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ABSTRACT
&
Let y(t,x,f) denote the solution of y'(t) + f [d + a(t-s)]L y(s)ds
2 Kl B4 b S

f(v), t>o0, Y(O) = X, where d > 0 and L 1is a self-adjoint densely
defined operator on a Hilbert space ¥ with E >A>0 . Let P(t)f =
y(t,x,0) . By analyzing a related scalar equation with parameter, we

find sufficient conditions on the kernel a(t) for ||g(t)” + 0 (t+>) and

@

f H U(tﬂidt < @ . These results and a resolvent formula can be combined to
5 -

reveal the behavior of y(t,x,f) as t > o
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S

EXPLANATION

This report provides sufficient conditions on the kernel of a certain class
of abstract linear integrodifferential equations in Hilbert space which can be used
to study the asymptotic nature of the solution as t + « .,

As a model problem consider the linear partial integrodifferential equation

t
Yo (tix) - jo (d + a(t-s)ly, (s,x)ds = £(t,x)

y(t,0) Yi(t.®) =0

y(0,x) =y, (x) (0 < x <)

where d > 0 is a fixed constant while a and f are known functions satisfying

certain prescribed conditions. Our results and a resolvent formula can be combined

to reveal the behavior of y(t,x) as t = = .

In this problem, which can be regarded as a vibrating string with memory, it

A —

2
is critical that the operator L = - ) is positive and self-adjoint, i.e. i
Ix i
m b1 !
f Lu(x) * u(x)dx > A f uz(x)dx >0 B

J and
™

n
] Lu) + vx)dax = [ u(x) ¢ Lv(x)dx ;
0 0 1

for some fixed A > 0 and for every choice of u and v which are twice continuour

differentiable functions satisfying the boundary conditions u(0) = u(m) = v(0) =

v(m) =0 . The result generalizes to include a large class of positive, self-adjoint

{

i 1

operators. {
|
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A NONHOMOGENEOUS INTEGRODIFFERENTIAL
EQUATIONS IN HILBERT SPACE

2
Ralph W. Carr1 and Kenneth B. Hannsgen
1. Introduction. Let L Dbe a self-adjoint (possibly unbounded) linear operator
on a Hilbert space ¥, with spectral decomposition

o0
Lx = A dE x

-00 =y =

for x in § , the domain of L . We assume that the spectrum of L is contained in
an interval [A,®) with A > 0, so that L is a positive operator.  We study the initial

value problem
t
1.1} y'(t) + [ (@ + alt-s)] L y(s)ds = £(t) k30 ,
¥ 5 =y : o

(1.2) y =y,

(' = d/dt), where vy and f(t) belong to ¥ , & > 0, and the real-valued kernel a

~

satisfies

+
(1.3) ae C(R)n L1(0,1) . a is nonnegative, nonincreasing, and

+
convex on R, 0 < a(0+) <, and a(x) =0 .

+ = i .
(In this paper, R = (0,®), R . [0,2).) See [9] for a discussion (with references
and an example) of applications of (1.1) to viscoelasticity theory.

The resolvent kernel of (1.1) is defined by the formula

o

(1.4) uie) = [ utt,Mar,

-00

where u(t,)) is the solution of the scalar problem

)
(1.5) u'(t) + A [ [d + a(t-s))u(s)ds = 0, u(0) =1
0
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with parameter A (A <A <® 0< t <) . Under certain additional conditions on

'a(t), we shall show in Theorem 2.2 that

(1.6) sup |u(t,A)| >0 (t + =) |,
A< A<
; L]
(1.7) / sup  |ult,M]dat <=
0 A<=

It is clear that (1.6) and (1.7) imply, respectively,

©
{1.8) lu) » 0 (t+») and [ |Ju(t)|dat <= .
X o=

In view of the resolvent formula

t
(1.9) y©) = Uty + [ Ult-s) f(s)ds
0

for the solution of (1.1), (1.2) (see Theorem 2.1), (1.8) shows, for instance, that !(t)
has a limit in & (t »») if £(t) does.

Our results extend those of [10] with respect to the conditions on a(t) as t =+ 0,
t >« . 1In particular, our results imply that {1.6) and (1.7) hold if a satisfies (1.3)
and -a' is convex.

This paper is based, in part, on the first author's Ph.D. thesis, being written at
the University of Wisconsin under the supervision of Professor John A. Nohel. His help

in the preparation of this paper is gratefully acknowledged.




2. Statement of results. A solution of (1.1) is a continuously differentiable function

y from RY to & such that L y(t) is continuous in t on R * and (1.1) holds.

~

Hille and Phillips [11, pp. 58-89) give the general theory of Bochner integration, which
we shall use in studying (1.1) and (1.9). See [19] for the functional calculus of self-
adjoint operators.

Our first result, to be proved in Section 3, summarizes some earlier work and

establishes the resolvent formula.

THEOREM 2.1. (i) Let (1.3) hold. Then the operator U(t) defined by (1.4) and

(1.5) is bounded on ¥ with [|u(t)|] < (teR ™) . U(t) commutes with L on 8 and is

; =+
strongly continuous on R .

(ii) If Yo ¢®, if f£: R* > ¥ is continuous with f(t) € ® for all t, and if

c : . + : .
L £ is Bochner integrable on each finite subinterval of R , then (1.9) gives the unigue

solution of (1.1}, (1.2).
Remark. If Yo' f are in % but not necessarily in #® , then (as shown in [8]
for constant f) (1.9) gives the unique weak solution of an integrated form of (1.1),

(1.2).

In proving (1.7), we shall need the technical hypothesis

(2.1) a(t) = b(t) + c(t), where b and c satisfy (1.3) except that ecither

b(0+) = 0 or c(0+) = 0 is permitted. Moreover,

©©

() [/ )bt <= and
h g

(ii) -c' is convex on &

The Fourier transform of a will be denoted

b :
(2.2) . 80 zem-item=f e ™ awar .

0

Under hypothesis (1.3), &(T) is continuous, and ¢(T) and 6(T) are nonnegative for
T>0 [4)

The frequency conditions

———a——




(i) ¢(t) >0 (rt > 0)
(2.3)

o(n)

(ii) lim sup 2D

b el

are crucial for (1.6) and (1.7); we indicate briefly their role. From [4] we know that if
(1.3) holds, (2.3i) fails to hold if and only if a(t) is piecewise linear with changes
of slope only at integer multiples of a single positive number; u(t,A) is then asymp-
totic (t+®) to a nonconstant periodic function, so neither (1.6) nor (1.7) holds. If,

on the other hand, (1.3) and (2.3i) hold, a result of Shea and Wainger [20] shows that

[ Jute,at <o A >o0) .
0

It is then easy to show from (1.5) that

(2.4) G(t,2) = 31 =5 (1>0) .
Ale (1) + it(A ~ - 8(1) - 41 )]

In proving Theorem 2.2, we shall show that if A 1is sufficiently large, 1% +0(1) = A~
T

for exactly one positive number T = w()A) with w(A) continuous and w(A)% ® as A t = .
From (2.4), it follows that

| lue, M at > |G ] > 8w) ) .
0 v

This shows the necessity of (2.3ii) for (1.7).

THEOREM' 2.2. Assume that (1.3) holds. Then

(i) (1.6) holds if (2.3) holds,

(ii) (1.7) holds if (2.1) and (2.3) hold, and

(iii) if (1.7) holds, then (2.3) holds.

If (1.3) and (2.2i) hold and a(0+) < «, then (2.2ii) holds if and only if a(t)
is strongly positive (th;t is, (1 + 12) ¢ (T) is bounded away from zero; see [10])). 1In
Section 7 below we shall given an example (with a(0+) = ®) where a(t) is strongly
positive but (2.2ii) does not hold. In the same section, we shall prove the following

positive result.

COROLLARY 2.1. If (2.1) holds and either (i) c¢=0, b(0+) <=, and b is

strongly positive, or (ii) afje




X

[ bat
lim sup —g——————— <o ,
L

0

then (1.6) and (1.7) hold.
Thus, in particular, (1.8) holds if a(t) satisfies (1.3) and -a'(t) is convex.

Integration of (1.5) (see also [11], [4])) shows that
| = s

u(t,A) + X [ [d + a(t-s)) [ wu(r,M)drds =1 ,
0 0

so that when (1.3) and (2.3i) hold,

o

J utt,nat = 170 [ 14 + a(v)lat)
0 0

+
(interpreted as zero if d + a(t) ¢ Ll(R )

Thus in Theorem 2.2 we have

o

[ vwat = L/ (f (aratolay .
o~ ki 0

Detailed statements about the asymptotic nature of wu(t,l) as t =+ ® (A fixed)

are given for certain special cases by Levin and Nohel [13, 14), by the second author [5],ani

by Wong and Wong [24]. For example if d + a(t) = t-B (0 < ® < 1), Corollary 2.1 ap-

plies and [5, Cor. 3.3) shows that
ule) - 3¢ (t + ©

On the other hand (see Section 4), there is a C' > 0 such that

(2.5) [ lute,n]ae > cra /(28
0

(A >0) .

Thus the asymptotic behavior of u(t,A) as A > © is not completely clear. See [14, 9]
for further discussion.

-t

Another useful example, where (1.5) can be solved explicitly, is 4 + a(t) = e %

Then [10) (1.5) reduces to an ordinary differential equation, and

PURUOSIRPERRIEDEDS



e- t/

(2.6) ult.\) % caclit o+ % ! osinpe) O # 41 )

e—t/Z

1 1
u(t—:z’ (1 + 2 t) '

where U = %(4X - 1)1/2 (A

and I may be real or complex). For this example, we remark
that
(i) t + U(t) 1is not continuous in the norm topology if L is unbounded,

since ||9(t) = 9(s)|| > Jult,}) - u(s,))| for XA in the spectrum of

e

L]
(ii) [ Ju(e,M]at > 1 (A > 0). This is proved in [10].
0
. - .
(i) u(-,2e) ¢ tPRY) if p>1, e #1, ana 1> 0 is sufficiently
large.
Dafermos [2] and Slemrod [21]) study equations similar to (1.1) as linear

models in viscoelasticity and fluid mechanics respectively. These studies contain no

analogue of (1.8).

O ts and methods are closer to those of Friedman and Shinbrot [3], who
obtain 1P (1 < p <*® for the resolvent (fundamental solution) S(t) of
t
(2.7 y(t) + [ h(t-s) L y(s) = F(t)
o = 2 o

in Banach space. Formal differentiation of (2.7) yields (1.1) if h'(t) =d + a(t) ,

h(0) = 0, F' = For their 1P estimates, Friedman and Shinbrot require at least

f
+

ho) >0, h' e LYY .
Miller and Wheeler [17]) use procedures similar to those of [3] to study the

equation
t
(2.8) y'(t) = -L y(t) - [ a(t-s) (L + &I) y(s)ds + £(t)
& - 0 < - =
in Hilbert space. Here L is self-adjoint and bounded below and has a compact resolvent.
Miller and Wheeler give conditions under which the resolvent for (2.8) may be decomposed

into an exponential polynomial with finite-dimensional projections as coefficients and a

+
remainder (“"residual resolvent”) R(t) with [R(t)]] ¢ tPR") .




The proofs of these results in [3] and [17) use the operational calculus based on
contour integrals and estimates such as

©

(2.9) [ Ir@n|Pae < cla]™®
0

(]argk} < (m/2) -€), where €6 >0 and r(t,\) is the solution of a certain scalar
equation (analogous to (1.5)) with complex parameter A . Remarks (ii) and (iii) follow-
ing (2.6) above show that estimates like (2.9) need not hold for our function u(t,}A)

For a broader treatment of existence, uniquecness, and continuous dependence for
equations like (1.1) in Banach space, see Miller [16); further discussion of the resolvent
formula (1.9) will also be found in [16].

Finally, we remark that nonlinear versions of (1.1) are under active study [1, 15].

7=

O e




3. Proof of Theorem 2.1, (i). The proof of Theorem 2 of [6), with a(t) replaced by

2
d + a(t) (and the last equalities corrected to read 2V(0) = u (0) = 1), shows that

lace. ] <1 (e R AeRrRD, so Jluw]l <1 and U(OL =L U®) on § . Since

Nuwrx - utsix ||2 = [ Jute,d) - uts,M|? ae x, x
Blt)z - Bis)s . g

the continuity of u(t,)A) in t and the dominated convergence theorem imply that g(t)
is strongly continuous.
The computations for (ii) are formally the same as those for Theorem 2 of [9], where
a and E { are continuous on R & . To simplify formulas we take d = 0 since this
does not change the following argument. It is obvious that the function !(t) of (1.9)
satisfies (1.2). Let T(t) be the triangle {0 Siriiis f_t} (t > 0), and let
t

h(t) = f a(s)ds . Since L U(r)yo = U(x)L Yo is continuous (r € R +), a(s-r)L U(r)yo
0 - e e = e = 2

is in Ll(T(t)) and

ts
(3.1) vo = [ ] atsx) LUy ar as
y o = Sk
t
e fo h(t-r) L g(r)xo dr

t M
=y, -/ ntt-n)( 1m [ Xux,aEy lar
M> @ )\0

00 t
Soy —f [Xf h(t-r) u(r,\)dr]dE, y. .
<0 ~A =0
A 0
0
The expression in brackets here is just 1 - u(t,)), as one sees by integrating (1.5);
thus the left-hand side of (3.1) is equal to U(t)yo and differentiation establishes that
t

d
(3.2)  ge ey, - -IO alt=s) L Uls)y ds

We observe next that the strong continuity and uniform boundedness of U ensure
that the function

a(t-s) LU (s-r) f(r) = a(t-s) 9(s—r) L f(r)

is strongly measurable on T(t) . In view of our hypotheses and [11, Theorem 3.5.4), the

following lemma establishes this. (Compare [16, Lemma 2.1].)
e




1
Lemma 3.1. £ qg: R+-'V belongs to B (0,t), then the function G(s,r) =

—_— 2 e

U(s-r) g(r) 1is strongly measurable on T(t)

Proof. To simplify notation, take t =1 . For each positive integer n, let

U

. =U6G/Mm), E .= ((3=1)/n, j/n)] (1 < 3 <n) . Let g be a sequence of countably-
~n,] ~ n,J = = ~n

valued functions

o0
gn(r) =k£1 Xn,k(r) o

(xn k= the characteristic function of a measurable sct Qn k) such that gn(r) = g(r)
’ ’ ™ o~

(n » ®) except on a set 2 of measure zero. For (s,r)e T(l), 1let Jj(s,r,n) be the

integer such that s-r ¢ E . , and let
n,](slrln)
En(s'r) 3 Pnlj(slrln) gn(r)

Then Gn(s,r) is measurable and countably valued since T(1) is the union of the measur-
able sets

{s-r ¢ E }ofre® }
n,m . n,k

(1 <m <n, 1<k <=®), on each of which Gn is constant. ¥For fixed (s,r) c T(Q1),

r * 2 ,

”gn(s,r) = §(s,rﬂ|

<|lu

M sl fg (r) - g (|

+]| v

~n,j(s,r,n)" y(s—r)]g(rﬂl

As n > ©, the first term tends to zero, since ||U“ <1 and gn(r) + g(r); by strong
continuity, the second term tends to zero as well. Thus G(s,r) is the limit almost

everywhere of countably-valued mecasurable functions, and the lemma is proved.

Continuing the proof of Theorem 2.1, we note that

ts
J | att-s) JJuts-r) LE(n)]| ar das
00 4 3

t t
< f a(s)ds f Il £0)]ar < =,
0 Ut




so a(t-s) U(s-r) Lf(r) ¢ Bl(T(t)) - Then, using Fubini's theorem, a change of variable,

and the fact that L is closed, we may compute

t s
(3.3) [ att-s)L [ u(s-r) f(r)ar ds
0 S0 B

ts

= ] ] a(t-s) L U(s-r) f(r)dr ds
o sl 5
t t-r

= [ f [a(t-x-s) L u(s) £(r)lds dr
00 il &

g
=] ¢ Wt-r) fx)lar |,
0

where the last step uses (3.2) and f(r) in place of Yo - It is clear from these equal-
ities that the integrand in the last expression is locally Bochner integrable in (t,r) ;

:

using Fubini's theorem, we see that this expression (and hence the left-hand side (3.3))

is equal to

4 t
£le) = = ]o U(t-r) f(rldr .

In view of (3.2) this establishes (1.1).

For uniqueness, we pass to the weak, integrated version of (1.1), (1.2) and project

on Fk ¥; see [9] or [7) for details.

-10~




|
|
.

4. Proof of Theorem 2.2. Reduction to two estimates,

We assume without further mention that d + a(t) has been rescaled, if necessary,

so that A =1 . The functions a', b', and c¢' are redefined where necessary so as to
t
: +
be continuous from the left on R . We let A(t) = f a(r)dr .
(0]
The proof relies on detailed information about & (see (2.2)). See [4, 20] for

earlier versions of these ideas.

Lemma 4.1. Suppose (1.3) holds. Then ¢ and O are continuously differentiable

on R+ with
(4.1) L ad < lam] 2 ad x>0 ,
f’ 1
(4.2) lat ()] < 40 [T ra(rar t>0 ,
| 1 2 i
1 T T
(4.3) g [ mimlax < By < 22 [ ratniar (x> 0) .
) 0
l . 1
5 (4.4) -0t >3 [ 2’ amar (x>0 .
0

Our proof is adapted from [10, Lemma 2.2]. We exploit the fact that da'(t) is a positive
+

measure on R and adapt the convention, consistent with our choice of a'(t) = a'(t-)

that when 0 < x <y and f ¢ Ll(da'(t)),

Yy
| £¢e) aa'(e) = | £(t) da'(t)
b [x,y)

t t
Convexity of a(t) implies 3(5) = a(t) > “3 a'(t), and hence
t

2 t t?
(4.5) 2 [Tawar > talz) > ta(t) - S a'(t) 20 (t>0) .
0
t2
In particular (4.5) shows that ta(t) + Tla' (t)| = o(1) (t > 0+) . We also have

ta'(t) = o(l) (t » »), as a consequence of (1.3) and

(4.6) | raa'(r) = a(m -Ta'(T) < (r>0) .
T

Two integrations by parts in (2.2) yield the formula

s -2 -
4.7 ) =t @ -trr=e"Thagtte) (t>0 .
0

-11-

"




where (4.5) and (4.6) assure vanishing of the boundary terms and absolute convergence of
the integral.

Following [20], we let J(u) = iu(l-elu) - 2(1 + iu -~ elu); then

(4.8) o] i%u:,(o_iu: 1), and [J(w] < 2(u + 2) (u > 0)

(4.8), combined with Fubini's Theorem, justifies differentiation of (4.7) and gives

us

(4.9) ar( =13 [ J(-trda’ (r) (t >0) .
0

The inequalities (4.1) and (4.2) now follow as in [20].

From (4.7) we have

oo
(4.10) 0() =12 [ rk(rr) da'(x) (t>0 ,
0
with
K =1 - =28 (u>o0) .
Note that
02 ll2 u2
Do - — >
Bl 2% " 136~ % Ry
K(u) > 1 - max{sin 1 3) Sk (I I
= 77 - 10 —
Therefore,
1
T 00
1 3 1
(4.11) Bty > <5 ) = datlix) + —= ]l rda'(r) , (1t >0) .
0 101 =
T
The relations
r’ oo
1 1 1
[ e asae a ¥ foc! -
Il rda' (r) @ (T) + a(T)
T
(4.12) < 1 1
b T
/ r3da'(r) = ;%- a'(lﬂ -3 a(l) +6 [ ra(riar ,
T 2 T
L 0 T T 0

along with (4.11), give us the first inequality in (4.3). The second inequality follows

from the estimates




K(u)| <2u™ (0 < u
— 2 —

which, along with (4.12), yield
1

If we can show that H"(u) 20 @

(4.16) that

But H(J)(u) = usinu >0 (oi u <

Then since H(3)

(u)io ("i“i?‘l!
follows.

It is easy to see that

(4.18) H(u) > u-3

<1 and |K)| <2

o

i?

To prove (4.4) we differentiate (4.10), which yields

<u<4), it will then follow

(4.17) Blu)L > i 4 21—0 (u-1) = Lo (5u~-4)

10

by (4.14), we conclude that H"(u) >0(0 < u <.

H(2)

w > n? A

(>4,

13-

)

>

0

(u>0) |,

1

T 3 -2 T
6(m) <2 [ r” da'(r) + 21 j] rda'(r) <12 [ ra(r)dr .
0

0

@
(4.13) demef ser awm , >0 ,
0
where
H(u) = 3(u - sinu) - u(l - cosu)
Then
10 =0 - 0,1,2,3,4)
(4.14) H(S) (0) = 2
=4 < -3sinu - ucosu = ll(6)(u) <0 (0 <u<1
so
?u5 4u6 u5 u
(4.15) H(u)i?!—-'a-':m(}-u) >m (0<ux<1 ,
and
2u4 4u u4 u4
. ' e s e s = < .
(4.16) Bite) > Som = S = e Beau) 3 B (0<u<1

lcuxa .

(":u:4)r

S0

from (4.15) and

(4.17)

e g b S Y BN A




and thus (4.13), along with (4.15), (4.17), and (4.18), gives

1 4
4 L s g >
- Y > — . —_— - -
(4.19) T BT 2 e ¥ da'(r) + 7= f_l_(STr 1)da'(r) + 'ri(" 3)da'(r) ,
T T
and
1 1
5 T T
[z - LI o (PR R 3
1004, F Wl =g et - 55 A v !o il
4
(4.20) Lt ' e L Al At sy
: 4 Too /) (57T - M da'(m) = cat) - o at @) - 55 a0 + 50 al
T
oo
4 4
[ tr - 3) da'(r) = -a* D) + 1aldy .
4 T 11
S
Combining (4.19) and (4.20) we obtain (4.4). This completes the proof of Lemma 4.1.
Using (4.3) and (4.4) we sec that the equation
(4.21) By & S =l
wz A

defines a strictly increasing, continuously differentiable function @ = W(\) on a sub-
interval (Ao,w) of ]z+ with G(}) > ® as )X > o . This provides the missing step

in the proof of Theorem 2.2(iii) outlined just above the statement of the theorem.

Fix t, > 0 such that a(tl) >0 and let p = GtII . Set w(})) = max{p.D(A)]} if

W(A) is defined, w(}) = p otherwise.

(4.3) and (4.21) yield

1
1 i
(4.22) F20@ > [ ratar ,
it ¥ 0
and
1
W a(t))
(4.23) [ ratmar > 5 ady > —1-.
0 2w 2w

In particular, (4.22) and (4.23) show that
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a(t.)
10

(4.24) Wy > Ft

In [10] it was also shown that when a(0+) < ®, wz(l) is bounded above by some
constant times A . Such an estimate is not available to us when a(0+) = «, and this
causes the principal new difficulties in the proof of Theorem 2.2. 1

When a(t) = t-e (0 <B<1, t>0), direct computations show that w(}) = KAE:E

©
(K = K(B) >0) . Now the inequality [ |u(t,})]dt > |G(w(A))] > 8(w(X))/¥w(A)) can be
0

used to derive the estimate (2.5).

From (4.3), (4.21), and (4.23) we obtain

1 i
W w
1 a 24
(4.25) § 212 [ ratoar + S Q2 F sl swtelae
0 w 1
a -1
whenever A2, = max{(©O(p + ==K 1%
p

On the other hand when 1

| A

A< Xo, w(A) = p and we have

1

2

(4.26) 4 /" ratar .
e e

<1< Ao(lz +

2|

Then, combining (4.22), (4.25) and (4.26) we find that

1 1
1 1 &
(4.27) 5/ ramar < y2c¢ /[ ratrar x> ,
0 0
= 24
where C = [12 + a(tl)]xo :
Define
D(T) = D(T,®) = &(1) - idr )
(4.28)
L | W | ' -2 s
D(T,A) = D(T) + iTA ~ = ¢ (1) + iT(X " -6(1) - 41 )

BEhE™, T50) .,

If (2.3i) holds then [DIT,N)| >¢(1) >0 (1>0, 1 < A <™ and [4]) gives the representa-

tion
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(4.29) mu (t,A)

3, 2 eiTt
=-A-_(°Re{m}dt (O<t<®, 0<)k<w ,

(The inéegral is improper at T = *; by (1.3) and (4.1) [D(T,l)]-l is continuous at

T = 0 and for every T > 0 .) Moreover the result of Shea and Wainger [20]) shows that
-]

(4.30) [ lue,n]at < = a>o0 ,
0

and in [6]) it was shown

(4.31)

For the remainder

and (2.3) hold. Return

(4.32) Tu (t,A)

that (1.3) implies

sup  Jutr,M) =1 .
1€)A<

of the proof, unless noted otherwise, we assume that (1.3), (2.1),

to (4.29) and integrate by parts. There results the formula

© D_(T,A)
= Re {711' J et ———i——-i ar} (£ >0, 2 >0) .
el (D(T,)))

Relations (4.1) and (4.2) show that the boundary terms vanish and that the integral

converges absolutely when d # 0 . Absolute convergence of the integral when d = 0 is

assured by an estimate of Shea and Wainger (20, pp. 322-323], namely

P
T
0 f ra(r)dr
(4.33) J Ol e
(ITa(r)dr)2
0
Note that
 PRIEEE R
p(t,A) D(1) D(T,A)D(T) ¥
Then
D_(t,A)  D_(T) -1
(4.34) T = T S 1 - 11)1(); ”]2
[D(T,A)] [D(T)]) y
-1 -1 2p_ (1)
O L ¢ " Bt O . A e e
o012 ALLERRE 0 T L L
-16-




Define

B .
( u, (t) =% o TE LLT—’—Z ar > 0) ,
0 [D(T))
p itt -
u, (t) = % C— - £ g(;})ldT te >0,
0 (D(D)
1 p itt 2%
utt) =¢ [ & Lo t>o0 ,
(4.35)ﬁ 0 (D(1)]
2
L p . T°D_(T,))
ey = T [T e D(Tlli]dr >0 ,
e 011> bt '
© D_(T,\)
st = f et ———ar t >0 ,
. o [D(T,\)]

Referring to (4.32) and (4.34) we see that

(4.36)  u(t)) = 1m{x'1u1(t) + ik_zuz(t) + x‘3u3(t) +u, (£0) + ug (e}

In section 6 we will show that if (1.3), (2.1) and (2.3) hold then

(4.37) [u, (£,A)] < Mg(t) (t>0, 1 <A <, j=4,5) ,
3 & h

where, now and henceforth, M (or Mj) denotes a positive constant independent of )\ whose
value may change from line to line, and
t

glt) = t™2 [ birddr + 2+ ™ b(t) - b' (),  (t > 0)
0

The assumption (2.1i) combined with an integration by parts shows that

[ €% btnarat= -1 [ pwae s [ broar+ [ R ae

from which it follows easily that q(t) ¢ Ll(l.w)
In view of (4.30), (4.36), and (4.37) we find that uj(t) c Ll(l,m) (3 = 1,2,3) ,

and this, along with (4.31), implies that -17-




oo
jo supli)‘ S lu(t,)\)ldt LS TR

This is the assertion of Theorem 2.2(ii).

Similar estimates which hold when (1.3) and (2.3) hold, but without the assumptions

of (2.1), can then be used to show that

M
(4.38) |ul(t)| + luz(t)l + lu3(t)| + [uq(t,l)l + lus(c.hl £ A X <= 0<%,

from which Theorem 2.2(i) follows. (Theorem 2.2(iii) has already been proved above.)
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S. Two more lemmas - some important estimates

We would like to integrate by parts in the formulas for u

bring out another factor of t-1 .

this, so we separate b' into a "small" part and

We again let J(u) = iu(l - ') = 2(1 - iu - &%)

) =3
B (t,T) =T~ [ J(-1r)ab’ (x) (0 <t <w,
(5.1) ¥
© -3
B (t,T) =1 [ J(-tr) db' (x) (0 < t < o,
t
Observe that b(1) and b'(T1) are given

respectively so that, in particular

S'(T) = Bo(t,’r) + Bm(tn) (0

by expressions

and u in order to

4 5

Hypothesis (2.1i) appears to be too weak to permit

a differentiable part.

and define

0 < 1< ®)

0<T

< ) .

analogous to (4.7) and (4.9)

(5.2) <t<® 0<T<® |
Lemmwa 5.1. If (1.3) and (2.1) hold then 8(1) is twice continuously differentiable,
2g°
37 (t.T) exists and is continuous (t > 0,7 > 0), and
i 1
£
A 2
(5.3) fe ()l < 6000 [ x° cfxyar (t>0 ,
0
o -2
(5.4) I8 (t, )] < 40T “(b(t) - tb'(¢)) (t>0, t>0) ,
28° a3 4
(5.5) I57 20| < 500177 [ bir)ar (t>0, t>0) ,
0
1
(5.6) (i) 18%t,1)| < 40 [T rb(rrar (t>0, t>0) ,
0
1
(13) e ()] < 40 [T rc(rar (t>0) .
0
Proof. Three integrations by parts show that
3¢ (itr)> it
(5.7 8fry = i f (1 = gte ¢ SR - 0T dE ),
0
where we use
2 3,
re(r) + r|c'(x)| + £ c"(x-) + 0 (r + 04)

and clr) +r |c' ()] + 2 c"(x7) » 0

-19-

(£ = = ,




which are consequences of (2.1) and which assure that the various boundary terms vanish.

Note that dc"(r) is a negative measure; three differentiations of (5.7) yield

[+ J
A -5
c"(1) =it °f K(-Tr)dc"(r) (t >0 |,
0
where
(iu)2 iu iu 2 i
K(u) = -12(1 + iu + =5— - e'") + 6iu(l + iu - ') + v’ (1-e") .

The remainder of the proof of (5.3) now follows as in [10, Lemma 6.1(11)).
To obtain (5.4) we first consider the case where Tt 2 1. (4.8) and (5.1) give

us

187, 0| < 2173 (tre2)ab' (1) < 217 2(b(t) - 3tb’ (1))
t

< 40T 2 m(t) - o (e)) .

On the other hand if Tt < 1 then (4.8) yields

1
-_— oo
187, 0] <6 [T abr(r) + 2073 [ (r + 2)ab* (x)
t 1
T 1
T
= 6[1_3b'(%) = t3b'(t) = 31'2b(%) + 3t2b(t) +6 [ rb(r)dr)
t
s207bd) -6 T
T T
1
3 2 o
< ~6tb'(t) + 18t°b(t) + 36b(t) [ rar
-2
< 40T “(b(t) - tb'(t))
thus giving us (5.4) in both cases.
Differentiation of (5.1) yields
(o] t
%BT—(Q:. T) =4 f K(-Tr)db' (r) (Tt >0,t>0) ;
(o]

where K(u) = 6(1 + iu - ei“) - 4iu(l - e + uzem, and we have
4 2
[k ]| <u” (0<u<1), ana |k <2000 + u®) (u>0) .

-20-




P —————————————

If Tt 21X ,

1
0 T t
la.fr (t,0] < 40f r* ab'(x) + 20177 {5
0 1
T

1

@?r? + Dav' (r)

T
= 40177 b'(%) -4’ b(:}:) +12 [ r? b(nar

0

+ 20022 brit) - T2 b (%) - 2tb(t)

+ 20t b () - b'(%n

1

A

o S
4071 Il b(r)dr + 480 [ r° b(r)dr
= 0
T

-2 t
< 5001 ° [ b(r)dr .
0

If Tt <1 then

0 t t
I%B— (e < f  aptiz) <12 [ =
= ) x 0

so we have established (5.5) in both cases. (5.6)

This completes the proof of Lemma 5.1.

In order to obtain estimates on the size of
D(T,A)

We use w=w@) as defined in Section 4.

Lemma 5.2. If (1.3) holds, then
% 1
(5.8) ; [ptt, M) > Mt [ ratx)ar

\ 0
l

|

‘ (5.9) LIEPSIERE

Proof. The estimates (4.3), (4.4), and (4.

out explicit mention.

o

ol 5 :
* 2t b} # 2 fl b(r)dr]
o

t
£ b(r)dr < 12 I b(r)dr ,
- 2
95 0

is obtained in the same way as (4.2).

u5 we will need lower bounds on

1 2

2123 o
w

(Tz_'i) .

27) will be exploited throughout with-




L
Re D(T,A) =¢(T) > M> Mt [' ra(x)dr > M L=l
! i N o T Y
which establishes (5.8) and (5.9) in this trivial case.
In all other cases we start with
1
% a0 4 1 1
(5.10) 8w pef ¥ ama > —<ak)
0 80T
and use both parts of this estimate to obtain
(5.11) |Im D(T )] = TI)TI'% -6(m| > T|%-%-6(1)|
T w
T
>l - 0| = t|f 8'(s)as|
w
31
T = T
T s 3 I =3 =
2 5 I/ s [° = atr)aras| + 160 |[s a(ads|
w 0 w
1
T T T
T 3 T =3 i1
> — — a(=)ds
3eslf = atrlf sasarl +==1If s a(3)ds|
(o] w q w
1 1
T w
_ 1lt-w] (14+w) 3 T
= = [ r a(r)dr + —160” r a(r)dr| .
0 1
T

In the last step of this computation we used Fubini's Theorem on the first integral

and a change of variable (r = -;—) on the second. Then

1 el
qr 2 4T 2T
(5.12) Hr-wl trw) | £ atpyar > TAIBLL g RS S evar
20 “ 1
0 0 &t

|T-w| Sl s X
> 6000 © (3(41) + a(21))

Define f(t) = ta(t) - % tz a'(t) (t > 0) . Observe that f£(t) is nonneqative'

left continuous (by our convention a'(t) = a'(t-)), and satisfies
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&
(5.13) ta(t) < f(t) < [ a(r)ar (t > 0)
0

Here the first inequality is immediate from the definition and the second is obtained by

t
integrating by parts twice in the inequality % f r2 da'(r) 20 . From (4.5) we also

have

(5.14) £(t) < ta(d) (t> 0)

so that f(0+) =0 and f is bounded on [0,%) for every T >0 . Let sS(1) =

sup 1 {£(x)}, and for each T >0 choose § = §(1) ¢ (0,1] so that fcé) > l)S(r).
O<x<; T -2

The proof now splits into three cases.

Case 1. If 1] 2 8(1) >

N

then (5.14) and (5.13) imply

(5.15) .h'_‘”L a(_l_) > _IL‘L‘I.[ 2T] IT_ﬂL f()

2 S
60001 i 6000 T 60007

|T-m| Ty A
sS(T) > (= * sup
120001 12000 't 0< x<

|v

1 {x a(x)} )
T

leal |

12000

|v

r a(r)dr .

1f 2 <t<% then |u-1] 2F@ET s 5.30), (5.12), and (5.15) coubing to

give (5.8).

On the other hand, if T > % w then (5.11), (5.12), (5.15) and (4.27) yield

1
 lral 3 7
Jim D (1 2 2 132000 f ra(r)dr + EEB lf ra(r)dr|
0 T
1
J;wl. lr-w]
>
__12000 ]o ra(r)dr M X ’
which is (5.9).
1 1 1 [ g i "
Case 2. If 0 < §(1) < 3 and f(;) > 3 f(?) then, again using (5.14), we obtain
«23-




.16} LT D R ) P S i ™) .
. 6000r2 2T1° — 600071 T — 120001 T

|T—m| ]T—w| 1
2w S 2 s G Bue) {xa(x)})
0<x<=
T
1
: > %%%%% IT ra(r)dr .
: (0]
:

Combining (5.11), (5.12), and (5.16) we complete the computations as in Case 1 for both

(5.8) and (5.9).

Case 3. If 0 < §(1)< % and f(%ﬁ f,% f(%) then we use (4.7) along with the estimate

2
l-cosx > %r (0 < x <1), and then apply (5.13) to obtain

oo

(5.17) 2 Re D(T,A) = 20(1) = 212 [ (1 - costr) da’(r)
0

1
2 fT r2 da'(r) = f
z 0

v
|

1
a(r)dr - f(;)

1

T IT ra(r)dr + fT (3 - 1r) a(r)dr - f(%)
0 0

= © AA|=

8
ratmar + 1 - &  amar - £
Q

!

v
-

>t fframar + e - £2)

I © Al O Alm

Aoy i

/

v
-

ra(r)dr .

o A~

This is (5.8).

When T > %, (5.11), (5.17), and (4.27) combine to yield

(5.18) /2 |p(t,\)]| > Re D(TA) + |Im D(T,A)]
3
1 b 1
T (T 2% o
G jo ra(r)dr + I%a IIT ra(r)dr| > l{g%l fz ra(r)dr

T

v

MI_‘;E_L

which is (5.9). This completes the proof of Lemma 5.2.
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6. Proof of estimate (4.37). Define A(t,T) = Bo(t,T) +C'(1) + i% (t >0,t>0)
T
and let
< S 2 =0
u“(t,k) 4 _31_f oIt T (A(;,T)+1,\ ) (D(f) - D(rl)\)]dr t >0 ,
A7t O (D(T)]~ D(T,A) i
[« I 2, ®
1 iTt T8, ) 2 1
W, () = —= e . + 1dT (£ >0) ,
42 e o 01 ety PAT - BITA)
Gl an =4
Mg, (EA) = Al—t 8 -‘A(—t-ﬂ’i)‘z—’ at t>0 |,
P [D(T,A))
1 oo L 00
ug, (tA) =5 [ & ——B—(—t—'—uz— at (t > 0)
P fo(t,A))
Thus uj(tIX) =Uj1(t,)\) +Uj2(t;x) (t > 0' 1 i AFS g J = 4l5)' We now

integrate by parts on u41 and u51 in order to bring out another factor of t_l 5

This gives us

ipt 2 =1
) —z‘z\3t2u41(t.A) “La e S 1% i Wl_x_)]
D’ (P D(p,\) ¢ R
o . 2T(ACE,T) 4 AN 4 128 (¢, 1)
iTt T 2 1
U [ 3 (om Y bt H)
0 D™ (1) D(T,\) b

_ e + 2 7h (80' (1, 5p' () +2ix 0 | 2°r("“)]dT
e D2y | DM D) - T

and
ipt =
(6.2) -i)\tzuSl(t,)\) = £ (A;t"’) oAk 1
D" (p.A)
eyt
il AT(t,r) 2(A(t,T) + QA )DT(T,A)
+ ] e 5 = 3 at
P D (T,)) D™ (T,A)
In (6.1) the estimates of Lemmas 4.1 and 5.1 assure absolute convergence of the
integral and vanishing boundary terms at T= 0 . 1In (6.2) absolute convergence and van-

ishing boundary terms at T=® is a consequence of Lemmas 5.1 and 5.2 along with (2.
-25-~
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Inequalities (4.1) and (2.3i) imply that

inf inf |D(T, M) = y>o0 .
0<T<p 1< A<

From (4.2) and Lemma 5.1 we find the estimates

1

max{t|p_(t, )], tlace, 0 + 27 <ot [Tramar +art + 7Y, 15 0
(6.3)

1
fT r’ c(r)ar + 2at
0

1

t
| (e,0] < 500 [ blx)ar + 6000t (t,T > 0)
0

and from (4.28) and (4.3) we have [D(1)| > |[Im D(1)| 3&1'1 . When d =0 we have a

lower bound on ID(T)I from (4.1). Thus, referring to (6.1), we obtain
1 IT ra(r)dr + T # d'r—1 5 I b(r)dr + T2 IT r2c(r)dr
3,2 % o 0 0
M2t u e <maem |

41 = 0 ar

= 4

max{dt Y. JT a(ryar} - ¥
0

1

T =
1 [" ratryar + T 4 ar’t

0 -4
+ 1 j at
max{at"L [T a(riar}
0
t
<M (] blr)dr +1); in other words
0

(6.4) luu(t,)«)l < Mqglt) .

From (5.4) it is clear that

p - L)
|X3tu42(t.x)| <m/ Ib(t) - tb' ()]

gt <MLb(e) - o' (t)) < 22 eq(v) .
S - 5 -5
0 % Y

Taken together with (6.4), this shows that

(6.5) |u4(t,x)l < Mgt

which is the case j = 4 of (4.37).
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In order to obtain a similar estimate on us(t,k) we partition the interval [2—0,00)

into four sets

(o)

['221") = l'zev "22) U [9 W - 5") U [w - Elw +'§) v [w +-ze'ao)

-BIUEZ’UEBUB«!'

We use the estimates of Lemma 5.2 on El v E2 u I-:4 and (2.3) on E3 for lower

bounds on ID(T,X)I . Lemmas 4.1 and 5.1 will again give upper bounds on the numerators.

We know from (6.3) that

1
t -_—
(6.6) la ¢, 0] ¢ mx™? [ bnar + [T 2% cmar + ar”d)
0 0
2 -2 P
< Mlt q(t)t (t > 2) ’
and
1
S | T p
6.7 max{|A(t,T) + A7) [o (v )]} <M [Tratmar (1> 3
0
2 1
Using the estimate f‘; ra(r)dr 5%«!—2 a(w-l) <3 fw ra(r)dr, along with (4.27) and (6.7),
= 0
we obtain “
2
(6.8) - max (|A(t, 1) + 71, ot )]} < m ¥ ratnar < 200070 (1 3‘% )
0

Returning to (6.2), we observe that

3 = |a (0] 28,0 + i3 [p_(t,)]
(6.9) lefug ] < mfd S+ :
p AlD(T, )| Alpt |

dt .

From (6.6), (6.7), (5.8), and (4.27) it follows that
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la e, 0] 2|8, T e o (x|
(6.10) / g g at
E, Alp(t )| Alptt, )|

w w
emiqwf b . __dz_ 1 [ a
vl < p 1 2 (Y] 1.3

A[Y ratriar 2 14 [Tralndr, Wratrar 2

0 0 0
2 Sl N | 2
< mtq(t) [_2 [1—2 + At < mtq(e) .

2

From (6.6), (6.8), (5.9), (4.24), and (4.27) we find that

|AT(t,r)l 2|a(E, ) + i)\-ll-[DTh,A)l
(6.11) /] = 4 - at
E.uE | Alp(T,\)] Aot ]
Rk
2 el 1 1
< Mt q(t) fw %4 + 3 dat
= w+l  (1-w) (T-w)
2
<Mt .

Then (6.6), (6.8), (4.3), (4.27) and (2.3) yield

e L
(6.12) ' f IAT(t,T)l 2|A(t,T) + A l'lDT(T,)\)I

+
E3\ Aloer,n)? Aot |?

dt

wt 3
:Mtzq(c) I 2 /6 (w)6 (1) " 0 (w)

o

dr
w-3 Wz(‘l’) ¢3(1')

<M t2q0) .

1
Now (6.9) through (6.12) imply that

(6.13) '"51“"‘” <Mqlt) .

It remains to establish an estimate on
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r———— —

(<) oD
(6.14) ltu, (€] < f A8 .ol 4

2
p Alp(t,\)|
From (5.4) and (5.8) we argue as in (6.10) to obtain

(A
00 pat
(6.15) A8 wnl 4 o M) 2 oar < Mta(e)

E1A|D(T,X)|2 B % o 1
A [P rayar 2
0

As in (6.11), (5.4) and (5.9) yield

£ .

00 w-
19161 / 18 0] o <mq)| [ 24 — S5 e Mtger .

Ery AD(t. )| W “‘*‘2‘ b T
2
Finally, (5.4) and (2.3) give us
0
C Wt =
2
(6.17) / ——]B—“L)l-dri meq) [0 de < Mitq(e) .

B3 a o, )? T

Combining (6.13) through (6.17) we have now established that
|u5(t.>\)| < Mq(t)
This completes the case j = 5 of (4.37).
In order to prove (4.38) one need only apply the estimates of Lemmas 4.1 and 5.2
along with (4.27) and (4.33) to the functions as defined in (4.35) in the same manner as

we have done in this section, noting that in this case the decomposition af(t) = b{t) + c(t)

from (2.1) is never used.
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7. Proof of Corollary 2.1 and an ecxample. In view of Theorem 2.2 it suffices to show

that either hypothesis (i) or hypothesis (ii) of the corollary implies (2.3).

If ¢ =0 and a(0+) = b(0+) <« and a(t) is strongly positive then there exist

constants 1N > 0 and Yy > 0 such that

1
etr>osu 2y Tawae > em o w2,
= Z 27— - 12 -
14T T 0
and
n
ey = >0 ©O<tT<p .
1+p

Here we have used (4.3). This establishes (2.3) when (i) holds.
Assume now that hypothesis (ii) holds. If a(0+) < ® then [18, Corollaries 2.1 and
2.2) imply that c¢ is strongly positive, and hypothesis (ii) assures that, for sufficiently

small x_ > 0, there exists B > 0 such that

0
X
| aat
0
<
= <8 (0 < x f_xo) 5
| ecat
0
and that there exists V > 0 such that
~ -2
Re (1) > VT (t>p
Therefore
1 1
A -2 3 T \Y T
> —_— S 4
¢{t) > Re &(1) > vt “3 =—mo fo e(t)at > womm fo a(t)dt

v EXQN| -1
2 2B (0) = >M 68(1) >0 (1> max{p, x, H

Here we have used (4.1). The condition (2.3i) is satisfied, because a is strongly
positive. This establishes (2.3) when (ii) holds and a(0+) < ® .

Assume now that (ii) holds and a(0+) = © , Then c(0+) = @, and we define
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r = m g MBI % s

(1 2
T S g + (o) etin) 4+ cle) (O <t

cl(t) =
cl(t) (t > tl)
-
and cz(t) = c(t) - cl(t), (t >0) .
and c both satisfy (H), -ci(t) is convex c2 € Ll(]2+), c1(0+) < o

Then € 5

.

and hence c2(0+) =®
By a result of 0. J. Staffans [23, Theorem 2(iii))

Re & (1)
£ >0 .

@ = inf
e lezmlz

Furthermore cl(0+) < ® and hypothesis (ii) imply that for some X, >0, 8 >0,

X
[ awae

| c (trat

e

(0 < x < xo)

1 2
A A 2 a Tl'-
v(T) 2 Re &,(1) > ale, (1)]° > ~ (jo cz(t)dt)

o f 2 wskivy ate)) 1
2= SEEHE 3 = e a(t)at

88 0 88

aa(t. ) .
§ 21 lim] MO(T) >0 (t > max{p,x_1})
2 T 2 0

Again (2.3i) is trivial, and we have established (2.3) when a(0+) = o This completes

the proof of Corollary 2.1.
here (2.3i) holds and the kernel is even strongly pos-

We conclude with an example w

itive but (2.3ii) is not satisfied.
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k

Let b (t) = (1-228)X _k (1) (£20,k=0,1,2, 3, ...) where Xy
[0,2 ]
denotes the characteristic function of the set E . Define
L
a(t) =] b (¢ (t >0 .
k=0

This sum is finite for each t > 0 and one easily checks that a(t) satisfies (1.3)

with a(0+) = ® ., A direct computation shows that a ¢ LI(O,W), and

s 22k(1 - c002’2k1'
(7.1) o) =) e (t>0) .
k=0 T

We first show that a(t) is strongly positive. Note that

2

2
u’ > 1 - cosu >

u (0 <ux<1l ,

(7.2)

N
o |-

and let m = llogzlong] for 1 > 2, where [ ] denotes the greatest integer function.
m 2m+ 1

2
Thus 2 < w2 a (7.1) and (7.2) imply that

o k m+1 2
(7.3) ¢ (1) 3-} N 2EEE T a 'i; 2 "1‘5 R 2
= 41

m+l 22

-
G

For 0 < T <2 we use (4.7) and (7.2) to obtain

1
@ —_
(7.4)  ¢(1) =12 [ (1 - costt) da’(t) > -}IT t? da'(t) >K> 0,
0 0
i
12 2 : : (5
where K = 2 f t da'(t) is a fixed positive constant.
0

(7.3) and (7.4) show that a(t) is strongly positive, even though da'(t) is a
purely singular measure. (Compare [18, Section 4).)
n
We next show that a(t) does not satisfy (2.3ii). Let L 22 (2m) (n =0,1,2,

. T

Then, referring to (7.1), (7.2) and (7.3), and using the fact that Re ﬁk(Tn) =0

(k = 0,1,2,...,n), we find that

k k
2 =2 2
S o) [ k n+l 2
(7.5) vty <3 § -1 ] a7 7 lml
k=n+1 Tn k=n+1 Tn .




From (4.3) we have

1 1
1 (T T Tn n
(7.6) Sy 2z [ tatmar > ¢} [T - nige . — .
(o] k=1 0 3OTn
Comparison of (7.5) and (7.6) shows that
e(Tn) n
> -+ o (n + o©® T - ©) ;
v(Tn) e 120112 =

thus (2.3ii) fails to hold. We note that da'(t) being a purely singular measure was
not the critical aspect of this counterexample. One could use a(t) = a(t) + e-t, where

a(t) is as defined above, and observe the same phenomenon.
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