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NU MERICAL SOLUTION OF NONLINEAR PARA BOLIC EQUATIONS

*Samuel Schoc hter

1. Introduction

We will consider the parabolic differential equation

_____ — ~
2
f(9)

— 

~x2 (1.1)

for the unknown func tion $(x ,t) over the set 0 < x < 1, 0 < t � T

and given boundary and initial conditions

e x ,o) ~~~~~ (x) (1.2)

e (i ,t)  p.~ (t ) ,  I = 0,1.

We assume that

g’(G) -> 0 (1.3)

f••(O) > 0

for all 0 in a set S.

Typical exampl es are found where

g(9) = 9, f(e) = 9m , m > 0. (1.4)

For m = 2 we get the equation for flow of gas in a pipe [ 9], wh ile

R ichtinyer [ 4 ] examines the case m 5 for a running wave . Examples

* This work was supported by the U.S. Army Research Office-Durham , under
contract  DAHCO4-72—C-0030.
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arise In flows in porous media [ 10]. Other examples may be found in

Ames [12].

We approximate (1.1) by using a weighted form of Euler ’s suemation

f ormula (or second order Pad~ approximation) [13]

g
1 

— g° = ~k(a~~ + ~ g
1

) + (k
2
/ l2 ) (y ~

° — 6~~~) (1.5)

where

g3 = g(u
3 ) ,  u’

~ = 9(x , t  + jk) ,  ~ = g
1 1 1 1 t

i = 1 ,2,..., a ; j  = 0 ,1

n h l ,k = ~~ t,a +~~~ > o

and 
~
y, fi, y ,  ~ are nonnegative constants. If these constants are specialized

to all equal 1, then we obt ain the usual formula , with remainder of order k
5
.

Other choices give a lower order accuracy , usual ly 0(k3).

We w ill find it convenient to drop the superscript 1 in later formulas.

To obtain an approximation for (1.1), we replace ê by 
~x; 

in (1.5), where

f — = (f —2f + f )/h
2
. This will yield an impl icit scheme , with a

xx i — I  1 1+1
nonlinear system in n unknowns to be solved at each time step.

If we take the special case (1.4) and set ~~~ = = 6 = 0, ~ = 2, we get

the backward Euler system

u - u
0 

= k(U
m

1 
—2u~ + u

rn
/h

2 
, (1.6)

4
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where m is here an exponent , not a superscript .

To simplify our notation we define , for the vec tors u and v in

the Schur product uv = u o v = vu as the vector with components

ii v . If f(x) is a function of one variable,we define the vec tor f(u) by
ii

f(u) = (f(u ) , .  ..,f(u ))
T

1 a

also called a diagonal mapping [ 8

In particular ,u
m 

will denote the vector whose components are raised

to the power m.

For each vector u we may correspond a diagonal matrix , which we

denote by its upper case, U = diag (u
1
,...,u )  = diag (U) and conversely.

It then follows that uv = Uv,where the right side is ordinary matrix

multiplication .

If f ’(x) is the derivative of f(x) then F’(u) = diag (f’(u)) is the

Jacobian of f(u). If u depends on t , then f(u)t = f ’(u)ii = F’(u)ii .

With this notation in hand, we may write (1.6) as

m 2
u — u = .-2X1(u , 2X=k/h , (1.6)

where K is the usual tridiagonal matrix of order n

K = [—1 ,2, —1].

~‘~1ternatively, we may write (1.6) In quasilinear form as

u - u
0 

= -2XA (u)u .

where A(u) = 
rn—i

_  I 
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Rctun~ing to the more general case (1.1) we get

~(u) = —h 
2 
K f(u)

(1.7)

~(u) = -h
2 K F ’ (u)ti

Since g(u) =

we get , a f t e r  solving for ii ,

g(u) = h L ( u )  f ( u )

where we set

- - -- — I -  _ l~L~~UJ = a J~ ~UJ 4., (U) 1’.

Inserting these into (1.5) and collecting terms ,we get

g(u) + ~~Kf(u) + ~25 L(u)f(u) = R (1.8)

R = g° — ~~Kf° + y L°f°

0
where the zero superscript indicates u is replaced by u . We seek a

solution to (1.8) and a method to construct it.

Since the la t ter  calculat ions used on ly the fact that K was independent

of LI and t , the same resul t is obta inable for a general l inear operator T

SO that g = T(f).

We now assume that L(u) is replaced by L = L(u) where u is some

approximation to u ,~ a solution of (1.8). If we denote the left side

of (1.8) by p(u),then (1.8) becomes

r(u): = p(u) - R0 = 0. ( 1.8)

4 
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Lemma: Let S = [ 9 :  f’(9) >0 , g’(9) > o~ . If S is convex (that is an

*i n ter v a l ) , then ( 1.8) has at most one solut ion u w i t h  components in S.

Proof: Assume there are two solutions,u and v. Then

(u — v , p (u )  — p ( v ) )  = o

From the hypothest’s we get

(u — v,  g ( u )  — g(v)) = (u — v , G’(z)(u—v)) -- 0

fo r  z in the  in terval  [u ,v], and since K is posi t ive de f in i t e,

(u—v 1 K(f(u) — f(v)) = (u—v , KF’(w)(u—v)) > 0

Th’ ‘~ pplies to Lf . This gives a contradiction and proves the

.~.e assume that f(0) and g(0) have positive derivatives for all 0

then we obtain the existence of a solution . From the px~ vious lemma it

will be unique. Thus,we assume that

f’(O) > 0, g’(O) > 0 for all real 0 . (1.9)

We may then assume that f ( O )  a 0, since by inverting f(u) = v

we get a flew equation in v with g (u) = g (f ~(v). With f(u) = u , ( 1.8)

becomes a semilinear problem , with g(u) a diagonal isotone mapping .

If 6 = 0, then p(u) becomes an M—f unction [ 8] so that existence is

obtained in this case by a theorem of Rhelnboldt [5 ]. In the case where

5 -, o,we obtain a gradient map . Since the Jacobian of p satisfies

p’(u) � ),~ K � )
~~i~~

( K ) . 1  ,

5
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the existence and uniqueness follow from results in Schechter [ 7 ].

&)th of the above theorem also provide methods of construction of

the solution . In particular we may use a variety of relaxation

methods [8 j. We have thus proved :

Theorem. If f and g satisfy (1.9), then (1.8) has a unique solution

that may be obtained by a relaxation method.

It should be noted that the solution method does not requ ire a

priori estimates for this special class of problems.

t

I 
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2 . Existence and Estimates

Although existence and uniqueness are obtained as stated in the  previous

s e c t i on t he actual methods available to compute the solution are usually

dictated by the nature of the problem . If ô=O ,we may resort to nonlinear

SOR with overrelaxation parameter w in (0,1] or use a Jacobi iteration [8 ].

Since these methods tend , in g~ ieral , to be slowly convergent and since

we w i~-h to cover the more general case 
~ 

> O,we consider the use of

rel Lxation or SOR—Newton methods [6 ], [7 ], [14].

For this purpose we find it necessary to requ ire that f and g have

con t inuous derivations and at times continuous second derivatives. This

will allow us to choose relaxation parameters , at times, outside the unit

interval.

Before proceeding, we note some estimates of the solution for th~

case 5=0 . We may assume as above that f is the identity map and g(O)=O.

Otherwise,we may subtract a constant from g.

If u* is the solution, it then follows from Taylor ’s expansion that

(D + A) u* = R0 (2.1)

where we set A = X$K and for some z in [0,u*], D = G ’(z). Since D + A is

a monotone matrix, its inverse is nonnegaLive and we get

u~ = (D + ~~~~ Jl~ 
, (2 . 2 )

and if R0 —‘ 0, t hen u * > 0.

In practice we may achieve R0 
> 0 by choosing either a small a or

small time step, If g° > 0• In this case we also obtain an upper bound

on uik, since D ~ 0

O < U” c A 1 R0 
(2 .3)7



We note in passing tha t  ( 2 . 3 )  can be used as a basis  f o r  the  usual

fixed point iteration process. Since this is usually slow we do not

pu rsue it.

A similar upper bound is available if 5 0 since L0 is positive

definite and monotone. If we set B = ~AOL.., then

( D + A+ B ) u ~~ = R 0 (2.4)

and ii u~ >0 ,we get

u~
’ -! (A + BY~ R

0

To achieve the p o sit i v i t y  of the solution we may choose 5 or k small

enoug h so that  R0 — Bu * > o. We may of course , wi thou t  t I ,LS  res t r ic t ion,

o b t a i n  a bound on (U iF
,U *) by using the energy function associated with

the symmetric problem . This bound yields

I R0~ � ?
~Tfl1fl (A). (UI

For some special choices of and 6 where 5 is not small this

positivity may again be obtained . If = 2 and 6 = 3,then , absorbing X

into K , the operator on u~
’ may be written as D + 2K + KI~QK = (I + KL~ )(D + K) +

X ( I  — LØD). Note that the first term on the rlc’-ht is monotone since the

factors are M—matrices . If z and u are close, then L0D is near the identity.

If the time step is small ,this will prevaiJ with smooth functions . If the

second term is combined with R0, an a rgumeii 1 sinu 1 at- to the prey i ~oI ~ ‘a

pi~ ,V hi app l led to achieve the i ’esti l t .

For the example (1.4) cited above we see that the derivative of f

does not appear to be positive for all 9 .  In many applicat ions, i t is

usual to have the solution nonnegative so that if f is restricted to this

set, we do have a positive derivative . If a solution appears in that set,

we showed previously that it will be unique.

8
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In order to achieve existence we may extend the definitions of f or g

so that the positivity conditions are valid. If a positive solution was

available before the extension it should not be lost.

Let us consider the example m = 2 since it is the simplest and most

com mon case . Other cases may be treated in a similar fashion . By inverting
3-

f we get g(0) = G~~. We now extend g by defining

g( 9 ) = I°I~ 
sgn (6 ) (2.5)

This function has positive derivatives except at 9 = 0 where it is

i n f i n i t e . The func t ion  is ~tonotone so tha t  un i queness is a v a i l a b l e  as

ind i ca t ed  above. To get existence we make use of the po ten t i a l  f u n c t i o n

E(u) of r(u). This potential is strictly convex and E -. ~ as u -. ~~ .

Thus its level sets are bounded , yielding a global minimum and the

existence of a solution .

If we perturb g by a small amount we can get a more constructive

method of solution and allow for a large variety of solution methods . For

example, we may change g to be

g(€ ,9) = (( 10 1 + € )- — e2)sgn 9 (2 .6 )

How does this change the solution? We assume , in general , that for

all 9 -, 0 ,

0 < g(€1, O) — g(52,G) ~ c(62 
— for C

~~
, < 

~2 (2 .7)

for some positive constant c depending on ~~~. Consider first the case of

O = 0 and let u and v be the positive solution s to the equations (1.8) for

the parameters €1 and €2, respectively. Thus,

p(€1, u)E g(€1,u) + Au = g(€2,v) + Av p(€2,v) = R0
and

p(€1,v) > p(€2,v) = p (€ 1, u)

• 9



so that v - - u. This follows from the fact that p is inverse isotonc.

Since the solutions are bounded from below by zero we get a dec reasing

sequence of solutions as € goes to zero. This again verifies the existence.

From the hypotheses there is a positive diagonal matrix C such that

((e
2 

— 

~~~ 
g(e 1 1 v) — g(e~,,v) = g (e 1,v) — g(.~1 ,u) i- A(v—u) - Mv—u)

A~~C( e
2—c 1

) .~ v—u > 0.

Thus , i f  we let €
1 go to zero ,

A 1Cc2 v—u
s 

> 0

w h i c h  es t imates  the perturbed solution , with possibly a new positive C.

If we choose c = O(k
m) for a suitable m then we s tay w i t h i n  the  erro r

of the ent iat  inn -

The example (2.6) given above is differentiable for all 9 and s a t i s f i e s

(2 .7 ) .

Consider the case of 6 0 and let E(~~, u) be the potential  function

of r corresponding to g (€ ,u). Thus, r is the gradient of E. We assume that for

all 0 
g(c2,O) — g(c1s~ )I � c i  ~2 —

for some positive c. I t follows tha t  the integral g of g a s a  funct ion of

0 also s a t i s f i e s  such an estimate.

Let u 1 and u
2 be solutions corresponding to € 1 and 

~2 and set

= E
ij
. Then , since the first solution minimizes E(€1, u),

E 12 — E 11 = ~ (u 2 
— u

1
)
T 

E ’’( z ) (u 2 
— u1

)

~ ~m 1n W I ~2 - 
~1 

2

• 10



p

We w i l l  show tha t  the l e f t  side is of order — = e. First , since

Ei) — E
M 

depends only on g, this difference is 0(c). Since E~ 3 
-

E 12 
— E

11 
= E12 — E22 + E22 

— E21 + E21 — E11

� E12 - E22 + E21 - E 11 ~ C

Th is y ields the est imate

I u2 _ u i I � C I € 2 _ € i1
2

*If €2 -. 0, it follows readily from the uniqueness that u2 -. u -

This gives the estimate desired ,

— u1) � c ~~~ 
-

( _
~
___ 

- 
m — .---- - - . - - 
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3. Quadratic System

We consider the spec i f ic  example (1. 4) with m = 2 . We then

get a quadratic system to solve for given R 0 
> 0

0 (v )  = v + Av 2 
- R 0 (3.1)

w i t h  A pos i t ive  d e f i n i t e  and monotone. The Jacobian of p is

= I + 2AV = M

and if we have V > 0 , then p ‘ is nonsingular.  It will be so ,even if some

but not a l l  entr ies  in V vanish . Assume that v 0 is positive and set

r ‘(u0) = M .  We may try to use a modified Newton iteration or a block

re laxat ion method to f ind  the posit ive solution.

The i terat ion appears as

M(v~ — ‘1°) = .-(~.)p(v°) (3. 2)

for  a given choice of parameter ~ We assume that ~ ischosen s u f f i c i e n t l y

small  so that  v’ > 0. if 0 < 0, then since M is monotone we do not need to

res t r ic t  (J~ in thi s case.

Since M is not symmetric U is not a gradien t mapping and i t  is not

apparen t that  t h i s  i teration will converge. If we transform the variable

to u = v2, then a variety of choices are available for 4.’~ to y ie ld  convergence.

Let us examine the Newton step for  the transformed problem for  u 0 -
~ 0

r (u )  = u~ + Au — R,, = 0( v )  . (3 .3)

Let J = r so that

J ( u0) (u l - u°) = — ~~r
0 -

J = + A = ~ (I + 2AV )V 1 = ~MV~~

If we replace u by ~2 , then

+ V°)(v~ - v°) = -

12



Thus we see that this iteration , which can be gu aranteed to converge for

the proper choice of i,~ since r is now a gradien t mapping,  is qui te  close

to the previous one. The extra factor in J is the matrix ~ (I  + (V0)~~~V 1 )

which if the iterates are close enough will be near the identity .

If we assume that the iterates in (3.2) satisfy

r~~~0 ,

then the conditions for using the approximate relaxation methods of the

Appendix to this report are satisfied . In particular,the condition (3.3)

of that section issatisfied with ~ = 2/ (2 + T ) ,  We may therefore consider

(3.2) as an approximate relaxation method to (3.3). Since (3.2) contains

no square roots ,it may seem less expensive to use. 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 
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APPENDI)~ A

AN APPROXIM ATE BLOCK RELAXAT I ON
$

Samuel  Schechter

1. Introduction

In the iterative method of nonlinear relaxation it is often

desirable to avoid derivative computation or to use other approximations

for the evaluation of the iterates . In [3] it was shown that such

approximations are valid if coordinate directions are used at each step.

In this note we indicate an extension of thi s method to block relaxation

which would include a modified Newton method for a restricted class of

problems .

An example is provided to show that positi vity of the Hessian of

a smooth convex function does not imply the same property for the finite

difference approximation in the large , for more than one dimension.

2. Assumptions and Estimates

We will use the notation of [2] and [3] and propose to minimize a

real valued smooth function g(u) ~ C
3
(R’~) by iterat ion . We assume

U ( R~
’ Is a g iven guess to sol ve r ( u ) = g ” (u) = o. Let r

0 
=

A g”(u) be the Hessian matrix , and rn a mul tii ndex taken from the

set (1,... ,n) = Z. Let A denote the principal submatrix of A(u°)

d e f i n e d  by m. We hencefor th  assume t h a t  A is posit ive d e f i n i t e .
S

Given a n o n s i n g u l a r  m a t r i x  K of the  same order as A , we d e f i n e

an approx imate block relaxa ti on step by

1 0 0
u = u + wd ,

o - l o
(2,1) d d = — K r

m m
0

d ,= o
m

This work was supported by the U.S. Army Research Office,
S Durham~ under Contract DAH~~4—72—C-0O3O.
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Where m ’ is the complementary mu ltiindex to m and w, 0 < w < 2, is

some relaxation parameter. Since we wish g (u
1
) to decrease , we

require that (r°, d°) ~ 0 so that , for r
0 

~ 0,

(r°, K - > 0.

We do not require K to be symmetric .

To estimate the change in g or

= g (u~
’) — g(u°)

we use Taylor ’s expans ion . Using the notation B~ (u) = ~~A(u) and

B (u) for it s corresponding principal minor we get
jm

, o 1 o 1 1 o o 1 o
tig = (g (u ), u — u )  -,-~~~(u— u , A(u )(u — u))

+ ~ (u
1
— U
°
, B~ (z)(u

1_u0)(u
1_u0)~

= w(r°,d)  + ! W
2

(d , A d) + ! ~ (d, B (z)d)d
m 2 m 6 jm j

JETh

for a suitable Z between u
0 

and u

If we let
= (d, A d ) / ( d ,Kd) > 0

S

then

(2.2) —t~g = ! w(d ,Kd)[2 — ow — -~-w
2
E (d ,B d)d /(d,Kd)~~.

We assume , as in r3~, that for W on the li ne segment I joining u° to
C) 0

u + 2d

( 
~ lB (w) ~2) ~

i(m jm

where the spectral norm is used in the sum.

15



Let

= (d , Kd)/(d ,d)

K K

= max (Q~, 1)
0

then if we set

=
o / -

~Y +~~~(~ + — t h  )
o 3 K

it follows that .y � 1. If we then choose w in
0

0 < w  < 2)’
0

we get , as in r3~~, that

—~ g > ~v (d, Kd)(2 — ~~) > 0

where = wly . This guarantees that g will decrease with each Iterate

whose active resid ual is not zero. Tt~ get the next iterate , a new m , K and

w are to L~e chosen. They may of course be the same as the previous choice

In certain instances.

3. Convergence

In  order to obtain convergence of the iterates we need further

restricti ons on the choice of the matrices K. A method for obtaining this

is to get an e s t ima te  of the form

o 2
(3 .1) —Ag � C~rm

where C is a constant independent of the Iterates. This requires uniform

upper and lower bounds on the K matrices and a lower bound on y .

• 16
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This may be achieved by assuming that K Is a roason ab~c approx ima ti on

to A and tha t the ~ipectral norm of K is uniformly bounded . To this end

we assume tha t  there  e x i st  posi t ive cons tan ts , ~ and C independent of
0

the Iterates such that

(3.2) IK I < c

(3 .3) B ( d , A d) � (d , Kd) .m

These inequalities readily yield

o 2
(3 .4) (d,Kd) � C Ir 11 m

The lower bound of y is obtained from a lower bound on ~ . Since A is
o K in

positive definite it follows as in [2] that

A � )  > 0
m

0

from a priori estimates on the level Set containing the iterates . This

Is attained by the assumpt ion t1~~t the or igina l level set Is bounded .

Under the further assumptions of theorem 4.1 of [3] we obtain global

convergence of this approximate block relaxation process. We may s t a te :

Theorem 3.1. Assume that the level set

D = [u~g(u) ~ g(u
°))

is bounded and that the sequence of multi indeces f m l  is a cyclic ordering

covering Z infinitely often. Assume ttm t the sequence of matrices (A ,~~

are positive definite and that the matrices jK J are given to satisfy (3.2)

and (3.3) then a sequence ~w ) may be chosen so that for the process (2.1),

0. i f  the so lu t ion  is unique , the i t e ra tes  [un) converge to the

solut ion.

We note that convexity of g is not required , only convexity in the

subspaces defined by [m 11.
p

The proof , once the estimate (3.4) is known follows along the lines

of Theorem 8.1 of r21.
17
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4. Remark s

I) It is clear from (2.2) that when the matrices B , j Em are a l l
jn

posi t i ve d e f i n i t e and if the d ~ 0 , we o b t a i n  a decrease in g fo r

and ~v does not ent e r .  For the usua l choice of ~v = 1 , the f u l l  range
0

of is then a v a i l a b l e . This  was noted p rev ious ly  13] , i n  the  s c a l a r

case . An exanpie of this is given by a class of semilinear elliptic

equations of the form &b = f(r b )  where f ”@~) 0 . For the usual finite

difference approximation to such problems the B take the form

T
B = f (‘~ ) ( e  e ) where e Is the jth unit vector In R , and arejn j j j n  j
nonnegative definite.

I f  r
0 

> 0 and K is monotone we w ill get d ~ 0. The choice of K = A

in the cited example will yield this property .

Ii) A comiiion choice of K , In general , might be a finite difference

approximation to A
m

~ r
a (U) = + O(h )

h~ j

f t r  = r ( u + h .e )— r ( u ) .
i i  I .jj I

Th as

K =  A E3H — (~~ r/h )
.11 j i j

where H is a diagonal matrix with entries h~~. j(m and B contains entries

in g ’’’. If H is sufficiently small , we may estimate

I (d, BHd)l ((d,d)

where ~ depends only on g. We then get

18



(d,Kd) � (d, A d)(l — c/$ )
m A

> 8 (d , A d)
m

with 8 = 1 — 
~~/X , which is positive for c < ~.

iii) If we wish to choose K = I , the identity , then we may

choose B 1/A where A is the largest of the eigenvalues of A ~n

a suitably large but bounded doma in.

iv) Since the method described includes the case of m being

the full index set (1, 2,... ,n), we nay consider solving an elliptic

system

r ( u )  — Lu — f = 0

by a sequence of problems

1 0 0
K(u — u ) = — wr(u )

and the above resul ts  w i l l  apply .  For example the choice of K = —

the discrete Laplac ian , has been proposed by Concus and Golub [I] for

solving a linear ellipt ic problem. This has the virtue that K nay be

a much simpler operator to use than L. Our results indicate that such

methods are feasible in the nonlinear case as well.

5. A Counterexanple

For a smooth convex function of one variable , It is well known

that the difference quotient of its derivative Is nonnegative :

(g ’(u+h) — g ’(u))/h ~ 0

for all u and u + h In the domain of defini tion. Furt hermore if g”(u) � ‘~ > 0

f or al l u , then its difference quotients have the same lower bound for all

u and h.

The question now arises about the corresponding statement in higher

d imensions . That is, if we define the matrix

19



D = (It • )
i~j

by ~~ = ~ r /h can we conclude that (w, Dw) � 0 for all u and h , w
ii j i~~~j j

if A(u) � 0 for all U?

Furthermore if Mu) � )~ > 0 globally can we conclude that there

is a I > 0 such tha t
0

(w, DwY~ 
‘
~, (w , w)
0

f o r  a l l  w , h~ ?

It  fo l lows  f rom the  previous  sect ion tha t for sufficiently

smooth g the statements are true for all u but for sufficiently

sma l l  h . We will show , by a counterexample , that the statements
.1

are not v a l i d  for  all  h .
2 2~~The example  we wi l l  f i r s t  use is g (x + y ) In two

dimensions. Thus g is convex and r
1 

= x/g, F = y/g. We choose

the point (x , y ) = (1, 1) and set h = h , h = 0 so that It = a
o o 1 2 12 12

~ 22 22

a
1 11 12

D =1
a

\2l 22

g g (1 ,1) = .~fr2 , g = g(1+h ,l) , x = l+h
o 1 1

~ ( ...! — ~—)/h , A = ( ! —

11 g g 21 g g
1 0 1 0

—3 2 -3a
12 

= — xyg , a = X g

If it were true tlm t (w , D w) ~ 0, t hen , since the eigenvalues

of 0 would be nonnegat ive , the determi nant is likew ise . Thus we show

that det (D) . 0 and get a contradiction . Since at (1 ,1)
—3

a = g  ~~— a
22 o 12

20
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det (D) = ( It + A 21
) = 

~~ 

(
2+h 

- .12).

2 (l + x )  x
2i-h 1 1

= 1 + 2  < 2
g 2 2
1 1 + x  l + x

for h ~ 0, so that the det (D) < 0 and we get a cont radiction.

To obtain an example for a smooth , in fact C , convex funct ion

we choose a perterbation of g:

2 2
g = (x + y + E )  for ( > 0.

IA’t D be the corresponding matrix at (1 ,1). It follows from continuity
E

considerations that the det(D ) is negative for small enough c. In fact
(

a direct check for e ~ 1/2 and h ~ 2Oç shows that det(D ) < 0 . Since t h e
E

Hess ian of g Is uniform ly bounded from below , both con~eetures are false .

It follows from the remark (ii) that if we choose K D + E, where K

is positive definite and of order J}m~, we will satisfy the posit ivity.
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APPENDIX 13

PUBLI CATIONS SUPPORTED BY THIS CONTR ACT

Schech~ ur , S. , “On the Choice of R e l a xa t i o n  Parameters  fo r  Non i inear
Problems in: Numerical Solution of Systems of N on l i n e a r  Algebra ic
Equations , eds. 6. 1). Byrne and C. A. Hall , Academ ic P r ess , New York ,

pp. ~3 - l 9 — 3 7 2 , 1 973 .

Schechter S., “An A p p r o x i m a t e  Block R e l a x a t i o n  to appear  in S I A M
J .  N amer .  A n a l .

Abl ow , C’ . M. and S. Schechter , “Com p y l o t r o p i c  Coord ina tes ” , su b m i t t e d
for publication , Abstract ~n Notices of the American Mathematical

Society, Vol . 24 , No. 3 , No. 746—C3 , 1977.
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