A by setting

va = cv, V= el e

It follows from the Hahn-Banach theorem and the identification of LI with L_ that
there exists a solution g, € Lm{0,2n) of the above minimum problem (1.3). Clearly
llaull, = lIAll.

To determine the structure of the function g*(t), let us suppose that A achieves
its norm for the function s € M. Thus I]s”l =1 and s = "k||. Suppose for the
moment that the periodic spline s vanishes on no interval. Then from Rolle's theorem

we conclude that s(t) has no more than 2[%? zeros on its period. Observe also

2w
(1.4) llo lle =lIMll=2s = [ sctrg,vrae < g Il sl =llall, -
0

So equality must hold throughout and so

g,(t) = ||g." sign s(t) ,
except at 2[;& points or less where s(t) = O.
Now if m > k it follows from the minimum support property of the B-splines Mv(t)

that s cannot vanish on an interval. so g,(t) is in this case uniquely determined




by sign s(t). If m < k and s(t) should actually vanish on an interval, we need
some additional technical details in order to see that there is.some solution g.(t)
with constant absolute value and at most 2[%] sign changes. For these details,’ we
refer the reader to [2].
To conclude our proof of Theorem 1 observe first -
2w 27 7o
[ gwat=/ £™(vat=o0.
0 0

So g has an m-fold periodic integral, defined uniquely up to an additive constant.

Let Sl(t) be one such integral and put p(t) = Sl(t) - f(t). Then

2 i 2r ) @
o=f p™Mmwe (vat=f p™M@w( ] M (t+ 2m)))at
v . v
0 0 ==
@ 2n (m)
R S B ()M (t + 2m3)at
j=-co 0

[ 2m(j+1) (o)
Pt 2nj)Mv(t)dt

(]

j=-= 213

® 27 (j+1)

o' (£ (£)dt

j=—= 213

j ™ (e)M (£)at .

Thus the divided differences of p(t) vanish; hence on the nodes p(t).must reduce to a
constant Py- So S(t) = Sl(t) = po interpolates the data and yields the desir-=d
solution of Theorem 1.

For arbitrary p, 1 < p < ®, we obtain by the same method as above the following
proposition. In case p = 2, the interpolating spline S is structurally characterized
as the interpolating spline with knots ;t the X, see [8]; for other p the structure of S

is less transparent, but has been discussed tb some extent by Golomb [7], also by

de Boor [3]).




T

T I Y

Proposition: For each p, 1 < p < », there is a unique S € Fb minimizing ”S(m)”p .

This S is characterized by the relation

s‘m)(x) = Is(x)lq.'1 sign s(x)
where q is conjugate to p and s is a spline in M.
Before leaving questions of interpolation, let us recall some results concerning

interpolation by trigonometric polynomials. For k odd, say k = 2n + 1, there is a

unique trigonometric polynomial T(x) of order n satisfying

(1.5) Ta) =¥ s v=lie..,2n+l. Jor

It is convenient at times to write

ao n
(1.6) T(x) =—>-+ ) (a_cos gx + b_ sin gx)
5 2 o1 q q
q..

or

2n+l
(1.7) T(x) = ) ¥ 2, ()

v=1
where lv(x) are the Lagrange functions for the nodes xl""'x2n+l'

For k even, k = 2n, there is a one parameter family of interpolating nth order

trigonometric polynomials with

(1.8) T(xv) =Y V=L, e bei2n

and Schoenberg [8] has suggested singling out the one with least amplitude for the terms

of highest frequency:

Definition: Among the T(x) of the form (1.86) and satisfying the interpolation condi-

tions (1.8) we determine the unique T(x) which satisfies the condition that

2 2 o
a_+ b’ = minimum .
n n :

This T 1is called the proximal interpolant.

2n X - X
Consider the function (x) = I I sin ——3——2 . Evidently ¢ vanishes precisely at the
v=1

xv and so if TI(X) satisfies the interpolation conditions (1.8) so does Tl(x) + AP (x)

for any value ). Using this observation one can easily establish the following lemma (9]:

“5-




Lemma 1:

The proximal interpolant T(x) is uniquely characterized as the interpolant

of the form

1 n-1 1 2n
(1.9) T(x) =~ a_ + )_' (a_cos gqx + b_ sin qx) + a sin(nx - = Z x ) .
270 =1 9 q 2 val ¥ s

poene

“ge




§2, For the data (xv'yv)’ v=1,...,k, we solve the problem in Theorem 1 for
every positive integer m. This yields a sequence (Sm(x)3;=1 of periodic perfect
splines, all of which interpolate the same data. Alternatively, obtain as in the
Proposition a similar sequence {Sm(x)};=l which minimizes “s(m) "p' 1l <p<e® Inany
case, the following theorem describes the asymptotic behavior of these sequences.

Theorem 2: Depending on whether k is odd or even, let T(x) be the unique interpolating

trigonometric polynomial as determined in §1 by (1.6) for k = 2n + 1 and by (1.9) for

k = 2n. Then for every j =0,1,..., we have
lim slf‘”
m-e

(x) = T(j)(x) uniformly in x .

§2.1. The number of data is odd: k = 2n + 1.
We need to write the Fourier series for our functions. Since we will differentiate
the resulting series, it is convenient to use the complex form even though all functions

concerned are real. Accordingly, let

(2.1) S_(x) = X c. % =u (x) +R (x) ;
m 5L, sum m m
here we have set 1
§ isx isx ;
U (x) = e e , R (x) = c e . :
m e S,m m slEn s,m

Lemma 2: For j = 0,1,2,..., lim Rn(‘J)(x) = 0 uniformly in x.

k
Proof: Observe that
o -ist I e i 1
csm=5;f s (t)e dt—z—ﬂf s, (8) = at ,
- 0 (o] (-is)
so by Holder's inequality
1 (m)
leg ol < 2= Ns™1 -
’ lsl p

Since T also interpolates the given data, we have from the optimality property of S

that




@.2) s W, e ™, < o™il

where the last inequality is that of Bernstein-Zygmund. Hence

m
n
& log ol < 2 N, -
” .
IRy | ley] <l o
(2.4) R (x)]| < c | <||T| o
s & |sF>n T |s|2>n lsl

Clearly as m tends to infinity, the right hand side of (2.4) tends to 0, and thus

the lemma is proved for j = 0. For arbitrary j we find in exactly the same way

(3) j o
(2'5) R ) < T yo ’ >3 +1 ’
IR, 0] < ol IIp Isl{n |s| m> 3

which completes the proof.
Using Lemma 2, the case of k = 2n + 1 of Theorem 2 follows quite easily. Indeed
S (Xx) =U (x) + R (x)
m m m

and from

]
o

lim R (x)
meo

it follows

lim U (x ) =y
g W ¥

<
I

v’ ‘1,....2n+1.

But as Yo = T(xv) and each Um is a trigonometric polynomial of order n, we conclude

lim Um(x) = T(x)
md)@

uniformly in x. Finally observing that the operation of differentiation is continuous
when restricted to trigonometric polyndmials of order n, we have

1im s (x) = 1im 0’9 (%) + Lim Rn(‘j) (x) = lim un(.j’
mreo L e o mo me

=19

uniformly in x.

§2.2. The number of data is even: 'k = 2n.

The even case is more subtle and to prove the result we need the precise value of

(m)
m

lim "n_ms
me

"p, l<p<w




which is itself a result of independent interest. For convenience in what follows, we

take the norm to be

1

2n o)
1 p
e g lf(x?l d%} l <

el = {

A
o
A
8

ess sup |£(x) | p=o .
As a preliminary observation in the case k = 2n we first pick a point X0 #* X, mod 2w,

v=1,...,2n. We then prove

Lemma 3: Fix 1 < p < ® and let {Sm} be the sequence of interpolating splines as °
determined in §1. Then

(2.6) Sm(xo) =80 (1) e

Proof: Recall that Sm(x) = Un(x) + Rm(x) and from Lemma 2 (which still applies as the
parity of the number of data points plays no role)

lim R (x) =0 .
m

m->
Thus it is sufficient to show
(2.7) n = Um(xo) =0(1) .
Using the Lagrange interpolation formula, we have
2n
Ux) = ) (y, 4 €L (x) +n L (x)
m o3 v AUV m O

where again from Lemma 2 ct = 0(1), v=1,...,2n. Now for some a # 0 and &,
ko(x) = a sin(nx + §) + lower terms.
Then the same argument which produced (2.3) yields‘
2n

(2.8) ] s (x)sin(nx + £ax = 01) .
0

On the other hand

T e g %




2n 2n
f sm(x)sin(nx + £)dx = f (um(x) + Rm(x))sin(nx + £)dx

0 0
3 2m
= [ U (x)sin(nx + £)dx
(2.9) g B
28 2n @ 2w
= £ (vz_l (v, + €012 (x))sin(nx + £)dx + n (f) 2, (x)sin(nx + £)ax

Oy +nL - ar .
m

Together (2.8) and (2.3) yield (2.7).

Taken in conjunction Lemmas 2 and 3 guarantee that subsequential limits of the
sequence Sm(x) exist uniformly in x. In particular from Lemma 3 we have that the
trigonometric polynomials Um are bounded at 2n + 1 distinct points and so the sequence
Um has subseqyential limits. But from Lemma 2 it fcllows that any such limit (which
must be a trigonometric polynomial) is also a limit of the corresponding subsequence
of sm' We finish the proof of Theorem 2 by showing that the only such limiting
trigonometric polynomial is the unique proximal interpolant T singled out in §1. This
is proved by the following two lemmas, where we argue for subsequences without indicating

this in the notation.

Lema 4: Let (Sm} denote any subsequence and suppose

lim Sm(x) = T(x) = a sin(nx + w) + lower order terms

m-¥o
Then
2 3 -m_ (m) lal 3.1
(2.10) lim infl{n s x) | Sl e 1 <p<e® =% ==1] .
i m P 2”sxn x“q : P q
Proof: We argue for m even; m odd goes analogously. Clearly
2m 2n
lim f S (x)sin(nx + w)dx = f T(x)sin(nx + w)dx = ma .
me a " 0
On integrating by parts m times we get
m
= 2n
lim (—1)2 L f S(m)(x)sin(nx + w)dx = na ;
m m
me n 0

-10-




and since
L AT (m) (m)
|5; g S, (x)sin(nx + w)dxl illsm (x)lipllsin(nx v w)l]q =||Sm (x)!lpllsxn x]lq ;
the result follows.

Lemma 5: Suppose for some B and T

U(x) = B sin(nx + 1) + V(x)

satisfies U(xv) =Y Vi 1,...,2n; V(x) a trigonometric polynomial of order n - 1. Th

lim suplln-msém)(x)” MO l1<p<w e

(2.11) < s ‘ <w .
P 2"51n x”q

m->®
Proof: By a translation we can assume 1 = 0. Because of the minimal nature of sm(x).

we need only produce for any given € > 0 an F(x) which interpolates and for which

IF™ |l <

n
- (8] + e
=2
B

Also as seen in §1 Ils;m)(x)llp depends continuously on the data and hence the F we
produce need only interpolate the data (xv' yv), yR=k], o 2n ‘within &  and not
necessarily exactly.

For q conjugate to p, we consider the function

Isin x|q S 1
. ’ =
S 2(]|sin x”q)q

with its Fourier series given by

Form
(2.12) F(x) = } ¢ U(sx)

for p near 1- and U as in the statement of the lemma. Since

2w § q
c, = %—f A l§§%55£~ sin x dx =1
0

we have

e




1
F(x) = pU(x) + O(Z—m) .

Thus F(x) satisifes the interpolation conditions within an error of 0(1 - p) + 0(%;) .
2
which is less than € for p close to 1- and m large, as they will be chosen.
Next observe from the uniform convergence of (2.12) when p < 1, we have for m

even (a similar analysis will hold if m odd)

- m w
(x) = Z csosu(m)(sx) = (—1)28nm Z c os sin nsx + 2 c psV(m)(sx) .
s s
s=1 s=1 s=1

2.13) ¢™

Now observe that the series of the first term is the Abel sum for

v Isin nx q
2 g sin snx = A e
a=1 sin hx
For the series of the second term, we have
(m) m
v =0(n - 1) and e s o(1) ,
and so the series is
il
0(1 Sl (n-1)) .
Thus (2.13) is estimated by
Bt : q
(2.14) r™ e = 1% 2 li%ﬂ—ﬂfl— 0@ - D+ O - 1Y .
sin nx =0

We make the error in (2.14) less than cnm by first choosing p sufficiently close to

1- and then choosing m sufficiently large. Taking the Lp norm we then have

. q
) ARG
(2.15) In ™™ o ll ) < 18l I:i: ::' , v
But as
1 a, g
2w Pq ©oo2m p
A %% [ 'sin nxl ‘ ‘2n ] |sin x|q) = X‘lsin x“P = Eﬂ—fl——1T— ’
0 |sin nx|P Y 4 e

(2.15) implies (2.11).

Now Theorem 2 follows immediately from Lemmas 4 and 5 and the previous remarks. The

proximal interpolant T, by its very definition, provides a U for Lemma 5 with the




B i

smallest possible B. Thus (2.11) holds with this 8. So by Lemma 4 in conjunction

with (2.11) no subsequence of Sm can converge to any other trigonometric polynomial

other than the proximal interpolant. It follows that the full sequence Sm converges

uniformly to T. We then can argue just as in §2.1 that for j = 0,1,...

lim S(J)
m

m>e

(x) = T(j)(x). uniformly in x .

We will close with a corollary concerning the perfect splines of Theorem 1, the
case p = .,

Corollary: Let T be the interpolant of our Theorem 2 and let a denote the amplitude

of the terms of frequency n in T. Then

Proof: This follows immediately from Lemmas 4 and 5 and the observation that when

q = 1, A =

-13~
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