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NUMERICAL SOLUTION OF NONLINEAR PARABOLIC EQUATIONS

*
Samuel Schechter

1. Introduction

We will consider the parabolic differential equation

2
g (8) - @ £(0)
dt dx2 (1.1)

for the unknown function 6(x,t) over the set 0 < x <1, 0 <t < T

and given boundary and initial conditions
8(x,0) =y, (x) (1.2)
8(i,t) =y (B), 1 =0,1.

We assume that
g'(8) >0 (1.3)
£/(8) >0
for all @ in a set S.
Typical examples are found where
m
g@®) =6, £fO) =86 , m > 0. (1.4)

For m = 2 we get the equation for flow of gas in a pipe [ 9 ], while

Richtmyer [ 4] examines the case m = § for a running wave. Examples

*
This work was supported by the U.S. Army Research Office-Durham, under
contract DAHC04~72-C-0030.




arise in flows in porous media [ 10]. Other examples may be found in

Ames [ 12].

We approximate (1.1) by using a weighted form of Euler's summation

formula (or second order Padé approximation) (13],

gli - &, = kg + Béi) + (kz/lz)(yé‘i’ - 6'g'i) (1.5)
where

gi - g(ui). ui = B(Xi,t + jk), g = g,

i=3,2,.00; B 3 = 0,1

nh = 1,k = At, g + B >0 ,

and ¢y, ﬁ, Yy, & are nonnegative constants. If these constants are specialized
5
to all equal 1, then we obtain the usual formula, with remainder of order k

B

Other choices give a lower order accuracy, usually O(k ).

We will find it convenient to drop the superscript 1 in later formulas.
To obtain an approximation for (1.1), we replace g by fx; in (1.5), where
2
= = (£ -2f + £ )/h . This will yield an implicit scheme, with a
XX i-1 i 1+1
nonlinear system in n unknowns to be solved at each time step.

If we take the special case (1.4) and set ¢ =y =§ =0, B = 2 we get

the backward Euler system

o m m
- = k -2 h ¥ 1.6
u u1 (u1 u +u 7 ( )

S ———— ] ——— Somesa—— g g -
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S

where m is here an exponent, not a superscript.

To simplify our notation we define, for the vectors u and v in
n -
R, the Schur product uv = u o v = vu as the vector with components

uv . If f(x) is a function of one variable,we define the vector f(u) by
ii
Y T
f(u) = (f(u ),...,f(u))
1 n

also called a diagonal mapping [ 8 ].

m .
In particular,u will denote the vector whose components are raised

to the power m.

For each vector u we may correspond a diagonal matrix, which we
denote by its upper case, U = diag (ul,...,u ) = diag (u) and conversely.
n
It then follows that uv = Uv,where the right side is ordinary matrix

multiplication.

If £'(x) is the derivative of f(x) then F’(u) = diag (£’(u)) is the

Jacobian of f(u). If u depends on t, then f(u)t = £’ (wua = F (wa.
With this notation in hand, we may write (1.6) as
u - u® = -2)ku”, 2A=k/h° (1.6)
where K is the usual tridiagonal matrix of order n
K =[-1,2, -1].
Alternatively, we may write (1.6) in quasilinear form as
u-u = -2M(uWu ,

m-1
where A(u) = KU 7




Returning to the more general case (1.1) we get

: -2
g(u) = =h K f(u)

|

(1.7)
e -2 - :
g(u) = =h KF' (Wu .
Since g(u) = G’'(wu,
we get, after solving for u,
-4
g(u) = h L) f(u) ,
where we set
= < el 1 \"'1.
L{ujy = K¥F {uy ¢ (uy
Inserting these into (1.5) and collecting terms,we get
g
g(u) + HgKf(u) + ;A 5 L(u)f(u) = Ro (1.8)

2 o _o0
Ro=g°-meo+%)\ R ol e

o
where the zero superscript indicates u is replaced by u . We seek a

solution to (1.8) and a method to construct it.

8ince the latter calculations used only the fact that K was independent

of u and t, the same result is obtainable for a general linear operator T

SO0  that 5, - T(f).

We now assume that L(a) is replaced by L0 = L(;) where u is some

approximation to u,‘ a solution of (1.8). 1If we denote the left side

of (1.8) by p(u), then (1.8) becomes

r(u): = p(u) - R, = 0. (1.8)

e

— - e - e e B =
T ————— A




Leima: Let S = {0: £/(8) > o, g’(®8) > o}. If S is convex (that is an

%*
interval), then (1.8) hasat most one solution u with components in S.
Proof: Assume there are two solutions,u and v. Then

(u - v, pu) - p(v))

it
=}

From the hypotheses we get

(u=-v, gu) - g(v)) = (u=-v, G'(2)(u-v)) >0
for z in the interval [u,v],and since K is positive definite,

(u-v, K(f(u) - £(v)) = (u-v, KF/ (W) (u-v)) >0 .

The pplies to Lof. This gives a contradiction and proves the

we assume that £(0) and g(0) have positive derivatives for all 0 ,
then we obtain the existence of a solution. From the previous lemma it

will be unique. Thus, we assume that
£/(0) 5 0, g’(0) >0 for all real § . (1.9)
We may then assume that f£(0) = 0, since by inverting f(u) = v
=1 e
we get a new equation in v with g(u) = g(f (v). With f(u) = u, (1.8)
becomes a semilinear problem, with g(u) a diagonal isotone mapping.
If § = 0, then p(u) becomes an M~function [ 8 ] so that existence is
obtained in this case by a theorem of Rheinboldt [5 ]. In the case where

6 > o, we obtain a gradient map. Since the Jacobian of p satisfies

p’(u) 2 ABK = ABAp i (K) -1

[
[

o EN———
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the existence and uniqueness follow from results in Schechter [ 7 ].
Both of the above theorem also provide methods of construction of
the solution. In particular we may use a variety of relaxation

methods [ 8 ]. We have thus proved:

Theorem. If f and g satisfy (1.9), then (1.8) has a unique solution

that may be obtained by a relaxation method.

It should be noted that the solution method does not require a

priori estimates for this special class of problems.




2, Existence and Estimates

Although existence and uniqueness are obtained as stated in the previous
section the actual methods available to compute the solution are usually
dictated by the nature of the problem. If §=0,we may resort to nonlinear
SOR with overrelaxation parameter ( in (0,1} or use a Jacobi iteration [ 8 ].
Since these methods tend, in general, to be slowly convergent and since
we wish to cover the more general case § > 0,we consider the use of

relaxation or SOR-Newton methods [6 ], [7 ], [14].

For this purpose we find it necessary to require that f and g have
continuous derivations and at times continuous second derivatives. This
will allow us to choose relaxation parameters, at times, outside the unit

interval.

Before proceeding, we note some estimates of the solution for the
case {=0. We may assume as above that f is the identity map and g(0)=0.
Otherwise, we may subtract a constant from g.

If u* is the solution, it then follows from Taylor's expansion that

( + Au* = R, (2.1)

where we set A = A\gK and for some z in {0,u*], D = G'(z). Since D + A is
a monotone matrix; its inverse is nonnegative and we get

=@+ ln, , (2.2)

and if Ry > O, then a® >0,

In practice we may achieve Ro > 0 py choosing either a small o or
small time step, if go > 0. 1In this case we also obtain an upper bound

on u”* since D > 0,

0 < u* < a-1 R, (2.3)




We note in passing that (2.3) can be used as a basis for the usual
fixed point iteration process. Since this is usually slow we do not

pursue it.

A similar upper bound is available if § = O since L

o 1S positive

definite and monotone. If we set B = 3A0L,, then
*
(D+A + Bu = RO (2.4)
and if u* > 0, we get
w < (A +B"LlR .
o

To achieve the positivity of the solution we may choose § or k small

enough so that Ro - Bu* > 0. We may of course, without this restriction,
obtain a bound on (u*,u*) by using the energy function associated with

the symmetric problem. This bound yields

2 % Mnin @)+ |u¥]

o
For some special choices of B and § where § is not small this

positivity may again be obtained. If B = 2 and § = 3,then, absorbing X\
into K, the operator on u* may be written as D + 2K + KL K = (I + KLy )(D + K) +
K(I - L,D). Note that the first term on the richt is monotone since the
factors are M-matrices. If z and u are close, then LOD is near the identity.
If the time step is small this will prevail with smooth functions. If the
second term is combined with Ry, an argument similar to the previous one

may be applied to achieve the result.

For the example (1.4) cited above we see that the derivative of f
does not appear to be positive for all §. In many applications, it is
usual to have the solution nonnegative so that if f is restricted to this
set,we do have a positive derivative. If a solution appears in that set,

we showed previously that it will be unique.



In order to achieve existence we may extend the definitions of f or g
so that the positivity conditions are valid. If a positive solution was

available before the extension it should not be lost.

Let us consider the example m = 2 since it is the simplest and most

common case. Other cases may be treated in a similar fashion. By inverting

f we get g(8) = 95. We now extend g by defining
g6) = |8 % sen(e) (2.5)

This function has positive derivatives except at § = O where it is
infinite. The function is monotone so that uniqueness is available as
indicated above. To get existence we make use of the potential function
E(u) of r(u). This potential is strictly convex and E + @« ag u - «,
Thus its level sets are bounded, yielding a global minimum and the

existence of a solution.

If we perturb g by a small amount we can get a more constructive
method of solution and allow for a large variety of solution methods. For

example, we may change g to be

g€,8) = ((|8] + &)% - ¢)sgn 6 (2.6)

How does this change the solution? We assume, in general, that for
alt 6 >0,
0 < g(elve) En g(€2'9) = C(ez bt el) for el' < €2 (2.7)
for some positive constant ¢ depending on 8. consider first the case of
6 = 0 and let u and v be the positive solutions to the equations (1.8) for

the parameters €; and €y, respectively. Thus,

p(€, W= g(el,u) + Au = g(ez,v) + Av = p(€,y,v) = R,
and

p(cllv) >t p(ezvv) = P(el.u)




so that v > u. This follows from the fact that p is inverse isotone.
Since the solutions are bounded from below by zero we get a decreasing

sequence of solutions as ¢ goes to zero. This again verifies the existence.

From the hypotheses there is a positive diagonal matrix C such that

C(ey - el) > gley,v) - gles,v) = glegrv) - glep,u) + A(v-u) = A(v-u)

-1 > v=u >
A C(ez—el) 2 v-u 0.

Thus, if we let 51 go to zero,
ATlcey = v >0,

which estimates the perturbed solution, with possibly a new positive C.

1f we choose ¢ = o(km) for a suitable m then we stay within the error

of the eauation.

The example (2.6) given above is differentiable for all § and satisfies

(2.7).

Consider the case of 0 = 0 and let E(€,u) be the potential function

of r corresponding to g{(€,u)., Thus, r is the gradient of E. We assume that for

ali §
|g(e2,e) - g(el,9)| =of €3 -~ €1

for some positive c. It follows that the integral E of g asa function of

§ also satisfies such an estimate.

Let u1 and u2 be solutions corresponding to €1 and 62 and set
E(ei,uJ) - Eij' Then, since the first solution minimizes E(el'“)'
Byp = Byy = Bug = u.) B (2)Cu, - u,)
12 11 2 1 2 1
% 2
e A A Jug - u T

10

> s .o - O A o ey % Q=
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We will show that the left side is of order €2 =gy = @ First,

Eij - Ejj depends only on é, this difference is O(e). Since Ejj
Ejg ~ By =Ejp = Epyp + Eyp - Ey) + Ey) - Ejy
SEjp - Byy + By -E;) < C [ef .
This yields the estimate
2
< s
up - up| 5 C |8y - g
*

If €o + 0, it follows readily from the uniqueness that ug 4+ u

This gives the estimate desired,

i =
Iu y| s c et

11

since

Lji’




3. gggdratic System

We consider the specific example (1.4) with m = 2. We then

get a quadratic system to solve for given Ro 0
2
p(v) = v + Av® - R, (3.1)

with A positive definite and monotone. The Jacobian of p is

’

p =1+ 2AV = M
and if we have V 2 0, then pl is nonsingular. It will be so even if some
but not all entries in V vanish. Assume that +v° is positive and set
o I(u°) = M. We may try to use a modified Newton iteration or a block

relaxation method to find the positive solution,
The iteration appears as
Mvl - v0) = —wp(vo) (3.2)
for a given choice of parameter &, We assume that & ischosen sufficiently

small so that vl > 0. If o < 0, then since M is monotone we do not need to

restrict & in this case.

Since M is not symmetric 0 is not a gradient mapping and it is not

apparent that this iteration will converge. If we transform the variable

to u = v2 then a variety of choices are available for w to yield convergence.

Let us examine the Newton step for the transformed problem for u® ~> o

r(u) = ui + Au - Ry = p(v). (3.3)
Let J = r’ so that
J(u%)(ul - u%) = -~ wr® = - wpo
J =32 +A=81 + 2av)v-l = awv-l
2
If we replace u by v

, then

Mv®) 1wl 4 vo)(v! - v%) = - we°,

12

e ——————— - P ——




Thus we see that this iteration, which can be guaranteed to converge for
the proper choice of w since r is now a gradient mapping, is quite close
to the previous one. The extra factor in J is the matrix Z(I + (V°)'1V1),

which if the iterates are close enough will be near the identity.
If we assume that the iterates in (3.2) satisfy
vigy®H=1 <1 47 T>0,

then the conditions for using the approximate relaxation methods of the
Appendix to this report are satisfied. In particular, the condition (3.3)
of that section issatisfiedwith B = 2/(2 + T). We may therefore consider
(3.2) as an approximate relaxation method to (3.3). Since (3.2) contains

no square roots it may seem less expensive to use.

13
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APPENDIX A

AN APPROXIMATE BLOCK RELAXATION

*
Samuel Schechter

i Introduction

In the iterative method of nonlinear relaxation it is often
desirable to avoid derivative computation or to use other approximations
for the evaluation of the iterates. In [3] it was shown that such
approximations are valid if coordinate directions are used at each step.
In this note we indicate an extension of this method to block relaxation
which would include a modified Newton method for a restricted class of
problems.

An example is provided to show that positivity of the Hessian of
a smooth convex function does not imply the same property for the finite

difference approximation in the large, for more than one dimension.

2, Assumptions and Estimates

We will use the notation of [2] and [3] and propose to minimize a
real valued smooth function g(u) € C3(Rn) by iteration. We assume
uo € Rn is a given guess to solve r(u) = g'(u) = o, Let ro = r(uo),
A = g'"(u) be the Hessian matrix, and m a multiindex taken from the
set (1,...,n) = Z, Let Am denote the principal submatrix of A(uo)
defined by m. We henceforth assume that Am is positive definite.

Given a nonsingular matrix K of the same order as Am' we define

an approximate block relaxation step by

1 o o

u = U + wd »
o -1 o

(2,1) d =d=-K r,

m m
o

dl=0
m

This work was supported by the U.S. Army Research Office,
Durham, under Contract DAHCO04-72-C-0030,

14
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Where m' is the complementary multiindex to m and w, 0 <w<2, is

1
some relaxation parameter. Since we wish g(u ) to decrcase, we

o o o
require that (r , d ) < 0 so that, for e # 0,

(0]
(r , K
m

> 0,

We do not require K to be symmetric.

To estimate

the change in g or

1
Ag = g(u) - g(uo)

we use Taylor's expansion., Using the notation BJ(U) = BJA(u) and

B1 (u) for its corresponding principal minor we get
Jm

Lg

for a suitable z

If we let

(2,2) -Ag

We assume, as in

o o
u + 2d ,

(Z|p
J

Jem

1 1 1
(gl(uo), u - uo) + %(u - uo, A(uo)(u - uo))

|-

1
& ¢ (u- uo, BJ(z)(ul-uo)(ul-uo)J
J

1

o 2 1 3
- e d
w(rm,d) + - w (d, Amd) + - w I d, BJm(z)d)dJ

Jem

o 1
between u and u ,

(d, A d)/(d,Kd) > 0

1 1 2
= w(d 5 - d,B d)d il
5 0 Jkd)[2 - ow ¥ ng( o ) J/(d,xd)

o
[37, that for W on the line segment I joining u to

(w) '2) Su

where the spectral norm is used in the sum,

15




Let

b = (d, Kd)/(d,d)
K

)L‘ = uldl/'bx

o = max (a, 1)
o

then if we set

2

(o}

wle

v )

2
o+ J(d +
o o K

it follows that v S 1., If we then choose w in
o

0 <w< 2y
o

we get, as in [3], that

1 -
-Ag 2 3 w (d, Kd)(2 ~ 9) >0

where ® = w/y . This guarantees that g will decrease with each iterate

o
whose active residual is not zero, Tc¢ get the next iterate, a new m, K and
w are to be chosen., They may of course be the same as the previous choice

in certain instances,

3. Convergence

In order to obtain convergence of the iterates we need further
restrictions on the choice of the matrices K. A method for obtaining this

is to get an estimate of the form

(3.1) -0g 2 Clr:|2

where C is a constant independent of the iterates. This requires uniform

upper and lower bounds on the K matrices and a lower bound on yo.

16
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This may be achieved by assuming that K is a reasonable approximation
to A and that thce spectral norm of K 1s uniformly bounded. To this end
m
we assume that there exist positive constants, 8 and C independent of
o

the iterates such that

(3.2) k| < ¢
o

(3.3) B(d, Amd) < (d, Kd).
These inequalities readily yield
012
(3.4) d,kd) =2 c_|r|",
l m

The lower bound of ¥ 1s obtained from a lower bound on 4&. Since A is
o m

positive definite it follows as in [2] that

A 22X >0
m

213 >0
d&

from a priori estimates on the level set containing the iterates. This

is attained by the assumption that the original level set is bounded.
Under the further assumptions of theorem 4,1 of [3] we obtain global

convergence of this approximate block relaxation process, We may state:

Theorem 3,1. Assume that the level set

o
D= {ulg(u) < g™)]}
is bounded and that the sequence of multiindeces {m } is a cyclic ordering
p
covering Z infinitely often, Assume that the sequence of matrices {A ;

J

are positive definite and that the matrices {K } are given to satisfy (3.2)
p
and (3.3) then a sequence {w } may be chosen so that for the process (2.,1),

«P
p
r(u’)~ 0, If the solution 1s unique, the iterates (up] converge to the

solution,

We note that convexity of g is not required, only convexity in the

subspaces defined by {mp}.

The proof, once the estimate (3.4) is known follows along the lines

of Theorem 8,1 of rZ].
17




4. Remarks
i) It is clear from (2.2) that when the matrices BJ y Jem are all
m

positive definite and if the dJ S 0, we obtain a decrease in g for

0O0<aw<?2
and vo does not enter. For the usual choice of «~ = 1, the full range
of w is then available. This was noted previously [3], in the scalar
case, An example of this is given by a class of semilinear elliptic
equations of the form A = f(®) where f"(®) > 0. For the usual finite
difference approximation to such problems the Bjm take the form
B = f"(%)(e eT) y where e 1s the jth unit v;ctor in R? and are
Jm J Jim J

nonnegative definite,

1f r: 2 0 and K is monotone we will get d £ 0., The choice of K = A
in the cited example will yield this property.

ii) A common choice of K, in general, might be a finite difference

approximation to A
m

A r
J 1
h

a (u) = +0(h)
1 3

Ar =r (u+ he) -r (u),
J 3 i JJ i
Thus
K=A +BH=(Ar /h)
i S

q

where H is a diagonal matrix with entries h , jem and B contains entries
J

et
.

in g 1f H is sufficiently small, we may estimate

|, BHA)| < €(d,d)

where ¢ depends only on g. We then get

18
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(d,Kd) 2 (d, A d)( - ¢/D)
m A

> 8 (d, A d)
m
with 8 = 1 - ¢/)\, which is positive for ¢ < ).

111) If we wish to choose K = I, the identity, then we may
choose B = 1/A where A is the largest of the eigenvalues of Am in

a suitably large but bounded domain,

iv) Since the method describLed includes the case of m bheing
the full index set (1, 2,...,n), we may consider solving an elliptic
system

r(u) In - f =0

by a sequence of problems

K(u1 - uo) = - wr(uo)
and the above results will apply. For example the choice of K = - Ah.
the discrete Laplacian, has been proposed by Concus and Golub [1] for
solving a linear elliptic problem. This has the virtue that K may be

a much simpler operator to use than L. Our results indicate that such

methods are feasible in the nonlinear case as well,

5. A Counterexample

For a smooth convex function of one variable, it is well known

that the difference quotient of its derivative is nonnegative:
(g (u+h) = g'(u))/h >0

for all u and u + h in the domain of definition, Furthermore if g"'(u) 2 > 0
for all u, then its difference quotients have the same lower bound for all

u and h,

The question now arises about the corresponding statement in higher

dimensions. That is, if we define the matrix
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= )
D (AiJ

by Ai' = A.ri/h’ can we conclude that (w, Dw) 2 0 for all u and h , w
J J . J

if A(u) 2 0 for all u?

Furthermore if A(u) 2 X > 0 globally can we conclude that there

is a ) > 0 such that
O

(w, Dw)2 X (w,w)
O
for all w, hj 7i
It follows from the previous section that for sufficiently
smooth g the statements are true for all u but for sufficiently
small h , We will show, by a counterexample, that the statements
J

are not valid for all hj.

2 2
The example we will first use is g = (x + y )i in two
dimensions. Thus g is convex and rl = x/g, r2 = y/g. We choose
= (1, 1) and set h. = h, h = 0 so that = a
the point (xo, yo) @, 1) 4 s A12 14
Boa = P2

gO = g(l'l) = .‘I‘Z $ g = g(1+h,1), xl = 1+h

o
H
~
I
1
l
=
=g
o>
1]
~
|
1
L
~
=

a22
If 1t were true that (w, D w) 2 0, then, since the eigenvalues
of D would be nonnegative, the determinant is likewise, Thus we show
that det(D) < 0 and get a contradiction. Since at (1,1)
-3

a = = =« 2
22 gO 12
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o AN

1 1 2+h
det(D) = — (A ) = = o s 0 O
et ( - . J2
go h 1
2
2 (1 + x) X
2+h 1 1
But (—) = ——— =1 + 2 <
g1 1 x2 1 + x ?
1 1

for h # 0, so that the det (D) < 0 and we get a contradiction.

@
To obtain an example for a smooth, in fact C , convex funct ion

we choose a perterbation of g:
2 2 } 3
g = (x +y +e€) for € > 0.
€
let D be the corresponding matrix at (1,1). It follows from continuity
€

considerations that the det(D ) is negative for small enough €. In fact
€

a direct check for € < 1/2 and h > 20¢ shows that det(D ) < 0. Since the
€
Hessian of g 1is uniformly bounded from below, both conjectures are false,
€

It follows from the remark (ii) that if we choose K = D + E. where E

is positive definite and of order 'HB', we will satisfy the positivity.
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Schechter, S., 'On the Choice of Relaxation Parameters for Nonlinear
Problems'' in: Numerical Solution of Systems of Nonlinear Algebraic
Equations, eds. G. D. Byrne and C. A. Hall, Academic Press, New York,
pp. 349-372, 1973.

Schechter S., "An Approximate Block Relaxation' to appear in STAM
J. Numer. Anal.

Ablow, C. M. and S. Schechter, "Compylotropic Coordinates', submitted

for publication, Abstract in Notices of the American Mathematical
Society, Vol. 24, No. 3, No. 746-C3, 1977.
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