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The final results and academic achievements are reported on a program
aimed at investipation of external burning propulsion. Coucentration was
aimed at bluff-base, axisymmetric bodics in supersonic flight with an
approach boundary layer that is fully turbulent, Ap adiabatic near wake
theory was developed which is in excellent agreement with experiment,

A parametric investigation of external burning pecrformance showed that
while high thrust levels can be achieved the specific impulse is lower
than expected, Consequently, future studies should concentrate upon a

combination of base burning and external bvrning,
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. Introduction

kil b il

There arc a great number of potential airv-to-air, air-to-ground and

ground-to=-air weaponry missions that requive either a sustain or wild

Eid

acceleration phase of the missile trajcctory or which could benefit from
3 a substantial drag reduction during a portion of the trajectory. Purther-

more, many of these missions require operation sufficiently low in the

5 atmosphere that airbreathing propulsion, if it is competitive with the
rocket is attractive,

Tuvectigated in this program was the concept of external burning, In
its purest form this consists of burning outside of all shear layers near

the body, in the adjacent supersonic stream, Morecover, this program concen-

trated upon external burning behind axisymmetric bodies with a turbulent

d
-

approach boundary layer, The idea is that compression waves focusing upon

b
7
7
o
£

the near vake will be able to transmit the high pressure through the sub-
sonic portion of the wake and, hence, raisc the base pressure, This concept
is not to be confused with basc burning, whereby a combustible is entrained
into the near wake. While base burning is also promising for base pressure
clevation, the concentration on external burning was motivated by the desire
for high base thrust levels,

The program was analytical in nature but used data from other programs to

validate the theory as it was developed, The program procccded in two steps,

s do i e S A S

The first was to create an accurate, but computationally fast, theory for

EY

the near wake. The second was to incorporate external burning into the theory,

AN P

The results of the first effort are attached as Appendix A and of the second

as App:mdix B,
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b : Sunmary of Results

An integral method was used to construct a theory of the necar wake

behind bLluff base bodies in supersonic flight with a turbulent approach

4
£
S
";,Kf
¥
H
%
3

boundary layer, The method is computationally fast and has been checked

against numerous experiments, with excellent agreement in base pressure,
wake length scales, and detailed field quantities, 'the following conclu-
sions may be drawn from the theory:

(1) The solutiomn of the inviscid supersonic flow adjacent to the ncav
wake plays a strong role in the overall solution, 1t must be treated
in a nearly cxact (method of characteristics) manner,

(2) ‘The base pressure is a strong function of flight Mach number and
decreases with a Mach wmmber increase, llowever, detajiled flow field
quantitics such as the location of the recar stagnation point and

velocity on the dividing streamline are only weak functions of Mach

number,

(3) The base pressure is a weak function of upstream boundary laycer
thickness, However, the detailed flow ficld quantities ave strongly
affected,

(&) One avea wherc there is poor agreeoment between theory and experiment
is that of basc bleed. The theory underpredicts the value of basc
pressure for a given bleed rate,

(5) the integral method, which used the boundary layer approximation

'singularity' problems with

for the viscous near yake, ran into some
some velocity profiles and governing cquations, More investigation is

wvarranted to determine the nature of these singularities, and to sys=-

tematize the procedure for overcoming these, isxperiments show that,
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in fact, the boundary layer approximation iLs poor near the basc plane;
this assumption should be relaxed in future treatment of the probleom,
The above wake theory was then combined with a theovy iucorporating

combustion external to the near wake. The combustion vone was treated as

a nearly onc-dimensional premixed region with a contrifugal corrvectiom, E
The following conclusions may be drawm, 3%
(1) The base pressure may be clevated to a net thrust condition by B

R ) -

this method, but the specific impulse performance with statewof- e

the-art fuel rich propellants is poor; it may be beaten by a 1)

s

conventional rocket, Consequently, it is believed that the pure i
external burning concept should not be congidered alone, but in X

2

conjunction with base burning. External burning provides the means N

for high thrust, whercas base burning can provide high efficiency %

By

i at lower base pressurc rises, E

(2) e primary variables that affect external burning performance are

Mach number, fucleair ratio, total combustible mass flow and the

: fuel calovific value. The performance is inscusitive, within rcason- %
- able tolerance, to heating zone placement und heat relcase distri- ' 5
bution,

J) It is imperative that a theory be constructed for a combined base
1 Y

burning and oxternal burning system in oxder that an upper limit

of porformance can be established,
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Fig. 3 Effects of Mach number on base pressure coe(ficienl.

Figures 2 and 3 show a comparison of some of the results of
the present theory with the experimantal data, and, as scen,
good agreement is obtained. However, theory scems to
slightly overpredict the base pressurc at large Mach numbers
(~ above 2.5) and slightly underpredict the base pressure at
low Mach numbers (~ below 1.8). It is found that, if the eddy
viscosity is multiplied by a factor VA{, 72, a much better
correlation with the experimental results can be obtained for a
wider range of Mach number. Also, the variation of centerline
Mach number and the cffect of boundacy-layer thickness on
base pressure compared well with eaperiments. These com-

AlAA JOURNAL

parisons with the experiments thus show the adeqjuacy of the
present modeling of the corner region and the shear stress, A
number of studies, using the present program, were made and
the major conclusions arrived at ar¢ as follows:

1) The solution of ouicr regime plays a very important role
in the present probiem; the replacement of AMC with the
Prandtl-Meyer relavion resulted in very poor resulis.

2) For better prediction of flowfield details, a good velocity
profile is essential. However, base pressure is affected in a
minor way because of a change in profiles.

3) The base pressure is a strong function of upstream Mach
number and decreases with an increase of Mach nuimber, The
detailed quantities, such as location of the RSP, velocity on
dividing streamline, ¢tc., are only weak tunctions of Mach
number.

4) The base pressure is a weak function of the upstream
boundary-layer thickness. All other quantities such as cen-
terline Mach number, ctc. are strong functions of é,. Hence,
measurement of the latter quantities can shed more light on
and help in improving the corner model.

S) At low basc bleed rates, the theory shows a much smaller
base pressure risc compared with experiments. The inaccuracy
of the boundary-layer equation, in representing the region
close to the base, may be the major reason for this result.

In conclusion, the method developed here is com-
putationally fast, provides adequate details of the near wake,
and hence should be quite useful for preliminary design
pUrposcs.
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- ) Appendix B

: Analysis of Axially Symmetric External

Burning Propulsion for

Bluff-Base Bodies
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Abstract.

A parametric study for an external burning propulsion system was carried
out to investigate potential performance and application of such a system,
The study used a simplified analysis for an external burning zone incorporated
in a realistic near wake axisymmetric supersonic turbulent base flow model
based on the Crocco and Lees approach, The axisymmetric base flow model with-
out combustion has previously been shown to agree well with experiment. The com-
bustion zone is treated as a quasi one~dimensional zone, and is considered both shear
free and non-conducting, With these major assumptions, it is shown that it is possible
to achieve very high base pressures using external burning, The specific impulse
values obtained are lower than reported for the two-dimensional case, In many
cases the performance is less than usually achievable by conventional rocket

propulsion, if current fuel rich gas generators provide the fuel for the ex-
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ternal burning propulsion system, Recent experiments carried out using com~
i pression surfaces to simulate external burning confirm the order of magnitude

of specific impulse obtained by the theory.

L

; Nomenclature
% A centerline velocity parameter in Green's profiles; area
P
R 5
S
¢ : 5 e
E .
£ PP
S A1 Yo rdr
H - Pele
& 2
> Ou
A, 9 rdr
< pPele
) .
. . 3
' A3 J 93 3 rdr
% Pelle
q -
c speed of sound
b specific heat
F fuel-air ratio
g, acceleration ¢ . ) gravity
h static enths . height of core region in Green's profiles
H stagnatio. . o
Hf hoar . per unit mass of fuel
- . § mass injected
I injectiun parameter , {
el Vel Ay
L specific impulse :
&p E
Kl,K2 constants
i, shear layer thickness
ﬁl D mass flow rate in one-dimensional zone
M Mach number
> n natural normal coordina*-

10

g e bt o T
=S EBE o Y



P

H

Iy

R

+3

pressure
radial coordinate

upstream radial location of upper streamline of the one-dimensional
zone

upstream radial location of the lower streamline of one-dimensional
zone

gas constant; base radius

)
1 ' b
Ty v (o
Pele O
entropy
temperature

axial velocity

radial velocity

total velocity

axial coordinate

axial position of the termination of heat addition
axial position of the starting of heat addition
Mach angle

ratio of specific heats

thickness of inner portion of boundary layer
thickness of inner portion after expansion
boundary layer and wake thickness

thickness of viscous layer after separation
incompressible radial coordinate ; characteristic direction
flow angle

Prandtl-Meyer angle

characteristic direction

density
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T turbulent shear stress

t
T1sTg corrections due to non-zero velocity gradients caused by entropy
gradients at the edge of the wake
X heat distribution parameter

Subscripts

b value at the base

e value in external flow

i incompressible quantities

o value at centerline ; stagnation quantity
© value at large distance

1 upstream condition

Superscript

- average quantities in one-dimensional zone

1. Introduction

There are many flight missions which require or wmay bemefit from substan~
tial drag reduction or etimination during a portion of a supersonic trajectory.
It has been reccognized for some time that extermal burning during supersonic
flight can produce compression waves which can be transiated into propulsive
forces on a flight vehicle, This external burning concept is different from
the relatively better cxplored base burning concept(l). In the external burning
method, the combustion mostly takes place in the inviscid flow adjacent to the
viscous wake, while in the base burning method, the low velocity combustible
mixture, injected through the base, burns in the viscous wake, There is a
limitation on the maximum base pressure rise achievable in the base burning
concept, There is no such limitation in the external burning concept, The ex-

ternal burning method has also been claimed to be simple in design and to give

12
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high performance,
The external burning concept has initially been investigated in the
(2)

two dimensional case by Strahle, using the original Crocco and Lees

theory(B) of the near wake flow,. He showed, (i) base pressures much higher
than the ambient pressure, and (ii) reasonable specific impulse values can
be achieved using this concept, Smithey(h) and recently Neale et al.(s),
carried out experiments with axisymmetric bodies, using compression surfaces
to simulate external burning, at Mach 2 and 3, respectively, Their results
confirmed the first finding of high attainable base pressure, But much smaller
(4)

specific impulses were indicated than anticipated. Smithey also applied the

external burning concept to the axisymmetric case, using, again, the original
Crocco and Lees theory. This original theory is known to contain an inadequate
prediction of the length scales of the near wake, Recently, the more detailed

theory of Alber and Lees(6), applicable to the two-dimensional turbulent case,

was extended by the present authors(7) (and also independently by Peters etalgs))

to the axisymmetric case; it was shown to accurately predict the near wake de-
tails. In the present paper, this theory has been modified to treat external
burning propulsion, Calculations are carried out to predict the performance

of such a system more realistically.

A short outline of the theory without combustion and the basic flow model
used in this theory arc presented in Section IL, For more details, one is re-
ferred to the back up paper of Reference (7) or to Reference (9).

Section 111 describes the details of the heat addition zone added in the
inviscid flow region of the above model, Fuel is considered fully dispersed in
this zone and there is no mixing across bounding streamlines. The entraimment
of the air before combustion can be taken into account by shifting the initjal

position of the streamlines, Im reality, there will be a diffusion flame; this

13

i i T L

i Ll

e i




model may be thought of as an effective one dimensional smoothing of the
effects of a diffusion flame, On either side of the combustion zone the
flow field is treated by the method of characteristics (MOC), Between the
near wake boundary and the heat addition zone the MOC is rotational to
allow for injection shock entropy rise and to treat the shedding of the
initial boundary layer. Outside the heat addition zone the MOC is irrota-
tional, The heat addition zone is displaced outward a sufficient amount so
that heated streamlines do not intersect the near wake boundary before the
wake closure singularity (Crocco-Lees critical point) is encountered in a
downstream numerical integration. This allows the near wake to be treated
under an adiabatic assumption. Thus, the analysis of the inner region and
the corner region remain unchanged, except for slight modifications in the
program to take into account the possible compression instead of cxpansion
at the corner,

In the Appendix some computations, using the Mach number distribution
provided by the compression surface~ of the experimental set up of Reference
(5), are shown. The agreement with experiment is good, although the base pres-
sures obtained are about 15% less than those obtained in the experiments,

Section IV deals with the results and discussion of the present external
burning near wake theory. It is first shown that it is possible to achieave
high basc pressure rises without failure of the present computational scheme,
However, the total temperature rise and other values of the parameters have
been limited either by transomic Mach numbers in the heat addition zonc or
by the heat addition zone mixing with tho viscous wake, Next, a parametric
study, based upon the parameters obtained through dimensional analysis, is
carried out, The reference conditions chosen for carrying out this study,

although arbitrary, are sclected, firstly, to give a irarge variation of

14




various parameters before any of the above mentioned limitations come into

the picture, Secondly, they are chosen to avoid large gradients in field

quantitics; large gradients require finer step size and hence more computer

time, With this study, the importance of the various parametcrs are delineated,
Other than the upstream Mach number and the initial boundary layer thick-

ness, which are more or less design inputs, it is essenti~l to have an input

as to how to distribute the combustion to obtain the most efficient utiliza-

tion, and this also has been discussed in a general manner in this sectiom,

II. Highlights of the Theory of the Near Wake

Without Combustion

This theory, which has been presenteu in Reference (7), is an extension

(6)

of the work of Alber and Lees on two-dimensional turbulent supersonic near
wakes, The major points of variance are the treatment of the cormer region,
the detailed form of the eddy viscosity wodel, and, of course, the treatment
of the external flow, The model used to vepresent the near wake flow field

is as shown in Fig, 1. A uniform supersonic flow at constant pressure and
Mach number, with 2 finite boundary layer thickness, approaches the base of
an axisymmetric body. It undergoes an expansion near the corner. The viscous
part beyond the base consists of (1) the recirculatory region and (2) the
shear layer region, while the inviscid part consists of (3) the rotational
layer, which merges into the shear layer, and (4) the irrotational region,

The flow diagram of the approach is showm in Fig, 2. The input variables
are Mel’ 61/R and I. The unknown of the problem is base pressure, and to start
with, this is assumed, The complete flow field is assumed to be adiabatic with
turbulent Prandtl number equal te 1 and to obey the perfect gas laws., For the

sake of analysis, the flow field is divided into two parts, viz,, the corner

15
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flow region and the flow downstream of the base, 'The solution of the corner E:.

ey

; region provides the initial conditions for the flow downstream of the base, 3
i~ B
? Specifically, the thickness of the boundary layer in which the viscous forces -
E

- remain predominant is determined by this solution, This vegion is solved by §
2 an approximate model. ‘the major stipulations in this model arc that the in- =
3 . . . du .
E itial boundary layer can bo represented by a 1/7th pover profile, FYo A = D3R

= 2 : % -
u , , . , , E

%?)6 , and theve is an isentropic cxpansion in the outer streawmtubes, E

1 4

Downstream of the basc, the outer inviscid regime, consisting of regions =

B

(3) and (4), is solved using an approximate method of characteristics (AMC). B

: . . ‘g . v (10) , L

This method is a modification of Webb's method, and is consistent with 3

Ev

. the accuracy and spirit of this approach, The inmer viscous regime, consiste 4

iy

[l
553 e 1

ing of region (1) and (2), is vrepresented by integral boundary layer cquations,
The governing equations used to represent this vegion in the present formulas

tion arce given below.

Mass conservation

d ds _
I (peucAl ) = peYed ax - - PeVebd (1)
Momcntum conservation
4. 2 o S -T2
dx (Peve ™y ) = ve g7 (et ) = = Fr 5t (2)
Mechanical encrgy comservation H
3 2 :
d_Pelle M3y Yo : 3
dx k 2 ) © T An (el ) = - dx Yol = polie Ry + Ty : ’3
(3) e
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Ju addition to these, one more cquation Lg necded near the base for the

chosen velocity profiles, This is taken, for simplicity, as the ceaterline

momentum equat fon,

du
de. ., =2
dx Polo  dx (&)

As the flow 1= turbulent, some modelling of the shear stresy s ves

quired, leve shear stress is ovaluated using the turbulent viscosity cone
cept, the details of which ave given in Reference (7). The integrals in the
above cquations arve obtaincd in closed form using a compressible-incompressible
tramsformation. The solution is started from the basc using two parameter

. ' ) . . . . i .
Green's profites which give a good representation of the velocity profile

necar the base, with or without uwmiform base bleed., Thesc ave given by

e 21 - 2A 0 <Y< h,
O = =i
T\-hi

The use of these profiles results in six unknowns, visz,, p (or “c)’ A,
Vs &, hi/6i and Sv. he external Llow solution provides v (or 00) and 8,
while the solution of Lgs. (1) =~ (4) provides the remaining unknowms. Away
from the base, the velocity profiles are represented by the Kubota-Reeves-
a2y , o
Buss one parameter profiles, As the number of unknowns arc veduced by

one using these profiles, only Eqs, (1) =« (3) ave sufficient to represent

the inner vegiou, The uniqueness of the solution in this approach comes from

the occurrence of the Crocco=Lecs singular point downstream of the wake, The

physical explanation of this singularity is that the near wake, which is sub-
sonic in the mean, becomes supersonic in the mean after this point, Mathe-

matically, this singularity imposes an extra constraint on the problem, And

the base flow problem turns out to be a boundary value probiem, with base

19
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. pressure as the cigenvalue, and a unique solution of the near wake {s ob-
tained,
The strong points of this theory are the swall computer time reguired

to solve the problem and accurate prediction of the near wake details,

1hl. lMcory with Lxtcrnal Buining

Tha type of external burning considered here is the concapt which allows

compression waves to impinge upon the near wake behind a bluff-base body and

to thereby raise the base pressure. Iu ovder to gain a feel for the perform= ?i
ance and to briug out tha ossontial features of an external burning propul- 4%
sive system, a simple model is uwsed to represent the external combustion, ‘the %}_
external burning is limited to the inviscid flow adjacent to the near wake —E

R as shown in Vlig, 3, Fuel is considerced fully dispersod in this zone and there

is no mixing across boundavy streamlines. The heat addition zone is displaced
outward a sufficient amount so that heated streamtines do not intersect the
near wake boundary before the wake closure ginpularily (Groceo-ihees criticai
point) is encountered in the downstream numerical intearation. This allows
the near wake to be treated under an adiabatic condition, just like in the
non=burniug casc, On either side of the heat addition zone the flow field is
treated by the AMC as in Section 11 Between the neay wake boundary and the
heat addition zone the AMC is votational to allow for injection shock entropy
rise and to take care of the shedding of the initial boundary laycer, ‘the heat
addition zone itself is treated by once~dimensional goasdynamics, but with a

contrifugal corvection, the governing equations uszed to describe this zone

are the oncedimensional cnergy cquation

R A

)

Ll)
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the one-dimensional continuity equation

d . =p AV )

dp 5
K L du (8)

and the momentum equation normal to the streamlines

- -2 38 _ _23p
PY ™ T T (9)

Eq, (6), upon manipulation, can be rewritten as

1S (T_oﬁw He g
T dx 1 +F To cprosw dx (10)

L T e

This gives the distribution of total temperature knowing the heat release

rate function., However, in the present calculations, the distribution of

) total temperaturc is assumed; the overall energy equation is used to obtain

the fuel-air ratio. _
c Alo/Hf

Ty Rl T bR el

F =

1-c AT /He (10a)

Eqs. (7), (8) and (9) upon differentiaticn and simplification give

dr
i " _ 200 Sfu L. T1)
1 d 1+ (y=1) 1 di 3% 4 dX
3 ax T 1 2 @ dx T
p 1 +X-§—- M
I S
ZTO dx
- -2 -
1dp ,yMm = 1 at
P dx g2 M 4R




- a6 _ L. Ri7Py 1 i

dx yi? P W (13) i

In addition to these, the geometrical relations needed are

Yo fu-l §
————Aﬁ = tan eu (14)

:
r,~r 323

3 A _A-1 15
i : 5 tan 6, 15) g}

Figure 4 shows the points referred to in the wake flow in the above equations

and also the points referred to later. p and @ are defined as

g - p,_+p
% Poo ot
- (16)
8. +0
. 5 = _u_z_&

Also, as there cannot be a pressure difference or flow angle difference

across a streamline, pL=le2 s Py = Py e& = 8M12 and eu = 61: « However,
~~locity and temperature differences across streamlines are allowed; hence

u may not be equal to u,, etc,

M12 L

: The unknowns involved here are p , ©,, M, Pys

el,’ ML’EL’IU and X, Eqs.{12)-

(15), with the relations provided by the method of characteristics are suffici-
ent to solve for these variables. The solution scheme used is a single vari-
ble (el’) iteration scheme, since it gives reasonable accuracy, and is ex-
plained below:

(i) Llocate point MI2 by extrapolation of p; and @, and using the mass

conservation equation upto the rotational layer,

23
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(ii) Extrapolate V1 2 from the known values of v at points Ml and Ml-l.

Calculate MM12’ and then leZ using isentropic relations,

(iii) Obtain eMlZ using the relation valid for left running characteristics

in the rotational flow, i.e.,
1 Sin 8y DTygo

OS2 = Vw12 " Vm T O - Ny +

Swi2 = Swi

2
yR tan 1o MMI

(iv) Obtain dé/di using Bq. (9), and the new 8. From Eq. (12), find Gu' Also

using geometrical relations (10) and (11), calculate r,-

(v) Find dM/dX using Eqs. (7) and (8), viz.

2 2
dr - dr
- 1 + Y-l ﬁz u —
dM - 2 dx dx
Ii.-' = =« M o) 2 2 -
1 - M ru - r& }
dT
1 =2 0
—_ 1 +y M —_
21, (LM an

obtain dp/dX using Eq. (8), and hence, new values of p and p{

Then
¢

(vi) Next obtain Ml'usingtheisentropictelation,andcalculate vy e

(vii) Obtain 61' using the relation along right running characteristics in

the rotational region, i.e.,
Sin E).ll 1

81/=\J11_1+@11_1 -\)1/+Si.n Wpfoy rl’_l Agll’l:_l

(viii) If the above value of 91' is not the same as that of eu obtained in

step (iv), guess a new value of Ppy 2 and obtaine the solution by

iteration by repeating steps (iii) to (vii).
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The specific impulse is obtained using its definition

A
Decrease in drag aPy Ab
I = = e——
sp Mass flow rate of fuel me B
which gives
Loy oy
sp - F/(+F) m g (18)

Finally, two major points of interest should be noted in the present
analysis, First, consider Eq. (17). The second term in the parenthesis
mostly dominates at least by one order of magnitude the contribution of
the first term for large M. But as more and more heat is added, as %%
is negative for M > 1, M moves towards 1, and the order of magnitude of
both the terms becomes cqual, Thus the approximation of one dimensionality
becomes very poor near M equal to 1. Secondly, in the concept of external
burning, there is high loss of energy because very hot gases leave the sys-
tem,

IV, Results and Discussion

The present calculations are made with a fuel of comparatively low calo-

rific value, 10,000 Btu/ib, as this value is easily achievable from current
: 13 . )

fuel rich gas generators + The freestream temperature is assumed to be

o, . . . o . . , -
519"R, 1he combustion is assumed to be 100% efficient, The maximum ratio of
fucl to a2ir that is permitted is the stoichiometric fuel-air ratio, since
no mixing or diffusion flame is allowed in the present modeli., However, a

rough computation, using a simple fuel, showed that this limit is reached

after the M = 1 point, where the present computations are invalid. The

molecular weight ete, of the mixture is taken as that of the air,

In order to check whether or not the inclusion of the one-dimensional

zone would substantially degrade the original theory of the near wake, a
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few no=heat addition cases with various dimensions of the one-dimensional
zone were computed and compared with the original method using the AMC in
the outer flow, The agreement between the centerline pressure distributions
of the approximate and exact solutions is within 5% everywhere, showing that
a one-dimensional treatment of the heat addition zone should not yield un-
acceptable error, However, this variation must be kept in mind when inter- ;
preting some of the results showing the effect of various parameters,

Figures 5 and 6 are the results of the computations carried out close to
the M = 1 limit, with total temperature rise (or fuel-air ratio, see Eq.(10-a))
as the parameter, These runs confim the finding of previous research workero’a’s)
that high base pressure rise is possible using this concept, Also, this figure
gives a feel for the specific impulse values that can be expected at practical
base pressure rises with this method, The specific impulse decreases, i.e.,
the system becomes less efficient,both with increase of the Mach number and
increase of the fuel-air ratio. The minimum value of the specific impulse

. T

shown in Figure 5 is about 86 secs., occurring at Mach 3.0 with A'lo = 2.27
To Yo - * »

with a corresponding base pressure value equal to 1,85 times the ambient

pressure, ‘The maximum value of qu is about 198 secs, occurring at Mach 2,0
with _ATO

T

0,

- 0.267 with a corresponding base pressure value equal to 0,739
= 0, s

times the ambient pressure. lhe rear stagnation pressure and the base
pressure rise with the increase of fuel-air ratio, but there is not a one-to-
one correspondence in their rises, For a fixed Mach number, this is mainly
due to the movement of the rear stapgnation point (RSP), The location of the

RSP tends to reach a limiting value at higher fuel-air ratio, and then

ApRSP/Apb becomes almost constant, This ratio is also affected by Mach number,

and other parameters which move the location of the RSP,
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Next a parametric study was conducted to delineate the importance of
various design variables. From dimensioual analysis, the specific impulse

can be written in terms of the non~dimensional parameters as follows

Tofo ¢y SL o Twon Mty oy By eyt
c X%1* R > R*R?* R *R'T * R
el o, f

To conduct this pavametric study, the reference or design condition is

LR Rttt e st vl 4

D g

chosen on the basis that, firstly, it should allow a study of a large varie
ation of parameters, and secondly, the computer time for this study should

be low. For a high heat addition and a Lkigh Mach number design point, the
gradients occurring in the flow field are large, and a smaller step size

and hence more computer time is required, The present study is made at medium

heat addition, uniform combustion, with the following values of the parameters:

Mel = 2.0

/R = 1.5
G X /R = 2.8

1.5

i}

¥ /R

il

r,/R 1.9

I

§,/R = 0,181

1
AT /T, = 0.398

cptn/ﬂf = 0,01253

Table 1 shows the effect of the heat distribution parameter, Three types

of heat distributions were studied, and these correspond to (a) a combustion

] dr -
zone which decreases in strength with distaunce, i.c., L0 = g, (1~ =5 )
dx 1 X Xy ’

(b) a constant combustion rate throughout the heat addition zone, i,c,,

daT
-2

- and (c) a more rvealistic type of combustion - a slow rise in the
dx

=K2’
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Table 1, Effect of hecat distribution parameter

Type Representation S ‘el 2
el
k = (‘I‘6.
a 1° > 12,32
U S
1.3 ~
b k2 = 286.5 l 12,35
-t < 13 A

b} T
c 337, / \ 12.45
4

kg 02h7 0.9 - >>-‘.2‘(

intensity of combustioun representing the ignition stage, followed by uniform

combustion and then a tapering off stage, As shown in Table 1, there is virtu-

ally no effect of the distribution, However, it should be noted that this inter=-

pretation is correct only if the combustion zone is small, so that all the cowm-
pression waves hit in the initial portion of the near wake, If the combustion
zone has a large length, type (a) will be the best since therc will be less
wvasted heat,

The effect of frecestream Mach number on specific impulse and base pressure

rise is shown in Fig, 7, Isp Mel go/ccl and L\pb/(p1 Mel) are plotted instead of

ISp go/cel and L\pb/p1 since they are less dependent on the Mach number, Isp

falls from 252 secs., to 110 secs, as Me is increased from 1.5 to 3.5. The

1

variation of some typical features of the ncar wake, and p , are also

¥Rsp RSP

plotted on the same figure, The variation of these is almost opposite to what
is obtained without heat addition,

Figurc 8 shows the variation of various variables with upstream boundary
layer thickuess. The cffect of the heat addition, in general, is to nullify the

31

L

i3 XAk 7t i
i fotogrie

el Sy

,«:“-&,"—'H‘

4Tk ki

o

Pt ok

TR
M

S

e T T

v
gt

o5 pusmars

"
&

A

L&
3
3&
3

ey phre

eI S i N Y

i T g s e




. Siae ar s -
T T e LT VI T 0 . ..
AP e it Bt byl e O o o, il
B A R ’

I
42

4

=9
ES
Bl
=4
E\

Apbb— lsP, . ’

A2~ 12 2.5*R
p

Wlfh Heat O‘A*XRSP/R

06 6.1 \, “Prse/PL 2

s

-
s\‘ T et - - o o T T 08
\\ .

-
D P
- - -

0 15 2.0 2.5 3.0

Figure 7, Effect of Freestream Mach Number,

32




)

EY =
[

33
R
=3
A=
I

i bt il u;,:

i R \'w"\w":ﬁ"".ﬂ \:’*!IT" 7

bt Yo

G 3

,.A‘v-'l

e A

LR L

CL

ek

g e s

T py

14,

] 2.r

X
RSp -
e —
RSp/p, T—

- ~

\pr/f)] y .

-
-
6. m_,.,_..,.—«—-é‘/-:“*

A |

I

\No Heat ) )

l ) | 0.

Figure 8,

0.1 0.2

Effect of Upstream Boundary

33

Layer Thickness,

W | ! el s gt i ; Al it ) s IR I TILL .
et Bl g s I ey gl Gyt o Ll e I e L -
g 1 kit IR T i oy, UL o e B s+ o Kl ATk NG: T SBO LT
s THRAL s Ay AR B FTAP RS e i i

s

A

4

L e U L it e e T e o

ik iy 2

Aoboi .

e M,




offect of boundary layer thicknegs on base pressure without combustion, the specific

y impulse veaches an asymptotic value afver amoderate thickness of the boundary layern,
The effect of variation of the combustible wmass by varying the upper
streamline position is shown in Pige 9. The value of l‘l;p increases from

302 to 142 secs., and p, increases from 0,638 to 0,935 as r"/R Ls raised

.y ’ b .p
from 1,6 (== = 0,31) to 2.4 (it = J.51), APRSP/APb’ the
Pel el b Pel el Mo

shape pavameter of the centerline pressure curve, almost remains constant
(not shown), while SRSP/R increases with an inecrease of r"/R.

Figure 10 shows the variation of specific impulse parameter and pressurce
vise pavameter with axial location of the heat addition ronc, The flat maxie
ma in these curves verify the results obtained with the variation of heat
distribution parvameter, x. lowever, as the heat addition zouc is moved fars
ther and favther away from the base, part of the compression due to external
burning affects the flow downstream of the wake critical peint, and is in-

' effective in a base pressure alteration, Finally, a condition is reached when

el at

the presence of exterual burning is nol

-

111 by the near wake, and the

L4
’"e

same near wyake details, as without combustion, are obtained, lhis Figure also
variecs Linearly with x, in most

i

of the portion, as expected from the experiments with compression surfacces,

shows the varviation of x /R and p

RSP rep/Pre Xpsp

Figure 11 shows that there is an optimum rate of burning the fuel (or heat
addition race), The maximum is flat, as would be cxpected from the studies of

vaviation of yx amnd x The sharp fall in performance parameter after some

n*
stage is again due to the fact that part of the heat addition becomes uscless.

The chavactexistic propertics of the centerline pressure distribution, /R

£
R§P
and ApRSP/Apb, have an almost similar shape,

The ecffcct of the radial location of the heat addition zone on the perform=

anee, as shown in Fig. 12, is very weak, This is again due to the basic wechan-

. ism of vaising the base pressure in an external burning system, The compression
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wvaves caused by the heat addition mecet the viscous wake before the critical

point for almost the whole range of rL/R shown in the figure, varies

*RrSP

linecarly with ¥ (as would be expected from the study of variation of XH),

L
vhile Prgp Femains almost constant,
Figure 13 shows the effect of Alo ( Fl& ) Curves very similar
T S N\ v
0, po,»

to those presenting the effect of the change of combustible mass are obtained,
Isp varies from 250 to 189 secs. and pb/p1 varies from 0,613 to 1,011 as

AT/t

changes from 0,07 to 0.94. The location of the RSP and ApRSP/Apb

approach asymptotic values with high values of AEOITO o
b4

Finally, the variation in perfommance with the freestream temperature is

shown in Fig, 14, This variation, however, can be easily predicted, The base

pressure is independent of 'l‘m or Reynolds number when the flow is turbulent

(except from the weak effect which comes through the boundary layer thickness).

Using this informatjon with the definition of Isp as given by Eq., (18), it can
1
be shown that 1 Sl e}
P /T
From the above study, the question of how small variations (intentiomnal
or unintentional) from the reference point will effect the performance

can be answered, Some parameters like (x.,-x.) and r_ have previousl
p X,x“» xth y

L
been shown to have secondary effects on the performauce for rcasonable design
cotditions., Figure 15 is the plot of the specific impulse parameter against the
total energy parameter, and is obtained from Figs. 9 and 13, It shows that
for the previous reference coaditions, it is more efficient to change the
fucl-air ratio if a little higher base drag reduction is required, and to
change rH/R if a little lesser base drag reduction is required for the same

projectile, same Mach number and altitude of flight, However, no optimiza-

tion studies have becen carried out,
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V. Conclusions and Conments 1]
The present study shows that the performance of an external propulsion g

system is strongly dependent only on the upstream Mach number, fuel-air ratio, ?

the combustible mass and the fuel calorific value, Also the system becomes

more efficient with a cold freestream. For preliminary design of this system, gg

reasonable values of heat distribution parameter, axial and radial locatjons, 5

and length of the heat addition zome can be assumed, as their effect on the

performance is only secondary. Thus for a given projectile flying at a given
Mach number and altitude, and given base pressure rise, the optimization

problem is reduced to the selection of rH/R and ATO/To o One rule of thumb
3

T Sy

,
ORI I e TN Ot v

which came out of these studies, and should be helpful in extrapolating ex-

st

perimental results, is that, except for very low hcat additions, base pres-

i et

ey

sure remains constant with Mach number and upstream boundary layer thickness

for the same values of other parameters.

_A_ ‘
,m,_. T

The question whether the present values indicate an upper limit of per=~

SEo0 it

formance is unanswered, To answer this question, onc has to consider two 8
effects, viz., the losses due to viscosity and the mass entrainment in the ?i

3
heat addition zone due to mixing. An improvement in modelling of the external %‘
burning zone is required to answer this question satisfactorily, i

o

Finally, the present calculations show that although high net thrust can
be obtained using the external burning method, this method is not efficient

unless a high Btu fuel is used. Its performance falls short of that of con-

ventional rocket propulsion systems, However, it is still attractive because
of the simplicity of design. Its performance probably can be boosted by com-
bining this method with the base burning method, which is very efficient for
low base pressure rise values, More experimental and theoretical work are

warranted to check these conclusions.

(e el e e
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. . 5 .
the present theory was compared with experimeuts( ) in which external

compression was carried out by wodifying the shape of the wind tunnel test
section, The conditions on the initial Mach wave at the corner yere obtained
using potential flow theory, ignoring shocks and the boundary Llayer thickness.
e effect of the boundary layer in these calculations was taken into account
in a similar fashion as in the original theory, The rotational layer was ig-
noved Ffor simplicity, and, also, since the base pressures were high with com-
pression surfaces, the viscous forces rempin predominant in whole of the initial
boundary layer. Figures 16 and 17 show both the experimental and theoretical
results. The agreement between theory and experiment is reasonable, although
the base pressure obtained is about 15% less than given by experiment, Some of
the difference may be due to (i) the approximations made in calculating the
conditions on the initial Mach wave, (ii) the slight compressiom caused by

the boundary layer on the tunnel wall, and (iii) the slightly improper account-

ing of the boundary layer thickness effect,

46

A S ST o e e S AT AT




AR o i T

T '}‘W"MW‘W“"‘"" TR Ky

TR PT

sopacers,

:;,4

A1 123450

vy MR 777

~ ~ ~ ~ ~
S~ \\\:\\\\\\\\\\

R \\“\t\;\\:\\\\\\:\\\

~ o ‘\‘\\\ \\\ ~ . S

‘ TITTT ¢ 7 ’
i Centerbody }
) . e e ()

jon G
.
-~
’
, ~

Py ' Compresssio‘n‘\‘}\’\ Base
ection O~~~ o Thrust

=TT ]
\7\1)0~\““O~\\ 1 -
& g Base

“.| Drag
= “\ l“
Without External Compiression
0.5“.:'__._..4‘, e e e e e et m an vm - v en - - =
L. -
) ~—— Theory i
. ---- Experiment |
090;._____ I L i l 1 i 3 l ] l )

0 ] 2 3 4 5 6
Spacer lLength—Base Radii

Figure 16, Cowmputations with External Compression:
Effocr of Exteral Compreasion Sturength
and Location on Base Pressure,

47




TN e J i e P ,{c-x_: P _Wu-'_m-«- yuhsdy

»
| | I | I
¥RSP
R o i
50 Compression .
’ Section 1

-

o
1

1.0 —— Theory |

---- Experiment
-
0.0 1 | 1 | |
0 1 2 3 4 5 6
Spacer Length— Base Radii
Figurve 17, Computations with External Compression:
Effect of External Compression Stromgth
and location on location of the RSP,

4
L3

Lol g e el el e

L il




