AVIATION RESEARCH LABORATORY G 9 INSTITUTE OF AVIATION AD A 0 463 UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN TECHNICAL REPORT THE ISOLATION OF MINIMUM SETS OF VISUAL IMAGE CUES. $X \land V$ SUFFICIENT FOR SPATIAL ORIENTATION DURING AIRCRAFT LANDING APPROACHES Jonice E. Eisele, Robert C. Williges, Stanley N. Roscoe ARL-76-16/ONR-76-3 NOVEMBER 1976 **DC** FILE COPY * Acres 1. 1. 1. 1. 1. Ţ տկո B and the second **C**, Concerning the Contract: N00014-76-C-0081 Work Unit Number: NR 196-133 Reproduction of this document in whole or in part is のからの permitted for any purpose of the U.S. Government. APPROVED FOR FUBLIC RELEASE: DISTRIBUTION UNLIMITED. prepared for 100 ENGINEERING PEYCHOLOGY PROGRAMS OFFICE OF NAVAL RESEARCH

Best Available Copy

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) **READ INSTRUCTIONS REPORT DOCUMENTATION PAGE** BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. . REPORT NUMBER BEGIPIENT'S CATALOG NUMBER ARL-76-16/ONR-76-3 E OF REPORT & REPIOD COVERED TITLE (and Subtitle) - THE ISOLATION OF MINIMUM SETS OF VISUAL IMAGE 1976 Technical Kepert, 1974-20 CUES_SUFFICIENT FOR SPATIAL ORIENTATION DURING PERHORMANO AIRCRAFT LANDING APPROACHES. AUTHOR(.) 8. CONTRACT OR GRANT NUMBER(#) Janice E./Eisele, Robert C./Williges, and Stanley N./Roscoe NOOD14-76-C-0081 PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Aviation Research Laboratory ~ Institute of Aviation NR 196-133 University of Illinois, Savoy, IL 61874 12. REPORT DATE 11. CONTROLLING OFFICE NAME AND ADDRESS November 1976 Office of Naval Research (Code 455) SUPLEMENT PAGES 800 North Quincy Street 36 Arlington, Virginia 22217 MONITORING AGENCY NAME & ADDRESSUL different from Controlling Office) 15 SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION DOWNGRADING SCHEDULE 15. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abetract instand in Block 20, 11 different free Report) 18. SUPPLEMENTARY HOTES 19. KEY WORDS (Continue on reverse aide if necessary and identify by block number) Flight Displays Contact Analog Displays Central Composite Designs Display Symbology Flight Control **Regression Analysis** Human Factors Cockpit Workload **Visual Orientation Computer-Generated Displays** Actitude Displays Aviation Psychology Cockpit Instrumentation 20. ABSTRACT (Continue on revorce side II necessary and identify by black number) An experimental investigation of synthetic imaging displays was directed covard the isolation of minimum sets of visual cues sufficient for spatial orientation in ground-referenced aircraft landing approaches. Thirty-two flight instructors viewed static computer-generated airport scenes TV-projected onto a large screen viewed from the cockpit of a twin-engine general aviation trainer. Judgments of lateral and vertical deviations from a four-degree 3 ; approach to landing aim point in the display were made to 32 combinations of DD , FORM 1473 EDITION OF I HOV 45 IS DESOLETE UNCLASSIFIED 406 171 SECURITY CLASSIFICATION OF THIS PAGE (MAN Date

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ACCESSIC	Y 7.34		· · /
NTIS			·· /.
DOC	ŧ		4 fr
BRANKADA	st 1		<i>,</i>
ACTIFICA	H. H		
	in and the second s		
Pist. A	Alt. e.d	17 8	
A			

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE/When Dots Entered

AVIATION RESEARCH LABORATORY

ł

University of Illinois at Urbana-Champaign Willard Airport Savoy, Illinois 61874

> Technical Report ARL-76-16/ONR-76-3 November 1976

THE ISOLATION OF MINIMUM SETS OF VISUAL IMAGE CUES SUFFICIENT FOR SPATIAL ORIENTATION DURING AIRCRAFT LANDING APPROACHES

Janice E. Eisele, Robert C. Williges, and Stanley N. Roscoe

Prepared for

ENGINEERING PSYCHOLOGY PROGRAMS

OFFICE OF NAVAL RESEARCH

Contract: NO0014-76-C-0081 Work Unit Number: NR 196-133

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLINITED

المعريمة المعصريان فيرجيهم وريانا المانية مراجر الر

10 N

ACKNOWLEDGMENT

....

in the second second

And a subscription of the subscription of the

This paper describes research performed at the University of Illinois at Urbana-Champaign under contract with Engineering Psychology Programs, Office of Naval Research, with Gerald S. Malecki as scientific monitor.

CONTEXT

The Aviation Research Laboratory of the University of Illinois has investigated integrated synthetic-imaging displays and computer-augmented flight control for the Office of Naval Research. Mr. Gerald Malecki, Assistant Director, Engineering Psychology Programs, was the technical monitor of the research. Professor Stanley N. Roscoe was the principal investigator during the initial phase of study and experimental apparatus development; Professor Robert C. Williges served as principal investigator while Professor Roscoe was on academic leave during 1975-76.

The research was directed toward (1) the isolation of minimum sets of visual image cues sufficient for spatial and geographic orientation in the various ground-referenced phases of representative flight missions, (2) the generation and spatially integrated presentation of computed guidance commands and fast-time flight path predictors, and (3) the matching of the dynamic temporal relationships among these display indications for compatibility with computer-sugmented flight performance control dynamics, both within each ground-referenced mission phase and during transitions between phases. The investigative program drew selectively upon past work done principally under ONR sponsorship or partial sponsorship, including the ANIP and JANAIR programs.

₹‡

ii

To study experimentally the effectiveness of alternate sets of visual cues the Aviation Research Laboratory developed a highly versatile computer-generated display system to present dynamic pictorial images either on a head-down, panel-mounted CRT or on a head-up television projection to a large screen mounted in front of the pilot's windshield on the Link GAT-2 simulator. Due to the great flexibility of the pictorial display, visual cues and flight status information could be manipulated experimentally. The experiment reported herein was conducted to isolate the visual cues sufficient for approach and landing by measuring subjects' orientation responses to TV-projections of static computer-generated images containing various combinations of skeletal symbology from various positions and attitudes on final approaches to landings.

A support of

iii

TABLE OF CONTENTS

BACKGROUND	1
Pictorial Vertical Situation Displays	2
Literal VSDs	2
Analog VSDs	3
Unanswered Questions	7
METHOD	9
Apparatus	9
Experimental Design	9
Subjects	16
Experimental Procedure	16
RESULTS	18
DISCUSSION	29
REFERENCES	34

1.1

ł

Page

LIST OF TABLES

Table		Page
1	Visual Elements Present or Absent in Each of the Eight Displays in Each of the Four Display Groups Presented to Independent Groups of Eight Flight Instructors Each	12
2	Coded and Real-World Values of the Flight Position and Attitude Variables in Accordance with the Central Composite Experimental Design	15
3	Percent Correct Responses and Median Latencies of All Responses to Each of the 32 Displays at Far, Medium, and Near Ranges from the Touchdown Zone,	19
4	Summary of Analysis of Variance and Results for Porcent Correct Responses at Far Range	20
5	Summary of Analysis of Variance and Results for Percent Correct Responses at Medium Range	21
6	Summary of Analysis of Variance and Results for Percent Correct Responses at Near Range	22
7	Summary of Analysis of Variance and Results for Median Latencies of All Responses at Far Range	23
8	Summary of Analysis of Variance and Results for Median Latencies of All Responses at Medium Range	24
9	Summary of Analysis of Variance and Results for Median Latencies of All Responses at Near Range	25
10	Regression Equations, with their Associated Multiple Correlation Coefficients, for the Presence (1) or Absence (0) of the Various Display Elements at Near (N), Medium (M), and Far (F) Ranges from the Runway Aimpoint (under- lined regression coefficients are statistically reliable; <u>p</u> < .05)	26

LIST OF FIGURES

Figure								Page
1	Pictorial landing display simulation equipment	••	٠	٠	•	•	•	10
2	Group I display elements: composite of all Group I elements (left) and composite of Group I elements with Texture Grid omitted (right)	2	•	•	•	•	•	13
3	Group II display elements: composite of all Group II elements (left) and composice of Group II elements with Texture Grid omitted (right)		•	•	٠	•	•	13
4	Group III display elements: composite of all Group III elements (left) and composite of Group III elements with Texture Grid omitted (right),		•	•	•	•	•	14
S	Group IV display elements: composite of all Group IV elements (left) and composite of Group IV elements with Texture Grid omitted (right)	•		•	•		•	14
6	Integrated display of flight-path prediction, desired final approach path, and essential contact analog elements	、 • •	•	•	٩	•	•	32

ł:

.....

 $\left| \right\rangle$

vi

BACKGROUND

Aircraft technology has advanced rapidly since its beginning at the turn of the century, yet only recently has there been widespread recognition by the aviation community of the constantly changing role of the pilot in aircraft operations. Innovations in display technology, made possible by the advent of advanced airborne digital computers, can improve the pilot's performance by processing information to minimize transformations, including integrations and differentiations as well as simple arithmetic computations, required in the decision making and flight control process. In this way, computers can help pilots perform their new duties better.

In making and carrying out flight decisions, a pilot must convert long-term mission objectives to subgoals for each flight instrument, relate instrument subgoals to each other and control inputs to aircraft responses and instrument indications. For each of these functions, computers can improve pilot performance by storing, transforming, and integrating sensed information. With the ever increasing air traffic densities, expanding requirements for all-weather, night, and nap-ofthe-earth operations; and the burgeoning complexity of navigation and weapon delivery profiles, the applic__ion of airborne computers to control augmentation and display integration is no longer generally discounted as a radical, irresponsible, dangerously unreliable folly.

Second Second

Pictorial Vertical Situation Displays

To apply computers effectively to the transformation of sensed information and the generation of synthetic displays, information that is closely related functionally should be presented in a common frame of reference. More specifically, information concerning an airplane's attitude and flight path relative to surface objects, such as ground targets, airport runways, or carrier decks, should be presented in a pictorial, forward-looking, vertical situation display (VSD) context. All pictorial displays, by Carel's (1965) definition, have two common characteristics: first, the elements in the display are geometrically similar to those in the contact world; and second, the motion of displayed elements is analagous to that of their real-world correlates.

Literal VSDs. The most literal VSDs for approach and landing are flight periscopes and forward-looking IR and TV displays. Roseoc, Hasler, and Doughtery (1966) conducted several studies using a projection periscope mounted in a Cessna T-50. The pilot saw the forward view on an 8-inch screen mounted above the instrument panel with the periscope projecting through an aluminum windshield. Although safe takeoffs and landings were made by reference to this projected forward view, the accuracy of landings in terms of constant and variable errors was reliably influenced by image magnification, the optimum value being about 1.25. Campbell, Neffachern, and Marg (1955) used a binocular periscope to investigate approach and landing performance and reached similar conclusions as to image magnification.

Kibort and Drinkwater (1964) tested the effectiveness of a TV display in a DC-3 aircraft for the final approach and landing. A steerable camera was mounted on the nose and a second camera was placed just forward of the tailwheel. The output of either could be fed to a 14-inch monitor that subtended 16-17 degrees at the pilot's eye. The task of the pilot was to fly landing approaches from three miles out through touchdown and rollout. Kibort and Drinkwater concluded that only quantitative airspeed, vertical speed, and altitude information was necessary when flying the TV display.

From the evidence available, an unaided literal TV display appears inadequate for use as the primary instrument for approach and landing. The addition of quantitative information on flight and navigation guidance parameters would improve the pilot's spatial and geographical orientation cues. Information presented by a literal pictorial display is believable due to the availability of all the real-world landmarks, and this allows the pilot to decide among alternative courses of action with high confidence. In this way, literal displays take advantage of the overlearned perceptual habits that pilots acquire from VFR flight.

<u>Analog VSDs</u>. In the late 1950s through early 1960s, the ANIP program (Army-Navy Instrumentation Program) followed by the JANAIR (Joint Army Navy Aircraft Instrumentation Research) program were conducted. These programs included investigations and development of advanced instrument systems for aircraft and standards for electronic and optically-generated aircraft displays.

Carel (1965), in his frequently cited JAWAIR report, defined a <u>contact analog</u> display as "the point perspective projection of a threedimensional model to a picture plane." Typical computer-generated models contain reference objects significant for flight performance, such as a surface representing the horizon and ground plane, a surface representing the command path for the pilot to follow, and other surfaces or objects useful during various phases of a mission. Most importantly, the displayed surface dynamics are similar to those of their analog surfaces in the natural visual environment. The displayed surfaces still follow the laws of motion perspective, thus providing information coded in a fashion analogous to the coding provided in visual contact flight.

Investigators at Bell Helicopter Company carried out simulator and flight tests using a contact analog display developed by Norden. Abbott and Dougherty (1964) studied the accuracy with which altitude and groundspeed could be interpreted using the Norden display. No control was required of the subject pilots in the open-loop task. It was concluded that the display offered the same problem areas as does VFR flight in the presentation of altitude and groundspeed information. The higher the altitude or speed, the poorer was the judgment, and an interaction existed between speed and altitude judgments, with increasing difficulty in interpreting either as the other increased.

Emery and Dougherty (1964) studied low-altitude, ground-referenced maneuvers in the Bell moving-base helicopter simulator. The content of the displays was varied in four test conditions: ground plane only, ground plane and landing pad; ground plane with flight path border; and

1

ground plane, flight path border, and "tarstrips" perpendicular to the border edges. Pilot performance improved as command guidance information was added in the form of a desired flight path.

In a third investigation, Dougherty, Emery, and Curtin (1964) compared pilot performances when flying with standard instruments and with the contact analog display. Two groups were trained to a criterion of "performance equivalence" with the two types of display in the movingbase helicopter simulator. Subjects were required to control altitude, heading, course, and airspeed while concurrently performing a digitreading side task at variable rates. Pilot performances with the two types of display did not differ reliably under the control condition (no digit-reading task) or under the slowest rate condition; however, as the side-task rate was increased progressively, performance on the contact analog display remained relatively stable, while performance on the standard instruments deteriorated.

The authors concluded that "the pictorial JANAIR display was by far the superior display as the visual workload increased," and attributed this to three factors:

- 1. The pilot may more quickly assimilate qualitative information from the pictorial display.
- 2. Using conventional information, the pilot samples one parameter of information per glance. With the pictorial display, he accumulates information on more than one parameter per glance.
- Because of its relatively large angular field of view, the pictorial display permits use of peripheral vision.

Williams and Kronholm (1965) reported the results from simulation studies of an integrated electronic vertical situation display developed by Norden under JANAIR support. The object of the Universal Contact Analog Display (UCAD) research program was to formulate a methodology for determining VSD requirements and to generate design criteria for an integrated cockpit display applicable to both fixed-wing and rotarywing aircraft. Significant among the conclusions and recommendations were: 1) the desirability of quantitative indications of altitude, airspeed, vertical velocity, turn rate; and 2) the desirability of incorporating computed control information into the display for critical tasks.

Ketchel and Jenny (1968) surveyed the literature, presented display design considerations, and delineated areas in which further research was needed. Their .eport included consideration of information requirements, symbology and format, and quantitative display characteristics, with the primary emplasis on CRT display for fixed-wing aircraft. Following publication of the Ketchel and Jenny report, a new program of experimentation on contact analog displays was indertaken at the Nava! Nissile Center, Pt.-Mugu.

Cross and Cavellero (1971) investigated pilot performance during simulated landing approaches to an aircraft carrier. Performances in the simulator were found to be "comparable" to performances on approaches to a CVA carrier in an actual F-4 aircraft. In addition, pilots expressed the opinion that the nature and level of task difficulty experienced in the simulator were similar to those encountered in the aircraft in the landing phase. From the evidence, synthetically generated contact analog

displays appeared to facilitate spatial orientation and allow manual control not greatly different from literal imaging displays of comparable dimensions.

A projected flight path indication was added to the display used by Cross and Cavallero to allow investigation of a possible means of further improving performance during approach and landing. Wulfeck, Prosin, and Burger (1973) had pilots fly approaches in a fixed-base F-4 simulator with the baseline contact analog display, the predictor display, and a glideslope reference element of the predictor display. The predictor display proved reliably superior to the baseline display in all comparisons, including altitude and lateral error variability, oscillatory control patterns, landings within error criteria, and "acceptable" approaches at the ramp.

Unanswered Questions

Although much has been learned from the experiments just reviewed, the overriding conclusion is that pilots can land airplanes by reference to an infinite number of sets of visual cues, each of which may be sufficient to support performance at a particular level, no one of which is uniquely necessary. Thus, when one speaks of the "essential" visual cues for landing, he is implicitly addressing the unanswered questions concerning the relative effectiveness of the various sets of cues that might be presented by a visual display within our present sensing, computing, and display technology.

The approach taken in the present experimental investigation was to select a clearly sufficient set of visual indications symbolic

of geometric aspects of the contact visual scene and to conduct a parametric comparison of their various combinations in terms of the performances of qualified pilots in judging their flight positions and attitudes relative to the nominally correct landing approach path. Open-loop responses were made to successive static presentations of flight situations represented by computer-generated images of the various display configurations projected onto a large screen viewed from the cockpit of a flight simulator.

Broker - 4

METHOD

Apparatus

A Raytheon 704 digital computer was used to generate the displays, control the experimental display presentations, collect the dependent measures, and record the data. The computer-generated displays were imaged on a CRT from which a TV camera relayed them to an Advent Videobeam projector. The Advent projector, mounted above the simulator cab, projected the TV image onto a 68.5 x 51.5-in spherical-section screen mounted in front of the simulator, a modified Singer-Link General Aviation Trainer (GAT-2). The left half of the windscreen was removed so that the subject, sitting in the pilot's seat, had an unobstructed view, straight ahead, of the Advent screen. The simulator's cab and Advent system as shown in Figure 1 were entirely enclosed in a black plastic curtain that shielded the projection screen from ambient light. The response device was a nime-button keyboard, installed on the end of the subject's right armrest and adjustable for various arm and finger lengths.

Experimental Design

The displays were developed by the full factorial combination of five symbolic elements, four representative of visible aspects of an airport scene and one synthetic element not present in the real world. The real-world or "contact analog" display elements included: (1) runway outline, (2) touchdown zone, (3) runway centerline, and (4) a grid of "section lines" that served to define a textured surface.

11.

I

The synthetic element was a row of four "T-bars" of increasing height positioned along the approach centerline at 1/4, 1/2, 1, and 2 miles from the touchdown aimpoint to provide a visual representation of an imaginary glideslope and localizer path (analogous to a "highway in the sky").

Two additional elements from the contact scene, present in all 32 displays, were touchdown aimpoint and horizon. To approximate the viewing condition that would result in subjective equality of distance judgments relative to those obtained with a direct, contact view of a real airport, the computer-generated scenes were projected with a magnification factor of 1.2 as measured at the pilot's eye position (Roscoe, Hasler, and Dougherty, 1966). The 32 displays were divided into four groups of eight displays each by selecting two elements, runway outline and glideslope-localizer path, as between-subjects factors. The four groups of displays are given in Table 1 and in Figures 2-5.

A central-composite design (CCD) was used to derive 27 different viewpoints from which subjects would respond to the airport scenes projected onto the screen mounted in front of the simulator. This systematic strategy provided an accommical sampling of ranges from touchdown aimpoint, vertical and lateral deviation from the glideslope/localizer T-bars, and aircraft pitch and bank attitudes. The coded factor levels and corresponding real-world values used to generate the 27 different perspective views of the landing approach scene (for each of the 32 displays) are shown in Table 2. A one-half replicate of a 2^5 factorial combination of variables (±1 values), plus 2 x 5 extended axial "star" points (±4 values), plus 10 replications of the centerpoint (0 values) yielded 36 presentations

Visual Elements Present or Absent in Each of the Eight Displays in Each of the Four Display Groups Presented to Independent Groups of Eight Flight Instructors Each

	Gr	our	<u>) I</u>				Gra	oup	11			Gro	up	111				Gr	oup	10	• •
Runway Outline	Touchdown Zone	Runway Centerline	Texture Grid	Glideslope/Localizer		Runway Outline	Touchdown Zone	Runway Centerline	Texture Grid	Glideslope/Localizer	Runway Outline	Touchdown Zone	Runway Centerline	Texture Grid	Gildeslope/Locall zer		Runway Outline	Touchdown Zone	Runuay Centerline	Texture Grid	Glide slope/Localizer
0	0	0	0	0		1	0	0	Ô	0	0	0	0	0	1		1	0	0	0	1
0	1	0	0	0		1	1	0	0	0	Û	1	0	0	1		1	1	0	0	1
0	0	1	Û	0		1	0	1	0	0	0	Û	1	0	1		1	Û	1	0	ŀ
0	0	0	1	0		1	Û	0	: 1	0	0	Û	Û	1	1		1	0	Ô	1	1
0	1	1	0	0		1	1	1	Û	0	0	1	1	0	t		i	1	1	Ū	1
0	1	0	1	0		1	1	0	1	0	Ű	1	Û	1	1		1	1	0	1	1
0	0	1	1	Ú		1	Ü	1	1	0	0	Ô	1	1	ì		t	U	1	1	Ĺ
0	1	1	1	0	•	1	1	1	1	0	0	1	1	1	1	-	1	1	1	1	1

Legend:

1.

Į.

0 = without element; 1 = with element All displays with aimpoint and visible horizon.

Figure 2. Group I display elements: composite of all Group I elements (left) and composite of Group I elements with Texture Grid omitted (right).

Figure 3. Group 11 display elements: composite of all Group 11 elements (left) and composite of Group 11 elements with Texture Grid omitted (right).

1.1

~

Ĺ.

the second

Figure 4. Group III display elements: composite of all Group III elements (left) and composite of Group III elements with Texture Grid omitted (right).

Figure 5.

· .

. .

¥,

1.4

Group IV display elements: composite of all Group IV elements (left) and composite of Group IV elements with Texture Grid omitted (right).

記と語

in the second

Coded and Real-World Values of the Flight Position and Attitude Variables in Accordance with the Central Composite Experimental Design

	Coded Values							
	-a	-1	0	+1	+4			
Position Variables		<u>Rea 1-</u>	World Va	lues				
RANGE (feet from aimpoint)	1000	2730	4460	6190	7920			
VERTICAL DEVIATION (degrees from glideslope)	-1.0	-0.5	0	0.5	1.0			
LATERAL DEVIATION (degrees from localizer)	-1.0	-0.5	0	0.5	1.0			
Attitude Variables					· · ·			
PITCH (degrees from horizontal)	0	-2	-4	-6	8			
BANK (degrees from horizontal)	-10	د ۔ ،	Û	\$	10			
		alay og billand, og berekken stare	anang san ang kanang san ang s	and a state of the state of the state				

of each display (Cochran and Cox, 1957). The value of α was set at 2 to make the design rotatable (Myers, 1971; Williges, 1976).

Subjects were randomly assigned to one of the four display groups, and within a group each of the eight subjects saw the eight displays in a different order in accordance with a counterbalanced design. The counterbalancing of the presentation orders caused each display to appear once in each serial position and to precede and follow every other display once across each group of eight subjects. The 36 viewpoints from which subjects responded to any one display were randomized, with the constraint that no display was presented to more than one subject in the same viewpoint order throughout the experiment.

Subjects

1

Thirty-two University of Illinois flight instructors volunteered to participate. Thirty males and two females between the ages of 20 and 45 each had at least 5 hours of flight time during the six months preceding their participation in the experiment.

Experimental Procedure

A subject began by reading a short introduction to the experiment and an explanation of his task. He was given a written explanation of the visual-world cues he would see according to his group assignment. All questions were answered before the next phase of the task began. The subject was then seated in the left seat of the simulator, and the arm-rest keyboard was adjusted if necessary. The keyboard and its use were explained to the subject, and any questions he had were answered. When a subject had no further questions, he was given a series of 16 practice trials identical to the subsequent test trials. A square appeared on the display screen, signalling that the computer was ready for the trial. When the subject was roady, he pressed and released the home-base key. Immediately, a display appeared on the screen. The subject would then make a response indicating his vertical and lateral deviation relative to a 4-degree glideslope and localizer path by pressing the appropriate key on the keyboard. During the practice trials, the cues in the display were pointed out, and the appropriate responses were discussed. Practice trials consisted of both "right on" approaches with no deviation from the desired approach path and ones with vertical and lateral deviations from the desired path, all viewed from various flight attitudes.

After appearing for 15 sec, the display disappeared whether or not the subject had responded. When the computer finished recording the data for the trial and generating the next display, the box reappeared on the screen indicating that the next trial could begin. The subject again pressed the home-base key when ready. In this manner the subject had control over the pacing of the session. After the practice trials, questions were answered, and the test trials began. The 16 practice and 288 test trials required about 80 minutes. After the session the subject was given a short questionnaire, any questions he had about the experiment were answered, and he was thanked for his participation.

RESULTS

Table 3 presents the Percent Correct Responses and Median Latencies of all responses, both correct and incorrect, for each of the 32 displays at Far, Medium, and Near ranges from the runway aimpoint. "Far" and "Near" ranges from aimpoint include, respectively, the +1 and + α ranges and the -1 and - α ranges called for by the central-composite design, whereas the Medium range is the 0, or centerpoint, range called for by the design. The analyses of variance of these data are summarized in Tables 4-9.

In addition to these overall response data, the latencies of correct responses only were tabulated and analyzed, as were the incorrect responses and their associated latencies in the lateral and vertical dimensions separately. Although these detailed breakdowns are not presented, the multiple regression equations based thereon are given in Table 10. All statistical analyses of response latencies were performed on the logarithmic transformations of the raw data, thereby more closely satisfying the assumptions of normality of distributions and homogeneity of variances implicit in the application of parametric statistical treatments (Muller, 1949; Edwards, 1950).

Both an analysis of variance and a multiple regression analysis were performed on each set of data. Because the experimental variables were all dichotomous (each of the five display elements was either present or absent), the regression equations and the analyses of variance are merely alternate ways of expressing the same basic information. Of primary interest was the effect of each of the 32 visual element combinations on performance, both singly and in combination with the various other elements. Tables 4-9 show the main effects of the five display elements and their statistically reliable first-order interactions.

۰.

- -

. . .

Andreas State

Percent Correct Responses and Median Latencies of All Responses to Each of the 32 Displays at Far, Medium, and Near Ranges from the Touchdown Zone

1111 0000000 0utline 010 10110010 TD Zone	0 11010100 Centerline	1 1 0 0 1 1 0 0 0	o o o o o o o o o o o o o o o o o o o	Free Percent Correct 31.9 25.0 58.3 48.6 55.6 44.5	Median Latency 3.52 3.33 3.16 3.58	<u>Medi</u> Percent Correct 56.9 66.7 51.4 55.6	um Median Latency 3.10 3.13 3.05	Nea Percent Correct 45.8 \55.6 84.7	Median Latency 3.81 3.55 2.70
1 0 0 0 0 0 1	0 1 0 1 0 0 0 Center	1 1 0 1 0 0 0 0 Textur	ooooooo Glides	Percent Correct 31.9 25.0 58.3 48.6 55.6 44.5	Median Latency 3.52 3.33 3.16 3.58	Percent Correct 56.9 66.7 51.4 55.6	Median Latency 3.10 3.13 3.05	Percent Correct 45.8 \\55.6 84.7	Median Latenc 3.81 3.55
0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0	0 0 1 0 1 0 1 1	0 0 1 0 1 1 1	0 0 0 0 0 0 0	31.9 25.0 58.3 48.6 55.6 44.5	3.52 3.33 3.16 3.58	56.9 66.7 51.4	3.10 3.13 3.05	45.8 55.6 84.7	3.81 3.55 2.70
0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0	0 1 0 1 0 1 1 1	0 0 1 0 1 1 1		25.0 58.3 48.6 55.6 44.5	3.33 3.16 3.58	66.7 51.4	3.13 3.05	55.6 84.7	3.55
0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0	1 0 1 0 1 1 0	0 1 0 1 1 1	000000000000000000000000000000000000000	58.3 48.6 55.6 44.5	3.16 3.58	51.4	3.05	84.7	2,22
0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0	0 1 0 1 1 0	1 0 1 1 1	000000	48.6 55.6 44.5	3.58	55 6	3103		2 . / M
0 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0	1 0 1 1 0	0 1 1 1	0000	55.6 44.5		JJ+0	2.96	57.0	3,30
0 1 0 0 0 1 1 0 1 1 1 0	0 1 1 0	1 1 1	0	44.5	3.27	63.9	2.85	80.6	2 71
0 0 0 1 1 0 1 1 1 0	1 1 0	1 1	0 0		3 90	54.2	3 40	57.0	4 10
0 1 1 0 1 1 1 0 1 0	1 1 0	ĩ	ñ	62.5	4 03	61.1	3.40	83.3	9.10
1 0 1 1 1 0	0		v	44.5	4.22	51.4	3.85	81.9	3.43
1 1 1 0 1 0		0	0	59.7	2.72	70.8	2.54	65.3	2.63
1 0	0	0	0	59,7	3.01	73.6	3.02	75.0	2.94
1 0	i	õ	õ	61.1	3,50	75.0	3.02	61.1	3.75
	ō	ĩ	ŏ	63.1	3,20	62.5	3.09	58.3	3.08
ĩĩ	ĩ	ō	ŏ	63.9	3,13	68.1	3 30	73.6	3 16
$\hat{1}$ $\hat{1}$	ō	ĭ	ň	75.0	3 64	68.1	3 07	61 1	3.10
1 0	ĭ	î	ň	75.0	3 /5	61.1	3 20	59.7	- J. J4 7 00
1 1	1	ī	ŏ	75.0	2.93	61.1	3.18	62,5	2.85
0 0	0	0	1	98.6	1.60	91.7	1.44	90.1	1.93
0 1	Ō	Ô	ī	97.2	1.57	91.7	1.70	87.5	1.92
ōō	1	Ō	ī	98.6	1.78	94.5	1.73	90.3	2.11
ōō	ō	ĩ	1	98.6	1.70	93.1	1.83	91.7	2.18
0 1	1	ō	1	100.0	1.67	94.5	1.79	95.8	1.76
0 1	ñ	ř	î	98.6	1.79	93.1	2.43	03 1	2.70
ñ ñ	ĭ	î	1	94.5	1.67	97.2	2.04	01 1	2.00
0 1	î	î	î	95.8	1.72	98.6	1.85	98.6	1.92
1 0	Ø	0	1	98.6	1.95	94.5	1.98	97.2	1.82
1 1	0	0	1	98.6	1.88	48.6	1.87	94.5	1.74
1 0	1	0	1	98.6	1.64	97.2	1.84	100.0	1.35
1 0	0	1	1	98.6	1.74	97.2	1.70	97.2	1.73
1 1	1	0	1	100.0	1.57	91.7	1.88	95.8	1.68
1 1	Ō	1	ī	100.0	1.68	93.1	1.95	97.2	1,77
1 0	ĩ	ĩ	1	98.6	1.67	95.8	1.73	97.2	1.62
Î Î	1	ī	i	94:5	1.74	94.5	1.78	93.1	1. 27

١

- ----

Summary of Analysis of Variance and Results for Percent Correct Responses at Far Range

Source of Variance	F	df	<u>p</u>
Runway Outline	7.856	1,28	.009
Touchdown Zone	1.059	י,28	.312
Runway Centerline	4.998	2,28	.034
Texture Grid	1.300	1,28	.264
Glideslope/Localizer	115.759	1,28	.000
Reliable Interactions			
Outline x Glideslope	6.876	1 ,28	.014
Centerline x Glideslope	7.466	1,28	.011
Cell Means and Effects			
Outline	Progence of Pupuer Outly	the (1) hereited	to a waltablu
1 = 82.8	higher percentage of co	rrect responses.	in a reliably
Touchdown Zone			
0 = 78.1	Percentages for absence	(0) and presence	e (1) of
1 = 76.7	Touchdown Zone did not	differ reliably.	
Centerline			
0 = 75.1	Presence of Runway Cente	erline (1) resul	ted in a
1 = 79.8	reliably higher percents	age of correct r	esponses.
Texture			
0 = 75.4 1 = 79 5	Percentages for absence Texture Grid did pot di	(0) and presenc ffor rollably.	e (1) of
L = 7713	TEREULE DELL GIU NOU UN	tet tettably.	
Glideslope	Dunganna of Plidaniana/	Laastinan M.homo	(1) manultand
1 = 98.1	in a reliably higher pe	rcentage of corr	ect responses.
Outline x Glideslope			
0/0 = 46.4 0/1 = 97.7	Presence of the Runway (Outline had no e	vident effect
1/0 = 68.0 $1/1 = 98.4$	when the Glideslope/Loc	alizer was prese	nt (0/1 and 1/1)
	but its presence vielde	d a higher perce	ntage of correct
	reanonses when the Glid	eslope/Localizer	was absent
	(1/0 versus 0/0).		
Conterline x Glideslove			
0/0 = 51.6 0/1 = 98.6	Presence of the Runway	Centerline inter	acted with the
1/0 = 62.0 1/1 = 97.6	absence of the Glideslo that the Runway Outline	pe/Localizer in did.	the same way
المراجع والمراجع	با اهاد اها محمد محمد محمد محمد محمد محمد م		e a a constante de la constante

Summary of Analysis of Variance and Results for Percent Correct Responses at Medium Range

Source of Variance	F	df	P
Runway Outline	1.658	1,28	. 208
Touchdown Zone	0.157	1,28	.312
Runway Centerline	0.039	1,28	.845
Texture Grid	1.439	1,28	.240
Glideslope/Localizer	57.491	1,28	.000

(No first-order interaction was statistically reliable.)

Cell Means and Effects

į \,

Outline	
0 = 76.0 Percentages for absence (0) and presence (1)	of
1 = 81.4 Runway Outline did not differ reliably.*	
Touchdown Zone	
0 = 78.5 Percentages for absence (0) and presence (1)	of
1 = 78.9 Touchdown Zone did not differ reliably.	
Centerline	
0 = 78.8 Percentages for absence (0) and presence (1)	of
1 = 78.6 Runway Centerline did not differ reliably.	
Texture	
0 = 80.0 Percentages for absence (0) and presence (1)	of
1 = 77.3 Texture Grid did not differ reliably.	
Glideslope	
0 = 62.6 Presence of Glideslope/Localizer T-bars (1)	resulted
1 = 94.8 in a reliably higher percentage of correct re	esponses.

The corresponding regression analysis (see Table 10), which took into account all of the individual response data for the ten replications of the centerpoint of the central composite experimental design, showed the presence of the Runway Outline to contribute reliably to correct responses at Medium Range (p < .05). The analysis of variance included only the first of the ten centerpoint responses by each subject.

,

- . -

All interesting

Summary of Analysis of Variance and Results for Percent Correct Responses at Near Range

<u>F</u> 0.002 1.258 21.958 0.073 39.037 23.910 12.712 Percentages for absence (Runway Outline did not di	<u>df</u> 1,28	 P. .970 .272 .000 .790 .000 .000 .001 .001
0.002 1.258 21.958 0.073 39.037 23.910 12.712 Percentages for absence (Runway Outline did not di	1,28 1,28 1,28 1,28 1,28 1,28 1,28 1,28	.970 .272 .000 .790 .000 .000 .001
1.258 21.958 0.073 39.037 23.910 12.712 Percentages for absence (Runway Outline did not di	1,28 1,28 1,28 1,28 1,28 1,28 1,28 1,28	.272 .000 .790 .000 .000 .001
21.958 0.073 39.037 23.910 12.712 Percentages for absence (Runway Outline did not di	1,28 1,28 1,28 1,28 1,28 1,28 1,28 (0) and presence	.000 .790 .000 .000 .001
0.073 39.037 23.910 12.712 Percentages for absence (Runway Outline did not di	1,28 1,28 1,28 1,28 1,28 (0) and presence (0) and presence	.790 .000 .000 .001
39.037 23.910 12.712 Percentages for absence (Runway Outline did not di	1,28 1,28 1,28 (0) and presence (ffer reliably.	.000 .000 .001
23.910 12.712 Percentages for absence (Runway Outline did not di	L,28 L,28 (0) and presence lffer reliably.	.000 .001
23.910 12.712 Percentages for absence (Runway Outline did not di	1,28 1,28 (0) and presence iffer reliably.	.000 .001
12.712 Percentages for absence (Runway Outline did not di	(0) and presence	.001
Percentages for absence (Runway Outline did not di	(O) and presence Iffer reliably.	(1) of
Percentages for absence (Runway Outline did not di	(0) and presence iffer reliably.	(1) of
Percentages for absence (Runway Outline did not di	(O) and presence Iffer reliably.	(1) of
D		
PETCENTARES FOT ADSENCE	(0) and presence	(1) of
Touchdown Zone did not di	iffer reliably.	(1) 01
Presence of Runway Center	line (1) result	ed in a
reliably higher percentag	ge of correct re	sponses.
	4-4	
Percentages for absence ((0) and presence	e (1) of
Texture Grid did not diff	er reliably.	
		· · ·
in a reliably higher perc	calizer T-bars centage of corre	(1) resulted et responses
Presence of Runway Center	line in the abs	ence of a
Runway Outline (0/1) resu ately high percentage of	ilted in a dispr correct respons	oportion- es.
Although the highest perc occurred when both Glides Centerline were present (disproportionately high w the absence of the other percentage with Glideslop	centage of corre lope/Localizer (1/1), the perce when either was (1/0 or 0/1), a pe/Localizer pre line (0/1) was m	et responses and Runway ntage was present in nd the sent in the early equal
	Percentages for absence (Texture Grid did not diff Presence of Glideslope/Lo in a reliably higher perc Presence of Runway Center Runway Outline (0/1) resu ately high percentage of Although the highest perc occurred when both Glides Centerline were present (disproportionately high v the absence of the other percentage with Glideslop absence of Runway Center)	Percentages for absence (0) and presence Texture Grid did not differ reliably. Presence of Glideslope/Localizer T-bars in a reliably higher percentage of corre Presence of Runway Centerline in the abs Runway Outline (0/1) resulted in a dispr ately high percentage of correct respons Although the highest percentage of corre occurred when both Glideslope/Localizer Centerline were present (1/1), the perce disproportionately high when either was the absence of the other (1/0 or 0/1), a percentage with Glideslope/Localizer pre absence of Runway Centerline (0/1) was m to that with both present.

Summary of Analysis of Variance and Results for Median Latencies of All Responses at Far Range

Source of Variance	<u>F</u>	df	P
Runway Outline	0.124	1,28	.728
Touchdown Zone	0.000	1,28	.988
Runway Centerline	0.007	1,28	.936
Texture Grid	3.232	1,28	.083
Glideslope/Localizer	23.496	1,28	.000

(No first-order interaction was statistically reliable.)

Cell Means and Effects

0

Timber .

Outline	
0 = 2.47 sec	Latencies for absence (0) and presence (1) of
1 = 2.34	Runway Outline did not differ reliably.
Touchdown Zone	
0 = 2,40	Latencies for absence (0) and presence (1) of
1 = 2.40	Touchdown Zone did not differ reliably.
Centerline	
0 = 2.41	Latencies for absence (0) and presence (1) of
1 = 2.40	Runway Centerline did not differ reliably.
Texture	
0 = 2.33	Latencies for absence (0) and presence (1) of
1 = 2.48	Texture Grid did not differ reliably.
Glideslope	
0 = 3.39	Presence of Glideslope/Localizer T-bars (1) resulted
1 - 1.71	in ratiably charter reconney laronates

1

. ;

Summary of Analysis of Variance and Results for Median Latencies of All Responses at Medium Range

			· · · · · · · · · · · · · · · · · · ·					
Sources of Variance	F	df	P					
Runway Outline	0.001	1,28	.972					
Touchdown Zone	3.118	1,28	.088					
Runway Centerline	0.673	1,28	.419					
Texture Grid	5.324	1,28	.029					
Glideslope/Localizer	12.459	1,28	.001					
Reliable Interaction								
Touchdown Zone x Centerline	4.791	1,28	.037					
Cell Means and Effects								
Outline								
0 = 2.42 sec	Latencies for absen	ice (0) and prese	nce (1) of					
1 = 2.40	Runway Outline did not differ reliably.							
Touchdown Zone								
0 = 2.33	Latencies for absen	ce (0) and presen	ice (1) of					
1 = 2.48	Touchdown Zone did	not differ reliab	ly.					
Centerline								
0 = 2,38	Latencies for absen	ice (0) and presei	nce (1) of					
1 = 2.44	Runway Centerline d	lid not differ re	liably.					
Texture								
0 = 2.30	Presence of Texture	Grid (1) result	ed in reliably					
1 = 2.52	longer response lat	encies.						
Glideslope								
0 = 3.19	Presence of a Glide	slope/Localizer	r-bars (1)					
1 = 1.82	resulted in reliabl	y shorter respon	se latencies.					
Touchdown Zone x Centerline								
0/0 = 2.24 0/1 = 2.43	Presence of Touchdo	wn Zone marker in	n the absence of a					
1/0 = 2.53 1/1 = 2.44	Runway Centerline (long response later reliable difference present (0/1 versus	(1/0) resulted in icies, whereas its when the Runway i 1/1).	disproportionate s presence made no Centerline was					

Summary of Analysis of Variance and Results for Median Latencies of All Responses at Near Range

Source of Variance	F	df	P
Runway Outline	0,581	1.28	452
Touchdown Zone	0.168	1 28	.4.)2
Runway Centerline	1.542	1,20	.005
Texture Grid	1.306	1,20	. 245
Clideolopo/Localizor	14 007	1,28	.203
Gildestope/Localizer	14.087	1,28	.001
Reliable Interactions			
Outline x Texture	4.264	1.28	. 048
Touchdown Zone x Textur	e 4.742	1,28	.038
Cell Means and Effects			
Outline			
0 = 2.58 sec	Latencies for absence (()) and presence	(1) of Runway
1 = 2.31	Outline did not differ a	reliably.	(1) 01 110(00)
1 - 2, J1		(C1201)))	
Touchdown Zone			
0 = 2.46	Latencies for absence (()) and presence	(1) of
1 = 2.43	Touchdown Zone did not o	liffer reliably.	
Centerline			
0 = 2.50	Latencies for absence (()) and presence	(1) of Runway
1 = 2.39	Centerline did not diffe	er reliably.	
Tortura			
	Latoncies for absonce (()) and nracanaa	(1) of toxeura
1 - 2.41	- Crid did not differ rold	na presence. Taklu	(I) DI Texcule
1 - 2.90		Laoty.	
Glideslope			
0 = 3.21	Presence of Glideslope/I	Localizer T-bars	(1) resulted
1 = 1.86	in reliably shorter resp	ponse latencies.	
August the second			
$\frac{1}{2} \frac{1}{2} \frac{1}$	Descours of the Postson	And to she use	
	Presence of the lexture	Grid in the abs	ence of a
1/0 = 2.34 1/1 = 2.29	Runway Outline (0/1) res	sulted in dispro	portionately
	long response latencies	, whereas its pr	esence in
	combination with a Runwa	iy Outline (1/1)	resulted in
	the shortest latencies.		
Tunahdara Zana a Tatana			
	Bengaman of the Touchton	m Trans the titles of	and an and and
1/0 = 2:40 U/1 # 4:44	Tresulty of the louendor	n auno in Cho al	paency of A
TA = 2:35 IVI = 2:95	TRACUTE OFIC (1/V) FESU	ilea in aispropo	rtionarciy snort
	response latencies, when	reas its presence	e in complicitied
	with Texture Grid (1/1)	resulted in slip	furly loufer.
	lacencies than with Text	cure Grid alone	(nt D*
•			

٠à

Regression Equations, with their Associated Multiple Correlation Coefficients, for the Presence (1) or Absence (0) of the Various Display Elements at Near (N), Medium (M), and Far (F) Ranges from the Runway Aimpoint (underlined regression coefficients are statistically reliable; $\underline{p} < .05$).

		DISPLAY ELEMENT				
Runway	Touchdown	Runway	Texture	<u>Glideslope</u>	MULTIPLE	
Outline X.	Zone	Centerline	Grid X.	Localizer X-	CORRELATION	
	2	3				
rect Respon	<u>ses</u> :					
.000x ₁	+.039x ₂	+. <u>165</u> x ₃	014×4	+. <u>584</u> ×5	$\underline{\mathbf{R}}$ = .632	
. <u>117</u> × ₁	+.009x2	006x ₃	058×4	+. <u>695</u> ×5	$\underline{\mathbf{R}} = .707$	
. <u>185</u> ×1	024×2	+.081×3	+.072×4	+. <u>713</u> x5	$\underline{\mathbf{R}}$ = .745	
ncy, Correct	t Responses:					
092x ₁	+.019x2	007×3	+.059×4	<u>488</u> ×5	<u>R</u> = .546	
$012x_{1}$	+.051x2	006x3	+.051×4	-, <u>462</u> x5	<u>R</u> = .500	
$062x_{1}$	+.016x2	005x3	+.038×4	<u>569</u> x5	$\underline{R} = .608$	
ncy, All Rea	sponses:					
098x1	013x ₂	~.043×3	+.029×4	<u>520</u> x	<u>R</u> = .582	
.000x1	+.056x2	+.021x3	+.079×4	499×5	<u>R</u> = .540	
039×1	+.000x2	002×3	+.056×4	<u>620</u> ×5	<u>R</u> = .656	
correct Resp	onses, Latera	1 Deviation:				
<u>191</u> × ₁	064×2	<u>132</u> ×3	064×4	<u>293</u> ×5	<u>R</u> = .384	
<u>148</u> × ₁	+.010x2	069×3	- <u>.148</u> ×4	<u>465</u> ×5	<u>R</u> = .515	
<u>235</u> × ₁	+.026×2	<u>204</u> ×3	108×4	<u>390</u> ×5	$\underline{R} = .511$	
ney, Incorre	ect Lateral R	esponses:				
07?× <u>1</u>	090x2	<u>155</u> ×3	+.020×4	<u>322</u> ×5	· <u>R</u> = .386	
076x1	+.054×2	098×3	079×4	<u>481</u> ×5	<u>R</u> = .509	
<u>212</u> ×1	+.048x2	097×3	041x4	<u>414</u> ×5	<u>R</u> = ,488	
orrect Kesp	onses, <u>Vertic</u>	al Deviation:	-			
. <u>133</u> ×1	011x2	079×3	+.056×4	<u>519</u> ×5	<u>R</u> = .567	
~.052×1	018x2	+.033x3	+.163×4	574×5	<u>R</u> = ,600	
057x1	025x3	+.083x3	+.000x4	621x5	<u>R</u> = .630	
ncy, Incorr	ect Vertical	Responses				
.000x1	025x ₂	110x3	020×4	457×5	<u>R</u> = .510	
.042×	+.057x2	+.039x3	+.060×4	<u>332</u> ×5	<u>R</u> = .568	
04 14	+.001x.	+.004x.	+.020-	6494.	8 = .654	
	Runway Outline x1 rect Respon .000x1 .117x1 .185x1 ncy, Correc 092x1 012x1 002x1 012x1 002x1 002x1 0098x1 .000x1 039x1 correct Resp 148x1 235x1 ncy, Incorr 076x1 212x1 orrect Resp .133x1 057x1 057x1 .000x1 .037x1	Runway Touchdown $0utline$ $2one$ x_1 z_2 rect Responses: $.000x_1 + .039x_2$ $.117x_1 + .009x_2$ $.185x_1024x_2$ ncy, Correct Responses: $092x_1 + .019x_2$ $012x_1 + .061x_2$ $002x_1 + .019x_2$ $012x_1 + .061x_2$ $002x_1 + .016x_2$ $002x_1 + .016x_2$ $ncy, All Responses:$ $003x_1 + .056x_2$ $0098x_1013x_2$ $.000x_1 + .056x_2$ $0098x_1013x_2$ $.000x_1 + .056x_2$ $0098x_1 + .000x_2$ $039x_1 + .000x_2$ correct Responses, Laters $148x_1 + .010x_2$ $039x_1 + .026x_2$ $026x_2$ $ncy, Incorrect Lateral Raters 076x_1 + .054x_2 076x_1 + .054x_2 076x_1 + .054x_2 076x_1 + .054x_2 037x_1018x_2 052x_1018x_2 037x_1025x_3 secy, Incorrect Vertical .000x_1028x_2 .042x_1 + .057x_2 028x_2 $	DISPLAY ELEMENT $ \frac{\text{Runway}}{1} \frac{\text{Touchdown}}{2\text{one}} \frac{\text{Runway}}{2} \frac{\text{Centerline}}{x_3} $ $ \frac{\text{Tect Rosponses:}}{x_2} $ $ \frac{1000x_1 + .039x_2 + .165x_3}{.117x_1} + .009x_2006x_3} $ $ \frac{.117x_1 + .009x_2006x_3}{.185x_1}024x_2 + .081x_3 $ $ \frac{\text{ncy, Correct Responses:}}{092x_1 + .019x_2007x_3} $ $012x_1 + .061x_2005x_3 $ $ \frac{\text{ncy, All Responses:}}{098x_1013x_2043x_3} $ $ \frac{.000x_1 + .056x_2 + .021x_3}{.000x_1 + .056x_2 + .021x_3} $ $ \frac{.039x_1 + .010x_2002x_3 $ $ \frac{\text{correct Responses, Lateral Deviation:}}{191x_1064x_2132x_3 $ $ \frac{.148x_1 + .010x_2069x_3}{.235x_1 + .026x_2204x_3 $ $ \frac{\text{ncy, Incorrect Lateral Responses:}}{076x_1 + .054x_2098x_3 $ $ \frac{.077x_1090x_2155x_3}{.212x_1 + .048x_2097x_3 $ $ \frac{1133x_1011x_2079x_3}{.057x_1025x_3 + .083x_3 $ $ \frac{.000x_1028x_2110x_3}{.033x_3 $ $ \frac{.000x_1028x_2110x_3}{.042x_1 + .057x_2 + .039x_3 $	DISPLAY ELEMENT $\frac{\text{Nunway}}{Outline} \frac{\text{Touchdown}}{x_2} \frac{\text{Runway}}{Centerline} \frac{\text{Grid}}{x_3}$ $\frac{\text{Texture}}{x_3} \frac{\text{Grid}}{x_4}$ $\frac{\text{Text Rosponses:}}{x_3} = .014x_4$ $\frac{.117x_1}{x_1} + .009x_2006x_3058x_4$ $\frac{.117x_1}{x_1} + .009x_2006x_3058x_4$ $\frac{.185x_1}{x_1}024x_2 + .081x_3 + .072x_4$ $\frac{\text{ney, Correct Responses:}}{x_{-092x_1} + .019x_2007x_3 + .059x_4}$ $\frac{012x_1}{x_1} + .061x_2006x_3 + .051x_4$ $\frac{062x_1}{x_1} + .016x_2005x_3 + .038x_4$ $\frac{\text{ney, All Responses:}}{x_{-000x_1} + .056x_2 + .021x_3 + .079x_4}$ $\frac{039x_1 + .000x_2002x_3 + .056x_4$ $\frac{148x_1}{x_1} + .000x_2002x_3 + .056x_4$ $\frac{148x_1}{x_1} + .006x_2132x_3064x_4$ $\frac{148x_1}{x_1} + .016x_2206x_3108x_4$ $\frac{235x_1}{x_1} + .026x_2206x_3108x_4$ $\frac{077x_1}{x_1}090x_2153x_3 + .020x_4$ $\frac{076x_1}{x_1} + .054x_2098x_3079x_4$ $\frac{212x_1}{x_1} + .048x_2097x_3041x_4$ $\frac{212x_1}{x_1}018x_2 + .098x_3079x_4$ $\frac{212x_1}{x_1}018x_2 + .079x_3 + .036x_4$ $\frac{037x_1}{x_1}018x_2 + .079x_3 + .036x_4$ $\frac{037x_1}{x_1}018x_2 + .079x_3 + .036x_4$ $\frac{037x_1}{x_1}018x_2 + .033x_3 + .163x_4$ $\frac{037x_1}{x_1}025x_3 + .083x_3 + .000x_4$ $\frac{028x_2}{x_1} + .037x_2 + .039x_3 + .020x_4$ $\frac{020x_4}{x_1} + .057x_2 + .039x_3 + .020x_4$ $\frac{020x_4}{x_1} + .057x_2 + .039x_3 + .040x_4$ $\frac{020x_4}{x_1} + .057x_2 + .039x_3 + .040x_4$	DISPLAY ELEMENT $\frac{Rumway}{Qutline} \frac{Touchdown}{x_2} \frac{Rumway}{x_3} \frac{Texture}{x_4} \frac{Glideslope}{x_4} \frac{Localizer}{x_5}$ $\frac{Text Responses:}{x_4} \frac{165x_3}{x_5}014x_4 + .584x_5$ $\frac{117x_1}{x_1} + .009x_2006x_3058x_4 + .695x_5$ $\frac{.185x_1}{.185x_1}024x_2 + .081x_3 + .072x_4 + .713x_5$ $\frac{ney}{1000x_1} + .019x_2007x_3 + .059x_4488x_5$ $092x_1 + .019x_2007x_3 + .059x_4488x_5$ $062x_1 + .016x_2005x_3 + .038x_4569x_5$ $\frac{098x_1}{x_1}013x_2043x_3 + .029x_4520x_5$ $\frac{098x_1}{x_1}013x_2043x_3 + .029x_4520x_5$ $\frac{098x_1}{x_1}006x_2002x_3 + .056x_4622x_5$ $\frac{098x_1}{x_1}006x_2002x_3 + .056x_4620x_5$ $\frac{148x_1}{x_1} + .000x_2002x_3 + .056x_4620x_5$ $\frac{148x_1}{x_1} + .000x_2002x_3 + .018x_4465x_5$ $\frac{1232x_1}{x_1} + .026x_2204x_3108x_4390x_5$ $\frac{072x_1}{x_1}099x_2135x_3 + .020x_4322x_5$ $\frac{076x_1}{x_1} + .054x_2098x_3079x_4465x_5$ $\frac{072x_1}{x_1}090x_2135x_3 + .020x_4322x_5$ $\frac{076x_1}{x_1} + .054x_2098x_3079x_4465x_5$ $\frac{072x_1}{x_1}090x_2135x_3 + .020x_4322x_5$ $\frac{076x_1}{x_1} + .054x_2098x_3079x_4465x_5$ $\frac{021x_1}{x_1} + .048x_2097x_3041x_4414x_5$ $\frac{000x_4}{x_1}015x_2 + .033x_3 + .055x_4212x_5$ $\frac{000x_1}{x_1}025x_3 + .033x_3 + .055x_4212x_5$ $\frac{000x_1}{x_1}025x_2110x_5020x_4212x_5$ $\frac{000x_1}{x_1}025x_3 + .033x_3 + .060x_4212x_5$ $\frac{000x_1}{x_1}025x_3 + .033x_3 + .000x_4212x_5$ $\frac{000x_1}{x_1}025x_3 + .033x_3 + .000x_4212x_5$	

The findings from this study of final approach position judgments by flight instructors, in response to statically presented images of computer-generated skeletal "airport" scenes, can be summarized as follows:

- 1. The accuracy and speed of judgments are enhanced more by the presence of synthetic guidance information than they are by the perspective projections of any combination of four "contact analog" elements representative of the realworld visual scene on an approach to an airport. When the four T-bars that defined an imaginary Glideslope/Localizer beam (a "highway in the sky") were present, position judgments were rapid (less than 2 sec versus more than 3 sec, on average) and quite precise (in some conditions without error during 36 trials from various positions by each of eight pilots).
- 2. The relative contributions of the real-world cues varied as a function of range from runway aimpoint. Specifically, in the absence of the synthetic guidance symbols, judgments were consistently better when the contact analog elements included the Runway Outline, particularly at Far ranges from the touchdown aimpoint (which was always visible), whereas the presence of the Runway Centerline contributed more at Near ranges.
- 3. Neither the presence of Touchdown Zone markings (in addition to the ever present aimpoint) nor the surface Texture Grid

No.

contributed reliably to the overall accuracy or speed of judgments. In fact, the presence of the Texture Grid was consistently accompanied by slower judgments, and at Medium range it resulted in reliably more incorrect responses in the vertical dimension.

4. There were several statistically reliable first-order interactions between visual elements as indicated in Tables 4, 6, 8, and 9: most notably, the presence of the Runway Outline contributed less when the Glideslope/ Localizer T-bars were present than when they were absent, and the Texture Grid contributed favorably in the presence of the Runway Outline whereas it interacted unfavorably with the Touchdown Zone markers, and the latter resulted in disproportionately slow responses in the absence of the Runway Centerline.

DISCUSSION

The generalizability of these findings is qualified by several factors. The pilots' judgments were made in response to the sudden appearance of static projections of skeletal visual scenes. The sudden appearance of the scene can be considered roughly analogous to breaking out of an overcast on a final instrument approach to a runway. The dynamics of movement toward the runway were not represented, and the scene disappeared immediately following the pilot's response with no indication of the correctness or incorrectness of the repsonse.

The superior performance associated with a synthetic perspective representation of an extended Glideslope/Localizer approach math illustrates the effectiveness of including specific guidance information, clearly encoded, relative to the perspective representation of realworld "contact analog" scenes. This is not to say that dynamic contact analog presentations alone do not contribute to spatial orientation, but it appears that such displays do not support the precise position and projected flight path discriminations required for all-weather instrument flight. The inclusion of guidance and/or prediction information in addition to the essential real-world elements in contact analog displays supports both rapid orientation and accurate control.

The linear regression equations presented in Table 10 account for a substantial proportion of the experimental variance observed but not for `11 of the variance that can be isolated. In view of the several reliable

()

interactions among some of the visual elements, revealed by the analyses of variance, regression equations that included the corresponding higher- ~ order terms would similarly account for additional increments of variance and thereby yield higher multiple correlation coefficients. The values of these higher-order regression coefficients can be determined directly from the analyses of variance for dichotomous variables.

The use of a central-composite design, in conjunction with a conventional factorial combination of experimental display variables, served a somewhat different purpose from that for which CCDs are normally used. In this case, its purpose was to provide an efficient sampling of flight variables likely to affect the pilots' discrimination task, namely, three positional variables (lateral and vertical deviation from desired flight path and range from runway aimpoint) and two flight attitude variables (pitch and bank). Thus the task variables sampled in accordance with the CCD were not experimental variables in the usual acnae, although they could be treated as such, and the data obtained could be submitted to overall regression analyses in which the dependent performance variables would be related to these continuous task variables as well as to the disprete display variables of primary interest.

The testing of pilots' responses to static presentations of computergenerated visual displays was a logical initial atom in the screening of elements of real-world airport scenes that support moleconts of flight attitude and position on final approaches to landanes. The logical next step is the measurement of dynamic, closed-loop pilot performances in response to a relatively limited subset of the 32 displays studied

statically in this experiment. In fact, research currently in progress has already shown that the four essential contact analog elements - horison, runway outline, runway centerline, and landing aimpoint (or target) do result in consistently accurate simulated landings by skilled pilots.

Furthermore, as would be predicted from the results of this experiment, the inclusion of synthetic guidance information, encoded in a form similar to that studied in this experiment, has a comparably beneficial effect upon dynamic, closed-loop landing performance. When presented and withdrawn automatically in accordance with an appropriate adaptive logic, the synthetic guidance cues also appear to facilitate the initial acquisition of landing skills and the subsequent transfer of those skills to situations in which synthetic guidance is not presented (Lintern, doctoral research in progress).

In view of the evident benefits of the integrated presentation of guidance information within true-perspective contact analog scenes, the possible interactive benefits of including dynamic flight-path prediction symbology in the same integrated display should also be investigated. An illustration of how flight-path prediction and a modified "highway in the sky" might be combined in a computer-generated contact analog is shown in Figure 6. If flight-path prediction is presented in this way, the resulting flight control task becomes one of pursuit rather than compensation. Pursuit displays, by definition, have at least two moving indices within a common reference system, one representing the pilot's own airplane or projected flight path and the other representing h's desired position or flight path.

Any flight maneuver, including ones defined in relation to surface objects such as airport runways or ground targets, can be reduced to an abstract, error-nulling task with appropriate sensing, computing, and symbolic display devices. However, when the pilot's tracking task is reduced to that of a simple amplifier providing control inputs proportional to displayed error signals, his unique potential contributions can be lost, namely: resolving uncertainty, judging the reasonableness of the situation, and adjusting his <u>indices of desired performance</u> accordingly. It is by facilitating his intelligent action in the face of opportunity or adversity that pictorial situation displays of the type developed and tested in this program may contribute most directly to flight safety and mission success.

REFERENCES

Арро	tt,	Β.	A.	and	Dought	ery,	D.	J.	Contact	; analo;	g sin	nulator	evalua	tion;
	alt	itu	ıde	and	ground	l-spee	ed (judgi	ments.	Fort W	orth	, Texas	: Bell	
	Hel	ico	opte	er Co	ompany,	Repo	ort	D22	8-421-01	5, 196	4.	[AD 167-	-203]	

- Campbell, C. J., McEachern, L. J., and Marg, E. Flight by periscope. Wright-Patterson AFB, Ohio: WADC TR\$5-142, 1955.
- Carel, W. L. Pictorial displays for flight. Culver City, Calif.: Hughes Aircraft Company, Report 273201/50, 1965. [AD 627-669]
- Cochran, W. G. and Cox, G. M. <u>Experimental designs</u> (2nd ed.). New York: Wiley, 1957.
- Cross, K. D. and Cavallero, F. R. Utility of vertical contact analog display for carrier landings: A diagnostic evaluation. Pt. Mugu, Calif.: Naval Missile Center, Report TP-71-52, JANAIR 201212, 1971.
- Dougherty, D. J., Emery, J. H., and Curtin, J. G. Comparison of perceptual workload in flying standard instrumentation and the contact analog vertical display. Fort Worth, Texas: Bell Helicopter Company, Report D228-421-019, 1964. [AD610-617]

Edwards, A. L. <u>Experimental design in psychological research</u>. New York: Nolt, Rinehart, and Winston, 1950.

٤.

[]

- Emery, J. H. and Dougherty, D. J. Contact analog simulator evaluations: climbout, low cruise, and descent maneuvers. Fort Worth, Texas: Bell Helicopter Company, Report D228-421-017, 1964. [AD 603-744]
- Ketchel, J. M. and Jenney, L. L. Electronic and optically generated aircraft displays. Arlington, VA.: Matrix Corporation, Report JANAIR 680505, 1968. [AD 684-849]
- Kibort, B. R. and Drinkwater, F. J. A flight study of manual blind landing performance using closed circuit television displays. Moffett Field, Calif.: Ames Research Center, Technical Note NASA TN D-2252, 1964.
- Muller, C. G. Numerical transformations in the analysis of experimental data. <u>Psychological Bulletin</u>, 1949, <u>46</u>, 198-223.
- Myers, R. H. <u>Response surface methodology</u>. Boston: Allyn and Bacon, 1971.
- Roscoe, S. N., Hasler, S. G., and Dougherty, D. J. Flight by periscope: Making takeoffs and landings; The influence of image magnification, practice, and various conditions of flight. <u>Human Factors</u>, 1966, <u>8</u>, 13-40 [Originally issued in 1952 as ONR Human Engineering Report SDC-71-16-9].

1

Williams, P. R. and Kronholm, M. Technical report on simulation studies of an integrated electronic vertical display. Norwalk, Conn.: Norden Division of United Aircraft Corporation, JANAIR Report 1161-R-0021, 1965. [AD629-157]

Williges, R. C. Research note: Modified orthogonal central-composite designs. <u>Human Factors</u>, 1976, <u>18</u>, 95-98.

Wulfeck, J. W. and Prosin, D. J., and Burger, W. J. Effect of a predictor display on carrier landing performance - Part I -Experimental evaluation (Part II - Laboratory mechanization, by L. E. Erhardt, F. R. Cavallero, and R. S. Kennedy). Inglewood, Calif.: Dunlap and Associates, Report NR 196-106, 1973.

7

OFFICE OF NAVAL RESEARCH, CODE 455 TECHNICAL REPORTS DISTRIBUTION LIST

Director, Engineering Psychology Programs, Code 455 Office of Naval Research 800 North Quincy Street Arlington, VA 22217 (5 cys)

Defense Documentation Center Cameron Station Alexandria, VA 22314 (12 cys)

Dr. Robert Young Director, Cybernetics Technology Office Advanced Research Projects Agency 1400 Wilson Blvd Arlington, VA 22209

Lt. Col. Henry L. Taylor, USAF OAD(E&LS) ODDR&E Pentagon, Room 3D129 Washington, D.C. 20301

Office of Naval Research International Programs Code 102IP 800 North Quincy Street Arlington, VA 22217 (6 cys)

Director of Technology Code 200 Office of Naval Research 800 North Quincy Street Arlington, VA 22217

Director, Electromagnetics Program, Code 221 Office of Naval Research 800 North Quincy Street Arlington, VA 22217

Commanding Officer ONR Branch Office ATTN: Dr. J. Loster 495 Summer Street Boston, MA 02210

Commanding Officer ONR Branch Office ATTN: Dr. Charles Davis 536 South Clark Street Chicago, IL 60605 Commanding Officer ONR Branch Office ATTN: Mr. R. Lawson 1030 East Green Street Pasadena, CA 91106

Dr. M. Bertin Office of Naval Research Scientific Liaison Group American Embassy, Room A-407 APO San Francisco 96503

Director, Naval Research Laboratory Technical Information Division Code 2627 Washington, D. C. 20375 (6 cys)

Mr. John dill Naval Research Laboratory Code 5707.40 Washington, D. C. 20375

Office of the Chief of Naval Operations, OP987P10 Personnel Logistics Plans Department of the Navy Washington, D. C. 20350

Mr. Arnold Rubinstein Naval Material Command NAVMAT 0344 Department of the Navy Washington, D. C. 20360

Commander Naval Air Systems Command Human Factors Programs, AIR 340F Washington, D. C. 20361

Commander Naval Air Systems Command Crew Station Design, AIR 5313 Washington, D. C. 20361

Mr. T. Momiyama Naval Air Systems Command Advance Concepts Division, AIR 03P34 Washington, D. C. 20361 Mr. George Tsaparas Naval Air Systems Command, AIR 340 Washington, D.C. 20360

LCDR R. Gibson Bureau of Medicine & Surgery Aerospace Psychology Branch Code 513 Washington, D.C. 20372

Dr. George Moeller Human Factors Engineering Branch Submarine Medical Research Laboratory Naval Submarine Base Groton, CT 06340

Chief, Aerospace Psychology Division Naval Aerospace Medical Institute Pensacola, FL 32512

Dr. Lloyd Hitchcock Human Factors Engineering Department Crew Systems Division Naval Air Development Center Warminster, PA 18974

Bureau of Naval Personnel Special Assistant for Research Liaison PERS-OR Washington, D.C. 20370

Dr. Fred Muckler Navy Personnel Research and Development Center Manned Systems Design, Code 311 San Diego, CA 92152

CDR Charles Theisen Human Factors Engineering Branch Crew Systems Department Naval Air Development Center Johnsville Warminster, PA 18974

LCDR William Moroney Human Factors Engineering Branch Code 1226 Pacific Missile Test Center Point Mugu, CA 93042 Mr. Ronald A. Erickson Human Factors Branch Code 3175 Naval Weapons Center China Lake, CA 93555

Human Factors Section Systems Engineering Test Directorate U. S. Naval Air Test Center Patuxent River, MD 20670

Naval Training Equipment Center ATTN: Technical Library Orlando, FL 32813

Human Factors Department Code N215 Naval Training Equipment Center Orlando, FL 32813

Dr. Gary Poock Operations Research Department Naval Postgraduate School Monterey, CA 93940

Dr. A. L. Slafkosky Scientific Advisor Commandant of the Marine Corps Code RE-1 Washington, D.C. 20380

Mr. J. Barber
Headquarters, Department of the Army, DAPE-PBR
Washington, D.C. 20546

Technical Director U.S. Army Human Engineering Labs Aberdeen Proving Ground Aberdeen, MD 21005

U.S. Air Force Office of Scientifie Research Life Sciences Directorate, NL Bolling Air Force Base Washington, D.C. 20332

Lt. Col. Joseph A. Birt Human Engineering Division Aerospace Medical Research Laboratory Wright Patterson AFB, OH 45433 Dr. W. S. Vaughan Oceanautics, Inc. 422 6th St. Annapolis, MD 21403

Dr. Alphonse Chapanis The Johns Hopkins University Department of Psychology Charles & 34th Streets Baltimore, MD 21218

Dr. Robert R. Mackie Human Factors Research, Inc. Santa Barbara Research Park 6780 Cortona Drive Goleta, CA 93017

Dr. Gershon Weltman Perceptronics, Inc. 6271 Variel Avenue Voodland Hills, CA 91364

Dr. Edward Jones McDonnell-Douglas Astronautics Company-EAST St. Louis, MO 63166

Dr. J. W. Wulfeck New Mexico State University Department of Psychology Box 5095 Las Cruces, NM 88003

Dr. H. Rudy Ramsey Science Applications, Inc. 40 Denver Technological Center West 7935 East Prentice Avenue Englewood, Colorado 80110

Dr. Ross L. Pepper Naval Undersea Center Hawaii Laboratory P.O. Box 997 Kailua, Hawaii 96734

Dr. Robert G. Pachella University of Michigan Department of Psychology Human Performance Center 330 Packard Road Ann Arbor, Ml 48104 Dr. Robert Fox Vanderbilt University Department of Psychology Nashville, TN 37240

Dr. Jesse Orlansky Institute for Defense Analysis 400 Army-Navy Drive Arlington, VA 22202

Dr. Stanley Deutsch Office of Life Sciences HOS, NASA 600 Independence Avenue Washington, D.C. 20546

Director, Human Factors Wing Defense & Civil Institute of Environmental Medicine Post Office Box 2000 Downsville, Toronto, Ontario CANADA

Dr. A. D. Baddeley Director, Applied Psychology Unit Medical Research Council 15 Chaucer Road Cambridge, CB2 2EF ENGLAND

Dr. David Zaidel Road Safety Centre Technion City Haifa ISRAEL