
UAD—AO’46 377 WISCONSIN LM~IV MADISON MATHEMATICS RESEARCH CENTER F/S t2/1
SOLVING A SYSTEM OF LINEAR INEQUALITIES FOR GENERATING TEST DAT—ETC CU)
AUG 77 B EINARSSON DAAG29~7 5 C ~ OO2le

UNCLASSIFIED MRC—TSR ITGO NL

~~~~~~~~ END
DA T E

I 2- 77

‘S

I



‘SOLVING A S~~~~~~~~~~~~ NEAR
INEQUALITIES FOR GENERATING I
TEST DATA .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.i ~~ Bo~/Einars son I

-
;

Mathematics Resear ch Center
University of Wis consin—Madis on
610 Walnut Street D D C
Madison , Wisconsin 531

AU~~~~~~~~ 777
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~(Recexved JulY S :
~~~~~~~~~~~1I~~~~~~~~~_ TT

\~~~~
, J ) A L :jJ:_~~~~~~~J

Approved for public release
Distribution unlimited

Sponsored by
U.S .  Army Research Off ice
P. O .  Box 12211
Research Tr iangle  Park
North Carol ina  27709

~~~
j ~~~~


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

UNIVERSITY OF WISCONSIN - MADISON
MATHE~1ATICS RESEARCH CFNFER

* 

SOLVING A SYSTF!S1 OF LINEAR INEQUALITIES
FOR GENERATING TFSI’ DATA

*Bo Einarsson

Technical Sumary Report #1780

August 1977

ABSI’RACT

A simple inequality solver , based on the simplex method,

for determining safe input data corresponding to execut ion of

a certain path of a computer program, is presented. Special

consideration is given the influence from rounding errors on

the solution.

AMS(MJS) Subject Classification: 65K05

Key Words : simplex method, linear progranining, inequali ty solver ,
rounding, Data Flow Analysis , software validation,
test data generation.

Work Unit Number 8. (Computer Science)

* National Defense Research Institute, Box 98 , S-147 00 Tumba, Sweden

Sponsored by the United States Army under Contract No.
DAAG29-75-C-0024. 

..s. -, ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
— 



SIGNIFICANCE AND EXPLANATION

Data Flow Analysis can be used to find some of the errors in

a computer program, especially those where the value of a not yet

defined variable is used, or contrary a variable is assigned a

value but not used subsequently. This happens easily if the

variable is misspelled.

The Data Flow Analysis gives as output a set of dubious paths

of the investigated program, which have to be checked for executa-

bility. This can be done by solving a system of inequalities. This

report discusses how to obtain a reliable solution of this system

in the linear case, when rounding effects are taken into account.

The method is based on the simplex algorithm from linear programing,

and returns a solution in the middle of the feasible region. The

general nonlinear case is much more difficult to handle.

rn ~~



- , ~. . - _ _ _ _ _ _ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~
‘

~~~~

SOLVING A SYSTF!1 OF LINEAR INEQUALITIES

FOR GENERATING TEST DATA

by
*

80 Einarsson

1. Introduction

At the testing or validation of computer programs it is often of

interest to obtain the information whether a certain program path is

executable or not, and if the path is executable to obtain a set of

input data that causes execution of that path.

A system to generate test data,and also to symbolically execute

programs , has been given by Clarke (1976). The linear inequality

solver she used can give test data that are not certain to produce

the required path due to rounding errors. It is the purpose of this

note to present a simple variant of that inequality solver, whose

reliability is greater.

One application of great interest is to see if a dubious path

obtained from a Data Flow Analysis program is executable, see Fosdick

and Osterweil (1976), and also Einarsson (1977b) .

2. Derivation of the System of Inequalities

The path followed at execution of a computer program will , if the

program has only well-defined values of all variables and constants, be

completely determined by the input data. The branching will occur at

conditional statements of different types, where certain relations

between variables are tested. To get input data for a specific path,

Nationa l Defense Research Institute , Box 98, S- 147 00 Tumba ,
Sweden
Sponsored by the United States Army under Contract No.
D A A G 2 9 - 7 5 - C - 0 0 2 4 .  

- S.-— —- -



that path is followed, and at every branching point the corresponding

relation is taken as a constraint on the input variables . The un-

conditional statements between the branching points are of course

also of great importance, since they in many cases give relations

between the variables.

Let us look at a short segment of a simple code. Although this

example is written in Fortran, the main ideas apply to most languages,

see Einarsson (l977b). The letters A , B, C, and D represent real

variables.

IF (A .G~. B) QYI’O 100

IF (C .cr. D) cXYl’O 200
IF (A .G’r . C) cXYfO 300

IF (A .GT . D) GOTO 400

Transfer of execution is made to

statement number 100 if A > B;

statement number 200 if A < B and C >

statement number 300 if A ~ B , C < D, and A > C;

statement number 400 if A 
~~ . 

B, C .~~~ 
D, A ~ C , and A >

and no transfer is made if A~~~B, C~~~D, A~~ C, and A~~ D.

In this case we see that transfer cannot be made to statement

number 400, since the two conditions A > D and A £ C I D contradict

each other . The conditions for no t ransfer may be reduced to

A £ B and A < C < D.

—2—

—- ———

~



---------.---~~~ . - .-- ~— -.-——--- -  -~~~~---- -.~~ ~~~~-- ------ --- - ---- ..—- --.- -.~~~--~~~-

It is path defining inequalities like those above we wish to study ,

and we want to obtain input data for a certain path , or information

that it is not executable. A path is especially interesting if Data

Flow Analysis has shown it to be dubious, for example that execution

of that path requires the value of a variable which has not been defined,

or calculates a value which is not used subsequently, see Fosdick and

Osterweil (1976).

In almost all cases the relations in the conditional statements

are linear. If nonl inearities occur, it is possible to introduce

artificial variables into the set of input variables. The same

applies to nonlinearities in the non-conditional statements.

Example IF (X .GT . SIN(Y) ) GOTO 10

is replaced by

Z artificial variable

IF (X .GT. 2) GOTO 10

In this case Z is of course restricted to -1. < Z < 1. and the relation

between Y and Z has to be considered at the final part of the solution.

3. Desired Properties of the Solution

If the system is linear, it may be normalized to a linear programing

problem, with an arbitrary objective function. It is well known (see for

example the book by Dantzig) that the solution of such a maximizing

(minimizing) problem is at one of the corners of the convex hypervolume,

defined by the hyperplanes represented by the constraints. 1-lowever,

every corner point is satisfying several of the constraints as equalities.

Some of these constraints have probably been treated by the symbolic man-

ipulation system, creating the systems of inequalities, in such a way that

the round-off properties of these relations have been changed. It might

therefore happen that the input values obtained from the inequality solver

will not, due to round-off, give the desired path at execution of the

_ _ _  —



— .
~~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

__~~~~~~~~~ -. - - --~~~~~~~~~~~_-~~~~~~~~~ . - ~~~~—~~~~~~ -

program. This effect can be interpreted as if some of the inequalities

are slightly unsatisfied . The probability for this to occur is

drastically diminished if the linear programing problem solver returns

an interior solution instead of the usual one at a boundary point.

Methods for obtaining such interior solutions have been investigated

and were reported in Ei~iarsson (1977a). In that paper eight different

methods were discussed , but none of them looked very promising. The

main disadvantage with all the suggested methods is that they require

a lot of extra programing, and in most cases also more computing ,

except for the recoiinended one.

Professor M. J. D. Powell, University of Cambridge, has advised

me on a method that seems to be both simple and powerful. It is

described in detail in the next section, which also includes relevant

parts from my earlier report.

4. Solving the System of Linear Inequalities

We restrict here to linear constraints. With classical linear

programing methods the solution is returned without any theoretical

problems. However, linear programing requires an objective function,

which is of no primary interest to us. We know that with any linear

objective function the method will return an extreme point (on the

boundary of the allowed region). This might mean that the solution

returned by the inequality solver (even if it is forced to satisfy

the set of linear constraints being solved) might still not satisfy

the original path constraints of the program under investigation

because of rounding effects. This is especially dangerous with real

—4—

~~ — ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
•1

variables being checked for conditions to avoid “binary” conditions

such as divide by zero , square roo t of a negative number , or the

arcsine of a quantity exceeding unity. It seems natural to assume

that the highest probability of failure is at the extreme points

of the region, followed by the boundary, and the lowe st probabili ty

of failure is in the middle of the region.

The linear constraints problem can be written in normalized form

as (assuming x~ > 0)

N
(1) E a x . < b . j = 1, . . . ,M

i=1 3 3
N = number of variables
M = number of constraints

and it can be replaced by

N
(2) E a .

~ x~
-s-s . = b . j = 1, . . . ,M

i=1 3 ~ 3

s. > 0 j = 1, . . . ,M

with M equations , M new additional constraints > 0 , and N + M
unknowns x1 and s~ .

Note 1: Solving the M equations in N unknowns x 1 and M unknown s

> 0 is the problem , but in addition we wish to max imize

each s
3
. Since we do not wish a solution on the boundary of

the region , we may change the constraint s~ > 0 into s~ > 0.

Note 2: If the system (1) above is normalized by multiplying each
N .,,

equation with l/(E a’
~
)
~
, then the variable s., when the

i=1 3 3

individual equation is satisfied, will represent the distance

to the corresponding constraint, as represen ted by its hyperplane.

—5—

______ .~~~~
_ _____—w-_*. - - • ‘~ —— ~—.—.— .- —. _ - -~. S- - .

- -~~-~~~~~~~~~~~~~~~~~~ - - - - - ~~~~

The problem would be in standard linear programing form if we

wished to maximize

M
~~s. .

j =l ~

This optimization might however very well be satisfied with one or

severa l of s
3

O. It would therefore be better to maximize

Mm s. .

l < j < M

This can however not be done with standard linear programing ~methods

such as the simplex method, since this objective function is not linear.

The method suggested by Mike Powell turns the above into a standard

linear programing problem by choosing all s~ equal , or as fixed

constant s times 5.

The system can therefore be written

j l J~~ l + ct~s = b~ j = 1,. .., M

x1 > 0 i = 1,. . . ,N

s > 0

> 0 (fix ed) = l , . . . ,M

Only x and s are subject to optimization, and the objective func tion is

chosen simply as

S.

— 6—

_ _ _ _ _ _ _ _

.
~~~

- -

The main reason for the constants is to allow pure equalities as

constraints . These constants can also replace the normalization mentioned

in note 2 above .

This method has only slightly increased the complexity in the original

linear programing problem, by adding one additional unknown s, but it

will return a solution in the middle of the original convex hypervolume.

The previously recomended method on the other hand did not require

the calculation of any optimum solution at all. The method was simply

to use Phase 2 of the simplex method (possibly without the use of an

objective function) on the original problem (1) to obtain several

feasible solutions , until not all of them are on the same hyperplane,

and then returning the mean of them as the final solution . Due to

the convexi ty, it has to be inside the hyperv olume of points satisfying

(1). The basic method could be improved by always looking for a new

feasible point to be “as far as possible” from the already obtained

points.

The amount of computation is probably about the same for the Powell

method and the previously recomended method, but the algoritl-nn is much

s impl er for the Powell method , which also returns a solution that is

optimal in a rather natural sense.

5. Addi t iona l Remarks

The determining of input data to obtain a desired path of a general

computer program is an in general not solvable problem (cf. the halting

problem) . In this s implified treatment some additional remarks may be

of interest.



~~~ uI!u .~~~~~~. ~~~~~~~~~~~~~~~~~~ 
__-_—--— ._---.— -.-—

~~~ ___________ 
_~~~~ _._- ~~~~- ‘ ~~~- - — -— -~~-~~~---

it is believed that most conditional statements involve only

linear relations , although a conunon nonlinear case arises from comparing

Euclidean distances. I con Osterwei l has suggested

a statistical study of existing computer programs in relevant programing

languages for determining the amount of nonlinear statements . It will be

considerably harder to develop a solver for nonlinear non-equalities that

works in most cases , than the present simple l inear solver.

In practice, the set of constraints will include both integer and

real variables. Therefore methods for solving mixed linear programing

problems have to he used. It is probable that rather distinct sets of

variables , only interacting wi th each other and perhaps with just a

few outside the set , can be found in many cases . This decomposition

(see Dantzig , chapter 23) would also be suitable for statistical study

of available software.

Another thing to note is that most paths are probably not executable.

It is therefore very important that the solver first checks for feasibility,

before too much effort is spent on obtaining the optimized solution (some

of the methods in the earlier paper were not testing feasibility) .

For many applications it would be useful if new constraints could

be added successively, giving the middle of the convex hypervolume of

feasible points as the solution as long as any solution exists. I

believe that both algorithms would work satisfactorily in such an

environmen t, but if the hyperplane representing the new constraint

intersec ts the old hypervolume , it is not sure that the old solution

point is a feasible point. It might here he necessary to start from

scratch. The problem of introducing new constraints has probably been

discussed in the literature on linear programming.

— 8--



_ _ _ _
_

A major problem with the new method is the identification of equality

cons traints. If not identified , the equality constraints will force the

distance parameter s to zero. :\lso with the old method problems will occur

when equality constraints are present, since all feasible points have to

lie in the corresponding hyperplane. For determining solutions not in

the same plane the equality constraints have to be removed.

With the new method we get some extra information from the distance

s regarding the closeness of the set of possible input data for the

cons idered path, but s = 0 might be ~n indica’Jon of an equality constraint

where a ~ 0, or that the set of input data really is critical . I strongly

recommend implementing the new (Powell) method instead of the previously

recommended mean value simplex method.

I would like to stress once again that rounding ~rors from expressions

produced by a symbolic manipulation system might be v ry different from

those of the original computer program. It is of course also possible F

to obtain exact arithmetic in most cases when symbolic methods are

being used .

The rounding errors can also cause problems in program validation

if some parameters are given with to high accuracy in the program. For

example, if the program checks if SQRT(X) is less than SQRTWO = I2~, it

is probably better to use SQRTWO = SQRT(2.0) than SQRThO = 1.4 14... .

(with as many dig its the compiler uses) to initialize the variable,

in order to avoid inconsi s tencies fr o~ a possible interval between

SQRT~D and SQRT(2.0). — If the square-root can be removed completely,

that is o’ course the ideal solu tion .

-9- 

~~~~~~~~~~ -~~~~~~~- - .~~~~~ - -~~~~~~~ -- --~~~~~~~~-~~ -~~~~~~~~~~~~~~~~~ --~~~~~-~~-


The relaxation method introduced by Agmon (1954) and ?‘btzkin and

Schoenberg (1954) is rather similar to my method H in Einarsson (l977a). They

prove termination of the process, but do not consider numerical properties.

A more recent reference on linear inequalities is Orden (1971).

Acknowled gements

This paper was written while the author was visiting the Mathematics

Research Center at the University of Wisconsin in Madison. I am very

grateful to its director, Professor Ben Noble, for his kind hospitali ty

during my stay in Madison .

I would also like to thank Mike Powell for sugges ting the new

method.

— 10--

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-- ~~~~~~~~~~~~~~~~~~~~~ -~-—

REFERENCES

1. Agmon, Shmuel (1954): The Relaxation Method for Linear Inequalities.
Canadian Journal of Mathematics, Vol . 6, pp. 382-392.

2. Clarke , Lori A. (1976): A System to Generate Test Data and
Symbolically Execute Programs, IEEE Transactions on Software
Engineering, Vol . 2, pp. 215-222.

3. Dantzig, George B. (1963): Linear Programing and Extensions,
Princeton University Press, Sixth Printing, 1974 , 627 pp., $16.

4. Einarsson , Bo (1977a) : Progress Report, dated January 4, 1977.

5. Einarsson , Bo (l977b) : Data Flow Analy sis on Differen t Programing
Languages , Draft repor t, dated March 10, 1977. Revised May 10 , 1977.

6. Fosdick , Lloyd D. and Osterweil , Leon J. (1976): Data Flow Analysis
in Sof tware Reliabili ty, Computing Surveys , Vol. 8 , pp. 305-330.

7. Motzkin , 1. S. and Schoenberg, I . J. (1954): The Relaxation Method
for Linear Inequalities. Canadian Journal of Mathematics, Vol . 6 ,
pp. 393-4 04.

8. Orden, A. (1971): On the Solution of Linear Equation/Inequality
Sys tems. Mathematical Programing, Vol. 1, pp. 137-152.

— - - -
~~~~
-

~~~
-

1-

~

- -~~~ - -~~ --- ~~~ -- - -- --- - -~~~~

UNCLASSIFIED
SECURITY CLAS SIFICATION OF THIS PAGE (Whai D.ia tnl.r.d ~

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER

1780
12. GOVT ACCESSION NO 3. RECIPIENT S C A T A L O G NUMSER

4. T ITLE (aid Subtitl.) S. TYPE OF REPORT A PERIOD COVERED

Summary Report - no specific
SOLVING A SYSTEM OF LINEAR I N E Q U A L I T I E S reporting periodFOR GENERATING TEST DATA 6. PERFORMING ORG. REPORT NUM•ER

7 AuT HOR(.) S. CONTRACT OR GRANT NUMSER(.)

Bo Einarsson DAAG29 -75-C-0024

A PERFORMING ORGANIZATION NAM E AND ADDRESS *0. PROGRAM ELEMENT . PROJ EC T , T ASK
AREA & BORIC UNIT NUMSERSMathematics Researc h Center; Univers ity of Work Unit Number 8 -

610 Walnut Street Wisconsin (Computer Science)
Madison, Wisconsin 53706 __________________________
I I CON1ROLL~NG OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office A u g u s t 1977
P . 0. Box 12211 IS. NuMBER OF PAGES

Research Triangle Park , North Carolina 27709 11
IA. MONITORING AGENCY MANE & ADDRESS(II dl If .rait Ira., Cantrollind Olflc.) IS. SECURITY CLASS. (of tAg. r~po~f)

UNCLA SSIFIED
IS.. OECI. ASSI F ICATION DOWNGRADING

SCHEDULE

15. DISTRIBUTION STATEMENT (of 11,1. R.port)

Approved for public release; distribution unlimited.

*7 . DISTRI BUTION STATEMENT (of A. abatract wt•r.d In Block 20, II dif l.r.n t fm., R.porf)

IL SUPPLEMENTARY NOTES Permanent Aff i l i a t i on of the Author
Forsvarets Forskningsanstalt (FaA)
National Defense Research Ins t i tu te S-l47 00 Tuxnba
Department 2/Proving Ground s SWEDEN
Box 98
*9. KEY WORDS (ContInua on rav.ta• aid. it nsc•~~a, ’ aid id.ntit,. by block nua,b.r)

Simplex method , l inear p rogramming , i n e q u a l i t y so lver , r o u n d i n g ,
Data Flow Analys is , sof tware valida tio n , test data generation .

20. A~~~~~~~CT (Contlnu. ai r.v~~a. aid. it n.c.a.a~~ aid Id.nii & by block m b.,)

A simple ine quali ty solver , based on the s imp lex me thod , for
determining safe input data corresponding to execution of a
cer tain path of a computer program , is presented . Special con-
sidera t ion is g iven the influence from roundin g errors on the
solu t ion .

DO FORM
I JAN 72 1413 EDITION OF I NOV AS IS OBSOLETE UNCLASSIFIED

—
JSECURITY CLASSIFICAt ION OF tI4I$ PASt (Rh.n D.. tnI.r .d)

-—~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~ --

