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Abstract

A commonly encountered integer linear program, basic
to cyclic staffing and scheduling, has a constraint matrix
possessing the property of "circular 1's in columns.” 1In
general, such a matrix is not unimodular, balanced, or per-
; fect. Nevertheless, many such problems may be efficiently
E solved for integer answers. A change of variable transforms

them to comfortably finite and reassuringly predictable

series of minimum cost network flow problems.
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CIRCULAR 1's AND CYCLIC STAFFING

1. Two Fundamental Staffing Models

Consider the integer linear program

min cXx
s.t. Ax > b (1.1)
x > 0, integer

where, throughout the paper, b and ¢ are vectors with all

entries integer and A is an m x n matrix with all entries

0 or 1. Without loss of generality, we may assume b, ¢ > 0.
To represent continuous workshifts in linear time, a

common staffing model has A possess the property of conse-

cutive 1's in columns (e.g., Veinott and Wagner [19]).

Such matrices are happily met since they are known to be

totally unimodular; moreover, for such matrices, problem

(1.1) is equivalent under linear transformation to the

minimum-cost network flow problem

min cx
s.t. [TA, -Tlx = Tb (1.2)
X > 0, integer

where T is the m x m matrix




T = -1 °. (1.3)

and where "equivalence" means here that X solves (1.1) if
and only if x solves (L.2) [11,12]. Transforming (1.1) by
T to reveal its network structure corresponds to succes-

sively row-reducing the constraints of (1.1) [19].

T

Since the minimum cost network flow algorithm is formally
efficient [8 ], we may consider (1.1) to be efficiently %
solvable in its guise (1.2). | ’

The second basic staffing model represents continuous

workshifts in cyclical time ([3]. For this model the matrix

A possesses the property of circular 1's in columns (18],
as for instance in Example 1.1, where the strings of 1l's

may be imagined to wrap around the matrix. Such matrices

are in general neither unimodular, balanced, nor perfect [16].
Indeed they are notorious for the fractional extreme points g
which they induce in (1.1) [13].

A special n x n circular 1's matrix has in each column

a band of k 1's permuted cyclically (see Examples 1.2 and

1.3). We will call these (k, n) matrices.

The most fundamental of the cyclic staffing models is

given by

min

&1 &
v

b (1.4)

s.t.

b
v

> 0, integer
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Example 1.1: A matrix with "circular 1's in columns."
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L. 0 0 I R
Example 1.2: A (2, 3) matrix. Example 1.3: A (3, 5) matrix.
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where A is a (k, n) matrix. The objective corresponds to
minimizing the total workforce size necessary to meet
period manpower requirements b. For a a (5, 7) matrix,
this problem was studied by Tibrewala, Philippe, and Browne ;

[17] (also by various others [2,4, 6,15]), where the (5, 7)

matrix represents workshifts with two consecutive days off
each week. They observe that their solution generaiizes

to A a (k, k + 2) constraint matrix. A rather more complex
solution technique is proposed by Guha [10] for general (k, n)
matrices. In this study we generalize problem (1.4) in two
ways and offer considerably simpler and formally efficient

solutions.

2. Transformations of Variables

Consider the problem

min cx

s.t. Ax > b (2.1)

x
v
(=]

which we may write as

min cx

(4] 3]

Now let T be a nonsingular matrix and consider the change of

v

variables X = Ty. Since T is nonsingular, (2.2) is equiv-

alent to




min (cT)y
S, AT
T

in the sense that if x is feasible to (2.2), then T

b
2 0 {2.3)

; unrestricted

=i

13 is
feasible to (2.3), and if y is feasible to (2.3), then Ty
is feasible to (2.2). If in addition T is unimodular, then
if x has all integer entries, T-li has all integer entries,
and if y has all integer entries Ty has all integer entries.

Therefore,

Observation 2.1: For T nonsingular and unimodular the in-

teger-constrained versions of problems (2.2) and (2.3) are

equivalent in the sense that x solves (2.2) iff y = 1%
solves (2.3).
We will use this insight to construct equivalent integer

programs wherein special, exploitable structure is displayed.

3. Almost a Network

A key idea of this paper is that under certain condi-
tions, when A is a circular 1's matrix, problem (1.1) is
"almost" a network flow problem. Problem (3.1) below,
where A is a (3, 5) matrix, will provide a'continuing illus-

tration of this class of problems. Later we will observe

that the ideas to follow generalize easily.




min clxl + c2x2 + c3x3 + c4x4 = csx5
S s R | SR SR (e T Py
i | | ) [,
1 1 1 0 0 b
0 1 | R SRR
(s S ) SRR SRR 13
x 2 =~ (3.1)
1 0 0 @ 0
0 AL ) a6 @
R RS S S 0
1
0 o © il 0
l_o 0 6 0 1 s

X integer
where the nonnegativity constraints are expressed by the lower

portion of the matrix. Perform the change of variable given

by x = Ty where T is defined in (1.3). Such a change of
variable corresponds to successive column reduction of matrix

A, and results in

min (cl-cz)yl + (c2-c3)y2 + (c3-c4)y3 + (c4-c5)y4 + Ce¥g
s.t. 1 0 =1 0 17 i
0 1 0 -1 1
0 0 1 0 0 b
=ip 0 0 1 0
, 0 SR N R B
Yy > - (3.2)
1 0 0 0 0 &
? : -1 1 0 0 0
| 0 =k k00 0
; S R e
€8 He e T L
| y unrestricted but integer




Moreover, since such a T is both nonsingular and unimodular,
(3.2) is equivalent to (3.1) as an integer linear program.
Thus solving (3.2) solves (3.1). We solve (3.2), on the
strength of the following,

Observation 3.1: With the exception of the last column,

that corresponding to Yoo problem (3.2) is the linear pro-
gramming dual of a network flow problem.
That is, if we fix (temporarily) yg, problem (3.2) may

be written as

csy5 + min (cl-cz)yl + (cz-c3)y2 + (c3-c4)y3 + (c4-c5)y4

g, 1 1 0 =L 0 i b, - yg 5

6 1 0 =1 b, - ¥g
o 0. E 0 by

=1 -0 0k 5 ¥ 7 b,
B T Y2 > 5 (3.3)
1090 Yy 0

=0 MR U SR L vy 0
0«1 1 8 0
g 6 =1 1 0

Lo 0 o0 -1 | = 5

Yir Yyr Y30 ¥y unrestricted but integer

which is the linear programming dual of a network flow
problem. The obvious idea is to fix values of Yg over its
allowable range and solve corresponding network flow pro-

blems until the best objective value is found. Let us re-

fine and extend this idea.




4. Properly Compatible 1's

Following Tucker [18], we define a 0 - 1 matrix A

to have properly compatible circular 1's in columns if

and only if (i) the 1's in each column are circular, and
(ii) for any two columns Ej and a,, if the first (in a
cyclic sense) 1 in 5j preceeds that of Ek, then the
last (in a cyclic sense) 1 in Ek does not preceed

that of Sj. Roughly speaking, if a circular band starts
later thah another, it can end no earlier. The matrices of
Example 4.1 illustrate properly compatible circular 1l's in
columns. Fof matrices with this property, a natural

ordering of the columns suggests itself,

Column Ordering Algorithm

1. Order columns in groups, where group i consists
of those Ej whose first (in a cyclic sense) 1 appears in
row i. Then,

2. Within each group, order columns so that ;j pre-‘
ceeds Ek if the last (in a cyclic sense) 1 of ;j preceeds
that of Ek. The columns of Example 4.1 have been so
~ordered. Henceforth, we assume, without loss of generality,
that a matrix with properly compatible 1's in columns has
its columns ordered as above. Important for us shortly will

be

Observation 4.1: A matrix with properly compatible circular

1's in columns has the property of circular 1's in rows.

Consider now the problem

L et




Example 4.la: Properly compatible circular 1l's in columns.

R SR A - S S
) S U e B
o AN R SRR SR |

WA B SR S

Example 4.1b: A circular 1l's matrix, the columns of which
are not properly compatible.




min cx

s.t. Ax > b (4.1)

v

> 0, integer

Xi
\

where A has properly compatible 1's in columns. Perform
the change of variables given by X = Ty, where T is the non-

singular unimodular matrix defined in (1.3). Then, we have
min (cT)y
s.t. AT
T

Since A has circular 1l's in rows, each row ;i of A has

an equivalent integer linear program
o

L ] (4.2)

y unrestricted but integer

]|
ol O

either consecutive 1l's or consecutive 0's [18]. Therefore

each ;i is of the form

(i) r; = (0,...,0, 1,...,1, 0,...,0), or
(i) ¥, = (,...,1, 0,...,0, 1,...,1), Or
(iii) ry = (1,...,1, 0,...,0), or

(iv) ry = (0,...,0, 1,...,1)

But then each row ;iT of AT is of the form

(1) r;T = (0,...,0, -1, 0,...,0, 1, 0,...,0), or
(ii) r,T = (0,...,0, 1, O,...,0, -1, 0,...,0, 1), or
(iii) r;T = (0,...,0, 1, 0,...,0), or

(iv) r,T = (0,...,0, -1, 0,...,0, 1), respectively.

Note that, excluding the nth

column, each row of |AT | has at
T




most one +1 and one -1, all other entries being 0.

-

For notational convenience, let us partition T into

th

its n column and the remainder of the matrix: T = [Tr, En]

th

= [T, En], since the n~ column of T is ;n = (0,...,0, 1).

Similarly partition y = (§r, yn). Then problem (4.2) may

be rewritten as
min (CTr)Yr + Cn¥n

(4.3)

]
(X}
%]
=
v
ol

§r' . unrestricted but integer

Now we can formally state
Lemma 4.1: If for problem (4.1), A has properly compatible

circular 1l's in columns, then under the prescribed change of

r

Ty

That is, for fixed integral the resultant version of (4.3)

variables {%T ] is the transpose of a network matrix.

min (cTr)yr
s.t. | AP i b-ay
1 ¥ B “H (4.4)

;r unrestricted but integer

is the linear programming dual of a network flow problem.
Thus, problem (4.4) is efficiently solvable, at least through
its dual. This suggests the idea of searching through the
allowable values of Ypo solving a tractable subproblem (4.4)

each time, to find a (?;, y*) which minimizes (ETr)ir it

11




54 Stalking the wildgyﬂ

First we determine the allowable rangé of the integer
Y, Let y¥ be a value of Yo in some optimal solution to
(4.2) , and let b be the largest entry in b. Then

Lemma 5.1: b < y* <

e *
enw = 48 & lb for some ¥

Proof: Since y = r~1%, and

1
3

B S
T e

we have that ¥ = I1X. To show the lower bound, it is

sufficient to observe that sihce X > 0, y_ = Ix > ga..x. >
bi ¥ i. Therefore, y; = bmax.
To establish the upper bound, we may assume that at
optimality every variable in (4.1) appears in some tight
constraint, since otherwise that variable could be reduced,
feasibility maintained, and the objective function not in-

creased. Summing over the set S of tight constraints yields

I 3d4..%x = T b pbutlb>Eb, ef T a x> Ixk ey,
= 1] = n

feg 329 1 -4 ® ies T ies 3 J

Q.E.D.

To remind us of its dependence on y,, let the objective
function of problem (4.4) be written as (ETr)§r = z(yn)
and let the optimal value, for fixed Yoo be z*(yn).
s * i i 1ib
Lemma 5.2: 2z (yn) is convex in y, over bmax £ ¥, € 1b.
Proof: Since the constraint matrix of problem (4.4)is

totally unimodular, the integral restrictions may be dropped.

Then the desired conclusion follows from similar results

12
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for continuous-valued linear programs (e.g., Geoffrion and
Nauss [9]).
Q.E.D.
Lemma 5.3: The optimal function value (CT)y of problem
4. i i 1b
(4.2) s convex in y over bmax sy, ¢ 1b.

Proof: Clearly Cn¥n is convex in Y,i z*(yn) is convex in

- by Lemma 5.2, so since sums of convex functions are convex,

0 B is convex in y . But this is the optimal

fu.ction value of problem (4.3) and therefore of problem

(4.2)
Q.E.D.
3 6. A Solution Technique
Given the problem
min cx
' s.t. Ax > b
i = (6.1)

x > 0, integer

where A has properly compatible circular 1's in columns,

the preceding results justify this solution procedure,

Step 0: Perform the change of vartiables

Let x = Ty, where T is defined by (1.3) to form the equivalent

problem

min (cT)y

5.t [ AT Y b
s 3E 3 R
T {0

y unrestricted but integer

————————

(6.2)

’ Step l: Solve the equivalent problem, (6.2)

-

ey . '
o 5 o .




A. Note bounds on integer y;: bmax < y; < 1B,

B. Minimize z*(yn) L R (CT)y over this interval.
Since is i % i i
Y, 1s integer and z (yn) + c v, is convex in Yy *
an efficient technique such as Fibonacci search [21] may be
used. Furthermore, for fixed Yy z*(yn) is readily calcul-

ated by solving

z*(yn) = min (cTr)yr
ATr 2 b -_anyn L
T Yr 2 | 0 - ey V- 90
r n’n

y_ unrestricted but integer

Since this is the dual of a minimum cost network flow prob-

lem, it is efficiently solvable. Let (cT)y* = min z¥(y, ) + 0¥,
Yn
and let (§;, v = y* be the associated solution; then y*

solves (6.2) and (cT)y* is the optimal function value.
Step 2: Construct the optimal solution to (6.1) by

the change of variables X* = Ty*,

7 Efficiency of the Algorithm

This solution procedure works efficiently, even for
pessimists, by the following worst-case analysis.

Step 0, the initial change of variables, requires no
more than 0 (mn) steps.

Step 1 requires the solution of (6.3) for fixed Y,
But the network flow algorithm solves (6.3) in a number of
steps which is bounded above by a polynomial in the size of

the encoding of the problem data [8]. We may take this.

14




polynomial to be p(m, n, log, 1b, log, 1z, y,) . But since

y; < 1b, logzy; < 1og2 1b, so that we may consider the solu-
tion to (6.3) to require no more than 0(f(m, n, log2 1b,
log2 1c)) for some polynomial . And since Fibonacci search
requires that we consider no more than 0(log3 1b) values of

Y,s we may determine y* = (y*, y*) is no more than 0(1og315

«f(m, n, 1092 1b, log2 1c)) steps.

Step 2, the final change of variables, requires 0(n)
steps.

Therefore the solution procedure solves (6.1l) in at
worst 0(mn + log, ib « p(m, n, log, 1b, log, Ic)) steps.
Since this is polynomial in a binary encoding of the pro-
blem data [1], we have proven
Lemma 7.1: Problem (6.1) is solved by the solution tech-
nique with formal efficiency relative to a binary encoding

of the problem data.

8. A Special Objective Function

For a special objective function, a wider class of
problems may be solved and additional results discovered.

Consider

s.t. Ax > b (8.1)

> 0, integer

x
Y

where A displays the property of circular 1l's in columns

(not necessarily properly compatible).

15
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We say that column Sj of A dominates column Sk if

Sj > Ek entrywise. Consider two such columns and let

Xk = (xi,...,x;,...,x}t,...,x;) solve (8.1). Then
(xi,...,x; + x;,.;.,ok,...,x;) is feasible to (8.1) and,

moreover, has the same (optimal) objective value. Therefore
Lemma 8.1: An optimal solution to problem (8.1l) exists
for which none of the columns of A corresponding to nonzero

variables are dominated by any other such column of A.
Therefore we may reduce (8.1) by eliminating any columns

of A (and associated variables) which are dominated. But
then the resulting matrix displays properly compatible cir-
cular 1's in columns, so that the problem is solvable by
the approach just presented. (Note that, in fact, it is
sufficient for this conclusion to assume so—calied "agree-
able" costs, for which ¢ < ¢, iff Ej > ay (cf., [14])).

Let us assume that the matrix A has been pruned of
dominated columns. Then the special properties of the
transformed problem are of interest. 1In particular, the
new objective function is (cT)y = En§ = 5§r +y, . Thus
solving the transformed problem (6.2) is tantamount to
finding the smallest integer Vs for which the constraints
of (6.3) have a feasible solution. Equivalently, we seek
the smallest integer Y for which the dual network flow
problem to (6.3) is not unbounded, i.e., is free of cycles
of positive net cost.

For the special objective function cx such that
c

>c ++« 2 ¢ _; (which includes the objective function

1 2 2
1x), a particularly simple solution technique applies to the

16
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E

transformed problem (6.3). The new objective function has

the property (ETr) > 0; furthermore [A{] has no more than
Ty

one +1 in each row, and at least one +1 in each column. Thus
this version of (6.3) is solvable by the simple recursive

substitution scheme of Dorsey, Hodgson, and Ratliff [ 7].

9. Close Enough

For the transformed version of problem (8.1), an
interesting round-off result holds (see similar results in

[4,20]). Recall that the transformed, equivalent version of

(8.1) 1is

n
s.t. ATr a, yr b
& - & (9.1)
Tr e, Yy 0
§r' ¥ unrestricted but integer
Lemma 9.1: Let y' = (yi,...,yg) solve the continuous-valued

relaxation of (9.1) then y* = (fyi],[&é],...,f&é]) solves
the integer-restricted problem (9.1).

Proof: Clearly ryﬁ1 is a lower bound on the optimal function
value of (9.1). Moreover ([&{],[&é],...,[};‘) is an integer-
valued vector which achieves this value. To see that this
vector is feasible to (9.1), we will show that it satisfies

each of the constraints, of which there are three types:

(1) Yy < ¥y 2 b,
(ii) yj -~ ¥x + ¥a > bi
(iil) y,?2 bi

J




First observe that for any two numbers a and b,

- [al = |-a], (9.2)

and

[a] + [p] > [a+b] (9.3)
By (9.3), ra-b] + rb1 > ra] so that rb1 - ra] > -ré-ﬁ] = Lb—aJ

by (9.2). Then by the last inequality we have

(1 T3] - Tvid 2 |v5-vi) 2 |by) = by since by
is integer.
(i) Tysl - Tyl + Typd 2 [vdewsl - Togd 2
l.yi—y]'(«ty;d 3 LbiJ = b, since b, integer.
(iii) |—Y5-| Eds 2B,
Hence, each of the constraints of (9.1) is satisfied and
>(ry{],ryé],...,ry$]) is an optimal feasible solution. _
Q.E.D. 1

Therefore problem (8.1) may be solved by the following !

simple application of linear programming:

‘(i) Solve the continuous-valued relaxation of
(8.1) by, for example, the simplex method of linear program-
ming. Let the solution be x'.

l§', for T

(ii) Transform the solution via y' = T
as in (1.3).
(iii) Round-up y* = (l—yi-l,ryé],...,ry';.l)-
(iv) Transform back to X* = Ty*. Then x* solves

the integer program (8.1).

18
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10. Applications

A. Cyelic Staffing with Overtime

A basic staffing problem involves a facility such as a
hospital that operates 24 hours each day. Assume there are
fixed hourly staff requirements bi' and that there are three
basic work shifts, each of eight hours duration: 0700-1500,
1500-2300, and 2300-0700. Overtime of up to an additional
eight hours is possible for each shift. What is the minimum
cost number of workers and their shifts such that all staff
requirements are met? This problem may be formulated as
in Figuré 10.1, where the constraint matrix displays pro-
perly compatible circular 1's in columns. Thus the problem
is efficiently solvable by a bounded series of network flow
problem.
B. Days-off Scheduling

A problem studied by Brownell and Lowerre [5] is to
minimize the total workforce necessary to meet daily staff-
ing requirements, where each worker is guaranteed two days
off each week, including every other weekend. For the case
in which the days off each week are to be consecutive, the
problem may be formulated as in Figure 10.2. The rows of
the matrix display more complicated cyclic structure than
simple circular 1's; but since the matrix has circular 1l's
in rows, the same change of variables transforms the problem

to efficiently solvable form.

19
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A cyclic staffing problem with overtime.

Figure 10.1:
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