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ABSTRACT

t
Let y(t,x,f) denote the solution of y ’ (t) + f [d + a(t—s)]L y(s)ds

0
f(t), t > 0 , y ( O )  = x , where d > 0 and L is a self—adjoint densely

defined operator on a Hu bert space Si with L > A > 0 . Let tJ (t)x

y(t,x,0) . By analyzing a related scalar equation with parameter , we

find sufficient conditions on the kernel a(t) for Ik~J t)II + 0 (t-~~ ) and• f ~ U ( t ) ~j d t  < . These r sults and a resolvent formula can be combined to

• reveal ~~~~ bebavior of v ( t , x , f) as t
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_______________ ______________ _____________

EXPLANATION

This report provides sufficient conditions on the kernel of a certain class

of abstract linear integrodifferential equations in Hu bert space which can be used

to study the asymptotic nature of the solution as t +

As a model problem consider the linear partial integrodifferential equation

yt
(t.x) - Id + a(t-s)]y (s ,x)ds f(t,x)

y(t ,O) y(t,7r) = 0

y(O,x) = y0
(x) (0 < x < s)

where d > 0 is a fixed constant while a and f are known functions satisfying

certain prescribed conditions. Our results and a resolvent formula can be combined

to reveal the behavior of y(t,x) as t -*

In this problem , which can be regarded as a vibrating string with memory , it
2

is critical that the operator L = — -~~
—

~~
- is positive and seif—adjoint , i.e.

f Lu(x) • u(x)dx > A f u
2
(x~dx > 0

and

1!

f Lu(x) v(x)cix = f u(x) • Lv(x)dx
0 0

for some fixed A > 0 and for every choice of u and v which are twice continuou’

differentiable functions satisfying the boundary conditions u(0) = uN) = v(O) =

v(1T) = 0 . The result generalizes to include a large class of positive , self—adjoint

operators.
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A NONHOMOGENEOUS INTECRODIFFERENTIAL
E(~UATIONS IN fILBERT SPACE

Ralph W. Carr
1 
and Kenneth B. Ilannsgen

2

1. Introduction. Let L be a seif-adjoint (possibly unbounded) linear opera~ c.~

on a Hu bert space It ,  with spectral decomposition

Lx= X d E  x

for x in ~ , the domain of L . We assume that the spectrum of L is contained in

an interval (It,”) with A > 0, so that L is a positive operator . We study the initial

value problem

t
(1.1) y’(t) + f (d + a(t—s f l  L y(s)ds -- f(t) (t > 0)

- 0 - —

(1.2) y(0) =

= d/dt), where y and !(t) belong to ~ , d > 0, and the real-valued kerne l a

satisfies

(1.3) a c C(R
+
) a L

1
(0,l) . a is nonnegative , nonincreasing, and

convex on R
+
, 0 < a(O+) < ~ ‘, and a() = 0

(In this paper , R
+ 

(0,~ ), R + 
= [0,~ ).) See 19) for a discussion (with r fcrcn~- c

and an example) of applications of (1.1) to viscoelasticity theory.

The resolvent kernel of (1.1) is defined by the formula

(1.4) u (t )  = 
‘1 

u(t ,X)dEA

where u(t,A) is the solution of the scalar problem

t
(1.5) u’(t) + A f Id # a (t—sflu (s)ds = 0, u(0) = 1

0
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with parameter A (A < A < ~~, 0 < t < ) . Under certain additional conditions on

aCt), we shall show in Theorem 2.2 that

(1.6) sup Iu ( t ,A) -
~ 0 (t + co)

ft< A<co

( 1.7) f sup Iu(t ,A )Idt <
0 A A< ”°

It is clear that (1.6) and ( 1.7) imply, respectively,

( 1.8) IIU (t)U ~ 0 ( t +c o)  and f II ~ (t ) l l dt  <

In view of the resolvent formula

t
(1.9) y (t )  = U ( t ) y

0 + J U ( t — s )  f ( s ) ds
0

for the solution of (1.1), (1.2) (see Theorem 2.1), (1.8) shows, for instance, that y(t)

has a limit in It (t -~ °~) if f ( t )  does.

Our results extend those of [10) with respect to the condit ions on a ( t )  as t -
~ 0

t -
~ . In particular, our results imply that (1.6) and (1.7) held if a sa t isf ies  (1 .3)

and —a ’ is convex.

This pape r is based , in part , on the f i r s t  author s Ph.D.  thesis , being written at

the University of Wisconsin under the supervision of Professor John A. Nohel. His help

in the preparation of this paper is gratefully acknowledged .
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2. Statement of results. A solution of (1.1) is a continuously differentiable function

y from R + to ~~‘ such that I.. y(t) is continuous in t on ~ + and (1.1) holds.

Hille and Phillips (11, pp. 58-893 give the general theory of Bochner integration , which

we shall use in studying (1.1) and (1.9). See [19) for the functional calculus of self—

adjoi nt operators.

Our first result, to be proved in Section 3, summarizes some earlier work and

establishes the resolvent formula.

THEOREM 2.1. (1) Let (1.3) hold. Then the operator U(t) defined by (1.4) and

(1.5) is bounded on 1/ with It~(t)lI < 1 (taR ” ) . U(t) commutes with L on ~ and is

strongly continuous on R +

Ui~) 
~~ 

c , if f: R + -* I/ is continuous with f(t) c ~ for all  t, and if

L f is Bochner integrable on each finite subinterval of R
4
, then (1.9) gives the unique

solution of (1.1) , (1.2).

Remark . If 
~~~~~

‘ 
f are in 1/ but not necessarily in ~ , then (as shown in 181

for constant f) (1.9) gives the unique weak solution of an integrated form of (1.1),

(1.2) .

In proving (1.7), we shall need the technical hypothesis

(2.1) a(t) = b(t) + c(t), where b and c satisfy (1.3) except that cither

b(O+) = 0 or c(O+) 0 is permitted . Moreover ,

Ci) t~
1 
b(t)dt <

Cii ) —c ’ is convex on

The Fourier transform of a will be denoted

(2.2) ~(T) E ~ (t)-i~ O(~) Tf e
iTt 

aCt)dt .

Under hypothesis (1.3), ~(i) is continuous, and ~ (T) and 0(i) are non negative for

T > 0 t41

The frequency conditions

—3—



(i) 9(T )  > 0  (1 > 0)

(2.3)

(ii) lim sup <

are crucial for (1.6) and (1.7); we indicate briefly their role. From [4] we know that if

(1.3) holds, C2.3i) fails to hold if and only if a(t) is piecewise linear with changes

of slope only at integer multiples of a single positive number; u(t,A ) is then asymp-

totic ( t-~ co) to a nonconstant periodic function , so neither (1.6) nor (1.7) holds. If,

on the other hand, (1.3) and (2.3i) hold , a result of Shea and Wainger [20) shows that

Iu (t ,~) I d t  < (A > 0)

It is then easy to show from (1.5) that

(2.4) G(T,A) = 
1
1 2 (1 > 0)

+ i t ( A  — 0(t) — dT )]

In proving Theorem 2.2, we shall show that if A is sufficiently large , + 0(r) =

for exactly one positive number 1 = w(A) with w (A ) continuous and w(A)t as A t

From (2.4) , it follows that

I Iu(t.~ )ldt~~ IO (w (A ))I >

This shows the necessity of (2.3ii) for (1.7).

THEORE M ’2.2 .  Assume that (1.3) holds. Then

(i) (1.6) holds if (2.3) holds,

(ii) (1.7) holds if (2.1) and (2.3) hold, and

Ciii) if (1.7) holds, then (2.3) holds.

If (1.3) and (2.2i) hold and a(0+) < co~ then C2.2ii) holds if and only if aCt)

is strongly positive (that is, (1 + 1
2) 9(1) is bounded away from zero ; see [10]). In

Section 7 below we shall given an example (with a(0+) = cc) where aCt) is strongly

positive but (2.2ii) does not hold. In the same section, we shall prove the following

positive result.

COROLLARY 2.1. If (2.1) holds and either Ci) cTO , b(O+) < cc~ and b is

strongly positive, or (ii)

- ~~~~~-- - —-~~~~~~~~~~ “- --~~~~~~~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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b(t)dt

lim sup 0 ( c c

x~~O+ J c(t)dt
0

then (1.6) and (1.7) hold.

Thus , in particular , (1.8) holds if a(t) satisfies (1.3) and —a ’ (t) is convex.

Integration of (1.5) (see also [11], [4)) shows that

t S

u(t,A) + A f Id + a (t—s)] f u ( r , X ) d r  ds 1
0 0

so that when (1.3) and (2.3i) hold,

u(t,A )dt = l/(A Id + a(t))dt)

1 +
(interpreted as zero if d + a(t) 4 L CR ) .)

Thus in Theorem 2.2 we have

% J ( t )dt  = L 1
/(f [d+a(tflat)

Detailed statements about the asymptotic nature of u(t ,A ) as t -
~ ~ (A f ixed )

are given for certain special cases by Levin and Noliel [13, 14), by the ~;.~~ond aut~- r  [
~~~~ .

by Wong and Wong [24]. For example if d + a(t) (0 < < 1), Corollary 2.1 ap-

plies and tS , Cor. 3.3) shows that

u(t,A ) — ~~~~ Ct -
~

On the other hand (see Section 4), there is a C’ > 0 such that

(2.5) f Iu(t ,A) I d t )C A  2~~~ (A > 0 )

Thus the asymptotic behavior of u(t,A ) as A -
~~ 

o is not completely clear. See [14, 9)

for further discussion .

Another useful oxalnpJe , where (1.5) can be solved expl ici t ly ,  is d + aCt) =

Then 110) (1.5) reduces to an ordinary differential equation , and

-----4



(2.6) u(t,A) e
t1~
’2
(cos [J t + ~ sinpt) (A � -

~~

1 —t/2 1
= e  (1 +~~~t)

where ~i -~ (4A - 1)1/2 (A and p may be real or complex) . For this example, we remark

that

Ci) t -~ U(t) is not continuous in the norm topology if L is unbounded ,

since 1111(t) — U (s) II .~~ Iu (t ,X ) — u(s,A )I for A in the spectrum of L

Cii) f ju (t,X) Idt > I (A > 0). This is proved in [10).

(iii) u(.,Ae19) 4 L~
’(R~) if p > 1, e19 * 1, and A > 0 is sufficiently

large.

Dafermos 12] and Slemrod [21] study equations similar to (1.1) as linear

models in viscoelasticity and fluid mechanics respectively . These studies contain no

analogue of (1.8).

0 ‘ts and methods are closer to those of Friedman and Shinbrot (3], who

obtain L~ (1 < p < cc) for the resolvent (fundamental solution) S(t) of

t
(2.7) y(t) + J h(t-s) L y(s) = F(t)

0 
-

in Banach space. Formal differentiation of (2.7) yields (1.1) if h’(t) = d + a(t)

h(0) = 0, F’ = f . For their estimates, Friedman and Shinbrot require at least

h(O) > 0, h’ t L
1
(R~)

Miller and Wheeler (17) use procedures similar to those of [3) to study the

equation

t
(2 .8)  y ’ (t) = — L y ( t )  — f a (t—s) CL + Li ) y ( s ) ds  + f(t)

- 0 - -
in Hu bert space. Here L is self—adjoint and bounded below and has a compact resolvent.

Miller and Wheeler give conditions under which the resolvent for (2.8) may be decomposed

into an exponential polynomial with fini te—dimens ional projections as coefficients and a

reissinder (“residual resolvent”) R (t) with fl~(t) fl LP (R
+
)

-6-



~

The proofs of these results in (3] and (17) usc the operational calculus based on

contour integrals and estimates ~u~h as

(2.9) 1 ( t , A ) ~ dt < c J A I~~

(JargX ~ < (a/2) — £ ) ,  where c, 6 > 0 and r(t,A ) is the solution of a certain scalar

equation (analogous to (1.5)) with complex parameter A . Remarks (ii) and (iii) follow-

ing (2.6) above show that estimates like (2.9) need not hold for our function U(t ,A )

For a broader treatment of existence , uniqueness , and continuous dependence for

equations like (1.1) in Banach space , see Miller (16); further discussion of the resolvent

formula (1.9) will also be found in [161 .

Finally, we remark that nonlinear versions of (1.1) are under active study [1, 151.

— 7— 
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3. Proof of Theorem 2.1. (i). The proof of Theorem 2 of (6), with a(t) replaced by

d + a(t) (and the last equalities corrected to read 2V(O) = u
2
(O) 1), shows that

Iu (t ,A )I < 1 Ct E ~ ~~, A E R), so IIU(t) l j < 1 and JJ (t)L = L U (t) on Q . Since

IIU(t)x — U(s)x 11 2 f tu(t ,A ) — u(s,A) 2 d(E x , x)- - - - A A -

the continuity of u (t,A) in t and the dominated convergence theorem imply that U(t)

is strongly continuous .

The computations for (ii) are formally the same as those for Theorem 2 of (9), where

a and L f are continuous on R 
+ 

. To simplify formulas we take d = 0 since this

does not change the following argument. It is obvious that the function y(t) of (1.9)

satisfies (1.2). Let T(t) be the triangle {o < r < s <t) (t > 0), and let
t

h(t) = f a(s)ds . Since L U (r)y = U(r)L y is continuous (r € R ~~~) ,  a(s-r)L U(r)y
0 0 - -  -0

is in L1 (T(t)) and

(3.1) - f f  a(s-r) L U(r)y
0 

dr ds

= - f h (t-r) L U(r)y
0 

dr

t H
= y

0 
— f h (t—r) [ h a  -f Xu(r ,A )dEAy )dr

0 M - ~~~~° A0 
- -

- = — f [A f h(t—r) u(r ,A )dr)dE
~ 

y0— 
A

0 
0

The expression in brackets here is just 1 - u(t,A) , as one sees by integrating (1.5);

thus the left—hand side of (3.1) is equal to tJ (t)y
0 

and differentiation establishes that

(3.2) fr ( u ( t ) y 0 1 = —f a(t—s) L U(s)y ds

We observe next that the strong continuity and uniform boundedness of U ensure

that the function

a(t—s) LU (s—r ) f(r) = a (t—s) U (s—r) L f(r)

is strongly measurable on T(t) . In view of our hypotheses and [11, Theorem 3.5.4), the

following lemma establishes this. (Compare [16, Lemma 2.11.)
-8- 
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Lemma 3.1. If 9: R~ 
- p 1 /  be1onq;~~to 8

1
(O,t), then the function G(s,r) =

IJ(s—r) g(r) is strongly measurable on T(t)

Proof. To simplify notation , take t = 1 . For each positive integer n , let

Pn ,j  = ~~ j /n , ~ = ((j—l)/n , j/n] (1 < < n) . Let be a sequence of countahly-

valued functions

k=l 
Xn ,k

(r) 
~n ,k

Cx 
k 

= the characteristic function of a measurable sot ~2 ) such that g Cr) g(r)
fl, n ,k -n

(a - cc) except on a set Z of measure zero. For (s,r)  ~ T(1 ) , let j  (s , r ,n) be the

integer such that s—r € E . , and let
n,j (s,r,n)

C (s ,r) U . g (r)
—n .n,j(s ,r,n) —n

Then G (s,r) is measurable and countably valued since T(l) is the union of the rrc-1:-~:i-— n

able sets

(s—r c E ) n (r 11 1
n,m n ,k

(1 < in < n, 1 < Ic ) ,  on each of which C is constant . For fix~d (s,r) C— — — -n

r~~~Z

(IG~~s.r) — G(s,r)ll

~~~Pn,j(n ,r ,n) 
[g (r) - g(r)]~

+ II (U . - U(s-r))g(r)~j
— n ,j(s,r ,n) — —

As n -
~ ~~, the first term tends to zero, since l u l l  < 1 and g (r) -+ g(r); by stron~;

continuity, the second term tends to zero as well. Thus G(s,r) is the limit alr.est

everywhere of countably—valued measurable functions , and the lemma is proved .

Continuing the proof of Theorem 2.1 , we note that

t s
f J  a ( t — s )  l l u ( s - r )  L f ( r ) l l  dr ds

0 0  -

t t
< f a(s)ds J li i - . f ( r ) ~ dr < cc

0 0~~~

-9-



so a (t—s) U(s-r) LfCr) e B1(T(t)) . Then, using Fubini’ s theorem , a change of variable,

and the fact that L is closed, we may compute

t S

( 3 . 3 )  f a (t—s)L f U (s—r) f (r)dr ds
0 - 0~~ 

-

t s
= J J a(t—s) L U(s-r) f(r)dr ds

0 0  — —
t t—r

= f / [a(t—r—s) L U(s) f(r)]ds dr
00 -

= [U(t—r) f(r)]dr ,

where the last step uses (3.2) and f(r) in place of y
0 . It is clear from these equal-

ities that the integrand in the last expression is locally Bochnor integrable in (t ,r)

using Fubini’s theorem , we see that this expression (and hence the heft—hand side (3.3))

is equal to

f C t )  

~~ 

U (t—r) f(r)dr .

In view of (3.2) this establishes (1.1).

For uniqueness , we pass to the weak , integrated version of (1.1), (1.2) and project

°~ 
~~~~ 

see (9) or (7) for details.

-10-



I
4. Proof of Theorem 2.2. Reduction to two estimates .

We assume without further mention that d + aCt) has been rescaled , if necessary ,

so that A = 1 . The functions a’, b’ , and c’ are redefined whore necessary so as to

be continuous f rom the left  on . We let A lt) = f a (r)dr

The proof relies on detailed information about ~ (see (2.2)). See (4, 20] for

earlier versions of these ideas.

Lemma 4.1. Suppose (1.3) holds. Then ~ and 0 are continuously differentiable

28. I~ ~~t1L

C4.1) ~~~ A( 1) < l~~( T ) I  < 4A(!) (1 > 0)
2fi 

T —  — I

1

(4 .2 )  I~ ’( r ) I < 40 f ~ ra(r)dr Cr > 0)
0

(4.3) 
~~

- f T ra(r)dr < Ott ) < 12 fT ra(r)dr Cr > 0)

(4.4) —0’ (ii > 
~ f t 

r3 a(r)dr Cr > 0) .

0

Our proof is adapted from 110, Lemma 2.2). We exploit the fact that da ’ ( t )  is a positive

measure on and adapt the convention , consistent with our choice of a’(t) = a ’ (t)

that when 0 < x < y and f c L1(da’ C t ) ) ,

I f ( t )  da’(t) = f f(t) da ’(t)
A Ix , y)

Convexity of a ( t )  implies aC ~~) — a(t) > -~~ a’ (t), and hence

2
( 4 . 5 )  2 j

2 a(r )dr  > ta (~~) > taCt) — ~~~
- a’ (t) > 0 Ct > 0)

In particular C 4 . 5 )  shows that taCt) + i—la ’ Ct ) I = 0(1) Ct -÷ 0+) . We also have

ta ’ (t ) o( l)  Ct - c c) ,  as a consequence of ( 1 . 3 )  and

(4 .6 )  J rda ’ (r) = a(T) - T a’(T) < c c  CT > 0)

Two in tegrations by par ts in ( 2 . 2 )  yield the formula

(4.7) ~(t) = 
2 

f
~~

(1 - h r  - e
_iTr

)da , (r) (T > 0)

—11—

• 
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--~~- - ----- - ---—~~~-- - - - - - - ~ —~~~~

where ( 4 . 5 )  and (4 . 6) assure vanish ing  of the boundary terms and absolute convergence of

the integral.

Following [20), we let J(u) = iu (1-e’~
’) — 2 (1  + iu — eW ); then

(4.8) I J ( u ) I <~~- u
3
( 0< u <  1), and IJ (u)I < 2(u + 2) (u >0)

(4.8), combined with Fubini ’s Theorem , justifies differentiation of (4.7) and gives

us

(4.9) 
~~
‘ CT) = T

3 / J(-ir)da ’ Cr) (i > 0)

The inequalities (4.1) and (4.2) now follow as in (20).

From (4.7) we have

(4.10) 0(i) = i
_2 

~ 
r~~ir~ da ’ Cr) (I > 0)

with

K (u)  = l ~~~~ -~~-~ (u > 0)

Note that

2 2 2
( 0 < u <l )

K(u) > I - max{sin 1, ~) > j~
- Cu ~ 1)

Therefore,

1

( 4 . 1 1 )  Ot t ) > -
~~~~ / r~ da ’ Cr) + 

~~~~~~~~ 

f ~ rda ’ Cr) , Ci > 0)

The relations

f 1 rda’ Cr) —~~
- a’ (~~) + a(1)

(4. 12) 1 1

/ r
3
da ’ Cr ) = -

~~~ a’ (~ ) — -4~ a (~~) + 6 / ra(r)dr

along with (4.11), give us the first inequality in (4.3). The second inequality follows

from the estimates

— 1 2 —  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —---
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I K ( u ) I .~ 2u
2 
(0 < u < 1) and I K ( u ) I < 2 (u > 0)

which,  along with  ( 4 . 1 2 ) ,  yield
I I

0 (T)  < 2 / r
3 

da ’ Cr) + 2T
2 f ~ rda ’ C r )  < 12 f ra(r)dr

To prove ( 4 . 4 )  we d i f f e re n t i a t e  (4 . 1 0 ) ,  which yields

(4.13) -t~~ O ’ ( i )  = / H (tr) da ’(r) , Ct > 0)

where

H(u) = 3 Cu — sjnu) - u ( 1  - c o s u)

Then

~ 
H~~~ C0) = 0 Cj  = 0,1,2,3,4)

( 4 . 1 4 )  s~ ~~~ (0) = 2

< -3sin u — u cosu = H~~
6

~ C u )  < 0 (0 < u < 1)

so

(4.15) H(u) > — — 
~~~~

— = j~~
- (3-u) 

~ 
(0 ~ u ~ 1)

and

(4.16) H’ Cu) > -
~~j-- 

— (5-2u) > (0 .~ U ~~ 1)

If we can show that H”(u) > 0. (1 < u < 4 ) ,  it will then follow from (4.15) and

(4.16) that

(4.17) H(u) > j -~~ 
+ Cu—l ) = -j-

~
-
~ 

(Su-4) (1 .~~ u ~ 4)

But H~
31 (u )  = u s i n u  > 0  (0 < u <  ii ) ;  by ( 4 . 1 4 ) ,  we conclude that H” (u)>0(O < u < ~r

Then since Cu) < 0 (IT < U < ) ,  H~
2
~ (u) > ~ (2)  

(.~!.) > 0 (‘1 < u < 4 ) ,  so (4.17)

follows.

It is easy to see tha t

(4.18) 11 (u) ~ u— 3 Cu > 4)

— 1 3 —
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and thus (4.13), along with (4.15), (4.17) , and (4.18), gives

1
(4.19) -T

4 0’ Ci) > -
~

-
~~ / r5 da ’ Cr) + j~

-
~ f 1(Str  - l)da’ Cr) + f4trr 

- 3)da ’ Cr)

and

~~~~f r
5
da’(r) =~~~~~a’(!)_ ~~~ a(!)+~~~~f r

3
a(r)dr

(4.20) i~c f ~ (Sir - 4) da ’(r) ~~ a ’(~-) — j~~~ 
a ’ ( ~~) — ~~~ a4) + ~j~- a ( ~ )

f (rr — 3) da’(r) = —a ’ (—) + Ta(—)
4 T T

Comb ining (4 .19)  and C 4 . 2 0 )  we obtain ( 4 . 4 ) .  This completes the proof of Lemma 4.1.

Using (4.3) and (4.4) we see that the equation

(4.21) 0(w) + -~~ = 
-

defines a strictly increasing, continuously differentiable function w = ~ (A) on a sub—

interval (A
0
,cc) of ~ + 

with ~( A) 
-~ cc as A cc This provides the missing step

in the proof of Theorem 2.2(iii) outlined just above the statement of the theorem.

Fix t. > 0  such that a(t ) > 0  and let p =  6t
1
1 

. Set uCA ) = max (p ,~Ii(A)) if

~ (A) is defined , w(A) = p otherwise.

(4.3) and (4.21) yield
1

( 4 . 2 2 )  > 0 (w) > 
~

- f ra(r)dr

and
1
w aCt )

(4.23) / ra(r)dr ~ —s- a (~ ) > .

0 2w 2w

In particular , (4.22) and (4.23) show that

— 1 4 —  
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2 a(t )
(4.24) w ( A)  

~

In (10) it was also shown that  when a ( 0 + )  < ~0, w
2

CA ) is bounded above by some

constant times A . Such an estimate is not available to us when aCO+) cc~ and this

causes the princ ipal new difficulties in the proof of Theorem 2.2.

When aCt) = t (0 < 13 < 1, t >0 ) , direct computations show that wCX) =

(K = KCB) > 0) . Now the inequality / luC t ,A) ldt ~~ IG (wCA ))I > O (w (A))/~ (w(A)) can be
0

used to derive the estimate (2.5).

From (4.3), (4.21), and (4.23) we obtain

I I
(4.25) ~~

- <12 ra (r)dr + -
~~~~ < (12 + 

a(t
1
)~ 

/ ra(r)dr

wheneve r A A~ = max{ (0(p) + -~~~ >
—l 

11

On the other hand when 1 < A < A0, w (A) = p and we have

(4.26) < 1 <  A0
(l2 + 

a~~1
)~ / raCr)dr

Then , combining (4.22), (4.25) and (4.26) we find that

I I
(4.27) 

~
- / ra (r)dr < 

~~~ < C / ra(r)dr (A > 1)

where C (12 + a (t
1
)~~ O

Define

D ( t )  D Ct ,cc) = ~~(t )  — idT 1

(4.28)

L D(i,A ) 0(1) + iTA
1 

= ~ (T ) + iT (A~~ - 0 ( i )  - dT 2 )

(1 < A < cc, I > 0)

If C2. 3i) holds then I D h t , A ) I  > ~ C t )  > 0 (1>0 , 1 < A < cc) and (4 )  gives the representa-

tion

—1 5— 
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(4.29) lTu(t ,A) = 
~ 

f Re 
~D~T X )~ 

dt (0 < ~ < cc , 0 < A < cc)

(The integral is improper at I = cc ; by (1.3) and (4.1) (D(T ,A) )~~ is continuous at

I = 0 and for every t > 0 .) Moreover the resul t of Shea and Wainge r [20) shows that

(4.30) Iu (t ,A ) l d t  < c c  (A > 0)

and in [6) it was shown that (1.3) implies

(4 .31 1 sup I u t t ,A ) l  1

For the remainder of the ptoof , unless noted otherwise , we assume that (1 .3 ) ,  (2 .1),

and (2.3) hold. Return to (4.29) and integrate by parts . There results the formula

cc D(r A )
(4 . 3 2 )  iTu ( t ,A) = Re 

~~ J e’~~ ~ 
2 di) (t > 0, A > 0)

0 [Dtr , A ) )

Relations (4.1) and (4.2) show that the boundary terms vanish and that the integral

converges absolutely when d ~ 0 . Absolute convergence of the integral when d = 0 is

assured by an e~timatc of Shea and Wainger (20 , pp. 322—323), n~ se3.y

1

raCr)dr

(4.33) 1 
0 

di ( cc

(JT a (r)dr) 
2

0

Note that

1 1 — ____________

lD ( r ,X )  — 
0 ( i )  

— D ( T ,A ) D ( T )

Th ’n

D Cr ,).) D (i ,A )  . — 1
(4.34) 

2 2 (1 — 
i~A 

~(OCr, ).)) [D(i)) D T.

ID’(r) + iA~~’J 2irA ’
1 

r
2
D
1
C1,A ) 

+ 
1

10(1)1
2 D(T) )~1o(i)) 2otr ,\) 0 ( t)  D(i,A )

-16-
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Define

u
1
(t) = ~ 1 ~~~ 

0’ ( 1) 
dl (t > 0)

0 (D(t))

p iTt 
2 ~ ( )

u 2
(t )  = •

~ 2 u — 
OCr) 

)di (t ‘0)
0 (D C I ) )

u3
(t) 

~~
- 1 e

i
~~ 

21 
di Ct > 0) ,

(4.35) 0 (0(i))

2
p T D C T ,X)

u4 (t ,X )  = . f
~ 

~~~~ 
(D(Tfl

3 
D(t ,A) 

[i5-~T + D ( t ,A~~j dT C t ‘ 0)

cc D Ci ,) . )
u
5
(t,\) = 

~~ J e~
1
~ 

~ 
2 dt C t > 0)

p ( o C r ,) . ) ]

Referring to (4.32) and (4.34) we see that

(4.36) u (t,X ) = Im{ X 1u 1(t )  + iX
2
u2

(t) + 
3
uyt  + u4 (t ,) . )  + u

5
(t ,A)}

In section 6 we will show that if (1.3), (2.1) and (2.3) hold then

(4.37) lu (t,A ) I  < 14q(t) (t > 0, 1 < A  < cc~~ j  4, 5)

where, now and henceforth , N (or Mi denotes a positive constant independent of A whose

value may change from line to line , and

t
g(t) = t 2 

/ b(r)dr + ~ 
2 
+ b(t) — b’(t), (t > 0)

0

The assumption (2.li) combined with an integration by parts shows that

~~~ 
b Cr ) d r dt = -T 1 b (t)dt + b (t)dt + / ?~fl- dt

from which it follows easily that qCt) E L~il,cc)

In view of (4.30), (4.36), and (4.37) we find that u.(t) c L1(1 ,cc) Ci — 1,2,3)

and thi s, along with (4.31), implies that —17—
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SUp~~< ~ < ~~ )u (r,A) Idt < .

This is the assertion of Theorem 2.2 (u).

Similar estimates which hold when (1.3) and (2.3) hold, but without the assumptions

of (2.1), can then be used to show that

(4.38) 1u 1(t) I + ~u2 (t)t + Iu 3 C t ) I  + 1u 4 (t ,A ) t  + t u 5 (t ,A ) I  <~~~ (1 < A < ~~, 0 <  tI

from which Theorem 2.2(i) follows. (Theorem 2.2(iii) has already been proved above.)

—1 8—
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5. Two more lemmas - some important estimates

We would like to integrate by parts in the formulas for u4 and u5 in order to

bri ng out another factor of t 1 
. Hypothesis C2.li) appears to be too weak to permit

this , so we separate ~~~
‘ into a “small” part and a differentiable part.

We again let 3(u)  = iu(l — elU
) — 2 ( 1  - iu — efl ’) and define

t
80 ( t, T) = T ~ I J (—lr)db ’(r) (0 < t < c c, 0 < < c c )  ,

0
(5.1) cc

B°~(t,T) T
3 f 3 ( — t r )  db’ Cr) (0 < t < cc~ 0 < t < cc)

t

Observe that bCi) and ~~‘ (t )  are given by expressions analogous to (4.7) and (4.9)

respectively so that , in particular

0 cc
(5.2) b’(i) = B (t , r )  + B (t , i )  (0 < t < c c, 0 < i < cc) -

Lemma 5.1. If (1.3) and (2.1) hold than c (-t ) is twice continuously diffe~entiab~g,

(t ,i) exists and is continuous (t > 0, 1 ) 0), and.
I
T

(~~ 3) t~”(i)~< 6000 f r2 c( r ) c lr (1 > 0)
0

(5.4) IB
cc

(t ,T), < 4Oi 2
Cb (t) — tb’(t)) Ct > 0, t> 0)

(5.5) ~ô13 
It T)) < 500t

2 f b(r)dr (t > 0, t > 0)

(5.6) Ci) j 8°(t,T)I < ~~ fT rb (r ) d r (I > 0, t > 0)
0
1

CUT ) j~~’(i)) < 40 f T rc ( r) d r (1 > 0)
0

Proof. Three integrations by parts show that

(5.7) a C T )  = -ii 3
f (1 - h r  + (iTr)2 

- e~~
Tr
)dc,(r)

where we use

rcCr) + r
2
Jc ’(r)I + r

3 c” ( r - )  0 Cr -~ 0+)

and c(r) + r )c’(r ) + r
2 

c” ( r ) -, 0 Cr -~ cc)

—19-
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which are consequences of (2.1) and which assure that the various boundary terms vanish .

Note that dc”(r) is a negative measure; three differentiations of (5.7) yield

2” CT )  = ii 5f K(—Tr)dc (r) Ci > 0) ,

where

K (u)  = —12(1 + ~~~ + 
(iu)~ - e

hU
) + 6 iuCl  + iu - e1L ) + u2(l_e XU

)

The remainder of the proof of ( 5 .3 )  now follows as in [10 , Lemma 6 . 1( i i f l .

To obtain (5.4) we f i rs t  consider the case where it > 1 . (4 .8)  and (5.1) give

us

cc
cc 

~3 -2
l B  (t , T)) < 2T / (rr+2)db’ (r) < 2T (b(t) — 3tb’ (t))

t

< 40T 2 (b( t )  — th’ (t ) )  -

On the other hand if It < 1 then (4 .8 )  y ields

1 cc

l8
cc

(~~~T ) I  < 6  / ~ r 3d b ( r )  + 2T~~ f (Tr  + 2 ) d b ’( r )
t I

= 6(T
3
b ’ (1) — t 3

b’ C t)  - 3T 2
b ( 1) + 3t 2b (t )  + 6 / rb (r)dr]

+ 2I 2
b(~~) — 6 T 3

b’ C~~)

< —6t 3
b’ It )  + l8t 2

b ( t )  + 36b(t )  / rdr

< 40i 2 (b C t) — th’ C t ) )

thus giving us (5 .4)  in both cases.

Di f fe ren t ia t ion  of (5.1) yields

i) = ~~~~ K ( — T r )db ’ Cr )  Ci > 0, t> 0)

iu iu 2 i uwhere K ( u )  6(1 + iu - e ) - 4iu( 1 — e ) + u e , and we have

I K ( u ) l < u
4 
(0 < u < 1), and ) K ( u ) )  < 20 ( 1 + u 2 ) (u > 0) -

-20--
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if Tt >1

1

Ct )) < 40/ r
4 db ’ (r) + 201

: f (
2 2  

+ fldb ’ Cr )

= 40[~~~~ b ’ (~ -)  — 4T
3 
b (~ ) + 12 f r2 b (r)dr]

+ 20T 
2
(t
2 b’ Ct) - T

2 
b’ (!) - 2th(t) + 2T

1 
b(!) + 2 f

~ 
b ( r ) d r )

+ 20i 4(b ’(t) — b’(~-)]

1

< 40T~~ j
~ 

b ( r ) d r  + 480 / r
2 b(r)dr

0

< 500t~~ f bCr)dr

If Tt < 1 then

~ 3 (t,I)) < f r4 db’ Cr) < 12 
~ 

r2 b (r)dr ~ 
~~ 

b (r)dr

so we have established (5.5) in both cases. (5.6) is obtained in the same way as (4.2).

This completes the proof of Lemma 5.1.

1-n order to obtain estimates on the size of u
5 we will  need lower bounds on

D(T,A) -

We use w=w(X ) as defined in Section 4.

Lemma 5.2. If (1.3) holds, then

(5.8) . ID(T ,X) >MI f ra(r)dr (~~< i <~~~)

( 5.9) ( D ( T ,X ) )  > N l i — w i  (i >~~~~ 
) .

Proof. The estimates (4.3), (4 4), and (4.27) will be exploited throughout with-

out explicit mention.

—21-
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For ~~~ < T < w = p  ,

Re DC I,).) = ~~( T )  > N > M
1 

f ~ ra(r)dr > M
2 

I t
A

wt

which establishes (5.8) and (5.9) in this trivial case.

In all other cases we s tart  with

1

(5.10) —0’ C r )  > 
~ 

f r~ aCr)dr > 
~ 

aC~-)

and use both parts of this estimate to obtain

(5.11) Im D(T,A) ) = r ) ~ - - - - -  — 0 ( 1) 1  >

I

> rjOCw) — 0 ( t ) )  = t lf  0 ’ ( s ) d sj
w

~ 
1 1

~~~~~ ~~w 
s f r3 a (r)drds l + j~j 7j I f s  3 a (

~ )dsI

1

~~ ~ r~ aCr)f sds dri + 
~

-
~~

-
~~

- I f ’ s~~ a(-~-)ds I

- = 
T)i-w)(T~~~) f r~ a ( r ) d r  + ~~~ r a(r)drl

In the last step of this computation we used Fubini’s Theorem on the first integral

and a change of variable Cr = .L) on the second. Then

(5.12) I)~ -wJ~ i+u) 
/ r3 a C r ) d r  > 

i2 k-w I [
~

+ f~~]r3 a(r)dr
iT— W I —2 1 1

-~~ 6000 ~ (a(~~) + a(-~---) ) -

Define f(t )  = taCt) — ~ t
2 
a’(t) (t > 0) - Observe that f(t) is nonnegative ,

left continuous (by our convention a’(t) = a ’( t ) ) ,  and sat isf ies

—22—
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t
(5.13) t a C t )  < f(t) < f a(r)dr (t > 0) -

0

Here the f i rs t  inequality is immediate from the definition and the second is obtained by
in tegra ting  by parts twice in the inequality 

~~
- f r 2 

da ’ C r ) > 0 - From (4 . 5 )  we also
have

(5.14) f ( t )  < ta(~-) C t > 0)

so that f ( 0 + )  = 0 and f is bounded on [0 ,!) fo r every t > 0 - Let SCT)
sup

0< i f f ( x ) ) ,  and for each t > 0 choose S = S( t )  c (0 , 1] so that  f ( ~~) >

The proof now splits into three cases.

Case 1. If 1 > 5( t )  > then (5 .14) and (5 .13) imp ly

(5.15) fr—w I a (~i~) > ~J~~~1[~ a ( — ~-~ > L~ .t ~~60001 6000 T T 21 — 
6000 r

-
~~ 12000t S(T) > ~~~~ (! sup 

~ 
{x a(x)} )

J r a(r)dr -

If -~ < i then )w- il > ~ - w > i so (5.11), (5.12), and (5.15) combine to
give (5.8).

On the Other hand , if T > w then (5. 11),  ( 5 . 12 ) ,  (5.15) and ( 4 . 2 7 )  y ield

1 1
)l m o Ci ,) . ) )  

~~~~~~~~~~ j  ra (r)dr + 
~~~~~ !f

~ 
r a ( r ) d r )

>
~~—~~~j  / ra(r)dr > M~~-~~~~~

which  is (5.9).

Case 2. If 0 5 C r )  < -~ and f(-~-) > 
f f ( ~~) then , again Using ( 5 . 1 4 ) ,  we obtain

— 2 3 —



(5.16) 

600012 
a C ~~ -) > 

~~~~ ~~~ 
> 

120001

l i-wi u -wi 1
-~~ 24 000 

S ( r )  
-~ 24000 ~~ sup

1 
{xaCx)))

i

~
T_ 

f
1 r a (r ) d r  -

Combining (5.11), (5 .12) ,  and (5.16) we complete the computations as in Case 1 for both

( 5.8) and (5.9) .

Case 3. If 0 < 5 ( t )  < -~- and f (~-) < ~ fC~-) then we use (4 . 7) along with the estimate

l-cosx > ~~— CO < x < 1), and then apply (5 .13) to obtain

cc

( 5.17) 2 Re D ( i ,A )  = 2.p(t) = 2i
2 f (1 — cosir) da ’( r)

0

~~ 

:

2 
da ’ C r )  = 

1 

a ( r ) dr  - f(~ )

= r f ~ r a (r ) d r  + 1T (1 — Ir> a r d r  — f(-~-)
0 0

1 -

> I f ~ r a (r ) d r  + (1 — c S ) f ~ a(r)dr — f(1)

- 0 0

> i ra(r)dr + 
1 
f(

cS
) — f ( l )

> ~ f ~ ra(r)dr0
This is ( 5 . 8 ) .

When I > !~~, (5.11), (5 .17) ,  and (4 .27 )  combine to yield

(5.18) P
/~~ )D ( i ,A ) )  > Re Dl i ,) . )  + u r n  Dl i ,) . ) )

1 1 1
> ! f

t ra (r)dr + j~~ If” ra(r)dr ) ~ 6 
f (~ ra (r)dr

0 1 0

> K It-wi
— 

1

which is (5.9) . This completes the proof of Lemma 5.2.
—24—
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6. Proof of estimate (4.37). Define A (t , t )  = 6
0(t ,i) + & ‘ ( i)  + Cr > 0, t > 0)

and let

U 41 
(t,).) = 

~~~~ 

e
1Tt t

2
(~~(t ,s)+L\ ~

l ) 
~~~~~ + 

D C I ,) . )  )d i  I t > 0)

~42
(t,X) = 

~~~ 3 
[~~~~~ + 

DU~A)~~~~ 
(t > 0)

(151
(t ,X) = 

~~ 
f 

~~~~ 
1 t , +~~

2
) 
di Ct > 0)

p (DCI ,).))

~ 52
(t ,A )  = 

~~~~ 
f e’t~ 

8 (t ,u)
2 

di Ct > 0)

p (Dl i , ) . ) ]

Thus u .(t,A ) =U. 1 (t,A ) +ji 2
(t,X) It > 0, 1 < A < c c , j 4,5). We now

integrate by parts on 
~~41 and 1i 51 in order to br ing out another factor of t

1

This gi ves us

(6.1) —iA
3
t
2

ji41 It ,A) = — 
e
i
~
)t 

p
2(A(t p) + 

+ D ( p,A) ]

+ J
P 

e~
T
~~ 

[2T (i~(t~ T) 4 LA 1) + Ct,T) 
(2 + 

1

0 D
3 (1) D C T , A )  ~D ( i )  0( 1,) . )

i
2
CS(t,t) + iA~~)(8D’ (1) 

+ 
50’ (T )  + 2 i A 1 

÷ 
2D

~~
(r ,) .)  

d- 

D3 (T) D CI ,) . )  ~ D2
( i)  

D C I )  D (~~,X )  - 
D
2 ( t, X )  

~

and

(6 .2)  -iXt2 
~i 51

(t ,A = 
el

~
3t (~~(t ,p )  +

O (p , A )

cc 
utt1~i

Ct , T) 2 ( t ~(t , i) +
+ 5 e L 2 

- 
3 J

dT -
p D (i ,A )  D (i ,A )

In (6 .1) the est imates of Lemmas 4 .1  and 5.1 assure absolute convergence of the

integral and van i sh ing  boundary terms at i = 0 - In (6.2) absolute convergence and van-

ishing boun dary terms at 1~~~ cc a consequence of Lemmas 5.1 and 5.2 along with (2.3).

—25—

A

_ _ _  _ _



_ _  ~~~--- _-~~~ --~~~~~~~~~ -- -—_ ~~__ - - . —_- - - -_  — -~~~~----.- ~~~~~~~ - - - -~~~~~~-- -  . --_-~~~~~ -__

Inequalities (4.1) and C 2 . 3 i )  imply that

inf inf D C I ,) . ) )  y > 0
O < r < p  1< ) . < c c

From (4 .2)  and Lemma 5.1 we f i nd  the est imates

1

1MaX{T)D (I ,) . ) ) ,  I ) ~~~ ( t , T)  + LA 1) )  < 401 f ~ r a ( r ) d ~ + dT
1 

+ rX 1, (t , T > 0)
1 0

(6.3) 
~ 1

lL
I2 i&r (t ,l ) l  < 500 f b ( r) d r  + 6000T2 f T  r2 c(r)dr + 2dt~~ 

( t ,T > 0)

and from (4 .28 )  and ( 4 . 3 )  we have ( 0 ( T ) )  > j I m  D C I ) )  > d1 1 
- When d = 0 we have a

lower bound on (0(T)) from (4.1). Thus, referring to (6.1) , we obtain

r a (r ) d r  + i + dT 1 
+ bCr)dr + 1

2 f
i 

r
2
cCr)dr

< N  + M 0 

— l 

0 0

max {dr  ,f a(r)dr} .

+ 

~ raCr)dr + ~ + dT~~~

) 

y
_:
~~dT

max{dT~~
, ft a(r)dr} 

-

0

t

< N Cf b (r)dr + 1); in other words
0

(6.4) )ji41
(t,A )) < M q(t) .

From C 5 . 4 )  it is clear tha t

1A 3tu 42
(t ,A ) I  < N  

(bCt) — tb’(t)l 
dl <~~-~ (b(t) — tb ’ ( t ))  <~~~~~ tqCt) -

Taken together wi th ( 6 . 4 ) ,  this shows that

(6.5) )u 4
(t , A ) !  < ~Iq(t)

which is the case j 4 of (4.37).
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In order to obtain a similar estimate on u
5
(t,).) we partition the interval (~~,cc)

into four sets

= (
2
2, ~ ) u [~ ,w — ~) u (w — ~~~, w + - f)  i’ fw + ~~,cc)

— u E
2 

U E
3 

u E
4 -

We use the estimates of Lemma 5.2 on E
1 u E2 U E4 and (2.3)  on E

3 for lower

bounds on ID ( t ,A ) l  . Lesmias 4.1 and 5.1 will  again give upper bounds on the numerators.

We know from (6.3) that

1
(6.6) l&~ (t ,T ) i  < M CI 2 

/ b (r ) d r  + fT  r
2 
c(r)dr + di 3)

0 0

< M
1t

2 q(t ~r 2 Cr > -
~ 

)

and

(6. 7) 

2 

max(J~~(t,i) + 1A ’I, 1D 1CT ,A ) I )  < M f
Tra (r)dr Cr > ) .

Using the estimate f ~ ra(r )dr <~~~ tu 2 a(w~~ ) < ~ I”' ra (r)dr , along with (4 .27 )  and (6. 7 ) ,
— 0

- wwe obtain

(6.6) max ~~~ (t ,T) + iA ’) ,  ) D
~~

(i ,A ) ( )  < N r a ( r ) d r  < 20MA~~ (I >~~~ ) -

Returning to (6.2), we observe that

I~ (t ,T ) )  2 )~~Ct , i) + iA ’j(DT (i ,A) l
(6.9) It

2 
~a Ct,A)) < ~.f 

~ 2 + 
~ 

-51 — 
~ A (D (-r,A )I A )D(T ,A) (

From (6 .6) ,  (6.7), (5.8), and (4 .27 )  it follows that
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I )
~ (t , - r ) (  2)S(t,l) + j X~~~ ( l o  Ct ,X ) (

(6. 10) 1 < ~ 2 + — ) d-r
E1~~ X I D C T ,A ) I  A ) D ( i ,A ) I  )

< M t
2q( t )~~ 1 . f 2  —  d I 

+ 1 ~2 
~~~~— I ~ p .1. 2 ~~~3 I

[xf ”' ra (r )dr ~ ~4 fT raCr)dr ~ 
fii~ ra(r)dr ~ J0 0 0

< M1t 2q ( t )  J~, (-~~ + -~~]dt ?4
2
t2q(t) -

i - i  i

From (6.6) , (6 .8) , ( 5 .9) ,  (4 .24 ) , and (4 .27 )  we f ind that

~~ 1~~ 
(t ,T)) 2j ~~(t , T)  + iA~~~ ) - ) D  (T ,) . ) )

’

~~

(6.11) j  < 
1 

2 + lc1~E2 uE 4L~ X I D C T ,X ) I  ) . ( D (T ,A ) l  )

< Mt 2~~(t)
[f

~~~2 + 

~:+~ (i-ca ) 2 + 3 di]

< M 1t 2q ( t )

Then ( 6 . 6 ) ,  (6 .8) , (4 . 3 ) ,  (4 .27 )  and ( 2 . 3 )  y ield

(6 .12)  5 [ i ~~~t .~~ i 
+ 

2 (ACt ,T) + iA~~I . I D 1CT .X ) I \

J

< Mt 2q ( t)  
w+!~~~ C , 0 ( T )  

+

Ci) ~ Cr ))

< M 1
t 2q ( t )

Now (6.9) through (6.12) imply that

(6 .13)  (p 51(t ,A ) (  < M qCt )  -

It remains to establish an estimate on

-28—
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(6.14)  j t U 52 (t ,X) ( 
~cc L ( t ,1!J. dT -

p

From (5 .4 )  and (5.8)  we argue as in (6. 10) to ob ta in

(6 .15) f iB ’°(t ,~ )~ dl < 
Mt q ( t )  

f 7 iq 
-~~ M

1
t n ( t )

E1 ) . I D ( - t ,A ) )  ~ I
A 5 r a ( r - ) d r  2

0

As in (6 .11) ,  ( 5 . 4 )  and (5 .9)  yield

(6.16) 
E UE 

i B
cc

(t , T ) T  dl < MLq(t) [f 
2
+ r ~1 dl 

2 < M 1tq Ct )  -
2 4 A l o ( i ,A ) (  w+~-

L 2

Final ly ,  ( 5 . 4 )  and ( 2 . 3 )  g ive us

(6.17) f iB
cc

(t ,~~)) di < Mtq(t) 
2 O (T}0(w) 

dl < M
1
tqCt) -

E
3 A (DCT ,A) 1

2 ~~~~~~~ 
- 

~~ Cr )

Combining (6.13) through (E..17) we have now established that

1u 5(t ,X) l < Mq(t )  -

This completes the case j  = 5 of (4.37).

In order to prove (4.38) one need only apply the estimates of Lemmas 4.1 and 5 . 2

along with (4.27) and C4.33) to the functions as defined in (4.35) in the same manner as

we have done in th is  section , noting that in this case the decomposition a ( t )  = b C t )  + c i t )

from (2 .1)  is neve r used .
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7. Proof of Corollary 2.1 and ~n~~~~~~i1e. In view of Theorem 2.2 it suffices to shøw

that either hypothesis Ci) or hypothesis Cii) of the corollary implies (2.3).

If c F 0 and a(0+) = b(0+) < cc and aCt) is strongly positive then there exist

constants ‘i > 0 an d P > 0 such that

~ It) > —
~~

---
~ 

> p p ft ta(t)dt > 0(1) > 0 (1 
-~~ 

p)

and

~~(i) > —~
-

~~ 
> 0  ( 0< T < p )

1+ p

Here we have used (4.3). This establishes (2.3) when Ci) holds.

Assume now that hypothesis (ii) holds. If a(0+) < cc then [18 , Corollaries 2.1 and

2.2) imply that c is strongly positive , and hypothesis (ii) assures that, for sufficiently

small > 0, there exists B > 0 such that

x

f a(t)dt -

< B  (O < x < x
0
)

5 c(t)dt
0

and that there exists V > 0 such that

Re OCT ) > 
—2 

Ct > p) -

Therefore

cli) > Re ~~(i) > VT
2

> 
c(O)I ~~ 

c(t)dt > Bc(0)I ~~ 
a(t)dt

-~ 4Bc(O) 
~I)I > M 0(i) > 0 Ci > max (p, x~~}) -

Here we have used (4.1). The condition (2.31) is satisfied, because a is strongly

positive. This establishes (2.3) when (ii) holds and aCO+) < cc -

Assume now that (ii) holds and a(O+) = - Then c(O+) = cc~ and we def ine
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I t t l) 2 
c~ (t1) + (t-t1

) c Ct
1
) + c(t

1
) (0 < t < t

1
)

c
1

( t )  =

It > t
1
)

and c2(t )  = c (t )  — c1(t ) ,  Ct > 0) -

Then c1 and c
2 both satisfy (H), -c~(t) is convex c2 c L

’(~~~), c
1
(O+) < cc -

and hence c
2
(O+) cc -

By a result of 0. .1. Staf fans 123 , Theorem 2 l i i i ))

Re 
~2(i)

’) 
-

= imf >0 
(l~ 2(T)I2] 

0

Fur thermre c
1

(O+) < 
~ and hypothesis (ii) imply that for some x~ > 0, 8 > 0,

x
J a(t)dt

<~~~~< c c  (O < x < x
0
)

J c
2
Ct)dt

0

Thus

c l i)  > Re ~2 ft) > a~c2 (1)1
2 ~ 

~~ c2 (t)dt ) 
2

a(t ) I
>
~~~~j  I~ ft a uat

J > .
~~~~

. 
~~~ a(t)dt

88 o 88 0

cga(t )
> 

2 > M 0(r) > 0 Ci > max{p,x }) -88 0

Again (2 .3 i )  is trivial , and we have established (2 .3 )  when a(0+) = cc 
- This completes

the proof of Corollary 2.1.

We conclude with an example where (2.31) holds and the kernel is even strongly pos-
itive but (2 3ij) is not satisfied .
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- Let b It) = (1 — 2
2 

t) X 
2
k It) Ct > 0, k — 0, 1, 2, 3 , ...) wherek (0,2 1 5

denotes the cha racte r is t ic f un c t i on of the set F - Define

a( t)  
k=0 

bk
(t )  Ct > 0) .

This sum is finite for each t > 0 and one eas i ly  checks that  a C t )  s a t i s f i e s  ( 1 . 3 )

with a(O+) = cc - A direct computation shows that a L
1
CO ,cc), and

cc 2k 
2k

(7.1) c l i)  
k~~O 

2 C l  — cos2 ii 
CT > 0)

We f i r s t  show that a C t )  is strongly positive . Note that

(7.2) ~~u
2 > 1 — c o s u >~~~u

2 
( O< < l )

and let in = (log
2
log

2
t] for i > 2, where [ ] denotes the greatest integer funct ion .

2m+l
Thus 2 < I < 2 - (7.1) and (7.2) imply that

(7.3) c C-r) > 
~~

- 

jm+1
2
2 

> 
~~ 

_2m+l 
= i[i]2 Ci > 2) -

For 0 < i < 2 we use (4 .7 )  and (7.2) to obtain

cc I

(7.4) c(i) = i 2 f (1 — coslt) da ’ C t) > ~ f ~ t
2 

da ’ ( t )  > K > 0
0 0

1
where K = ! j2 

t
2 
da ’ I t )  is a fixed positive cons tant .

0
(7.3) and (7.4) show that aCt) is strongly positive , even though da ’ C t )  is a

purely singular measure. (Compare (18, Section 4].)

We next show that a(t) does not satisfy (2.3ii). ~~t in 2
2 (2F) (n = 0 ,1,2 ,

3 ,...)-

Then, referring to ( 7 . 1 ) ,  (7 .2)  and ( 7 . 3 ) ,  and using the fact that Re Sk
I T )  = 0

1k = 0,l,2,...,n), we find that

Ic k
cc 2

2 (2
_ 2 

~ )
2 cc k n+l 2

(7.5) ~~~~ -~~ 2 2 = -} ~ 2
_ 2 

< 2
2 

= 
(2w)

k=n+1 t k n+1 In n
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From (4.3) we have

1

(7.6) 6(i ) > ft ta(t)dt > I t(1 — i t)dt = “
20 k=1 0 30i

Comparison of (7.5) and (7.6) shows that

8(i )
•cc In - , c c  i 4 c c )

— 
120w2

thus C2.3ii) fails to hold. We note that da ’ Ct) being a purely singular measure was

not the critical aspect of this courcterexample. One could use alt) = aCt) + e t , where

aCt ) is as defined above, and obsetve the same phenomenon.
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