
D—AO’ 312 STAfFORD RESEARCH INST MEPtO PARK CALIF FIG 12/2
Tie SCHEDULERS OF ACS .1. I U)
SEP 77 N C PEASE N0001’4—77—C—0308

UNCI.ASSIFIED SRI’ TR 14.
I~~ 2 I

AD
4046 612

U

UN


~~~~~~~~~~~~~ ‘ r — - .- --~~~.~.-.- — ~--

Technical Report 14
September 1977

THE SCHEDULERS OF ACS.1

By: MARSHALL C. PEASE

Prepared For:

OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
ARLINGTON, VIRGINIA 22217

Contract Monitor: MARVIN DENICOFF, PROGRAM DIRECTOR
INFORMATION SYSTEMS BRANCH

F CONTRACT N0001 4-77-C-0308 0 D C
_____ 

SRI ProJect 6289

~~~~ Distribution of this document is uniimited.~~~~~~ ~~~~~~~~~~ ~ u~~ ~~~~~~~~~~~~~~~~~ 
- -

~~~~~~~~~~~~~~~~~ for sale to the general public.

‘STANFORD RESEARCH INSTITUTE
Menlo Park, California 94025 • U.S.A.

L= ~~~~~~_~~



i~ch,~caId,p!~j 4

c~
ySePfernb.r

~~~~~ 

~~
7
~ J

cl) THE SCHEDULERS OF ACS.1~~ /

BY(~~ARSHALL CJPEASE J
Prepared for:

OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
ARLINGTON, VIRGINIA 22217

Contract Monitor: MARVIN DENICOFF, PROGRAM DIRECTOR
INFORMATION SYSTEMS BRANCH

CONTRAC~~N~~~~~~77 C-~3~~J

SRI Project 6289

Approved by:
JACK GOLDBERG, Director
Computer Science Laboratory

EARLE D. JONES, Executive Director
In formation Science and Engineering Division

Distribution of this document is unlimited. L.,~., R11~1fl_J—
for sate to the general public.

~~~; 2~ 2 d D
f~~~~ TB1BUTION STATE~~!NT A

I Approved for public release;
l_~ 

Dfatribut~or~ I] 
___________ 

)

S ~~~~~~~ .~ — ~.. , —
~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~. 

—
~~~~~

.
~~~~~~~ 

-—



r’~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

~~~
.

~
-
~~~~~

--
~~~ ~~~~~~~~~~~~~~~~ 

.-y
~

~~~ Y~ ~wT ,,i,~~o’

ABSTRACT

ACS .1 , for “Automated Command Support,” is a research system
for studying uses of knowledge—based systems for the support of
management. The research addresses the managerial responsibilities
for planning operat ions , maintaining and execut ing approved plans ,
and for the retrospective analysis of the results of operations. The
purpose of the research is to develop architectural principles for
the design of intelligent management support systems.

Viewed from the top level , ACS.1 can be regarded as an assembly
of modules called “schedulers” and “planners ,” with certain other
modules and subsystems which are not of direct concern here. The
planners “know how to” plan certain types of operations. The sched-
ulers “kn ow how to ” coordinate the expected use of particular types of
resources , whether human , equipment , supplies , or facilities. The
planners have responsibility for creating detailed plans to meet
specified obj ectives , including the timing of all required tasks
and determining the assignmen t of all necessary resources. The
schedulers are responsible for assigning the resources so as to avoid
conf~licts with other plans or expected events.

2~~This report describes the design of the schedulers. It detaiis
the functions that implemen t the operations required of a scheduler , as
well as discussing the reasons for the implementations chosen. In
developing these implementations, a number of technical problems have
been addressed and solutions developed. The technical features
developed to mee t these problem s includ~~~ he following :

The scroll table as a conv enient medium for interaction with
the system ’s other elements and with the manager .

Resource models to define the knowledge used by the schedulers,
and structures to encode them making them available to the
manager for modification or extension. The identification
of the resource model as an explicit structure makes the model
available to the manager so that he can adapt the scheduler
to meet new requirements and situations.

The specific forms that have been developed to implement
various features. These include scroll tables for org~”
the data , means used to encode the resource models, ai
structures to enforce self—consistency and to obtain wha ~~-

call the “self— ” and “mutual—destruct” properties.

The techniques used to realize these features have been chosen
to provide considerable generality. We believe that they are applic-
able to a wide variety of systems that are intended for the support
of management. :. .

J S : ~~
iii 



J~~c dz 4 ’~ ~t9’ ‘~~~T?~~~~.fl

cc~r~~rs

ABSTRACT iii

LIST OF ILLAJSTRATIONS vii

LIST (P TABLES ix

ACI~JOWLEDGEMENTS Xi

I INT1~~DJXTION 1

II SYS~~ 4 CONCEFP 3

III SCHEWLER RE~ JIREMENI’S 9

IV SCHEI~JLER OPERATIONS 11

V FUNCTION ORGANIZATION 27

VI MISCELLANEO~.E CONVENIENCE FUNCTIONS 29

VII TABLE FUNCTIONS 41

VIII PRIMARY DATA FUNCTIONS 55

IX MODEL FUNCTIONS 65

X DEMON MANI PULATION 77

XI TOP LEVEL FUNCTIONS 85

XII DEMON AND DIALOG FUNCTIONS (WATCH AND SET DEMONS) 101

XIII ~T~ICLUSIONS 109

V



—
~~

Ynec~dz#~ Yqye Y~~’~r 
- Li- ~~~~~~o... - r -

I

LIST OF ILU~ TRATIONS

1. Block Diagr~~n of PCS.1 4

2 . Process P~ del for Flying a Mission 6

vii 

14- 5 ——- —5- ..-.- . ___ 5~ -- 
_ __5___ ____ S____ 

—- -5--— . - 5- -  —. - -a- -. . - .



_ _  5- _ 
_ _

LIST OF TABLES

1 Pilot Scroll Table 12

2 Condensed Pilot Scroll Table 13

3 Pilot Assignments 14

4 Part of Resource Model for Pilots 18

5 Organizat ion of the Scheduler Functions 27

6 Data in a Table Cell 59

6A Direct Printout 59

6B Readable Printout 60

7 Creation of a Model 67

8 Modifying a Resource Model 74

9 A Sample Scenar io Illustrating Demon Behavior 102

9A Initial Condition 102

9B Data Entry 103

9C Final Cond ition 103

1~

ix



F 
_ _  

- 

~~~~~~~~~~~~
ACKNOWLEDGMENTS

The work described here has been carried on under the direction
of Jack Goldberg. Richard Fikes has had a very important part in the
development of the concepts and approach. Steven Weyl has also
contributed to the early work, and Kazutaka Tachibana did much of the
early programming. Daniel Sagalowicz currently is participating in the
program, and has contributed significantly to its present state.

xi

-5 5- --—- 5 -—

.
.

_ _-S — _S_ 5——--.-. - -

I. INT1~)DUCTION

This repor t descr ibes the modules called schedulers in the
exper imental system, ACS. 1 (for Automated Ccxm~and Support) . This
system is intended as a vehicle for the develop~ent of techniques for
bui lding knowledge—based systems that will provide intelligent support
to a manager . The areas of support addressed are planning of opera-
tions, administration and monitoring of approved plans, and retro-
spective analysis of those operations. Viewed from the top level,
the system as a whole appears as a system of autonomous modules ,
some of which are called “schedulers” and have the responsibility of
coordinating the use of specified types of resources. The other
modules, called “planners,” have the responsibility for planning
specified types of activities. This report addresses the design of
schedulers , and descr ibes other components only to the extent nec-
essary to understand the requirements of the schedulers. The sched-
ulers are of special interest since the design principles and
techniques used in their implementation may be useful for other
applications.

ACS. 1 has operated in the simulated environment of a naval air
squadron, although the techniques used lend themselves to a wide
var iety of application environments. The principle operations be ing
planned and managed are flight missions. This requires coordinating
such various resources as pilots, aircraft, maintenance crews , deck
crews, launch facility and crew, and recovery facliities and personnel.
There are also additional demands on these resources such as the
pilots’ need for rest, or equi~ttent maintenance. Other events can
limit the availability of certain resources, such as a pilot becoming
sick or an aircraft r equiring unexpected maintenance. The scheduler’s
function is this coordination, maintaining the information necessary
to achieve it. The challenge of the scheduler design is the result
of the var iety of possible situations, the complexity of possible
interactions among the demands for a given type of resource , and
the possibility that future availability of a resource can change in
important ways at any time.

The system concept , and its develo~xnent in terms of the desired
application, has been described in some detail in Technical Report 13,
“ACS.l: An Experimental Management ‘I~ol,” (1977) . In that report,
the relation of this work to other research in ar tificial intelligence
and in opt imal scheduling is discussed . That material will not be
repeated in this report , although a brief overview of the system
concept is given to place the requirements for the schedulers in
context.

--- 5~~~~- - ~~~~~--.-, - -

After a brief overview of the system’s requirements and con-
cept, detailed requiremnts for a scheduler are discussed. Four
aspects of scheduler operations are considered in some detail: the
data structure used by a scheduler, the way its knowledge is encoded,
the precise definition of what is required to maintain self—consist—
enoy in its data, and the requirement for alert functions and other
capabilities for initiating system action. Following this, the
functions used by the schedulers are given and described in detail.

2

~I- - — _ 5 .___~~~~~ _ - ,,. -- 5.~~-5~_ -—,~
5-.-..- .55 —- ----

—- -~~~~~~~ -~~~~~

II. SYSTE~1 CONCEPT

The main elements of the system (shown in Figure 1 in block
diagram) are modules called “planners” and “schedulers,” each of which
is responsible for a well—defined part of the system ’s operation. A
planner develops plans for a specific type of act iv ity . A scheduler
coordinates the planned usage of a specific type of resource. Inter-
actions among the modules are processed entirely through messages
passed through the “message handler” unit. All communications to
or from a user, cr to or from the data system also pass through the
message handler. The use of the message handler is an important
feature that helps maintain the autonomy of the separate modules and
provides a central switching location for user control of the system’s
operation.

Between the user’s terminal and the message handler is the
user interface, which provides a pseudo—natural language capability.
It uses a language facility called LIFER, developed by the Artificial
Intelligence Center at SRI International for other purposes. The
user interface accepts requests or commands in a natural language
format. It is not a true natural language capability; it uses pattern
recognition rather than syntactic and semantic analysis. The user is
required to use one of a predetermined set of commands or questions ,
which can be extended dynamically. The package includes an automatic
facility for handling elliptic inputs, for correcting spelling or
grammar , and a mechanism for allowing even novices to extend the lang-
uage recognized by the system through paraphrase. It provides a
convenient interface facility.

The data system has not been implemented yet. Plans call for
it to be more than a simple repository of data. It will have the
responsibility for monitoring the execution of approved plans ,
checking that tasks are started and completed as planned, and that
the resources needed for an operation are available as required .
It will have the responsibility for recognizing when replanning may
be necessary, and can initiate replanning as needed. So far, this
monitoring function has been handled by a separate module not shown
in Figure 1.

The knowledge contained and used by a planner describes a
particular type of process to a given level of detail. It identifies
the tasks that must be completed during its execution and the required
partial ordering among these tasks. It identifies what resource
types must be assigned, and their relations to the tasks. It also
identifies what other planners must be called to develop the details
of any tasks that must be further decomposed, and the schedulers
that are responsible for the necessary assignments. It has the infor—
mation necessary to permit it to initiate requests for subplans and
assignments.

3

. . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

User

INTERFACE

PLANNER PLANS SCHEDULER I SCROLL

__________ __________ I j TABLE

. 1 I
PROCESS RESOURCE

MODELI MODEL

. S

•
• •

(One for each (One for each

process and subprocess resourc e type
being planned) being scheduled)

SA-6289-1

F I G U R E 1 BLOCK DIAGRAM OF ACS.I

4

- ~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

A task recognized by a planner as a component in its processmay require planning itself. If so, some other planner has the
responsibility for planning it , perhaps decomposing it further
into subtasks and obtaining further assignments of resources. In
response to a particular requirement, the System of planners may
be structured into a hierarchy of modules operating at various levels
of detail . Different hierarchies may be required in response to
different requirements, and established through the knowledge
contained in the various planners and implemented through the message
handler.

Each scheduler has the responsibility for a particular type
of resource, whether human , equipment or facilities. In response
to a request for assignment of one of the resources of its type for
some future interval of time , the scheduler first determines which of
its resources will be available for the specified period . If more
than one, and if it has been given the authority, it selects one
according to criteria within its knowledge and makes the assignment.
If it has not been given the authority, it sends the relevent infor-
mation to the human user for his decision. If no resource is avail-
able, the scheduler may, depending on its knowledge of what is requir-
ed , return the assignment that comes closest to matching the require-
ment, or refuse the request.

As an example , consider the application environmen t that has
been studied—— the command of a naval air squrdron . A flight
mission is one activity that needs planning. The commander may
enter a requirement that a given mission be planned to reach a
specified target at a specified future time, and to leave that
target at some later time. This requirement is transmitted to the
planner that knows about planning a mission. The process model
used by that planner decomposes the activity of flying a ~ssion as
shown in FIgure 2. The tasks it recognizes are preflight preparation
of the aircraf t , briefing the pilot , the fligh t out , the ~tion
of the flight itself , the postflight service of the aircraft , and the
pilo t debriefing . It also knows that a pilot and an aircraft must
be assigned .

The preflight preparation of the aircraft may be decomposed
f urther by another planner into the transfer of the aircraft to the
flight deck , its preflight service , ar ming , f ueling , and its transfer
to he launch facilities. Additional resources, such as maintenance
personnel, may be required during some of these subtasks.

A plan has been genera ted , and will be returned to the
commander for his approval or modification, only when all tasks and
subtasks have been planned and when all resources needed during any
task or sub task have been assigned .

5

--5

..-5 .,••5—5-~~. 5’ ~5555~5
~~~~~~~~~~~~~~~~~~~~~~~ 

5.—.

7111~~

I.
6

5 . - —---——-5 .55 _ _ _ _- -_ .___ .._~~~~~~_,_._ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —



In making assignments, note that a scheduler must be cognizant
of all expected future usage of the resources for which it is respons-
ible. For example, the aircraft scheduler must know which aircraft
have been assigned to other missions or are due for scheduled
maintenance actions or otherwise unavailable. It must respond to
a request for assignmen t in a way that is consistent with that
expected future usage. The spec ification of wha t is meant by
consistency for a particular type of resource is contained in what
the resource model of the scheduler.

There are several features of the system concept that are
of prime importance to the type of application being considered . These
features have dominated the development of the experimental system , and
have been an Important component of the research. They can be
summarized as follows :

The division of responsibilities among the plan ners and
sched ulers should correspond to the division of responsibility
in the comparable human organization. This feature helps the
user to understand the system’s operations, and should permit
the orderly growth of the system. It also facilitates the
transfer of responsibility between the system and the human
organization to handle exceptional situations.

The knowledge contained by the planners and schedulers
should be explicit and accessible for modification without
major revision of the system. This is considered necessary
to permit adapting the system to changing needs and conditions.
It also permits introducing new planners or schedulers through
specification of the applicable knowledge. This feature permits
the rapid exten~io~ of the scope of the system, or its transferto new application environm ents.

The scope and operation of each planner or scheduler should
be sufficiently simple to make It readily understandable by
the human user. The complexity of system operation should be
the result of interactions among the modules, rather than
contained within any module. Again, this facilitates growth
and adaptation, and permits rapid modification to meet
exceptional conditions.

Further details of the system concept, and of the techniques
that have been used to Implemen t it, have been given in Technical
Report 13, and are not repeated here. In the next section, we con-
sider the requirements for the schedulers in greater detail.

7



- 55- — - — — -5 5—-- —--5’--- — ----5 — -  - ~.L ~~~~~~~ 
-- .

~~~~
—.

- --5- .- . — ,5_ __ .. __ _5t~~~~~~~~~~~~
_ .~~

_ ’

wor - . -

ed~4’~ ~~~ 7~a~wt~’ / ~I,~f~o~
1 ~: -

‘

III. SCHEDULER REQUIREMENTS

There are a number of requirements schedulers should meet.
These derive from consideration of their roles in the planning and
monitoring functions of the system, and as facilities that maintain
information about the future use of their resources. In particular,
the schedulers are required to:

Respond to planning needs.

Assist in maintaining plans by recognizing conflicts.

Support the user’s need for overviews of resouce commit-
ments.

Support the need for alert function .

Initiate system—originated planning as required.

In addition, the schedulers should be designed to support the need
for adaptation.

A scheduler’s primary system function is responding to
requests for assignment of its resources, or determining that no
assignment is possible. For this purpose, it must maintain all
relevent all information affecting the availability of its resources.
It must also have the knowledge and procedures that can act on this
data to produce an appropriate response to a request for assignment.

A scheduler also is required to recognize when new data
invalidates previous assignments. New information about the expected
future state of a resource can be entered at any time. It is the
scheduler’s responsibility to determine if this data creates a
conflict, and , when it does, to initiate the appropriate action.

A scheduler contains detailed information about the expected
future use of its resources. This information can be important to the
manager , and should be available to him in a format convenient to his
needs.

The scheduler can provide some of the alert functions that may
be required of the system. The term, alert function, means one that
watches for the occurence of some condition, and, when it occurs,
issues a message advising the manager of the fact. For example, the
manager may want to be warned when there is danger of overload. The
scheduler can be directed to monitor the loading of its resources,
and to issue an alert message when a specified level is exceeded.

9

________ -- 5 - -——---—---———- --

The scheduler also can be required to initiate other system
actions. For example, in the application environment of the naval
air squadron, the aircraft scheduler can be directed to keep track
of the accumulated flight hours for each aircraft and to initiate
the planning of scheduled maintenance when required.

In addition, there is the general requirement, discussed
above in Section II, of making a scheduler’s knowledge accessible
for modification and adaptation. It is considered vital that a user
who may not have expert knowledge of the system be able to modify
the knowledge it contains, or to create new schedulers as needed
to handle resource types not previously included in the system.

The following sections describe the techniques that have been
developed to meet these requirements.

10

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~~~~~~ -- .-— ,- ,--‘-~~~-- ,5- -—,-  -~~~~~~~



-~~~~~~ 

~~~~~~~~~~~~~~~~

IV. SCHEDULER OPERATIONS

There are four significant aspec ts of scheduler operations.
These are considered separately in the following subsections which
discuss the following topics:

Data Structure—- The way a scheduler holds information about
expected events and plans.

Specification of the Model—— The means for encoding knowledge
in a scheduler , and for modifying it as required to adapt a
scheduler to new requirements.

Self—Consistency in a Scheduler—— The means for enforcing
continued self-consistency of data contained in a scheduler
as defined by its resource model.

Alert and System—Initiated Actions—— The techniques used to
set and modify alert functions and other processes tha t can
initiate planning or other system actions.

In the following subsections, these aspects are discussed
from the viewpoint of the system user, describing the system behavior
he can observe and have available for use. The functions that
implement this behav ior are discussed in the following section.

A. Data Structure

The data structure used by a scheduler is what we call a
“scroll table. ” Conceptually, a scroll table is a two—dimensional
array. Each row represents a named one of the resources being handled
by the scheduler. Each column represents an interval of time speci-
fied for the scheduler . The fir st column always includes the current
value of the simulation time used by the system . As current time
advances into the second oolumn , the first column is dropped and the
Second column becomes the first . The table is said to have been
scrolled . In the table , data is held in the “cells” of the applicable
row of each column.

It should be emphasized that this is a conceptual description
of a scroll table. Its actual implementation is somewhat different,
as is described shortly. However , it can be printed in the form
described.

To illustrate, Table 1 shows the scroll table for the pilots
of ACS.1 as it might exist following certain assignments and the entry
of certain data.

11

_ _ _ _ _ _

j

_ _ _ _ _ ~~~~- -5’ -— ---—--~~~ ------- --- - 5-..

Table l
PILOT SCROLL TABLE

<MONITOR >: SHOW THE TABLE FOR THE PILOTS FROM 0:00:00 TO 0:03:00

Table: PILOTS
Property: STATE—NAME (AVAIL replaced by a .)

Name\Time 0:00 0:30 1:00 1:30 2:00 2:30

ABLE I SICK SICK SICK SICK SICK SICK
BAKER I AVAIL ASG ASG ASG ASG ASG
CHARLE S a SICK SICK SICK SICK SICK
DAVIS a ASG ASG ASG ASG ASG
ELLIS * a a a a

The entries In Table I are the state names in each cell.
The state name is a code word that identifies the type of entry that
has been mad e in the given cell. It is one of a set of state names
that have been defined by the resource model of the scheduler . In
Table 1, ASG means “assigned to an approved plan for a mission” .
ASG.RET indicates a rest period following the completion of a mission.
SICK and AWAY indicate the entry of data identifying that the
given pilot is sick or on leave , respectively. AVAIL is the default
state, standing for available. The printout of the state names
provides a convenient summary view of the expected use of the resour-
ces. Much more information is actually contained in each cell , as
indicated later.

In Table 1 , the first line, after <MONITOR>:, is the actual
input command recognized by the pseudo-natural language interface
and interpreted Into the appropriate function call. The columns
represent intervals of time , which , in this case , are each 30 min-
utes long. The length of this interval is specified at the time
the table is set up, and remains a parameter of the scheduler. The
rows are labeled by the pilots’ names given to the scheduler. The
number of rows available in the scheduler, whether used or not,
is specified also at the time the table is created , but may be
changed later if necessary. Only the rows used are printed in
Table 1. In this case, the number of available rows is ten, but
only five are being used.

As implemented , the scroll table, as shown in Table 1 , exists
only as a virtual entity. The principle difference is that columns
are created only as needed. This i~ done to permit the scroll tableto include data that may be indefinitely in the future without having
to assign an indefinite amount of storage. (To be precise, the limit

12

5 - - -..-- — - 5’-----——-— --- -- — - - --— -5- -5 , -555~~~~~~ - - - - -. -5 -~~~~~~~~~~~~~~~ - - 5 -

F 5- -

on the time is the value, in minutes, which is the largest number
recognized by the computer as an integer. In the present system ,
this time is (2~35 — 1) which , although finite, is large enough for
all practical ~,urposez.) Table 2 shows a printout of the same data
as that shown in Table 1 , but in condensed form in which only the
columns that have been generated and that may contain new information
are printed.

Table 2
CONDENSED PILOT SCROLL TABLE

<MONITOR>: SHOW THE CONDENSED TABLE FOR PILOTS

Table: PILOTS
Property: STATE—NAME (AVAIL replaced by a.)

Name\Time O(~ 00:30 03:30 09:30

ABLE 1 Sj C~ SICK SICK SICK
BAKE R 1 * ASG ASG RET a
CHARLES I SICK a a
DA VIS 1 * ASG ASG.RE T a
ELLIS 1 a a a a

The second column of Table 2 covers the period from 0:30
through 2:00 because there is no change in the data between these
limits. Similarly, the third column covers the period from 2:00 to
5:00. The final column is from 5:00 through the indefinite future.

In the situation described by Table 2 , if data is to be
entered for, say, Ellis from 1:30 to 7:30, the first action is to
create columns that start at 1:30 and 7:30 . The column starting at
1:30 is given the same data as the column starting at 0:00; that start
ing at 7:30 is a duplicate of that starting at 5:00. Once these
columns have been made, the data for Ellis can be entered.

It should be added that no check is made on whether a column,
once made, continues to be needed. For example, if the data for
Ellis from 1:30 to 7:30 is later removed , these columns are no
longer needed. They are not removed but are left to be eliminated
as current time advances and scrolling occurs.

The validity of this procedure for dealing with new and obso-
lete columns depends on the assumption that most of the data
different from the default state is likely to occur in the near
future. This assumption is reasonable for the type of application
considered. As long as this asumption is true, the average rate at
which columns are removed through scrolling can balance the average

13

t

_ _ _ _

~

rate at which columns are generated, without requiring an excessive
number of columns. On the average, the amount of memory used for
each scroll table is not excessive.

In its implementation , no data is actually contained in the
cells of the table; instead, the cell contains a pointer to a separate
data structure. Consequently, an unlimited amount of data can be
referenced in each cell , and memory does not need to be assigned
unnecessarily.

Additional information, besides the state name, is entered
into the cells of a scroll table. Typically, this includes the
start and end times of the entry of which the cell holds a part.
It also may include an identification code of either that entry or
of an associated one as is illustrated shortly. There is a pro-
vision, also, for entering other information that may describe, for
example, the purpose of the entry. This last part of the entry
could even be a textual description of background information that
might be important to the manager. We have not used such textual
material, but the capability for handling it is provided.

To illustrate, Table 3 shows a possible query addressed to
the pilot scheduler that was addressed in Tables 1 and 2.

Table 3
PILOT ASSIGNMENTS

<MONITOR>: WHAT IS THE ASSIGNMENT OF EACH PILOT AT 0:02: 15

Name State Start End ID FPC

ABLE 1 SICK 0 INDEF
BAKER 1 ASG. RE T 120 285 M l
CHARLES I AVAIL
DAVIS I AS G.RET 120 290 M2 A7
ELLIS I AVAIL

This printout shows not only the state names for each pilot
at the indicated time , but gives a considerable amount of other
information as well. For Able , it shows that there is no information
about when he is expected to return from sick leave. For Baker and
Davis, both are in the rest period following an assignment, as
indicated by the state entry. It also gives the start and end time
of that state and the identification code and the FPC (flight purpose
code) for the mission that caused the state ASG.RET. Note that the
start of ASG.RE T is the start time of the first column that contains
the state. Its end time is the actual one of the mission plus the

14

- -- - 5 - - - - .- -- -
~~~~~~~~~~~~~~~~~~~~ - - - - - -- -—-~~~~~~~~~~~

._— -- -55’ -- - . .5- .55- -5 - - -



r 
—

rest period set by policy, here assumed to be three hours. The
inclusion of the mission’s ID allows recovery of the details of the
mission itself. The data shown is that obtained by accessing the
virtual contents of the corresponding cells of the scroll table that
include the specified time, 2:15.

Other data structures can also be attached to the cells.
In particular, the demons that enforce the continued self—consistency
of the data in the table, to be described in detail later, are data
structures that are made part of the content of the cells to which
they apply.

Although not shown in the table printout s , there is also the
possibility of attaching data to the rows , columns , and the table
as a whole. For example, data attached to the rows can be used to
accumulate the flight hours during the month for that pilot. The
accumulated flight hours for the squadron can be recorded in a data
structure attached to the table as a whole. Data about the environ-
ment , such as the expected weather conditions, can be attached to the
columns .

It is convenient , al so , to attach data to the table as a
whole that will facilitate access to particular types of information
within the table. For example , it has been convenient to attach a
structure keyed on the ID codes for each assignment. This data ident-
ifies the locations of each assignment in the table and acts as an
inverted file for the data types involved . It permits manipulating
the table’s contents by specifying an assignment’s ID.

The device of the scroll table has proven to be a very effect-
ive way of storing the data needed by a scheduler, organizing it in
a way that matches its use. We have illustrated this through
showing its use in providing conv enient overviews of the expected
usage of the resourc e type . Clearly, this is an important featur e
in making the data available to the manager in a useful format .
The device is also useful for a number of other reasons.

The structure of a scroll table fits its role in the system’s
internal operations. A scheduler’s primary function is to respond
to requests for the assignment of its resources. These requests
typically specify the desired start and end time, and do not name a
particular resource. The scheduler must first determine which of
its resources are available. It then either makes a selection itself,
or refers the decision to the manager, depending on the authority
given to it. Once the selection has been made, the assignment can be
entered into its data and the assignment returned to the requesting
source. The key operation is the determination of the available
resources. The format of the scroll table is convenient since it
leads to a rapid search algorithm . The column that includes the re-
quested start time can be scanned to determine possible candidates.

15



— __________ - 
-- 

~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
- - -

For each of the candidates, the required section of the row can then
be scanned. The result is a rapid determination of which, if any,
resources match the request.

If no resource is available for the requested period , the
scheduler may be required to inform the requestor of the nearest
assignment available. Again, the scroll table’s form is convenient
for executing the required search.

The form of a scroll table is convenient for maintaining
the consistency of its data. The maintenance of consistency is
likely to require that, when certain changes are entered, certain
other changes must also occur. These Other changes are likely to
be in the same row as the original change, but over some following
period of time. The structure of the scroll table facilitates
locating the cells in which these changes must be made.

The use of a scroll table to hold the data of a scheduler has
proven very useful.

16

-5 __ _ - _ _ _ _5’_ _ _ _ 5~~
_ _.~~~~~ . _ _ _ _ _ 5 _- 5 _ _ . _ _

B. Specification of the Model

The second major aspect of the schedulers is the way they
encode and use the resource models, which contain the knowledge
that controls their operations.

The dominant requirement is that the resource model be
encoded as a distinct structure that can be modified easily by the
manager . This is necessary so that the system can be adapted to
adapted to cha nging requirements and conditions. It is unlikely that
any system can be designed , ab initio, in a way that continues to
respond to managerial needs. The ability to modify the system as needs
change, or to meet exceptional situations, is aided greatly by encod-
ing the model as a distinct structure.

Also, in entering changes to adapt the system to new require-
ments, or to meet exceptional circumstances, the user should be able
to concentrate on the substance of the changes he desires. As far
as possible , he should be able to deal wi th the knowledge directly,
without being involved wi th the details of how it will be used by
the system .

These considerations imply that the functions used by a
scheduler should be quite general ones , capable of executing their
jobs in accordance with a wide variety of resource models. The
resourc e model should be used to specialize these generalized
functions to the particular requirements of the resource type .

A resource model can be viewed as defining an abstract
machine , or automaton . The states of this machine include all
permissible configurations of the data. It is in this sense that the
model defines what is meant by self—consistency. The model, then,
specifies what state—transitions are permitted . When new data
creates an inconsistency, the model then specifies, directly or indir—
ectly, wha t other changes must be mad e to re—establish consistency.
For this purpose, the model identifies and lo~oels the categories of
information that must be handled , and names the functions to be
called under specified circumstances, These components of a resource
model are discussed shortly.

As an example , Table k shows an abbreviated version of the
resource model for the pilot scheduler of ACS.1. It includes four
entry types, MISSION, MISSION—REST, SICK and TRAINING. MISSION de-
notes when a pilot is assigned to a mission. MISSION—REST identifies
a rest period following assignment. SICK describes a pilot on sick
leave and unavailable for assignment. TRAINING covers class—room
study and exemplifies activities with lower priority than an assign-
ment, but which can be scheduled around assignments. The full res-
ource model must account for a number of other situations that can
being on leave or attached or detached from the squadron. The
components shown have been selected to illustrate important varia-
tions in the applicable constraints.

17

-.- 5 -
~~~~~~~
-5—

~~~~~~-—



~~~~
— - —

~~~~~~~~~
--— - ---

~~
— — .-5’---~~~~~—— - -

~~~~~~~~~~~~~~~~~~~ 
-
~~

-- 
____

The data structures under each of the names of the entry
types is called the “model” for that entry type. The term “resource
model” is reserved for the entire collection of models that apply to
each of the entry types recognized for the resources of the type
handled by the scheduler.

Table ~
PART OF THE RESOURCE MODEL FOR PILOTS

MODELS:
MISSION:

STATE-NAME: ASG.
LEVEL: 5.
ID—LABEL: MISSION-ID.
CLASS-LABEL: FPC.
POST-ENTRY: MISSION-REST .
E-LIST :

TYPE : 1.
WATCH-DEMON :

WATCH. 1:
CALL-FUNCTION: DIALOG. 1.

MISSION—REST :
STATE—NAME: ASG. RET.
LEVEL: 3.
DURATION: 360 .
ID-LABEL: MISSION-ID.
E—LIST: :- -

TYPE : 2.
WATCH-DEMON :

WATC H .2: NIL.
SET-DEM ON :

WATCH. 2: NIL.
SICK:

STATE-NAME: SICK.
LE VEL: 8.
CLASS-LABEL: TYPE .
E—LIST :

TYPE : 1.
TRAINING:

STATE-NAME: TRAIN .
LEVEL: 3.
ID—LABEL: TRAIN—ID.
CLASS-LABEL: TOPIC.
E—LIST :

TYPE: 3.
WATCH-DEMON :

WATCH .3 : NIL. .
SET-DEMON:

WATCH. 3: NIL.

18

___________________ — - -5- -5 — ---5 -. 5-5- -—-5- 5-—- .-- — --- - - - -  ~~ - — -5- -—



-_~~~~~~~~ -5— .- ~~~ - 5 5 - - - — - 5 - --- - _ --

The printout of Table ~ reformats the actual data structure
for better readability. The actual structure is a list of lists of
lists, etcetera. That is, the values of MODELS is a list of lists,
one for each entry type. For example, the value of MISSION Is a list ,
most of whose elements are dotted pairs indicating property—value
pairs. Within MISSION, the value of STATE—NAME is ASG, for “assigned.”
Each entry type also has a property named E-LIST (for “entry list”),
whose value is a list that gives technical information about the
entry type. In particular , it identifies the type number and the
function names to be used as demons or called by demons , as described
later.

Each entry type has a specified value of the property
STATE—NAME which identifies the entry type in the table. It is
this value that is printed out in Tables 1 and 2, although the format
of the print function permits specifying other properties. The table
itself def ines the defa ul t state , which, in this case , is AVAIL (for
“available”) that is entered when no other entry has been made.

Each entry type has a specified value of the property LEVEL.
This encodes the constraint that specifies when data can be superceded
by a later entry. The rule generally used is that a new entry can
not displace existing data unless its level is higher. However,
there are conditions discussed later, when entry should be permitted
if the levels are equal. The functions used for entering data permit
the setting of a flag that will permit equality.

The use of a numeric level to specify the entrance constraint
is somewhat limiting . Should it prove necessary to use a more com-
plex rule, there are other ways to encode them. For example , the set
of states that a given entry type can displace could be listed direct-
ly. However, the specification of a level for each entry type , with
O for the default condition , has proven sufficient so far.

Some entry types, such as MISSION , specify a value of ID—LABEL.
This value is used as the property name under which an identifying
code can be included in the data. For example , if a mission is
identified as number Ml , the data for it will include the dotted
pair (MISSION—ID . Ml). The value of CLASS-LABEL is used similarly.
In the entry type MISSION , this value is FPC, for “flight purpose
code.” One could use this label not only for entering the applic— - -

able code, but also for other information , even a textual descrip-
tion of the flight or its circumstances.

When present , the value of POST—ENTRY specifes another entry
type to be used after the completion of the given entry. For example,
in MISSION , it expresses the policy that, following assignment to a
mission , a pilot should be given a specifed rest period if possible.
The duration is specified as the value of DURATION in the model for
MISSION—REST. This constraint is a weak one, it can be violated if

19

-5 —— - -
~~~~~~

_
:~~~~~~~~~~~~ ~ - —— -5~~~~~ - -.5555~~~~ - — —-~~~~~~~~~~ -— 5- -— .- - —~~~~~

- 5 - - - -5- - : - - ________________

circumstances require . This is reflected in the low value of its
level and in the fact that its TYPE is #2 , the significance of which
is discussed next.

The value of E—LIST, for entry list , is itself a list which
identifies some of the technical aspects of the entry type . The
value of TYPE in the H—list designates the basic characteristics of
the entry type. Type 1 , as in MISSION , requires that the entry be
made in its entirety over its specified interval , or not at all. It
makes no sense, for example , to assign a pilot for only part of a
mission.

Other types also exist. For example , MISSION—REST is type 2,
indicating that it is to be made continuously from the start and as
far as possible , considering the existing data and its level , up to
the specified duration. Type 3 permits a discontinuous entry until
the required duration has been obtained . For example , it is used
for classroom training. Other types could be defined as required to
describe other needs.

The value of WATCH—DEMON in the H—list names a function to be
used in a demon s, as described in the next subsection. The value of
CALL—FUNCTION is also the name of a function, and is used by the
function named under WATCH—DEMON , as is also described later. It is
suff icient to say, here, that it determines wha t the scheduler does
if the later entry of dat a cr eates t~ conflict with the assignment of
a given pilot to a given mission. The function named in Table 3
creates a dialog with the commander so that he can determine how the
conflict is to be resolved . By changing what function is named , the
the scheduler can be given the authority to reschedule the mission to
a different pilot, and told how to select the substitute.

In some cases, the E—list also includes a property, SET—DEMON ,
which names a function to be used in a demon . This entry may also
specify a value of CALL—FUNCTION to be used by the set demon . The
differences between watch and set demons, and the complementary roles

a A demon is a structure that is attached to one or more data
elements. It contains a precondition and a function together with
means of setting the arguments of the function when it is called . If
the data is changed in a way that satisfies the precondition, the
function is called with the required arguments and executes what it
has been programmed to do. The demon is then said to have been “fired”.

To be precise, this describes “write demons.” There may also
be “read demons” that may be fired on reading the data items. We have

not used read demons, and will use the term “demon” to refer only to
write demons.

20

“- -~~~~~~- - - -5

they play in certain situations, are described later. Briefly, a
watch demon is attached to data entries that have been made success-
fully, while set demons are attached to data that has blocked a desired
entry. The same function may be used in both demons, as is illustrated
In Table ~4 for MISSION-REST and TRAINING. However, the demons are
different, both because they are attached to different data elements,
and because they use different preconditions. They are specified
specified to permit using different functions, should this be needed.

The resource model is encoded , then, into a data structure as
described. This structure is attached to the scroll table as a whole,
and so is identified closely with the scroll table of the scheduler.
This format is convenient and has the flexibility required to handle
a wide variety of specifications.

The specification of the resource model in the format described
not only meets the requirement that it shall be explicit and accessible.
It also facilitates modifying the resource model to meet changing
conditions , policies, or needs. The key elements of the resource
model are named explicitly, so that their values can be changed ea3ily.
Changing them will switch the behavior of the functions that use the
resource model , or will change the parameters they use. The resource
model appears to be a flexible , powerful , and convenient way to encode
the knowledge used by the schedulers.

21

-- -- -----5- _—--- -

C. Self—Consistency in a Scheduler

In the previous section, we mentioned demons as the means
used to enforce the continuing self—consistency of the data in a scroll
table. The way they do this is described in detail later. Here, we
are concerned with determining what is the self—consistency that is
required. There is need for a precise definition of the term.

The problem of consistency arises because new data may be
entered at any time that will invalidate previous plans. For example,
if a pilot becomes sick, or an aircraft Is found to need maintenance,
this data will force reconsideration of plans to use that pilot or
aircraft. The plans must either be cancelled or revised to make them
consistent with the new situation.

—
The consistency that is required we call “retroactive consist-

ency.” Its abstract definition ia as follows:

Let P1 and P2 be procedures that seek to enter data into a
scheduler. Whether or not they succeed depends on the rules used by
the scheduler and the data that I~ already present in it. Let P 1
and P2 be executed in either order. Then let any data remaining from
P1 be deleted from the table. The table should then be the same as it
would have been, had one of the following three sequences occurred:

a P1 is executed and then its data deleted , without execution
of P2,

a First P1 is executed, then its data is deleted, then P2
is executed , and finally its data is deleted ,

* P1 is executed , then its data is deleted , then P2 is
executed.

In all cases, the operations with P1 are completed first.
Then nothing is done, or P2 is first executed and then deleted , or P2
is excuted.

Note that the deletion of data entered by a process, P, is not
a true inverse. Its entry may have forced cancellation of some
previous entry which is not recovered when the data of P is deleted.
Hence , the table may not be returned to the same state as it was in
prior to Its execution. It is for this reason that, in all cases, P 1
is first executed and then its data is deleted and, in case b , the
same thing is then done with P2.

In effect , the deletion of the P1 data is required to have
the same effect as if either P2 were never executed, or P2 were exeout—
ed afterwards, and its data then either deleted or not. It is for
this reason that we call it “retroactive consistency.”

22

—55- - - - 5 - 5 5 - - — - - - - 5- -555 .~~~~~~~~~~~~~ - — -- —--- - - - - - - 5 — -. - - - - -5—
-!’

In the case where P2 is a type 1 entry, where the entry must
be made in its entirety or not at all, any of the three cases can
apply. If P1 has precedence, and if it interferes with P2, involving
some of the same locations in the scroll table, the prior entrance of

• P1 will block P2, 50 that case a applies. If P2 is entered first ,
the subsequent entry of Pt will cause the cancellation of the P2 data ,
leading to case b. (It is not case a since the entry and deletion of
the P2 data may cause changes elsewhere in the table.) Finally, it
P2 has precedence, then case c will apply, whether there is inter-
ference or not.

For types 2 and 3, case c applies. Type 2, it will be
recalled, makes the entry as far as possible from the specified
start time until the desired duration has been obtained, or until
the entry is blocked . Type 3 permits a discontinuous entry starting
from the specified start time until the desired duration has been
accumulated. In both cases, the deletion of the P1 data may open the
possibility of a more complete P2 entry. Retroactive consistency
requires that full advantage be taken of this possibility, when it
occurs.

For example, suppose MISSION-REST specifies a duration of six
hours. Suppose, however, that a pilot is scheduled for sick leave
starting four hours after the end of a mission. The state , ASG.RET ,
can ae entered only for the four hours. If, later , the sick leave is
cancelled, it is required that the entry of ASG.RE T be extended to
the full six hours set by policy. The effect is as if the entry of
MISSION—REST were mad e after , rather than before , the cancellation of
the sick leave.

Suppose , again , the MISSION—REST entry were executed first for
the full six hours. Suppose the sick leave is entered later, reducing
the extent of ASG.RET to four hours. If the sick leave is then
cancelled, the extent of ASG.RET must then be reinstated for the full
six hours.

There are two ways a later data entry can affect a prior
entry. It can override data that is present, or it make cells avail—
ble that were not available before. The former case is handled by
watch demons , which have the responsibility of recognizing when a
later entry creates a conflict . The latter case is handled by set
demons, which have the responsibility of recognizing when a later
chang e creates an opportunity to improve an earlier entry. Watch
demons, when set by a process P, are attached to the cells in which
P makes an entry. Set demons, when created by P, are attached to
a cell or cells in which P attempts to make an entry, but is blocked
by data already present.

23

I

-5-5.~~~-55• ~~~—5 5~~~~~ - - • • ~~~~~~~ --— -- -. - - - - -

The abstract description definition of retroactive consistency
suggests what the principle action of a watch or set demon should be.
Put somewhat over—simply, it should either cancel the original entry
operation or re—execut e it. In the latter case , it needs to be able
to overwrite data that may remain from the original entry, since some
of the parameters of this data may be changed. (For example, if the
data includes the actual range of the entry, this will now be
different.) In the latter case also, it may need to determine where
data from the original entry may be that Is not overwritten, and
delete this data. The primary action is still either cancellation
or re—execution.

An important principle in the design and use of watch and set
demons, and to complementary pairs of them, appears to be what might
be called the “self—destruct capability”. This states that, when a
demon is fired , it should have all information necessary for its
removal available to it, and for the removal of its complement if
any. The importance of this principle is that, when a watch or set
demon is fired, it may modify data to which it is attached . To
avoid refiring the demon, the first action of the demon when fired
must be the elimination of all its occurences, and of all occurences
of its complement. The self—destruct property allows this to be done.

Techniques for constructing and using demons, and for the
convenient implementation of the self—destruct property, are discussed
later.

24

_ __ __ _ __ __ _ __ _ ---5 ---——

D. Alert and System—Initiated Actions

The final aspec t is the way system—initiated actions can be
programmed , Including the issuance of alert messages.

The requirement can be stated somewhat abstractly by stating
that, when some certain precondition is met , certain actions should
be taken. This statem ent is a description of a demon , and demons
are the device used for obtaining system—initiated ac tions and messages .
However, the demons that may be used here may be rather different
from the watch and set demons used for maintaining retroactive consist—
ency in the table.

The first difference is that preconditions used for the demon
may be quite complex. The precondition for a watch demon is often
empty, the demon is to be fired whenev er data in the cell being watched
is changed . The one on a set demon is likely to be non—empty but
still simple, the demon is to be fired if the value of level in the
data in a cell is made less than some value . By contrast , an alert
demon may be required to initiate an alert message only if some cond-
itIon is reached that requires some fairly extensive computations.

For example, the commander of an air squadron may want to be
alerted if the number of aircraft available for flying a particular
type of mission should fall below what he defines as an adequate
reserve. The duration of the mission type may be specified . The
precondition on the alert message requires evaluating not only how
many aircraft are available for a mission at any given time, but
whether they are available for the required period of time, starting
at any given time .

One consequence of the possible complexity of the precondition
for the specified action is that it may not be used as the precond-
ition of the demon itself. It may be more conv enient to let the demon
be fired on any change of the data that might interfere with flying a
mission (i.e., that raised the level of the data above that of assign-
ment to a mission) and to incorporate the rest of the evaluation
process into the function called by the demon . The precondition of
the demon need not be that of the system-initiated action being
implemented by the demon.

A second difference from watch and set demons is that the
data involved is not confined necessarily to a single cell. In ACS.1 ,
we have made provision for four types of demons , depending on the
data structures they are attached to. Watch and set demons are
examples of element demons, attached to particular cells in the table.
We have also made provision for column , row and table demons. Column
demons are attached to columns and are checked whenever an entry Is
made in that column. Row demons are attached to rows, and checked
whenever an entry is made to the given row. Table demons are attached
to the table as a whole, and checked on any entry to the table.

25

~~~~~~ ---5~~~~~~~~~---5 -5-



____ 

~~~~~~~~~~~~~~~~~~~~

The possibility of demons whose scope is defined other than
a cell, column, row or the entire table could be considered. We could
also consider demons on data other than what is in the table, such as
cumulative data attached to a row or the table as a whole. We have
not found the need for these other possibilities, however. It appears
that all system—initiated actions, which depend on the evaluation of

• information held totally within a given scheduler, can be handled with
the varieties of demons that have been defined.

The third difference from watch and set demons is in the
variety of responses that may be required. A watch or set demon,
as discussed, must have the effect of reexecuting the process that
caused their creation. Hence the act of creation defines their oper-
ation, at least in the abstract sense. By contrast, a demon that
drives a system—initated process may be required to do whatever the
user specifies. In consequence , the function used by the demon
cannot be standardized. The structure of the demon itself, and the
way in which its preconditions are tested and the demon fired, can be
standardized, but not the function or its behavior. However, the
problem of creating the desired demon is reduced to defining the func-
tion that will execute the specified action, given the environment
that is specified by the conditions that will cause the demon to be
fired.

While the specific demons used for alert and system—initiative
purposes cannot be specified in any general way, ACS. 1 does provide
a flexible and convenient environment in which they can be defined
as the need arises.

- - ~~~ 5.

—~~——---

V FUNCTION ORGANIZATION

The specific functions defined for the schedulers of ACS.1
are given and described in the next seven sections. Each section
is concerned with one group of functions, although these may be
divided into subgroups for clarity. The groups have a generally
hierarchical organization according to the levels named in Table 5.
Each group of functions may use functions in the groups above it in
Table 5. The numbers before the titles in that table are the corres-
ponding section and subsection numbers; so, that table 5 serves as an
index to the following material.

Table 5
OGANIZATION OF THE SCHEDULER FUNCTIONS

VI MISCELLANEOUS CONVENIENCE FUNCTIONS

VII TABLE FUNCTIONS

A. Table Creation
B. Row Naming
C. Scrolling
D. Column Creation
E. Row Modification and Retrieval

VIII PRIMARY DATA FUNCTIONS

A. Data Entry
B. Data Retrieval and Display

IX MODEL FUNCTIONS

A. Creation and Display of a Model
B. Modification of a Model

X DEMON HANDLING

A. Attachment of Demons
B. Removal of Demons
C. Self—Destruct Property

XI TOP LEVEL FUNCTIONS

A. Top Level Data Entry
B. Data Cancellation —

XII DEMON AND DIALOG FUNCTIONS (WATCH AND SET DEMONS)

27

• -—---

~

- - -- -

~

--- — • -5-- -- 5 - - 5 - - --5- --5--—---- - •

~

-5---- --5- - —-- - •.- •—

— —-—---—,-* ---,~-.— - —— —-—-,—---- --•-- ---• --— — -- -—- .•—--,- —-——--‘- ---

Note that all of the functions are defined in INTERL1ISP, so
that the usual INTERLISP functions represent a bottom level not shown
in Table 5.

In the following sections, the actual functions in each group
and subgroup are given at the end of the corresponding section or
subsection. The body of the section is textual material that describes
the functions and discusses some of the reasons for the choices that
have been made.

28

-5 - 5 - 5 —5 -5 - - • ~~~~~~~~

-5

VI MISCELLANEOUS CONVE NIENCE FUNCTIONS

This and the following sections describe the functions used
by ACS.1 for creating, manipulating and using scroll tables. ACS.1
is written in INTERL.ISP and operates under TOPS. 10.

There are a number of functions of general utility in ACS.1.
One set are those used for manipulating A—lists , adding , deleting or
changing property—value pairs, or for retrieving by property name
Information stored on an A—list. The names of these functions are
preceded by “A. ” as in A.GETP. The type of operation Is ind icated
by the core of the name, PUT , GETP , ADDP ROP , REMPROP or REMVAL . The
PUT functions put the specified value under the property name,
overwriting any previous value , if any. The GETP functions recover
the value of the named property, executing an associative retrieval
(hence the name , A—list , for associative list.) The ADDPROP
functions are similar to the PUT functions , except that the value
of the property is expected to be a list of values , so that over—
writing is not required . If the property is being added , the value
is entered as a list of one term. If the property already exists,
the new value is added to the existing list of values. The REMPROP
functions remove the named property, and its value , from the A—list,
except that it cannot anihilate the A—list. The REMVAL functions
remove the indicated value from a list of values of the property.

The functions that have “.S” on the end , such as A.GETP.S,
use SASSOC instead of ASSOC. In locating the property, this forces
the use of EQUAL instead of EQ. Where the property name is a number,
as may be the case when values are stored under an ID number, EQ may
fail when we would want it to succeed. A.GETP.S will succeed when
A.GETP might not.

Finally, the functions that have “#“ on the end, such as
A.GETP# or A.GETP.S#, take a list of property names. The a—list is
searched recursively, using successive elements of the property list,
until the property list is reduced to a single element. The function
then is applied using the remaining element as the property. The
function fails if any property on the list is not in the value of
the preceding property. If it fails, it does nothing and returns NIL.

The function, CONVERT.TIME , is used to reformat time, given
as an integer which is the number of minutes from some starting time.
It expresses it as hours:minutes. The second part is forced to have
two digits by adding a zero to the front if necessary. The first
part similarly is forced to have at least two digits.

29

-5-- - —~~- - -—-5 - - - — -

pr
- - --

~~~~~~ 
- -  — -—-‘-— — ---------- —- -- ~~~~~~~~ -.- - -5~ •-5~ -5-5’•~~~~~ -5’~ T~~’ 

-

DUMMY is a trivial function that always returns T. It is
used in the precondition of demons where it is desired that the
demon shall always be fired whenever the data elements to which it
is attached are changed.

The function, IREMAINDER 1 , is used in manipulating the index
array, descr ibed later , of a scroll table. It returns X modulo Y
as a number in the range 1 through Y, rather than the more usual
residue from 0 through (Y — 1).

The funct ion , MAPPRIN Q, is useful for fairly complicated
printouts. LST is a list handled in order. If an element on the
list is TERPRI, (TAB <n>), or (RPTQ <n> <function>) it is executed.
If it is a string in quotation marks, it is printed . If it is an
atom , its value is printed . Otherwise, it is evaluated and its value
printed.

The function , PRINT.LIST, is used to print lists in a conven—
lent format. For example, Table ~I could be printed using this func-
tion. In general, it uses indentation to Indicate depth within the
list, adding a colon after the first element of each list. It assumes,
in other words, that the list is an A—list , so that the first element
of any list or sublist is a property name.

The function , SUMMARY , is useful for printing complicated and
lengthy lists where only a general overview is desired. It sets the
print level to that indicated , or to 3 if no value given , prints the
list, and then returns the print level to its usual value of 1000.
Parts of the list that are at a level greater than the print level
are then indicated by “&“ without elaboration.

The functions, NEXTLOWER and NEXTHIGHER, convert an arbitrary
time to a value that is consistent with the quantized time used in a
scroll table. The table specifies a start time and an interval . The
start time of any column of the table is required to be the sum of the
start time and an arbitrary integral non—negative number of intervals.
NEXTLOWER returns the start time of the column , if it exists, that
contains the specified time. If the time is before the start time,
it returns the start time. NEXTHIG HER returns the end time of the
column , if one exists , that contains the time . If the time is the
start time of a possible column , the time Itself is returned. If the
time is NIL or not a number , it returns “INDEF .”

The function, SIM.CLOCK , updates the global variable S.CLOCK
which is the simulated time used by the system.

The function, LAST.ENTRY, takes a list of dotted pairs whose
elements are numbers, and returns the largest of the second members
of the pairs. If the second member of any pair is nonnumerlo, It
returns T. It is used on a list of intervals to determine the end

30

—--- - 5 - - - -



of the latest interval . Where the list of intervals locates a dim—
continuous entry, it provides a bound on the entry.

Three other functions are used to handle time intervals.
CHECK.TIME takes an interval arid compares it with the system variable,
S.CLOCK , the simulated time of the system. If S.CLOCK is in the inter—
val, it is returned. If the interval is after S.CL.OCK , its start time
is returned. If it is before S.CLOCK, NIL is returned. If the end
of the interval is not specified , or not a number , the interval is
assumed to be open—ended , and either S.CLOCK or the start of the
interval is returned . It is used to find a location in an entry which
is currently in the scroll table, where scrolling may have occured
since the entry was made.

CHECK.TIME .LST takes a list of intervals expressed as dotted
pairs. It returns CHECK.TIME on the first interval, if any, for which
its value is non—NIL. It is used to find a time within the current
scope of the scroll table in the list of intervals. If an entry has
been made in a possibly discontinuous way, and the table may have
been scrolled since the entry, it is used to locate one occurence
of the entry.

Finally, CHECK.L.ST takes a list of dotted pairs describing
intervals of time and compares each to S.CLOCK. If the start of an
interval is at least as large as S.CLOCK, it is retained. If the end
is before S.CLOCK, the Interval is discarded. Otherwise, the interval
is changed to (S.CLOCK . <end>), where the end may be “INDEF.” The
purpose is to make the list of intervals consistent with S.CLOCK. It
is used on entries that may be discontinuous, when the scroll table
may have been scrolled since the entry was made.

These functions are defined as follows:

31

- --5- - - - - - - -- -5- —---—- ---5- - - - - - -  — -- - - - 5 - -——



-~~~~~~~~~~~ - - - - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
~~-—--- ---- -~~— —-~—~~~~~~~~~~~~~~

“
~~~ - 

- -

(A.ADDPROP
(LAMBDA (A.LIST PROP VAL. FLG)
(PROG (TO Ti)

(SETQ TO (ASSOC PROP A.L.IST))
(SETQ Ti (CDR TO))
(COND
((NULL Ti)
(A PUT A.LIST PROP (LIST VAL))
VAL)
((L.ISTP Ti)
(COND

(FLG (RPLACD TO ( CONS VAL T i ))
( CDR TO))

((RPLACD TO (NCONC 1 Ti VAL))
( CDR TO]

((NULL FLG)
(RPLACD TO (NCONC (LIST T i )

(LIST VA!..)))
( CDR TO ))

((RPLACD TO (CONS VA!.. (LIST Ti)))
( CDR TO ])

(A. ADDPROP#
(LAMBDA (A.L.IST PROP.LIST VAL)

(COND
((NULL (CDR PROP.LIST))
(A.ADDPROP A.LIST (CAR PROP.LIST)

VAL ))
(T (A.ADDPROP# (A.c~TP A.LIST (CAR PROP.LIST))

(CDR PROP.LIST)
VAL ])

(A. ADDPROP. S
(LAMBDA (A.LIST PROP VAL FLG)

(PROG (TO T i )
(SETQ TO (SASSOC PROP A.LIST))
(SETQ T i ( CDR TO ))
(COND

((NULL T i )
(A. PUT.S A.LIST PROP (LIST VA!..))
VAL )

E (LISTP Ti)
(COND

(FLG (RPLACD TO (CONS VAL T i ))
( CDR TO ))

((RPLACD TO (NCONC1 Ti VA!..))
( CDR TO]

((NULL FLG )
(RPLACD TO (NCONC (LIST Ti)

(LIST VAL )))
( CDR TO ))

((RPL.ACD TO (CONS VA!.. (LIST Ti)))
( CDR TO])

32

-

~~~~~~~~~~~~

_ _ -~~ - - - -
~~~~~

---
~~~~~~~~~~~~~~~~~~~~~~~ -5 - —-~~~~~~~~~~ - --- — -


(A. ADDPROP.S#
[LAMBDA (A.LI ST PR OP.LIST VAL)
(COND
((NULL (CDR PROP.LIST))
(A.ADDPROP.S A.LIST (CAR PROP.LIST)

VAL))
(T (A.ADDPROP.S# (A.IETP.S A.LIST (CAR PROP.LIST))

(CDR PROP.LIST)
VA!..])

(A.(~TP[LAMBDA (A.LIST PROP)
(CDR (ASSOC PROP A.LIST])

(A.~~TP#[LAMBDA (A.LIST PROP.LIST)
(COND
((NULL (CDR PROP.LIST))
(A.~~TP A.LIST (CAR PROP.LIST)))(T (A.~~TP# (A.~~TP A.LIST (CAR PROP.LIST))

(CDR PROP.LIST])

(A.~~TP.S(LAMBDA (A.LIST PROP)
(CDR (SASSOC PROP A.LIST]) ‘

- ;

(A. Z TP.S#
[LAMBDA (A.LIST PROP.LIST)
(cOND
((NULL (CDR PROP.LIST))

(A.c~ TP.S A.LIST (CAR PROP.LIST)))
(T (A.~~TP.S# (A. ETP.S A.LIST (CAR PROP.LIST))

(CDR PROP.LIST])

(A.PUT
(LAMBDA (A.LIST PROP VA!..)

(PROG (TO)
[COND
((SETQ TO (ASSOC PROP A.LIST))

(RPLA CD TO VAL))
((NCONC 1 A.LIST (CONS PROP VA!..]

(RETURN VA L])

(A.PUT #
—

(LAMBDA (A.LIST PROP.LIST VAL)
(COND
((NULL (CDR PROP.LIST))
(A.PUT A.LIST (CAR PROP.LIST) —

VA !. .))
(T (A.PUT # (A. (E TP A.L .I ST (CAR P R OP.L .I ST))

(CDR PROP.L .IST)
VA!..])

33

-5- - —-5---- —— -— 5-- -~~~~~ -5-5- - - -~~~~--—- ~~. --

r

(A. PUT.S
[LAMBDA (A.LIST PROP VAL)

(FROG (X)
[COND
((SETQ X (SASSOC PROP A.LIST))
(RPLACD X VAL))

(T (NCONC 1 A.LIST (CONS PROP VA!..]
(RETURN VAL])

(A . P UT . S #

[LAMBDA (A.LIST PROP.LIST VAL)
(COND
((NULL (CDR PROP.LIST))
(A.PUT.S A.LIST (CAR PROP.LIST)

VAL))
(T (A.PUT.S# (A.GETP.S A.LIST (CAR PROP.LIST))

(CDR PROP.LIST)
VAL])

(A.REMPROP
[LAMBDA (A.LIST PROP)
(PROG (SUB.LIST)

(COND
((SETQ SUB.LIST (ASSOC PROP A.LIST))
(COND
((EQUAL A.LIST (LIST SUB.LIST))
(RPLACD SUB.LIST NIL))

CT (DRF24OVE SIJB.LIST A.LIST)))
(RETUR N PROP])

(A.REMPROP#
[LAMBDA (A.LIST PROP.LIST)
(COND
((NULL (CDR PROP.LIST))
(A.REMPROP A.LIST (CAR PROP.LIST)))

(T (A.REMPROP# (A.~~TP A.LIST (CAR PROP.L.IST))
(CDR PROP.LIST])

(A. REMPROP.S
[LAMBDA (A.LIST PROP)
(FROG (SUB.LIST)

(COND
((SETQ SUB.LIST (SASSOC PROP A.LIST))

(COND
((EQUAL SUB.LIST (LIST SUB.LIST))
(RPLACD SUB.LIST NIL))

(T (DREMOVE SUB.LIST A.LIST)))
(RETUR N PROP])

- 34

_ _ _ _ - .-—--—— rn- -~~~ -~~~~~~~~~~ ~~~~~~~ - -- -- - 5~~~~~~~ ——— - -- - 5 - -

—-5— -5,——~~ -5—-- —-5 _)_ -5 -5

-5—--— - - 5 - k~~~ L r ~ - --
-5,

~~~~,

(A. REMPROP.S#
[LAMBDA (A.LIST PROP.LIST)

(COND
((NULL (CDR PROP.LIST))
(A.REMPROP.S A.LIST (CAR PROP.L.IST)))

CT (A.RE2IPROP.S# (A.~~TP.S A.LIST (CAR PROP.L.IST))
(CDR PROP.LIST])

(A.REMVAL
[LAMBDA (A.LIST PROP VAL )

(FROG (X )
(SETQ X (ASSOC PROP A.LIST))
(COND

[ (EQUAL X (LIST PROP VAL ))
(COND
((CDR A.LIST)

(A.REMPROP A.LIST PROP))
(T (RPLACA A.LIST (LIST PROP]

CT (DREMOVE VA!.. X)))
(RETURN VA!..))

(A. REM VAL#
[LAMBDA (A.LIST PROP.LIST VA!..)

(COND
((NULL (CDR PROP.LIST))
(A.REMVAL A.LIST (CAR PROP.LIST)

VAL ))
(T (A.REMVAL # (A.c~ TP A.LIST (CAR PROP.LIST))

(CDR PROP.LIST)
• VA!..])

(A. REM VAL . S
[LAMBDA (A.LIST PROP VA!..)
(PROG CX)

(SETQ X (SASSOC PROP A.LIST))
(COND
[(EQUAL X (LIST PROP VA!.))

(COND
((CDR A.LIST)
(A.REMPROP.S A.LIST PROP))

(T (RPLACA A.LIST (LIST PROP]
CT (DREMOVE VAL X)))

(RETURN VA!..])

(A. REM VA!.. . S#
[LAMBDA (A.LIST PROP.LIST VAL)
(COND
((NULL (CDR PROP.LIST))
(A.REMVAL.S A.LIST (CAR PROP.LIST)

VAL))
CT (A.REZ4VAL.S# (A.GETP.S A.LIST (CAR PROP.LIST))

(CDR PROP .LIST)
VAL])

35 

-~~~~------ -----



JV~~~2Z -c,vrr~~ - ~~~~~~~~~~~~~~~ 
----—— —-‘---—-— _ _ _ _ _ ___: ~ [_ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ‘fl ’-~~_ _

(CONVERT. TIME
[LAMBDA (TIME )
(FROG (X Y STR 1 STR2)

(SETQ X (FIX (IQUOT IENT TIM E 60) ) )
(SETQ Y (IR EM AINDER TIME 60))
(COND

((LESSP X 10)
(SETQ STR 1 (CONCAT 0 X)))

(T (SETQ STR 1 X ) ) )
(COND
(U.ESSP Y 10)

(SETQ STR2 (CONCAT 0 Y ) ) )
(T (SETQ STR2 Y ) ) )

(RETURN (CONCAT STR 1 “ :“ STR2])

(DUMMY
[LAMBDA (NIL) T))

(IREMA INDER 1
(LAMBDA (X Y)

(COND
((E Q X 0)
Y)

(T (AD D 1 (IREM AINDE R (SUB 1 X )
Y])

(MAPPRINQ
(NLAMBDA (LST)

(MAPC LST (FUNCTION (LAMBDA (#X)
(COND
((EQUAL #X (QUOTE TERPRI))

(TERPRI ))
( (STRINGP #X )
(PRIN 1 #X))

((ATOM #X)
(PRIN1 (EVA!.. #X)))

((EQUAL (CAR #X)
(QUOTE TAB))

(TAB ( CADR #X ) ) )
((EQUAL (CAR #X)

(QUOTE RPTQ))
(RPT Q (CADR #X)

(EVA!.. (CADDR #X]
(T (PRIN i (EVAL #X])

36



- 
——

,

~~~ -— --——‘ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -- -5— —--- --- --- —---—- - - - -- --

(PRINT. LIST
(LAMBDA (LET N)

(COND
• ((NULL N)

(PRINT.LIST LST 0))
((NULL LST)

NIL)
• [(ATOM (CAR LET))

(COND
((ATOM (CDR LST))

(TAB N)
(PRIN1 (CAR LET))
(PRIN 1 “ : “)
(PRIN 1 (CDR LET))
(PRIN1 “.“)

(TERPRI))
([AND (NULL (CDDR LET))

(NOT (LISTP (CDR LST]
(TAB N)
(PRIN1 (CAR LST))
(PRIN1 “ : “)
(PRIN1 (CADR LET))
(PRIN 1 “ .“)

(TERPRI))
(T (TAB N)

(PRIN1 (CAR LET))
(PRIN1 “ : “)
(TERPRI)
(PRINT .LIST (CDR LST)

(IPLUS N 1
~~]

CT (PRINT.LIST (CAR LST)
N)

(PRINT.LIST (CDR LET)
N])

(SUMMARY
[LAMBDA (LST PRINT.L.EVEL)

(PROG (NIL)
(COND
((NULL PRINT.LEVEL)
(SETQ PRINT.LEVEL 3)))

(PRINTLEVEL PRINT. LE VEL)
(PRINT LST)
(PRINTLEVE L 1000]))

37

41

~ ~~~~~~~ —- - -- -- -~~~ ———~ — —--- —— - - --------- -- ---- -- ----~ ---~~~~~ -
•
------ --5 - --

(NEXTLOWER
[LAMBDA (TABLE.NAME TIME)

(FROG (S.TIME)
(SETQ S.TIME (GETP TABLE.NAME (QUOTE START)))
(COND

((OR (NULL TIME)
(LESSP TIME S.TIME))

(RETURN S.TIME))
(T (RETURN (IPLUS TIME (IMINUS (IRF}IAINDER

TIME
(GETP TABLE. NAME

(QUOTE INTERVAL])

(NEXTH IGHE R
[LAMBDA (TABLE.NAME TIME)

(FROG (INTERVAL)
(SETQ INTERVAL (GETP TABLE .NAME (QUOTE INTERVAL)))
(COND

((NOT (NUMBERP TIME))
(RETURN (QUOTE INDEF)))

[(LESEP TIME (GETP TABLE (QUOTE START)))
(RETURN (NEXTHIGHER TABLE (GETP TABLE (QUOTE START]

((ZER O P (IR EM AINDE R TIME INTERVAL))
(RETURN TIME))

CT (RETUR N (IPLUS TIME INTERVA L
(IMINUS (IREM AIN DER TIME INTERVAL])

(ElM . CLOCK
[LAMBDA (CLOCK.TIME)

(FROG (X)
(COND
((NULL CLOCK.TIME)
(RETURN S.CLOCK))

CT (SETQ X S.CLOCK)
(SETQ S.CLOCK CLOCK.TIME)
(RETURN X])

(LAST. ENTRY
[LAMBDA (LST)

(FROG (TRIAL)
[MAPC LET (FUNCTION (LAMBDA CX)

(COND
((NOT (NUMB ERP (CDR X)))

(RETURN T))
((OR (NULL TRIAL)

(GREATER ? (CDR X)
TRIAL))

(SETQ TRIAL (CDR X]
(RETURN TRIAL])

38

— - - --— —— -- - -5- ----— -- --5-—-—-— -- -- -5—~~~~~~- ------ -5-5 —~~~-5 _ _-5

5- - - - ---5

‘—‘

(CHECK.TIME
(LAMB DA (TABLE TIME END)

(COND
((GREATER? TIME S.CLOCK)
TIME)
((NOT (NUMBER? END))

S . CL O C K)

((GREA TEEP S.CLOCK END)
NIL)

(T S.CLOCK))

(CHECK.TIME.LST
[LAMBDA (TABLE TIME.LST)

(PROG (NIL)
(MAPC TIME.LET (FUNCTION (LAMBDA (X)

(COND
((GREATER? (CAR X)

S.CLOCK)
(RETURN U)

[(NOT (NUMBER? (CDR X)))
(RETURN (CAR S.CLOCK (QUOTE INDEF]

((GREATERP S.CLOCK (CDR X)))
(T (RETURN (CAR S.CLOC[((CDR X])

C CHECK. LET
(LAMBDA (LET)
(PROG (NEW .LST)

[MAPC LET (FUNCTION (LAMBDA CX)
(COND

((GR EATER? (CA R K)
S. CLOCK)

(SETQ NEW.LST (NCONC 1 NEW .LST X)))
[(NOT (NUMBER? (CDR X)))

(SETQ NE W.L S T (NCONC 1 NEW .LST
(CONS S.CLOCK

(QUOTE INDEF]
((GREATERP S.CLOCK (CDR X)))
(T (SETQ NEW.LST (NCONC 1 NEW.LST (CONS S.CLOCK

(CDR x]
(RETURN NEW.L.ST])

39

-- - -5 —-- -

-5--— --5— --~~~~~ -— - _ _ _ _ _ _

---- -~~~~~~~~
_

- -
--~~~~~~~~~~

- -

- ----5 wor ‘
~~~~

-
.

- -~~e~edzw~ ~~~~~~~~~~~~~~~~~~~ 
7,~#K ~ ,~~~~ io’ j ,

VII TABLE FUNCTIONS

The functions described in this section are those used for the
direct manipulation of the scroll table. That is, they are the func-
tIons that set up the scroll table and that do the operations on it
that are independent of the resource model. Therefore, they are not
generally top level funct ions , but are those used by the top level ones.

A. Table Creation

A scroll table is created by the function MAKE.TABLE . The
parameters given it are the name of the scroll table or the scheduler
(we do not distinguish between them), the number of rows that are to
be made available, the start time of the table, the number of intervals
that are to included in the index array as discussed shortly, the size
of the interval in minutes, and the default state name. The interval
is the length of time covered by each column in the virtual, or top
level , view of the scroll table.

The index array, which has not been discussed previously, is a
circular list that is used to provide quick access to the early part
of the table, through the first n columns of the virtual table, where
n is the number of intervals specified as N.INT. Some cell in this
array is designated as the starting one. Each cell around the circ—
ular list refers to the following interval of time. Each cell con-
tains a pointer to the actual column containings the given time. For
example, if the interval size is 30 minutes and n is 2Z~, the index
array covers 12 hours after the start time of the table. If the start
index is currently #1 and the start time is zero minutes, #2 refers to
times from 30 minutes to 59, #3 from 60 to 89 minutes, and so on. If
the first column has a start t ime of 0 and an end time of , say, 90 ,
then both the #1 and #2 cells will point to it.

As stated , the index array provides a quick access to the part
of the table it covers. If access is required for a later time, entry
must first be made to the first column beyond those covered by the
index array, a pointer to which is maintained by the table. From
this column , a pointer to the next column can be retrieved. From that
column , a pointer to the next column can be obtained. Access to the
required column is obtained by- moving “hand over hand” in this way
until it is found.

The index array is a circular list to take account of scrolling.
When the table is scrolled, the start time of the table is changed,
the pointer to the starting cell of the index array is changed to the
next cell in the array, the cell that is released is given the pointer
to the first column beyond the index array, and the pointer to the first

41



---5 - ---- ~~~~~~ - - - - _ -5-5---~~--- -5--~~ - - - - -- .-- - - - - - - - -5—~~~ 

column beyond the index array is changed if necessary. The function
that does all this is ST.SCROLL, given later.

The creation of a table is accomplished by entering the various
paramteric values into the property list of the table name. At the
same time , the required arrays are created , and the pointers to them
also entered into the property list of the table name. The table name
is the starting point for all operations on, or using , the table.

Note that the immediate result of calling MAKE.TABLE is an
empty table. None of the rows have been named. There is only a
single column whose start time is the given starting time and whose
end time is “INDEF” indicating that its span continues for an indef-
inite period. No cells exist because no rows are named. The table
exists, but it has no content.

MAKE.TABLE is defined as follows:

C MAKE . TAB LE
[LAMBDA (TABLE NROWS START N.INT INTERVAL DEFAULT.STATE

PRINT. SUPPRESS.FLG)
(PROG (LST ARR )

(PUT TABLE (QUOTE DEFAULT.LIST)
(LIST (CONS (QUOTE ETATE.NAME)

DEFAULT.STATE)
(CONS (QUOTE LEVEL )

0)
(CONS (QUOTE DEMONS )

N I L ) ) )
(PUT TABLE (QUOTE NROWE )

NROWS)
(PUT TABLE (QUOTE START)

START )
(PUT TABLE (QUOTE INTERVAL )

INTERVAL )
(PUT TABLE (QUOTE N.INT)

N. INT)
[PUT TABLE (QUOTE BEYOND. INDEX)

(SETQ LET (CONS (ARRAY NROWS )
(LIST (CONS (QUOTE FORWARD)

NIL )
(CONS (QUOTE BACKWARD )

NIL )
(CONS (QUOTE START)

START )
(CONS (QUOTE END )

(QUOTE INDEF ))
(CONS (QUOTE DEMONS)

NIL.]

42 

~~~~~~ - - -- - -


-- - -~ -- --- — -.~ -- - - - - 5 5 - — - - - - - - - - 5 - , ------ --- - --5-— --— ---~~- -5—- - - - ------- -5----- -- - - - - —- -~~~~ -

(PUT TABLE (QUOTE INDEX.ARRAY.PTR)
(ARRAY N.INT NIL LET))

(PUT TABLE (QUOTE START. INDEX)
1)

(PUT TABLE (QUOTE FREE.ROW.INDEX)
1)

(PUT TABLE (QUOTE A . LIST)
(LIST (CONS (QUOTE DEMONS)

N I L)))
(PUT TABLE (QUOTE ROWINDEX.TO.ROWNAME)

(SETQ AR R (ARRAY NRO W S)))
(PUT TABLE (QUOTE RWONAME.TO.R OW INDEX)

(CONS (HARRAY NROWS)
2))

(SETA AR E WROWS NIL)
(SETQ NROWS (EUB 1 NR OW S))

L (COND
((E Q NROWS 0)

[COND
((NULL PRINT.SUPPRESS.FLG)
(MAPPRIN Q (“Scroll table named “ TABLE “ created .”

TEE FBI]
(RETURN (CHARACTER 127)))

((SETA ARR NROWS (ADD 1 N R OW S))
(SETQ NEOWE (SUB 1 NROWS))
(GO L])

B. Row Naming

Once the table has been made, the rows riced to be named. This
is accomplished with the function NAME.ROW . It can be called at any
time , not only at the creation of the table. Each of the existing
comuns is given a new entry for the new row. The value of this entry
is the DEFAULT.LIST of the table that was derived from the default
state given to MAKE.TABLE originally. The form of DEFAULT.LIST is:

((STATE.NAME . <default state>) (LEVEL . 0)(DEMONS)).
The value of LEVEL, in any entry to the table, indicates what data
can displace the given data. That the level is here set to 0 indicates
that any data can displace it. The property DEMONS, with NIL value ,
is included to provide space for any element demons that may be
entered later, as discussed later.

Note that NAME.ROW aborts if all the rows have been named .
DELETE.ROW, given later, will remove a named row. EXPAND.TABLE , also
given later , has the effect of increasing the number of available
rows. Hence, the limit on the number of rows that can be named is

not critical.

43

~~~~~~~~~— --5 - --- - - - - 5  ~~~~~-- —---- - --5 ~~~~~~~~~~ -5 - _ - --



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The function, NAME.ROW , is defined as follows :

(NAME. ROW
[LAMBDA (TABLE ROW.NAME PRINT.SUPPREES.FLG)
(PROG (FREE.ROW.INDEX COL.PTR )

(COND
[(SETQ FREE.ROW.INDEX (GET? TABLE (QUOTE FEEE.ROW .INDEXJ
CT [COND

((NULL PRINT.SUPPRESS.FLG)
— (MAPPRINQ (“No room. Number of rows in “

TABLE “ is “ (GET? TABLE (QUOTE NROWS))
“.“ TERPRI ]

(RETURN N I L ) ) )
(PUT TABLE (QUOTE FREE.ROW .INDEX )

(ELT (GET? TABLE (QUOTE ROWINDEX.TO .ROWNAME))
FREE.ROW . INDEX))

(PUTHASH ROW .NAME FREE. R OW .INDEX (GETP TABLE (QUOTE
ROWNAME. TO. ROW INDEX)))

[SETA (GET? TABLE (QUOTE EOWINDEX.TO .ROW N AME ))
FREE . ROW . INDEX
(CONS R OW.N A M E (LIST (LIST (QUOTE DEMONS ]

[SETQ CCL. PTR (ELT (GET? TABLE (QUOTE INDEX. ARRAY. PTR))
(GET? TABLE (QUOTE START. INDEX]

L (SETh (CAR COL. PTR )
FR EE.ROW . INDEX
(GET? TABLE (QUOTE DEFAULT . LIST)))

[COND
((NULL (A.GETP COL.FIR (QUOTE FORWARD)))
(CQND

((NULL PRINT.EUP PRESS.FL G )
(M APPRIN Q (ROW .NAME “ entered .” TERPRI ]

(RETURN (CHARACTER 127 ]
(SETQ COL.PTR (A.GETP COL.PTR (QUOTE FORWARD )) )
(GO L I )

C. Scrolling

Scrolling is accomplished with the function ST.SCROLL. It
advances the pointer to the index array. The pointer stored under
BEYOND , INDEX is put in the last cell of the index array, which is
the one released by the advance of the index array pointer. The
BEYOND.INDEX pointer is changed it appropriate. The start time of
the table is changed by one interval. This process is repeated
until the end time of the first column that remains is greater than
S.CLOCK, or is not a number.

Any columns released by this process are simply abandoned.
Since no way of accessing these columns remains, their memory space
will be recovered on the next garbage collection.

44



— - - -
~ -5 —-5
~

— -- —

The function , ST.SCROLL , 1.s defined as follows:

(ST. SCROLL
(LAMBDA (TABLE. NAME)
(FROG (T.START NEWSTART INTERVAL N.INT DURATION INDEX.ARRAY.PTR

START. INDEX BEYOND. INDEX COL. PTR COL.START COL.END)
(SETQ T.START (GETP TAB LE .NA ME (QUOTE START )) )
(SETQ NEWSTART (SIM .CLOCK ))
[COND
((NOT (IGREATER? NEWSTART T.START))

(RETURN ( C H A R A C T E R  127 ]

(SETQ INTERVA L (GET? TA BLE .NAME (QUOTE INTERVAL )))
(SETQ N.INT (GET? TABLE.NAME (QUOTE N.INT)))
(SETQ DURATION (ITIMES N.INT INTERVAL))
(SETQ INDEX.ARRAY.FrR (GET? TABLE .NAME (QUOTE INDEX.AREAY .PTR)

) )
(SETQ START. INDEX (GET? TABLE .NA ME (QUOTE START. INDEX )))
(SETQ BEYOND. INDEX (GET? TABLE. NAME (QUOTE BEYOND. INDEX)))

L (SETQ COL.PTR (ELT INDEX.ARRAY.PTR START.INDEX))
(SETQ COL .START (A.G E TP COL.PTR (QUOTE START )))
CSETQ COL .END (A.GETP COL.PTR (QUOTE END)))
(COND

(( AND (NOT (GREATER? COL .START NEWSTART ))
(OR (NOT (NUMBER? COL .END ))

(GREATER F COL .END NEWSTART )))
(A.PUT COL .PT R (QUOTE BACKWARD )

NIL. )

(RETURN (CHARACTER 127]
CA. PUT (CDR COL.PTR )

(QUOTE START )
(IPLUS T.START INTERVAL ))

(SETQ T.START (I?LUs T.START INTERVAL))
(SETA INDEX.ARRAY.PT R START.INDEX BEYOND.INDEX)
(PUT TABLE.NAME (QUOTE START)

T.STAET)
(COND
((EQ (IPLUS T.START DURATION)

(A.GETP BEYOND.INDEX (QUOTE END)))
(SETQ BEYOND.INDEX (A.GETP BEYOND.INDEX (QUOTE FORWARD)))
(PUT TABLE. NAME (QUOTE BEYOND. INDEX)

BEYOND. INDEX)))
(PUT TABLE .NAME (QUOTE START. INDEX )

(SETQ START.INDEX (IR~ IAINDER 1 (ADD1 START.INDEX)
N. INT)))

(GO L])

S



D. Column Creation and Access

The function that creates a new column is ST.COL. It deter-
mines whether the desired column is within the range of the index
array and calls ST.COL.INNER or ST.COL.OUTER , accordingly.

The basic operation of these functions starts by finding the
column that contains the time at which a new column is to start. Call
this column Cl. Suppose the next column is C2. Initially, the forward
pointer of Cl indicates C2, and the backward pointer of C2 indicates
Cl. A new column, say C3, is created with its forward pointer india—
ating C2 and its backward pointer indicating Cl. The forward pointer
of Cl and the backward pointer of C2 are then changed to indicate C3.
The column s now are linked properly. The end time of Cl and the start
and end times of C3 are entered appropriately. If C3 is within the
range of the index array, its entries are changed to match the new
column . Finally, the cells in C3, its values in the active rows,
are made to duplicate those of Cl. The new column is now available
for the entry of data as described later.

If a column already exists at the indicated time , nothing is
done. Hence the function can be called if the creation of a column
may be needed , without any check that it actually is required.

Note that all the data in the new column is an exact copy of
the origonal column . This includes the data in the cells for all
named rows , including any demons that may have been placed on it. It
also includes any data, includ ing demons , that may have been attached
to the origonal column as a whole.

Two other functions are concerned directly with the columns . —

GET.COLS returns a list of the start times of all columns created
tha t cover the interval specified on the call of the function. If
the initial time is not given , it is taken as the start time of the
table. If the end time is not given , it is taken as indefinite.
Hence (GET.COLS <table name>), without specifying either time ,
returns a list of all columns that currently exist in the table.

The other function is GET.COL.PTR which returns the pointer
to the column that covers the given time . A word of warning is in
order, however. If this function is called at the top level, the
resultant printout is recursive because of the presence of both
forward and backward pointers in i t .  Therefore, precautions must
be taken to limit the printout.

The functions are defined as follows:

46

-5 --—— ~~~~~ - - - - - - - - 5~~~~~--~~~~~~—- - _---~~~~~ 



V 
— ---------- ------ —---

~~~
- -5 —.- -5 _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _

(ST . COL
(LAMBDA (TABLE . NAME TINE)

(PROG (INTERVAL N.INT START N)
(SETQ INTERVAL (GET? TABLE . NAME (QUOTE INTERVAL)))
(SETQ N.INT (GET? TABLE.NAME (QUOTE N.INT)))
(SETQ START (GETP TABLE.NAME (QUOTE START)))
(SETQ N (ADD 1 (IQUOTIENT (IDIFFERENCE TIME START)

INTERVA L)))
(COND

((GREATERP N N . INT)
(RETURN (ST.COL.OUTE R TABLE.NAME INTERVAL N .INT N TIME)))

CT (RETUR N (ST.COL .INNER TABLE .NAME INTE RVAL N. INT N TINE])

(ST.COL . INNER
(LAMBDA (TABLE .NAME INT NQUANT N TIME)
(PROC (NROWS INDEX.ARRAY .F1B START. INDEX INDEX OLD.COL NEW.COL

START NEWEN D ARRAY.END END. INDEX COUNT)
(SETQ NROW S (GETP TABL.E .NAME (QUOTE N E OWS)))
(SETQ INDEX.ARRAY.PTR (GETP TABLE.NAME (QUOTE INDEX.ARRAY.PTR)

))
(SETQ START. INDEX (GET? TABLE .NAM E (QUOTE START. IN DEX)))
(SETQ INDEX (IR~ 4AIND ER l (PLUS (SUB 1 N)

START. INDEX)
N Q UANT))

(SETQ OLD.COL (ELT INDEX.ARRAY.PTR INDEX))
(COND
((EQ TIME (A.GETP (CDR OLD.COL)

(QUOTE START)))
(RETURN OLD. CCL)))

(SETA INDEX.ARRAY. PT R INDE X
(SETQ N E W . C O L

(CONS (ARRAY NROWS)
(MAPCAR (CDE OLD.COL)

(FUNCTION (LAMBDA (BINDING)
(COND

((EQ (CAR BINDING)
(QUOTE BACKWAR D))

(CONS (QUOTE BACKWARD)
OLD. CCL))

((E Q (CAR BINDING)
(QUOTE START))

(CONS (QUOTE START)
TIME))

CT (CONS (CAR BINDING)
(CDR BINDING]

(A. ?UT (COR OLD.COL)
(QUOTE END)
TIME)

47

- - 5 -

Pr.-

(A.PUT (CDR (A.G ETP (CDR OLD.COL)
(QUOTE FORWARD)))

(QUOTE BACKWARD)
NEW.COL)

(A.PU T (CDR OLD.COL)
(QUOTE FORWARD)

NEW .CO L)

(SETQ NEWEN D (A. c~ TP (CDR NEW.COL)
(QUOTE E N D)))

(SETQ START (GET? TABLE. NAM E (QUOTE START)))
(SETQ ARRAY.END (IPLUS (ITIMES NQUANT INT)

START))
(COND

((OR (NOT (NUMBER? NEWEND))
(GREATER? NEWEN D ARRAY.END))

(SETQ EN D.I ND EX (IR~ 4AINDE R 1 (SUB 1 START .INDEX)
NQU A N T)))

CT (SETQ END. I NDEX (IR~ 4AINDER l (IQUOTIENT (IDIFFERENCE
NEWEND START)

INT)
NQUANT]

(SETQ COUNT INDEX)
(COND

((OR (NOT (NUMBER? NEWEND))
(GREATER? NEWEND (IPLUS (GET? TABLE .NAME (QUOTE START))

(ITIM ES NQUANT I N Tl

(PUT TABLE.NAME (QUOTE BEYOND. INDEX)
NEW .COL)))

L (SETQ COUNT (IR~ 4AINDER 1 COUNT N QU ANT))
(COND

((E Q COUNT END .IN DEX)
(SETA INDEX.ARRAY.PTR COUNT NEW.COL)
(GO L i))

CT (SETA I N D E X . A RE A Y .P T R COUNT N E W . C O L)

(SETQ COUNT (ADD 1 COUNT))
(GO L)))

Li [RPTQ NROW S (SETA (CAR NEW.COL)
RPTN
(COPY (ELT (CAR OLD.COL)

RPT N]
(RETURN NEW .COL])

48

---5 ---- - - —~~~~~~~ - - _ - -~~~~~ - - - -~~~~~~~~~ ~~~------ - _ _ _

r - — -5 -5

— -
-5 -- - ~j~~~~~~~~~~SI - I L-I~~N _ ~-—

(ST. COL .OUTER
[LAMBDA (TABLE.NAME INT NQUANT N TIME)

(PROG (NROWS PTR OLDEND NEW.COL)
(SETQ NROW S (GETP TABLE .NAN E (QUOTE NROWS)))

(EETQ PTR (GETP TA BLE .NAME (QUOTE BEYOND. INDEX)))
L [COND

-

((EQ TIME (A.GETP PTR (QUOTE START)))

(RETURN PT R))
((AND [NU MB ERP (SETQ OLDEND (A.G ETP PTR (QUOTE END]

(GREATERP TIME OLDEND))
(SETQ PTR CA.GETP PTR (QUOTE FORWARD)))

(GO L))
((EQ TIME OLDEND)

(RETURN (A.GETP PTR (QUOTE FORWARD]

[SETQ NEW .COL (CONS (ARRAY NROWS)
(MAPCAR (CDR PTR)

(FUNCTION (LAMBDA (BINDING)
(COND

((E Q (CAR BINDING)
(QUOTE BACKWARD))

(CONS (QUOTE BACKWARD)
P T R))

((EQ (CAR BINDING)
(QUOTE START))

(CONS (QUOTE START)
TIME))

CT (CONS (CAR BINDING)

(CDR BINDING]
(A.PUT (CDR FTR)

(QUOTE END)

TIME)
- (A.PUT (CDR (A.GETP (CDR PTR)

(QUOTE FORWAR D)))
(QUOTE BACKWARD)

- NEW.COL)

(A.PU T (CDR PTR)
(QUOTE FO RWARD)
NEW.COL)

[RPT Q NROW S (SETA (CAR NEW .COL)
RPTN
(COPY (ELT (CAR PTE)

R?TN]
(COND

((GREATERP N (ADD 1 NQUANT))
(RETURN NEW .COL)))

(PUT TABLE. NA ME (QUOTE BEYOND.INDEX)
NEW.COL)

(RETURN NEW.COL])

— 49

~

-5 -5 -5— -5 -
~~~~~~~~ 

- - - -5  
~~

—
~~
-- ---5 — -. _ _ _ _ _  

~~~~

- - - -5-

(GET. COLE
(LAMBDA CTABLE.NAME INIT END PRINT.SUP.FLG)

(PROG (START PTR LET)
(EETQ START (GET? TAB LE .N AME (QUOTE START)))
(COND

[(AND (NUMBER? END)
(LESS ? END START))

(COND
(PR INT.SUP .FLG (RETURN NIL))
CT (PRIN 1 “End time before start of table.”)

(RETURN (CHARACTER 127]
[(AND (NUMBER? END)

(LESSP END INIT))
(COND

(PRINT.SU P .FLG (RETURN N I L))
(T (PRIN 1 “End before initial time.”)

(RETURN (CHARACTER 127]
((OR (NULL INIT)

(LESS ? INIT START))
(SETQ INIT START)))

(SETQ PTR (GET.CC L .PTR TABLE .NAME INIT))
[sETQ LST (LIST (A.~~~TP PTR (QUOTE START]

L (COND
([NOT (NUMBER? (A. GET P PTR (QUOTE END]

(RETURN (REVERSE LET)))
([AND (NUMBER? END)

(NOT (GREATER? END CA.G ETP PTR (QUOTE END]
(RETURN (REVERSE LET)))

CT (SETQ PTR (A.GETP PTR (QUOTE FORWARD)))
(SETQ LET (CONS (A .GETP PTR (QUOTE START))

LST))
(GO LI)

(GET.COL.PTR

[LAMBDA (TABLE. NA ME I.TIME)
(PROG (T.START START.INDEX INUEX.ARRAY.FrR INTERVAL N.INT COL.PTR)

(SETQ T.START (GET? TABLE .NAME (QUOTE START)))

(COND
((AND I.TIME (NUMBERP I.TIME)

(LESS? I.TIME T .START))
(SETQ I .TIME N I L)))

(SETQ START.INDEX (GETP TABLE .NAME (QUOTE START.INDEX)))
(SETQ INDEX.ARRAY.PT R (GETP TABLE .NAME

(QUOTE INDE X.ARRAY. P T R)))
[COND

((NULL I.TIME)
(RETURN (ELT INDEX.ARRAY.PTR START. INDEX]

(SETQ INTERVAL (GET? TABLE .NAME (QUOTE INTERVA L.)))
(SETQ N.INT (GET? TABLE .NAME (QUOTE N . IN T)))

50

—--—---- ----5----

~

-

~

-- --

~

- - -- -- -—

~

—-—

-- T-:
~~~~~

:-
~~

----- - - - ---------- - -
~
---- - - - -- - - - - - - - - —

~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~ ~~~~~~~~~

[COND
((NOT (NUMBER? I.TIME)))
((NOT (ILESSP I.TI1IE (IPLUS T.ETART (ITIMES INTERVAL. N.INT]
(T (RETURN (ELT INDEX.ARRAY.PTR

(IR ~~4AINDER 1 (PLUS (IQUOTIENT (IDIFFERENCE
I • TIME
T.START)

INTERVAL )
START. INDEX)

N. INT]
(SETQ COL.FrR (GET? TABLE .NAME (QUOTE BEYOND.INDEX)))

L (COND
((NOT (NUMBER? (A.GETP COL.FrR (QUOTE END ]
(RETURN COL.PTR))

([OR (NOT (NUMBER? I.TIME))
(NOT (LESSP I.TIME (A.GETP COL.PTR (QUOTE END]

(SETQ COL .PT R (A. GETP COL.PT R (QUOTE FORWARD )))
(GO L ) )

CT (RETURN COL.PTR])

E. Row Modification and Retrieval

The names actively used in a giveni table can be recovered
with the function , NAMES, which returns a list of the names in order.

A row no longer needed because the named resource is no longer
present can be removed by DELETE.ROW. If the set of named rows is
not reduced to nothing , the function COPY .TABLE is used . This
creates a new table , copying all the data from the old table except
that in the row being deleted. The original name of the table then
is reassigned to the new table. The old table is abandoned to be
garbage—collected . A more efficient procedure could probably be
devised. However, since it is not expected that rows will be deleted
frequently, the efficiency of the procedure has not been considered
critical , and the procedure given avoids any possible diff icul ty with
the hash coding of the row names.

It is worth noting that COPY .TABLE can also be used directly
to rearrange the order of the rows in a scroll table. The names of
the rows need only be listed in the desired sequence and given to the
function as the value of NAME .LIST. However , no check is made that
the names in NAME.LIST are actually those used in the table, so that
some care is needed in this use of COPY.TA BLE .

The number of available rows in a table can be modified with
EXPAND .TABLE . While the principal use of this function is to expand
the number of available rows , it can also be used to reduce it, pro—
vidinig the new number is not less than that currently in use.

51

A 

-~~~l-~- - - - - -5 -5--- - -- -—--- - - - -~~~~~~—- -5- - - -5—-- 



r ___________________________

EXPAND.TABLE also acts by copying the table with the new
value of NROWS, and then reassigning the origonal name to the copy.
As with DELETE.ROW , the inefficiency of this procedure is not consid-
ered critical since it is not expected that EXPAND.Table will be used
frequently.

These functions are defined as follows:

(NAMES
[LAMB DA (TABLE. NAME)

(PROG (NAMEA RRAY NRO WS (N 1)
NAMELIST )

(SETQ NAM EARRA Y (GET? TABLE . NAME (QUOTE ROWINDEX. TO. ROWNAME )))
(SETQ NROWS (GET? TABLE .NAM E (QUOTE NROWS)))

L ECOND

((GREATER? N NROWS )
(RETURN (REVERSE NAMELIST )))

((LIST? (ELT NAM EAR RAY N ) )
(SETQ NAMELIST (CONS (CAR (ELT NAM EARRAY N ) )

NAMELIST ]
(SETQ N (ADD 1 N ) )
(GO L])

(DELETE. ROW
(LAMB T)A (TABLE NAME PRINT.S(JPPRESS.FLG)
(P:~OG (NAME. LIST)(COND

((SETQ NAME.LIST (NAMES TABLE)))
((NULL PRINT.SUP.FLG )

(MAPPRINQ (“Do not recognize “ TABLE “ .“ TERPRI) )
(RETURN NIL . ) )

CT (RETURN N I L ) ) )
( COND

(( M ~)IBER NAM E NAM E .LI ST))
((NULL PRINT.SUP.FLG )

(MAPPRINQ (NAME “ not in use in “ TABLE “ .“ TERPRI ))
(RETURN N I L ) )

(T (RETURN NIL ) ) )
( COND

((GREATER? (LENGTH NAN E. LI ST)
1)

(COPY.TABLE TABLE (DR ~~4OVE NAME NMIE .L.IST))

(COND
((NULL PRINT.SUP.F!~~)
(MAPRINT NAME.LIST T
“Table revised with the following row names: “

(QUOTE % . )
U
, 

I t) ) )

(RETURN (CHARACTER 127))) 

-
~~~~~~~~~~~~

- --5 -~~~~ -- -~~~- - -

-
_ _ _ _ —- -----—— -—-— --5

(T (MAKE .TABLE TABLE (GET? TABLE (QUOTE NRO W S))
(GET? TABLE (QUOTE START))
(GET? TABLE (QUOTE N . INT))
(GET? TABLE (QUOTE INTERVAL))
(A.~~~TP (GETP TABLE (QUOTE DEFAULT.LIST))

— (QUOTE STATE.NANE))
T)

[COND
((NULL PR IN T. SUP .FLG)

(MAPPRINQ (TABLE “ revised with no rows named.”
TERPRI)

(RETURN (CHARACTER 127])

(COPY .TABLE
[LA MBDA (TABLE NAME .LIST)
(PROG (DEFAULT. LIST ROWNAME. TO. ROWINDEX)

(SETQ DEFAULT.LIST (GET? TABLE (QUOTE DEFAULT.LIST)))
(MAKE. TABLE (QUOTE NEW. TABLE)

(GET? TABLE (QUOTE NROWS))
(GET? TABLE (QUOTE START))
(GET? TABLE (QUOTE N.INT))
(GET? TA BLE (QUOTE INTERVAL))
(A.GETP DEFAULT.LIST (QUOTE STATE.NAME))
T)

[MA?C NAME.LIST (FUNCTION (LAMBDA (X)
(NAME.ROW (QUOTE NEW.TABLE)

X T]
(SETQ R OWN AM E. 1D .ROW IN DE X (GET? (QUOTE NEW. ThBLE)

(QUOTE ROWN AME.TO.ROW INDEX)))
CMAPC

(GET.COLS TABLE)
(FUNCTION (LAMBDA CX)

(FROG (COL.PTR)
(SETQ COL.PTR (ST.COL (QUOTE NEW.TA BLE)

X))
(MAPC NAME.LIST

(FUNCTION (LAMBDA (Y)
(FROG (VAL)

(COND
((EQ (SETQ VA!..

(ST.ELT TABLE Y X))
DEFAULT. LIST)

(RETURN NIL))
CT (SETA (CAR COL.PTR)

(GETHASH Y
ROWNAME. TO. ROWINDEX)

VAL]
(SETPHOPLIST TABLE (GET?ROPL.IST (QUOTE NEW.TABLE)))
(RETURN NIL])

53

.~~

- - — -

~

-

~

------ -- - - -—-- -----~~~~ --

---5 ——-——--- - - -- -.-~~~~~~~ -.---~---~~-— - -- - -- - ---5 - - - -—— - -- -—--- -----~~~ - -5—’

(EXPAND . TABLE
(LAMBDA (TABLE NEW.NROWS)
(PROC (COL.LIST NAM ES ROWNAME.TO.ROWINDEX)

(COND
((SETQ COL.LIST (GET.COLE TABLE)))
(T (MAPPRIN Q (“Do not recognize “ TABLE “ .“ TERPRI))

(RETURN NIL.)))
(SETQ NAMES (NAMES TABLE))
(COND
((LESS? NEW.NROWS (LENGTH NAMES))
(MAPPRINQ (“Insufficient room for existing set of names.”

TERPRI))
(RETURN N I L)))

(SETQ DEFAULT .LIST (GET? TABLE (QUOTE DEFAULT .LIST)))
(MA KE .TABLE (QUOTE NEW.TAB LE)

NEW .NR OWE
(GET? TABLE (QUOTE START))
(GET? TABLE (QUOTE N.INT))
(GET? TABLE (QUOTE INTERVAL))
(A .~~~TP DEFAULT.LIST (QUOTE STATE.NA M E))
T)

[MAPC NAM ES (FUNCTION (LAMBDA (X)
(NAME.ROW (QUOTE NEW.TABLE)

X T]
(SETQ ROWNAME.TO.ROWINDEX (GET? (QUOTE NEW.TABLE)

(QUOTE ROWNAME.TO.ROWINDEX)))
(MA?C

COL.LIST
(FUNCTION (LAMBDA CX)

— (FROG (COL .FrR)
(SETQ COL.FrR (ST.COL (QUOTE NEW.TABL.E)

X))
(MAPC NAMES

(FUNCTION (LAMBDA (Y)
(?ROG (VAL)

(COND
((EQ (SETQ VA!..

(ST.ELT TABLE Y X))
DEFAULT.LIST)

(RETURN NIL.))
CT (SETA (CAR COL.PTR)

(GETHASH Y
ROWNAME. TO. ROWINDEX)

VAL]
(SETPROPLIST TABLE (GETPRO?LIST (QUOTE NEW.TABLE)))
(MAP ?RIN Q (TABLE “ revised with “ NEW.NROWS “ rows.” TERPRI))
(RETURN (CHARACTER 127])

54

L. . ~~
_ _ _ _ _ _ _ - - - - - - 5 -5

T T T T
~

-
~

—- -- i.

VIII PRIMARY DATA FUNCTIONS

Given that a scroll table exists arid the desired names have
been given Its rows , the next step is to be able to enter and recover
data from the cells of the table. The nature of the data arid its
format is riot of concern yet , only the actual entry and retrieval
operations. Also , no consideration has been given , yet , to the spec-
ification of consistency within a table, or to the construction of
the applicable models. Therefore, the functions of concern here
are not the top level ones, but those used by the top level functions
to actually enter or access the data in the table. The data entry
functions also fire any demons that may be attached , and so must
include the procedures that check the preconditions of any demons
and fire them if required .

A. Data Entry

The actual entry of data into the table is done with the
function TABLE.SETA . The data is required to be formatted completely
before it is called , and is given to it as the variable A.LIST.
TABLE.SETA uses a subsidiary function, TA BLE.SE TA. 1 , that makes the
entry into the individual cells that are affected. This is done so
that the element demons that may be attached to the data in those
cells can be transferred to the new data. TABLE.SETA.1 therefore
operates on a single column . TABLE.SETA uses MAPC to execute
TABLE.SETA.1 on each column time found by GET.COLS for the required
interval

For reasons that are discussed later, there is need also for
a version that will enter the A—list on ly in those columns for which
the existing entry has a specified state name. This is accomplished
with TABLE.SETA.TEST.

Note that this function has no guards against failure. Neither
does it check to see if any new columns are needed . As discussed
later , it is used under conditions where these checks are riot needed.
It does , however , fire the row and table demons; the element and column
demons are f ired by TABLE.SETA.1 which it uses.

In TA BLE.SETA .1 , after an entry has been made to a cell, any
element and column demon s are fired by FIRE.D€MON .LIST . The same func-
tion is used by TABLE.SETA and TABL.E.SETA.TEST after all entries have
been made to fire the row and table demons. The detailed structure
of a demon is specified later. Here, it is sufficient to observe that
the first clause in the COND of FIRE.DEMON .LIST tests the precondition
of a demon . If this clause is tru e, or non—NIL , the second clause
fires the demon. FIRE.DEMON.LIST executes this test, and , if satis-
fied , fires the demon for all demons in DEMON.LIST.

55

~ — - - - --~ — - -----— --- -~~~~~~~~~~-—

There Is also need for a function that can accept a list of
intervals, and apply TABLE .SETA in each interval. The function that
does this is TPIBLE.SETA.LST. The list is required to be a list of
dotted pairs. For each pair, the first element is the start of an
interval , the second its end .

TABLE.SETA.TEST.L.ST is a similar function that uses
TABLE.SETA.TEST. That is, it takes a list of intervals expressed
as dotted pairs. Within each interval , TABLE.SETA.TEST makes the entry
if, and only if , the old state name is that specified.

These functions are defined as follows:

(TABLE. SETA
[LAMBDA (TABLE ROW.NAME INIT END A.LIET)
(FROG (I.TIME ROWINDEX E.TIME DEMON.LIST)

(ST.SCROLL TABLE)
(COND

((OR (NULL INIT)
(LESS? INIT S.CLOCK))

(SETQ I.TIME (NEXTLOWER TABLE S.CLOCK)))
CT (SETQ I.TIME (NEXTLOwER TABLE INIT]

(COND
[(SETQ ROWINDEX (GETHASH ROW.NP~ME

(GET? TABLE
(QUOTE ROWNAME. TO • ROW INDEX]

(T (MAP?RIN Q (“Either “ TABLE “ or “ ROW.NAME
“ not recognized.” TERPRI))

(RETURN N I L)))
(COND

((AND END (NUMBER? END)
(GREATER? END I.TIME))

(SETQ E.TIME (NEXTHIGHER TABLE END)))
((AND END (NUMBER? END))
(PRIN 1 “End too early. No entry.”)
(TERPRI)
(RETURN NIL))

CT (SETQ E.TIME NIL)))
(ST.COL TABLE I.TIME)
(COND

(E .TIM E (ST.COL TABLE E .TIME)))
(MAPC (GET.COL.S TABLE I.TIME E.TIME)

(FUNCTION (LAMBDA CX)
CTABLE.SETA.1 TABLE ROWINDEX X (COPY A.LIST]

(COND
((SETQ DEMON.LIST (A.GETP (ELT (GET? TABLE

(QUOTE
ROWINDEX.TO.ROWNAME))

ROW INDEX)
(QUOT E DEMONS)))

(FIRE.DEMON.LIST DEMON.LIST A.LIST NIL)))

56

-—- - -----•—- -5 - 5 --5-—-5--—-5

___________________ —--‘- - ——-- -~-—---— ‘-- —
~~~

-
~~~~

_ _
_~~~~

:-

(COND -

((SETQ DEMON.LIST (A.~~T? (GET? TABLE (QUOTE A.LIST))
(QUOTE DEMONS)))

(FIRE.DEMON.LIST DEMON.LIST A.LIST NIL)))
(RETURN T])

(TAB LE. SETA. 1
[LAMBDA (TABLE ROWINDEX TIME A.LIST)
(FROG (COL.PTR OLD.LIST DEMCN.LIST)

(SETQ COL.PTR (GET.COL .PTR TABLE TIME))
(SETQ OL.D.LIST (ELT (CAR COL.PTR)

ROW INDEX))
(SETQ DEMON.LIST (A.c~ TP OLD.LIST (QUOTE DEMONS)))(COND

(DEMON .LIST (A.PUT A.L.IST (QUOTE DEMONS)
DEMO N .LI ST)))

(SETA (CAR COL.PT R)
ROWINDEX A.LIST)

(COND
(DEMON. LIST (FIRE. DEMON. LIST DEMON. LIST A .LIET OLD. LIST)))

(COND
((SETQ DEMON.LIST (A.~~T? COL.?TR (QUOTE DEMONS)))
(FIRE.DEMON.LIST DEMCN.L.IST A.LIST OLD.LIST])

C TABLE . SE TA • TEST
(LAMBDA (TABLE NAME I.TIME E.TIME STATE A.LIST)
(FROG (ROWINDEX DEMON.LIST)

(ST.SCROLL TABLE)
[SETQ ROWINDEX (GETHASH NAME (GET? TABLE

(QUOTE ROWNAME. TO. ROWINDEX]
(COND

((NOT (NUMBER? E .TIME))
(SETQ E.TIME NIL)))

EMAPC (GET.COLS TABLE I.TIME E.TIME)
(FUNCTION (LAMBDA CX)

(COND
((E QUAL STATE (A.G E TP (ST.ELT TABLE NAME X)

(QUOTE STATE—NAME)))
(TABLE.SETA.1 TABLE ROWINDEX X (COPY A.LIST]

(COND
((SETQ DEMON .LIST

(A.GETP (ELT (GETP TABLE (QUOTE ROWINDEX.TO.ROWNAME))
ROWINDEX)

(QUOTE DEMONS)))
(FIRE.D EM CN .LI ST DEMON .LIST A.LIET N I L)))

(COND
((SETQ DEMON.LIST (A.GETP (GET? TABLE (QUOTE A.LIST))

(QUOTE DEMONS)))
(FIRE.DEMON.LIST DEMON.LIST A.LIST NIL])

57

- - —--5-- -

(FIRE. DEMON. LIST
(LAMBDA (DEMON.LIST A.LIST OLD.LIST)
(MAPC DEMON.LIST (FUNCTION (LAMBDA CX)

(COND
((APPLY’ (3RD X)

(CAR X)
(2ND X)
A.LIST)

(APPLY’ (~ITH X)
OLD.LIST A.LIST (5TH XI)

(TABLE.SETA.LST
(LAMBDA (TABLE R OW .NAME LST A.L.IST)

(MAPC LET (FUNCTION (LAMBDA CX)
(TABLE.SETA TABLE ROW .NAME (CAR X)

(CDR X)
A.LIST))

(TABLE .SETA.TEST. LET
(LAMBDA (TABLE NAME LET STATE A.LIST)

(MAPC LET (FUNCTION (LAMBDA (X)
(TABLE.SETA .TEST (CAR X)

CCDR X)
STATE A.LIST])

B. Data Retrieval and Display

The primar y function used for the recovery of data from a cell
of the scroll table is ST.ELT. TIME, here , doe3 not need to be the
start time of a column ; it will find the column whose interval contains
the desired time. Note also that ST.ELT returns the entire content of
the cell , including any demons. Hence the value returned by ST.ELT can
be difficult to read . There is need of functions that can extract
the required information from it and present it in a convenient form.

There are two functions used for printing out the table.
PRINT.TABLE prints out the virtual table; i.e. as if all columns
had been made. PRINT.PROP prints out on the columns that have
actually been created , and so gives a condensed version of the table.
Both functions allow for a property to be named . If not named , it
is assumed to be STATE.NAME. What is printed for each cell is the
result of applying A.GETP with the indicated property name to the
value returned by ST.ELT.

Table 1, given before, was printed out by the call of
PRINT.TABLE and Table 2 by the call of PRINT.?ROP. The pseudo—
natural language interface shown in Figure 1 translates the input
command into a call on one of these functions.

58

_ -- - -5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r-~~~~~ 

——-5—

F - - -~~---~~~~~~~~ - - -

PRINT.PROP prints, at most , six columns which provides a con-
venient display on the paper. PRINT.TABLE can print any number of
columns, but does so in blocks of six columns at most. For this
purpose, it uses PRINT.TABLE.1 to print each block.

These function s print an asterisk if, in a given cell, the
designated property is null or if the property is unspecified , and so
assumed to be STATE.NAME, arid the value is the default state name of
the table. This enhances the visibility of the entries that are likely
to be the more significant ones.

The actual entry in the cell of a table, as retrieved by
ST.ELT, can be quite long and involved . This is particularly true
when demons are involved , although the detailed structure of demons
are not discussed until later. As an example, Table 6A is an illus-
tration of what is retrieved by ST.ELT. The printout in Table 6B
shows the same data , reformatted by the special print function,
PRINT. ENTRY. The significance of the various components in the entry
printed in Table 6 , and the reasons for the duplications apparent
there, are discussed later. PRINT.ENTRY provides a printout of the
contents of a cell that is much easier to understand than is the
direct printout of the value of ST.EL.T.

Table 6
DATA IN A TABLE CELL

Table 6A
DIRECT PRINTOUT

(ST.ELT ‘PILOTS ‘BAKER 120)
((ENTRY . MISSION)(STATE—NAME . ASG)(LEVEL. . 5)(START . 35)
(END . 195)(MISSION-ID . M 1) (FPC . A~ )(DEMONS (NIL. NIL DUMMY
WATCH.1 ((PILOTS BAKER 35 195 DUMMY WATCH.1 NIL NIL) NIL
MISSION M l ) ) ) )

59

- - - --5--- - - - - - --.— - -- - -- -

~

--—-- --

~ 

-—--—-~~~~ ----- ~~~~~~~~~~~~ --- - -5-- - - - - - - - -  -



TABLE ~B
READABLE PRINTOUT

(PRINT.ENTRY ‘PILOTS ‘BAKER 120)
ENTRY: MISSION
STATE-NAME: ASG
LEVEL: 5
START: 35
END: 195
MISSION—ID : Ml
FPC : A~Demons:

Demon:
NIL.
NIL.
DUMMY
WATCH. 1
Arg list:

(PILOTS BAKER 35 195 DUMMY WATCH. 1 NIL NIL)
NIL
MISSION
M l

The functions described here are defined as follows:

CST.ELT
(LAMBDA (TABLE NAME TIME PRINT.SUP.FLG)
(PROC (ROWINDEX COL.PTR)

[CON D
((SETQ ROWINDEX (GETHASH NAME (GET? TABLE

(QUOTE ROWNAME .TO.ROWINDEX]
(PRINT.SLW.FLG (RETURN NIL))
CT (MAPPRINQ (“No information on “ NAME “.“ TERPRI ))

(RETURN (CHARACTER 127)
(COND
((LESSP TIME (GET? TABLE (QUOTE START)))

(COND
(PRINT.SUP.FLG (RETURN NIL))
CT (PRIN t “Time too early. No information.”)

(RETURN (CHARACTER 127]
(SETQ COL.flR (GET.COL..FFR TABLE (NEXTLOWER TABLE TIME )) )
(RETU R N (ELT (CAR COL.P ’rR )

ROWINDEX ])

.

60



-5— ~~~~~~~~~~~~~~~ --

(PRINT. PROP
(LAMBDA (TABLE INIT END PROP )
(PROC (COL.LIST DEFAULT FLG K)

(COND
(( OR (NULL INIT )

(LESS? INIT S.CLOCK))
(SETQ INIT S.CLOCK)))

(COND
((NULL PROP )
(EETQQ PROP STATE. NAME)
(SETQ FLG T ) ) )

(SETQ COL .LIST (GET.COLS TABLE INIT END ))
[COND
((GREATER? (LENGTH COL.LIST)

6)
(SETQ COL.LIST (LDIFF COL.LIST (NTH COL.LIST 7]

CSETQ DEFAULT ( CDA R (GETP TABLE (QUOTE DEFAULT.LIST]
(MAP?RINQ ((R?TQ 2 (TERPRI))

(TAB 3)
“Table: “ TABLE TERPRI “Property : “ PROP ))

[COND
(FL.G (MAPPRINQ ((TAB 30)

“ C ”  DEFAULT “ replaced by ‘.) “ ) ) )
(T (MA?PRINQ ((TAB 30)

“(Non—occurence of “ PROP “ indicated by * .)n]

(R?T Q 2 (TERPRI))
(PR IN 1
(SETQ K 15)
[MAPC (COPY COL.LIST)

(FUNCTION (LAMBDA CX)
(FROG (NIL )

(TAB K)
(PRIN 1 (CONVER T .TIME X ) )
(SETQ K (IPL.US K 10]

(TERPRI )

61

- ~~~~ - -~~~~~~~~~~ -5- - -- -- ~~~ ---- -5--”-- -------“~~~~~~~ —- ----5-



- -~~- - 
--------5

~

— _
~~~~~~~~~~

--5—- -—-—- -5 --5
--- ,

(MAPC (NAMES TABLE)
(FUNCTION (LAMBDA CX)

(PROC (NIL)
(PRIN 1 X)
(SETQ K 15)
[MAPC (COPY COL.LIST)

(FUNCTION (LAMBDA CY)
(FROG (NIL)

VAL
(A.GET? CST.ELT TABLE X Y)

PROP))
(TAB K)

K (IPLUS K 10))
(COND

((AND FLO (EQ VAL DEFAULT))
(PRIN 1

(VA!.. (PRIN 1
CT (PRIN1 “‘“I

(TERPRI]
(TERPRI)
(RETURN (CHARACTER 127])

(PRINT. TABLE
(LAMB DA (TABLE INIT END PROP)

(FROG (INTERVAL FLG DEFAULT NAM ES TR IAL.END)
(COND

([OR (NULL INIT)
(LESS? INIT (GET? TABLE (QUOTE START]

(SETQ INIT (GET? TABLE (QUOTE START]
(COND

[(SETQ INTERVAL (GET? TABLE (QUOTE INTER VAL]
CT (MAPPRIN Q (“Do not recognize “ TABLE “ .“ TERPRI))

(RETURN N I L)))
ECOND

((OR (NULL. END)
(NOT (NUMBER? E N D)))

(SETQ END (I?LUS INIT (ITIMES 6 INTERVAL]
(COND
((NULL. PROP)
(SETQQ PROP STATE. NAME)
(SETQ FLG T)))

(SETQ DEFAULT (CDAR (GET? TABLE (QUOTE DEFAULT.LIST]
(MAPPRIN Q ((RPTQ 2 (TERPRI))

(TAB 3)
“Table: “ TABLE TERPRI “Property: “ PROP))

(COND
(FLG (MAP?RIN Q ((TAB 30)

“(“ DEFAULT “ replaced by ‘)“)))
(T (MAPPRINQ ((TAB 30)

“(Non—ocourence of “ PROP “ indicated by *)1t)

(RPT Q 2 (TERP R I))

62

-- - - - - - — - - -- -~~~~~~~- - 5~~~~~ - - - - -—-—~~~~~
- - - —- - --- -—— - - -- --5— - - 5 - - - -

- - 5 - - - - - - -- - - 5- - - - .-~~~~~~~~~~~~~ - - - 5- ---- - 5 — - - - -- - 5 - - —

—,

CSETQ NAMES (NAMES TABLE))
L (SETQ TRIAL.END (IPLUS INIT (ITIMES 6 INTERVAL)))

CCOND
((LESS? END TRIAL..END)

CSETQ TRIAL.EN D E N D)))
(?RINT .TABLE.1 NAMES INIT TRIAL..END END INTERVAL DEFAULT PROP

FLG)
(COND
((LESS? TRIAL.END END)

CSETQ INIT TRIAL.END)
(GO !.))

CT (RETURN (CHARACTE R 127])

CPRINT.TABLE.1
[LAMBDA (NAMES INIT TRIAL.END END INTERVAL DEFAULT PROP FLG)

(PROG (NIL)
(PRIN 1 “Name\Time”)
(SETQ K 15)
(SETQ COL.TIME INIT)

L. (TAB K)
(?RIN 1 (CONVERT .TIME COL.TIME))
(SETQ COL.TIME (IPLUS COL.TIME INTERVAL))
(COND
((LESEP COL.TIME TRIAL.END)

(SETQ K (IPLUS K 10))
(GO I..)))

(TERPRI)
[MAPC NAMES (FUNCTION (LAMBDA C X)

(FROG (NIL)
(SETQ K 15)
(SETQ COL.TIME INIT)
C?RIN 1 X)

Li (TAB K)

(SETQ VAL (A. GET ? (ST.ELT TABLE X COL.TIME)
PROP))

(COND
((AND FL.G (EQ VAL DEFAULT))

(PRIN 1 ““))
(VAL. (?RIN 1 VAL))
(T (FRIN1 “‘“)))

(SETQ COL .TIME (IPLUS COL.TIME INTERVAL))
(SETQ K (IPLUS K 10))
(COND

C (LESSP COL.TIME TRIAL.END)
(GO L i))

CT (TERPRI)
(RETURN NIL]

(RPTQ 2 (TERPRI))

63

~

-

~

-- —- -5— - ------ - ---

~

-5- ----- -----—

~

- - - - - -

_ _ _ _ _ _ _ _

(PRINT. ENTRY
(LAMBDA (TABLE NAME TIME)
(FROG (A.LIST)

(SETQ A.LIST (ST.ELT TABLE NAME TIME))
(MAPC
A.LIST
(FUNCTION (LAMBDA CX)

(COND
((NOT (E QUAL (CAR X) (QUOTE DEMONS)))

(MAP PRIN Q ((TAB 10) (CAR X) “ : “ (CDR X) TERPRI)))
CT

(TAB 10)
(PRIN 1 “Demons: “)
(MAPC

CCDR X)
(FUNCTION (LAMBDA (Y)

(PROG (NIL)
(TAB 15)
(FRIN 1 “Demon: “)
(MAPC I
(FUNCTION (LAMBDA CZ)

(COND
((ATOM Z)
(MAPPRINQ (TERPRI (TAB 20) 2)))

((LIST? 2)
(MAPPRIN Q ((TAB 20)

“Arg list: “

TERPRI))
(MAPC Z (FUNCTION (LAMBDA (U)

CMAP?RINQ ((TAB 25)
U TERPRI]

(RETURN (CHARACTER 127])

64

—-- - ~~~~~~~~~ - -—~~~~— ---—--- -~~~~~~~
- --

~~~~~~~~ - -—- -—- .~~~~~~~~~~~~—--—.--—~~~- - - - - - -—-—--~~~~~~~ —---- —— - - -~~~~- - - — -~~~~~~~~~~~~ .— --



IX MODEL FUNCTIONS

The functions described in this section are those used for
creating and manipulating the resource model used by a scheduler.
The set of models used by a scheduler are encoded as an a—list with
the value of MODELS which is used as a property name in the A.LIST
of the table. That is, a given model can be recovered by

(A.GETP (A.~~ T? (GET? <table name> ‘A.L.IST) ‘MODELS) <model name>)

Note that , by a model , we mean the set of rules and constraints
that describe a particular kind of entry to the data of a scheduler,
such as assignment to a mission, rest after assignment, and so on. The
resourc e model of a scheduler is the collection of models that have
been defined for the scheduler. The entire resource model is the
value of the property MODELS.

A. Creation and Display of a Model

A new model for an existing scheduler, or scroll table, is
entered using the following functions. The entire function has been
divided into three functions for convenience in making changes and
additions, should this be necessary later. MAKE.RES.MODEL is the
top level function. It handles those properties that are necessary
in any model, specifically STATE—NAME and LEVEL, and makes sure that
these are given acceptable values. It then calls BUILD.MODEL, which
covers certain optional properties. Finally, ENTER.E.LIST is called ,
which constructs the E—list (for entry list) of the model. Additional
properties can be added as a modification of the model, as discussed
later.

ENTER.E.L IST obtains the type of the model and the names of
the functions used for and by the watch and set demons, if any. Three
types have been def ined , so far. Type 1 is an entry, such as MISSION
in Table ~I , that must be entered in its entirety or not at all. Type
2 is made from a specified start time as far as possible or until a
specified duration is obtained. MISSION—REST, in Table ~~, is an
example. Type 3 permits discontinuous entry from a given start time
until the required duration has been obtained . TRAINING, in Table ~I,
is an example. Other types could be defined , but these have been
found sufficient so far.

Were a new type to be defined , ENTER.E.LIST is the only one
of the model building functions that would require modification. If
a new property—value pair required , either BUILD.MODEL could be mod-
if ied to include it , or its addition handled as a modification of the
model.

65



—-5- — - ------5 - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - — - -5 — -- - - -  —--,-- -~~~~~~~~

- ----5w-

The function, MAKE.RES.MODEL ends with the user option of see-
ing a display of the model, as in Table 3. Note that this is accom-
plished with PRINT.LIST, defined before. No new print function is
needed. On the other hand, the entire process model, including all
the models that have been defined for a scheduler, can be printed with
PRINT.MODELS. Table ~ was printed with this function.

Finally, GET.R.MODEL..PROP has been defined as a convenient
function for obtaining the value of a specific property, at any depth ,
in MODELS. Its variable, PROP.L.IST, is a list of names , starting with
the model name, that are property names in the A—lists at successive
levels in the model. It returnS the value of the last property in the
list.

Table 7 illustrates the dialog mode that is used by the model
creation functions. It shows the creation of MISSION as a model in
the scheduler named PILOTS.

66

~

- - - —- -- -- _ .-— - - --

-.~

_ _ _ _

Table 7
CREATION OF A MODEL

(MA KE.RES.MODEL. ‘PILOTS ‘MISSION]

For the entry type MISSION , what state name? ASG

What level? 5

Is the durat ion of MISSION specif ied?
Enter its value if so, else enter) :]

Does MISSION have an ID associated with it?
Enter its name if so , else enter 1: MISSION—ID

Does MISSION have a class code associated with it?
Enter its name if so , else enter]: FPC

Does MISSION have a successor entry type associated with it?
Enter its name if so, else enter]: MISSION—REST

Wha t type is MISSION?
Enter 1 , 2 or 3, or ? if want definitions: ?

Type 1: Continuous entry over entire specified interval.
Type 2: Continuous entry from start as far as possible until

end.
Type 3: Discontinuous entry allowed . From start until duration

obtained.

What type is MISSION?
Enter 1, 2 or 3, or ? if want definitions: 1

What function is used as the watch demon?
(Enter 3 if none. Else function name.) WATCH.1

What function is called by WATCH. 1?
(Enter 3 if none. Else name.) DIALOG. 1

Do you want to see the model? (I or 3) Y

67

--5-

__—_._ ____-5__-__ __. ;
~~

_--___
~

_ _ - ~- --r- n -——-— ~~— ——-——— _ - -~~

The entry type named MISSION in the scheduler named PILOTS is as
follows:

STATE-NAME: ASG.
LEVEL: 5.
ID—LABEL: MISSION-ID.
CLASS-LABEL: FPC.
POST-ENTRY: MISSION-REST.
E—LIST:

TYPE: 1.
WATCH-DEMON:

WATCH. 1:
CALL —FUNCTION: DIALOG. 1.

The result of the exercise shown in Table 7 can be seen if
(GET? ‘PILOTS ‘A.LIST) is used. The table A—list is returned as:

((DEMONS) (MODELS (MISSION (STATE—NAME . ASG) (LEVEL . 5)
(ID—LABEL . ID-MISSION) (CLASS—LABEL . FPC) (POST-ENTRY . MISSION—REST)
CE—LIST (TYPE . 1) (WATCH—DEM ON WATCH.1 (CALL—FUNCTION . DIALOG.1)))))).
Alternatively, if (GET.R.MODEL..PRO? ‘PILOTS ‘(MISSION)) is called to
recover only the MISSION model, it is returned as:

((STATE—NAME . ASG) (LEVEL . 5) (ID—LABEL . ID-MISSION)
(CLASS—LABEL . FPC) (POST—ENTRY . MISSION-REST)
CE—LIST (TYPE . 1) (WATCH-DEMON WATCH .1 (CALL-FUNCTION . DIALOG.1)))).

These several functions are:

(MAKE. RES .MODEL.
(LAMBDA (TABLE ENTRY.TYPE)
(FROG (STATE.NAME LEVEL MODEL MODEL.LIST)

(COND
((NULL TABLE)
(MAPPRINQ (“No table name specified.” TERPRI))
(RETURN NIL))

[CSETQ A.LIST (GET? TABLE (QUOTE A.L.IST]
(T (MAPPRIN Q (TABLE

“ not recognized as the name of a table.”
TERPRI))

(RETURN NIL.)))

68

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ----—-- - - ~~~~~~~



‘
~1

L (COND
((NULL ENTRY.TYPE)

CPRIN 1 “What is the name of the entry type? “)
(SETQ ENTRY.TYPE (READ))
(GO L ) )

((A.~~TP# A.LIST (LIST (QUOTE MODEL)
ENTRY. TYPE ) )

(MAPPRIN Q (ENTRY. TYPE
already used as the name of an entry type.”

TERPRI
“If intention was to alter it, use ALTER.RES.MODEL..)”

TERPRI ))
(RETURN N I L ) ) )

CRPTQ 2 (TERPRI))
Li (MAPPRINQ (“For the entry type “ ENTRY.TYPE

“ , what state name? “))
CCOND
((SETQ STATE.NAME (READ)))
CT (PRIN 1 “A state name is required.”)

(TERPRI )
(GO L i ) ) )

( COND
((NOT (ATOM STATE.NAME))

(PRIN 1 “State name must be an atom .”)
(TERPRI )
(GO Li))

((GREATERP (NCHARS STATE.NAME)
7)

(MAP?RINQ (STATE. NAME
“ is too long . Limit i t  to 7 characters. ”

TERPRI ))
(GO L i ) ) )

L2 (TERPRI )
(PRINi “What level? “)

CSETQ LEVEL (READ))
CCOND

( (NOT (NUMBER? LEVEL ))
(PRIN1 “Level must be a number. “)
(TERPRI )
(GO L2 ))

( (OR (LESS? LEVEL 0)
(GREATER? LEVEL 10))

(PRIN1 “Level must be non—negative and not more than 10.”)
(TERPRI )
(GO L2 ) ) )

(TERPRI )
(SETQ MODEL (LIST (CONS (QUOTE STATE-NAME)

STATE. NAME)
(CONS (QUOTE LEVEL)

LEVEL )))

69



—-5--— - -‘-— -—— — -—
~

- - - -
~~:~

- - r
~
- - -5 - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 
—~~ ~

_
~~

- ‘ ~~_~~ _ —

(BUILD. MODEL ENTRY.T IPE MODEL)
(COND
(CSETQ MODEL.LIST (A.GETP A.LIST (QUOTE MODELS)))

CA.PUT MODEL.LIST ENTRY.TYPE MODEL))
CT (A.PUT A.LIST (QUOTE MODELS)

(LIST (CONS ENTRY.TYPE MODEL)
(R?TQ 2 (TERPR I))
(?RIN 1 “Do you want to see the model? CY or 3) “)
(COND

((EQ (READ)
(QUOTE Y))

[MAPPRIN Q (TERPRI “The entry type named “ ENTRY.TYPE
“ in the scheduler named “ TABLE
is as follows:” C RPTQ 2 (TERPRI]

(PRINT.L.IST MODEL 10))
CT (PRIN1 “OK”)))

(RETURN (CHARACTER 127))

(BUILD. MODEL
[LAMBDA (ENTRY.TYPE MODEL.)
(PROC (DURATION ID.LABEL CLASS.LABEL. POST.ENTRY)

(MAPPRINQ (“Is the duration of “ ENTRY.TYPE “ specified?”
TERPRI

“Enter its value if so, else enter]: “))
L (COND

((SET Q DURATION (READ))
(COND

((NOT (NUMBER? DURATION))
(?RIN 1

“The duration must be a number. Re-enter the duration: “)

(GO L)))
(A.PUT MODEL. (QUOTE DURATION)

DURATION)))
(MAPPRIN Q (TERPRI “Does “ ENTRY.TYPE

“ have an ID associated with it?” TERPR I
“Enter its name if so, else enter]: “))

(COND
((SETQ ID.LABEL. (READ))
(A.PUT MODEL. (QUOTE ID—LABEL)

ID. LABEL)))
(MAPPRIN Q (TERPRI “Does “ ENTRY.TYPE

“ have a class code associated with it?”
TERP RI
“Enter its name if so, else enter 3: “))

(COND
((SETQ CLASS.LABEL (READ))

CA.PUT MODEL (QUOTE CLASS—LABEL)
CLASS.LABEL)))

(MAPPRIN Q (TERPRI “Does “ ENTRY.TYPE
“ have a successor entry type associated with it?”

TERPRI
“Enter its name if so, else enter]: “))

70

——-

~

--5-

~

— -

~

-~~~~--- -----5 -

— — -5

(COND
(CSETQ POST.ENTRY (READ))

(A.PUT MODEL (QUOTE POST-ENTRY)
POST.ENTRY)))

(A.PUT MODEL (QUOTE E—LIST)
(ENTER. E. LIST ENTRY.TYPE))

(ENTER.E.LIST
(LAMBDA CENTRY.TYPE) —

(FROG (TYPE E.LIST WATCH CALL SET)
L (MAFPRIN Q (TER?RI “What type is “ ENTRY.TYPE “?“ TERPRI

“Enter 1 , 2 or 3, or ? if want definitions: “))
(COND
((EQ (SETQ TYPE (READ))

(QUOTE ?))
(GO DESC))

((OR (NOT (FIX? TYPE))
(LESS? TYPE 1)
(GREATER? TYPE 3)) —

(MAPPRIN Q (“Type must be an integer between I and 3.”
TE RP RI))

(GO L)))
(SETQ E.LIST (LIST (CONS (QUOTE TYPE)

TYPE)))
(MAPPRIN Q (TERPRI “What function is used as the watch demon?”

TERPRI
“Enter its name if any, else enter]: ‘0)

(COND
((SETQ WATCH (BEAD))
(A.ADDPROP E.LIST (QUOTE WATCH—DEMON)

WATCH)
(MAPPRIN Q (TERPRI “What function is called by “ WATCH

“?“ TERPRI
“(Enter 3 if none. Else name.) ‘0)

(COND
((SETQ CALL (READ))
(A.PUTI E.LIST (LIST (QUOTE WATCH—DEMON)

(QUOTE CALL—FUNCTION))
CALL]

(COND
((EQ TYPE i)
(RETURN E.LIST)))

(MAPPRIN Q (TERPRI “What function is used as the set demon?”
TERPRI
“Enter its name if any, else enter]: “))

71


~~~~~~- — —  
~~~

-
~~~~~:

-
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

(COND
((SETQ SET (READ))
(A.ADD PROP E.LIST (QUOTE SET—DEMON)

SET)
(MAPPRINQ CTERPRI “What function is called by “ SET “V’

TERPRI
“(Enter] if none. Else name.) “))

(COND
((SETQ CALL (READ))

CA.PUT# E.LIST (LIST (QUOTE SET-DEMON)
(QUOTE CALL-FUNCTION))

CALL]
(RETURN E.L.IST)

DESC (MAPPRIN Q ((RPT Q 2 (TERPRI))

“Type 1: Continuous entry over entire specified interval.”
TERPR I

“Type 2: Continuous entry from start as far as possible until end.”
TERPRI

“Type 3: Discontinuous entry allowed . From start until duration
obtained.”

TERPRI))
(GO L])

C?RINT.MODEL.S
(LAMBDA (TABLE)

(FROG (NIL)
(TERP RI)
(MAPPRINQ (“The following models have been entered into “

TABLE “ :“ (RPT Q 2 (TERPRI]
(PRINT.L IST (A .GETP (GET? TABLE (QUOTE A.LIST))

(QUOTE MODELS))
10)

(RPT Q 2 (TERPRI))
(RETURN (CHARACTER 127))

(GET.R.MOD EL.. PROP
(LAMBDA (TABLE FROP.L.IST)

(A.c~ TP# (GET? TABLE (QUOTE A LIST))
(CONS (QUOTE MOD ELS)

PROP.LIST])

72

- - -5 - —_—~~~~~--~~~~~~~~- — - - -5 - 5 -~~~~~~~~~~~~~ - -- -— - 5- 5 - - -.-- ~~~~
-- -

~~~~
- -

~~~~
—----- - -

B. Modification of a Model

Once the model exists, it can be modified by ALTER.RES.MODEL.
The call of this function requires only the identification of the table
or scheduler, and of the model. It then asks for a list of the prop—
erties to be changed or added. The properties that it can understand
are those at the top level of the model. For example, if one wishes
to change the value of some property in the E—list , the propery name
E—LIST is given to it. When the function reaches that property name,
it will call ENTER.E.LIST so that the entire E—list will be recon-
structed.

As an example , Table 8 shows the result of modifying the model
developed in Table 7. Two changes are desired. The value of LEVEL
is being changed to ~$, and a new property called CONDITION is to be
entered with the value TEST.FN. (This property has no significance
in ACS.1. It is used here only as an illustration.)

73

~
— -

~
-

~
----5---- - -

~

Table 8
MODIFYING A RESOURCE MODEL

(ALTER .RES.MODEL ‘PILOTS ‘MISSION]

Do you want to see the model as it stands?
(Enter] if no.) 3

Are you satisfied with the model?
(Enter) if no. Otherwise will exit.) 3

What properties do you wish to change or add?
Enter as a list, terminated with 3. LEVEL CONDITION]

What is the value of CONDITION? TEST.FN
What is the value of LEVEL? ~

Do you want to see the model as it stands?
(Enter 3 if no.) Y

STATE—NAME: ASG.
LEVEL: 11.
ID—LABEL: ID—MISSION.
CLASS—LABEL: F?C.
POST-ENTRY: MISSION-REST.
E—LIST:

TYPE: 1.
WATCH-DEMON :

WATCH—FN:
CALL -FUNCTION: DIALOG-FN.

CONDITION: TEST. FN.

Are you satisfied with the model?
(Enter 3 if no. Otherwise will exit.) Y
OK

The function does not terminate until the user declares himself
satisfied. If, on the last question of Table 8, the answer was] or
NIL , the function would have restarted on the third question.

This function can reduce the values of any of its properties
to NIL but cannot remove the process model in its entirety. Removal
is done by REM.R.MODEL. REM.R.MODEL actually leaves the model name
in MODELS , but with NIL value. Its presence does not prevent a later
use of MAKE.RES.MODEL to redine the model.

With these functions, models can be created , modified and del—
eted at will, once the scroll table has been created. The functions
are:

74

-~~~~~ -~~
_ _~~-- -~~~~~~

—

C ALTER . RES . MODEL.
[LAMBDA (TABLE ENTRY.TY?E)
(PROC (A.LIST MODEL LST)

L (COND
((NULL TABLE)
(MAPPRIN Q (“No table name given.” TERPRI))
(RETURN NIL))

([NULL (SETQ A.LIST (GET? TABLE (QUOTE A.L.IST]
(MAPPRIN Q (“Do not recognize “ TABLE “ as a table name.”

TERPRI))
(RETURN NIL.))

((NULL ENTRY.TYPE)
(PRIN1 “What entry type? “)
(SETQ ENTRY.TYPE (READ))
(GO L))

((SETQ MODEL (A.GETP# A.LIST (LIST (QUOTE MODELS)
ENTRY.TYPE]

CT (MAPPRIN Q (ENTRY.TYPE
not currently a resource model in “

TABLE “.“ TERPRI
“If a new model , use MAKE.RES.MODEL.”

• TERPRI))
(RETURN N I L)))

L i (MAPPR IN Q (TERPRI
“Do you want to see the model as it stands?”

TERPRI “(Enter 3 if no.) “))
(COND

((READ)
(PRINT.LIST MODEL. 10)))

(MA?PRIN Q (TERPRI “Are you satisfied with the model?” TERPRI
“(Enter I if no. Otherwise will exit.) “))

[COND
((READ)
(PRIN I “OX”)
(RETURN (CHARACTER 127)

(MAPPRINQ (TERPRI

“What properties do you wish to change or add?”
TERPR I “Enter as a list, terminated with] . “))

L2 (COND
((SETQ X (READ))
(SETQ LST (CONS X LST))
(GO L2)))

[MAPC LST (FUNCTION (LAMBDA (Y)
(COND
((EQ Y (QUOTE E-LIST))
(A.PUT MODEL (QUOTE E-LIST)

(ENTER.E.LIST ENTRY.TYPE)))
CT (MAPPRIN Q ((TAB 5)

“What is the value of “ Y “? ‘0)
(A.PUT MODEL Y (READ]

(SETQ LST NIL)
(GO L i])

75

- - -5 _ - - - -.-5 —-5- - ~~~~- _- -~~--“----—-- --~~~~~~~~~~~~~ --

-5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • .

C REM . R. MODEL
(LAMBDA (TABLE ENTRY.TYPE)
(PROG (A.LIST)

(COND
((NULL TABLE)
(MAPPRIN Q (“No table name.” TERPRI))
(RETURN NIL))

((NULL (SETQ A.LIST (GET? TABLE (QUOTE A.LIST]
— (MAPPRIN Q (“Do not recognize “ TABLE “ as a table name.”TERPRI))

(RETURN NIL.))
((NULL ENTRY.TYPE)
(MAPPRIN Q (“No entry type specified.” TERPRI))
(RETURN NIL))

((NULL (A.GETP # A.LIST (LIST (QUOTE MODELS)
ENTRY. TYPE)))

(MAP?RIN Q CENTRY.TYPE “ not a model currtntly in “ TABLE
“.“ TERPRI))

(RETURN NIL)))
(COND
((GREATER? (LENGTH (A.~~TP A.LIST (QUOTE MODELS)))

1)
(A.REMPROP (A.~~TP A.LIST (QUOTE MODELS))ENTRY.TYPE))

CT (A.REMPROP A.LIST (QUOTE MODELS]
(MAPPRIN Q CENTRY.TYPE “ deleted as a model in “ TABLE “ .“

TERPRI))
(RETURN (CHARACTER 127])

76

— - 5- -- - -- ~~~- ~~~~ - -~~-5~~- ~~~~~-rn - -- -- -- -- -- ~~~~~~ -- - -~~~~~~-~~~~ _ _ _

- - --------5—---------------------5--5—----- ------ -— -—- -- - - -_

X DEMON MANIPULATION

In this section , we consider the functions that manipulate the
demons that may be required to maintain the retroactive consistency of
the table , or for other purposes.

The form of a demon in ACS. 1 is specified to be a list of the
form:

(<property> <value> <function. 1> <funotion.2> (arg.list>)

The first three terms are the precondition of the demon. TABLE.SETA ,
and its subordinate functions, listed above , first evaluates
(<function.i> (A.GET A.LIST <property>) <value>) where A.LIST is the
A—l ist being entered by TABLE.SETA. For example, if the property is
LEVEL and function. i is LESS?, the demon will be fired if the value
of LEVEL in the new entry is below the specified value.

If the precondition is true , or not NIL , function.2 is applied
in the form (<func tiou.2> <old—a—list> <new—a—list> <arg—list>). The
old a—list is the a—list returned by ST.ELT prior to making any entry.
The th ird term , or the second argument, is the a—list being entered.
The final argument, arg—list, can be used to carry along any required
information from the original entry process that set up the demon.
The call of function.2 is the firing of the demon.

The discussion , so far , has concentrated on the demons that
are used to maintain retroactive consistency. These demons are
always element demons, they are Set on the data in the cells of the
table. Demons that are used to initiate alert messages, or to initiate
more general system actions, may be set on elements , columns, rows
or on the table as a whole. For example , a demon set on a column
will be checked whenever the data in any cell in that column is
changed. A row demon Is checked whenever the data in any cell in the
given row is changed. A table demon is fired whenever the data in
any cell of the table is changed. The element and column demons
are checked by TABLE .SETA.1 and TABLE.SETA.2 since these functions
are accessing the columns and cells. The row and table demons are
checked by TABLE.SETA itself after the entry has been made. Note
that the row and table demons are not peri~itted to use the old a—list
since there may have been entries to many cells. The same format is
used for the list that is the demon , but , in the call of function.2,
its first argument , which is the old a—list, is automat ically set to
NIL.

77

—-_ - -~~~-- -~~~~~ -- --~~~~~~~~


~~~~~~~~~~~~~~~~~ ~ :-—-- - -
~~

-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ i - -  — - -  —---—~~ - -----— -- ---- •—---—— — - -

A. Attachment of Demons

The principal function for the creation and attachment of a
demon is SET.DEMON . If both NAME and I.TIME are null , the demon is
attached to the table as a whole, in the table A—list . If Name is
given , but I.TIME is NIL, it is attached as a row demon. If NAME is
NIL , but I.TIME is given , it is attached as a column demon. Otherwise,
it is attached as an element demon. The actual entries are made by
SET.TABLE.DEMON, SET.ROW.DEMON , SET.COL.DEMCN or SET.EL.D€MON , as
appropriate.

Note that these functions create the list that is the demon
in the standard form as the demon is entered as one of the listed
values of the property DEMONS in the required location or locations.

Note that these functions cannot be embedded directly in
TABLE.SETA that enters data into the table. The arguments of the
fun c t ions , including , for example, the demon functions themselves,
are specified in the model. Indeed , it is the model that specifies
if demons are required to enforce retroactive consistency. Hence these
func tions are called , not by TABL.E.SETA , but by higher level functions
that use the model.

The functions are:

(SET. DEMON
[LAMBDA (TABLE NAME I.TIME E.TIME FN1 FN2 PROP VAL ARG.LIST)

(FROG (START)
(COND

((NULL TABLE)
(PRIN 1 “No table. “)
(RETURN NIL))

[(SETQ START (GET? TABLE (QUOTE START]
(T (PRIN I “Do not recognize table. “)

(RETURN N I L)))
(COND
((OR (NULL FN1)

(NULL FN2))
(PRIN1 “Functions not both given . “)

(RETURN N I L)))
(COND
((AND E.TIME (OR (NULL I.TIME)

(LESS? I.TIME START)))
(SETQ I.TIME START))

((AND I.TIME CLESSP I.TIME START))
(SETQ I .TIME START)))

[COND
((AND (NOT (NUMBER? E.TIME))

(OR E.TIME I.TIME))
(SETQ E .TIME (QUOTE INDEF]

78

-J

(COND
((AND (NULL NAME)

(NULL I .T IME))
(SET.TAB LE .DEMON TABLE FN 1 FN2 PROP VAL ARG.LIST))

((NULL I.TIME)
(SET.ROW.D€MCN TABLE NAME FN1 FN2 PROP VAL ARG.LIST))

((NULL NAME)
CSET.COL.c€MON TABLE I.TIME E.TIME FN 1 FN2 PROP VAL

ARG .L.IST))
(T (SET.EL.[EMON TABLE NAME I.TIME E.TIME FN1 FN2 PROP VA!..

ARG .L.IST])

(SET.EL. DEMON
[LAMBDA (TABLE NAME I.TIME E.TIME FN 1 FN2 PROP VAL ARG.LIST)

(FROG (DEMON)
(SETQ DEMON (LIST PROP VAL FN1 FN2 ARG.LIST))
(MAPC (GET.COLS TABLE I.TIME E.TIME)

(FUNCTION (LAMBDA (x)
(A.ADD PROP (ST.ELT TABLE NAME X)

(QUOTE DEMONS)
DEMON])

(SET .COL . LEMON
[LAMBDA (TABLE I.TIME E.TIME FN1 FN2 PROP VAL ARG.LIST)

(FROG (NIL)
(ST.COL TABLE I.TIME)

(COND
((NUMBE RP E.TIME)
CST.COL TABLE E.TIME))

CT (SETQ E.TIME NIL)))
(MAPC (GET.COLS TABLE I.TltfE E.TIME)

(FUNCTION (LAMBDA C X)
-

(A.ADDPROP (GET.COL.PTR TABLE X)
(QUOTE DEMONS)
(LIST PROP VAL FN 1 FN2 ARG.L.IST])

(SET .ROW.D EMON
[LAMBDA (TABLE NAME FN1 FN2 PROP VAL. ARG.LIST)

(A.ADDPROP [ELT (GET? TABLE (QUOTE ROW INDEX.TO. ROWNAME))
(GETHASH NAM E (GET? TABLE (QUOTE

ROWNAME. TO. ROWINDEX]
(QUOTE DEMONS)
(LIST PROP VAL FN 1 FN2 ARG.LIST])

(SET.TABLE .DEMON
[LAMBDA (TABLE FN i FN2 PROP VA!.. ARG.LIST)

(A.ADDPROP (GETP TABLE (QUOTE A.LIST))
(QUOTE DEMONS)
(LIST PROP VAL FN1 FN2 ARG.LIST])

79

- - ---5 -
•--- -‘- ---

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~

B Removal of Demons

There is also a need for functions to remove demons at will.
They are removed by KILL.DEMON which , like SET.CEMON, uses the
presence or absence of NAME and I.TIME to sort out whether it is an
element , column , row or table demon that is to be killed, and calls
the appropriate subordinate function.

There is also a function, KILL.LEMON.1, that accepts (instead
of I.TIME and E.TIME) a list of dotted pairs, each of which indicates
an interval of time and applies KILL.DEMON to each interval. This
function can be applied to either element or column demons.

All of these functions act by constructing an exact duplicate
of the demon, and then removing any matching demon from the list of
demons. Any error in the reconstruction of the demon will cause the
process to fail. Therefore, all key information must be available at
the time the demon i -~ to be removed. One way to be certain that this
information will be available is to include it in the argument list
that is part of the demon. This may lead to redundant storage of some
information that may be present in the data to which the demon is
attached , but this redundancy seems a small price to pay.

These func tions are:

(KILL DEMON
[LAMBDA (TABLE NAME I.TIME E.TIME FN 1 FN2 PROP VAL ARG.LIST)

(COND
(( AND (NUL L NAME )

(NULL I.TIME)
(NULL E.TIME))

(KILL .TABLE.DEMON TABLE FN i FN2 PROP VAL ARG.LIST))
C (AND (NULL I.TIME)

(NULL E.TIME))
(KILL .ROW.DEMON TABLE NAME FN 1 FN2 PROP VAL ARG.LIST))

((OR (NULL I.TIME)
(NULL E.TIME))

(PRIN 1 “Confusion. “)

NIL )
( (NULL NAME )
(KILL.COL.DEMON TABLE I.TIME E.TIME FN1 FN2 PROP VAL ARG.LIST))

(T (KILL.EL.DEMON TABLE NAME I.TIME E.TIME FN1 FN2 PROP VAL
ARG.LIST])

80

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--

~~~
-

~~~~~~~~~~~~



- - - - -~ --~ --—- - - ---5-- -- -—- ~~~~~~~~~

(KILL.EL. LEMON
[LAMBDA (TABLE NAME I.TIME E.TIME FN 1 FN2 PROP VAL ARG.LIST)

(PROG (DEMON )
(SETQ DEMON (LIST PROP VAL FN1 FN2 ARG.LIST))
(MAPC (GET.COLS TABLE I.TIME E.TIME)

(FUNCTION (LAMBDA ( X )
(FROG (CELL DEMON.LIST)

(SETQ CELL. (ST.ELT TABLE NAME X))
(SETQ DEMON.LIST (A.GETP CELL (QUOTE DEMONS )))
(COND
((NULL DEMON.LIST)

(RETURN NIL ) )
C (EQUAL DEMON . LIST (LIST DEMON ))

CA. PUT CELL (QUOTE DEMONS)
NIL ) )

CT (DREMOVE DEMON DEMON.LISTI)

(KIL.L .COL. LEMON
[LAMBDA (TABLE I.TIME E.TIME FN 1 FN2 PROP VAL. ARG.LIST)

(PROG (DEMON )
(SETQ DEMON (LIST PROP VAL FN1 FN2 ARG.LIST))
(MAPC (GET.COLS TABLE I.T IME E.TIME )

(FUNCTION (LAMBDA ( X )
(FROG (DEMON .LIST COL.PTR)

(SETQ COL.PTR (GET.COL.PTR TABLE X))
(SETQ DEMON .LIST CA.GETP COL.PTR

(QUOTE DEMONS )))
(COND
((NULL DEMON. LIST)

(RETURN NIL ) )
( (EQUA L DEMON.LIST (LIST DEMON ))

CA. PUT COL.PTR (QUOTE DEMONS )
NIL ))

CT (DREMOVE DEMON DEMON.LIST])

(KILL. ROW . DEMON
[LAMBDA (TABLE NAME FN 1 FN2 PROP VAL ARG.LIST)

(FROG (NAME .ELT DEMON )
[SETQ NAME.ELT (ELT (GET? TABLE (QUOTE ROWINDEX.T0.ROWNAME))

CGETHASH NAME (GET? TABLE (QUOTE
ROWNAME.TO. ROWINDEX]

(SETQ DEMON (LIST PROP VAL FN 1 FN2 ARG. LI ST))
(COND -

((E QUA L (A .~~ TP NAM E.ELT (QUOTE DEMONS ))
(LIST DEMON ))

CA.PUT NAME.ELT (QUOTE DEMONS)
NIL ))

(T (DREM OVE DEMON (A. GETP NAM E.ELT (QUOTE DEMONS ])

81 

-5-5- - - - --  -- --5--- -



-i
(KILL.TABLE.DEMON
(LAMBDA (TABLE FN 1 FN2 PROP VAL ARG.LIST)
(FROG (DEMON .LIST DEMON)

(SETQ DEMON.LIST (A.GETP (GET? TABLE (QUOTE A.LIST))
(QUOTE DEMONS )))

CSETQ DEMON (LIST PROP VAL FN1 FN2 ARG.LIST))
(COND
((NULL DEMON.LIST))
((EQUAL DEMON.LIST (LIST DEMON))
(A.PUT (GET? TABLE (QUOTE A.LIST))

(QUOTE DEMONS )
NIL ))

CT (DREMOVE DEMON DEMON.LIST])

(KILL.LEMON.1
(LAMBDA (TABLE NAME LST FN1 FN2 PROF VAL ARG.L.IST)

(MAPC LST (FUNCTION (LAMBDA CX )
(KILL.DEMON TABLE NAME (CAR X )

(CDR X )
FN 1 FN2 PROP VAL. ARG.LIST]

C. Self-Destruct Property

The watch and set demons , in particular, require tha t their
first action should be the removal of all occurences of themselves.
Their intended actions involve the data to which the watch demon is
attached , or the locations at which the set demons are attached. If
the demons are not removed , they are likely to be refired as a result
of the action of the demon itself. This will at least lead to the
possibility of a considerable amount of unnecessary work, and may lead
to thrashing. As a general principle, if the primary purpose of a
demon is to modify the data to which it is attached , its first action
should be the removal of all occurences of itself. The demon can then
be reattached after the data has been modified, if appropriate.

Further , the watch and set demons, where the model specifies
both , form a complementary pair. When either is fired, its first
action should be to eliminate not only all occurences of itself, but
also all occurences of its complement.

As indicated in the previous seotioni , it is conven ient to
include in the argument list all the information necessary to ensure
that the demon can be removed. This principle is carried one step
further. We specify that the first element in the arg.list of a
demon shall be a list. This list is required to list, in order , the
first eight variables that should be given to KILL.DCMON. The final
variable of KILL.DEMON is the argument list itself. Hence the demon
can be killed by:

(APPLY ‘KILL.DEMCN (APPEND (CAR ARG.LIST) (LIST ARG.LIST))).

82

--- ---5-



- 5 -  - - 5 - - ---- - - - 5~~~--5~~~~
_

— -_---- _ --— --—- --~~~~~~~~~ - - -—- - - _--- 1
The function APPLY is used here since the variables, as a result of
the APPEND operation , are contained in a list.

In order to kill both members of a complimentary pair when
either is f ired , we adopt another convention. If a single demon is
involved , we specify that the second element in its argument list
shall be NIL. If there is a second demon , this element shall be T.
In the latter case, the third element shall also be a list to which
KILL.L€MON can be applied after  appending the argument list.

This conv ention could be extended to include any number of
demons in a set. However , we have not found occasion to use sets
that  are larger than a complementary pair.

The functions that exploit this structure of a demon are
A IJTO.K ILL. LEMON and AUTO.K I LL. LE MON. 1.  The latter uses KI LL.DE M ON. 1 ,
which uses a lis t of dotted pairs each of which identifies an interval
of time. Both functions take only the argument list as the variable.
Both return the tail of the argument list starting after  the part
that  is used for the kill demon operation , and which may contain
information that is useful for other purposes.

As an example , consider the printout of a complete entry into
one cell of a table shown in Table 6. In the readable format of
Table 6B , the entry after “Demons:” is the list of demons. There is
only one demon present The argument list of this demon is shown.
The first element is indeed a list , and lists the first eight of the
variables that must be given to KILL.LEMON to remove all occurences.
The ninth argument of KILL.DEMON is the entire argument list. The
second element of the argument list is NIL, there is no complement-
ary demon that should also be killed . When AUTO.KILL.DEMON is ex-
ecuted with th is argument list , (MISSION M l )  is returned , the tail
of the argument list.

A related func tion, KILL.DEMON.FN, has also been defined .
This function examines the list of demons attached to a specified
cell of the table. If the function.2 of a demon matches the specif-
ied demon funct ion , AUTO.KILL.DEMON or AUTO.KILL.L€MON.1 is executed
on it. This function is used when a previous entry is to be changed
as a result of an externally originated command ; i.e., not as a result
of firing a demon. For example, the entry may be cancelled . It is
necessary tc first remove any watch and set demons that may have been
set on the data , before actually removing the data. Otherwise the
demons might be fired. The procedure for doing this is to find one
cell that contains the data, or that might have a set demon attached ,
and then using KILL.DEMON.FN on the contents of this cell.

These functions are defined as follows:

83



-
~

——- ---
~ 

-

~~~~~

- -

~~~~~~

- - -

~~~~~~~

(AUTO.KILL.LEMON
[LAMBDA (ARG.LIST)

(PROG (NIL)
(APPLY (QUOTE KILL. LEMON)

(APPEND (CAR ARG.L.IST)
(LIST ARG.LIST)))

(COND
((2ND ARG.L.IST)
(APPLY (QUOTE KILL. DEMON)

(APPEND (3RD ARG.LIST)
(LIST ARG.LIST)))

(RETURN (Nm ARG .LIST 4)))
CT (RETURN (NTH ARG.LIST 3))

(AUTO.KILL.DEMON . 1
[LAMB DA (ARG .LIST)
(FROG (NIL)

(APPLY (QUOTE KILL.LEMON. 1)
(APPEND (CAR ARG .LIST)

(LIST ARG.LIST)))
(COND
((2ND ARG.L.IST)
(APPLY (QUOTE KILL.LEMON.l)

(APPEND (3RD ARG.LIST)
(LIST ARG.L I ST)))

(RETURN (NTH ARG.LIST 4)))
CT (RETURN (NTH ARG.LIST 3])

(KILL. LEMON.FN
[LAMBDA (TABLE NAME TIME DEMON.FN TYPE)
(FROG (DEMON.L.IST)

(COND
((SETQ DEMON.LIST (A.C*~TP (ST.ELT TABLE NAME TIME)(QUOTE DEMONS)))
(MAPC DEMON.LIST (FUNCTION (LAMBDA CX)

(COND
((AND (EQ TYPE 3)

(EQUAL (4TH X)
DEMON.FN))

CAUTO.KIL.L.DEMON.1 (5TH X]
((EQUAL. (4TH X)

DEMON.FN)
CAUTO.KILL.LEMON (5TH x])

84

—-- _- - - -- _ - -- -~~ - -5- —- - - -- - -_ - --~~~~~~~~~--

_ _ _ _ _ _ _ _ ___ ~~~~~~~~~~~
----- • — --------

XI TOP LEVEL FUNCTIONS

We come now to the functions that coordinate these separate
actions and features , and that provide top level access to the
scheduler.

A. Top Level Data Entry

The funct ion used for the actua l entry of data in accordance
with the rules of the models is ENTER.TYPE . Among its other variables,
it takes two t ime var iables, TIME.1 and TIME.2. TIME.1 is the start
of the entry. If the entry is of type 1 , TIME .2 is its end . Otherwise ,
TIME.2 is the duration. Note that the duration can also be specified
in the model. However , if TIME.? is specified on the call of the
func tion , the model is riot checked . TIME.2 will then govern . If
TIME.2 is riot specified , and the model does not contain a duration ,
the function asks for a value .

OVERRIDE is a flag that appears in several functions. It
specifies whether or not the entry is to be permitted when the exist-
ing data has the same level as the desired entry . As a top level
func t ion , OVERRIDE is usually NIL , arid the entry Is oni 1~- permitted
providing its level is greater than, that of the existing data .
Howev er , these functions are also used by the watch arid Set demo ,is .
As discussed , these demon s have the effec t of generating a delayed
call of the entry fun c t ion when they are f i red . In this case , we want
the entry to be able to override the data tha t was en tered originally,
so that the data in the cells are brought up to date. When, thi s is
required , the demon s cal l these functions with the OVERRID E flag set
to T.

The principa l task of ENTER.TYPE Is to sort out wha t type
the entry is , as defined in the model for the n amed entry type . In
addit ion , it checks the condition, of the table arid establishes
whether or riot the entry ~s permit ted arid , i f so , how. It does this
by calling CHECK.ENTRY .1 , CHECK.ENTRY .2 or CHECK.ENTRY.3, depending
or’ the type specified by the model.

CHECK.ENTRY. 1 is used for type 1 entries. These must be
entered in their entirety or riot at all. It return s T if the specif-
ied level Is greater than the level in any cell into which the data
will be placed , or , if OVERRIDE is set , not less than . Otherwise ,
it returns NIL , which will then cause ENTER.TYPE to refuse the entry.

CHECK.ENTRY.2 is used for type 2 for which the entry is to
be made as far as possible from the start but not beyond the end .
The possibility of entrance is, again , determined by the level In the

85

- - -~~~~—-— --5 ----

~~— --~~~~~~~~~~~~-~~~—- -- - - -~~~--—~~~~~~~~~~~~~~~~ - — - - - - — - --

existing da~ in the table. It returns the start time of the first
column, encou,,tered iii which the data has too high a value of LEVEL.
If none is encountered , it returns T. If the value returned is T,
the en,tranice will be made from the value of INIT to the value of
END. Otherwise , It will be made from the value of INIT to the value
returned by CHECK.ENTRY.2, providin g the latter is greater than INIT.
Note tha t it is quite possible that no data will be entered for a
type 2 en t ry . However , i t may s t i l l cause demonis to be set, as is
disc ussed later .

CHECK.ENTHY.3 is for type 3, in which the entry may be made
i i scoi it in iuou slj . Therefore CHECK. E NTR Y .3 returns a list of two lists.
The first list is one of intervals , expressed as dotted pairs, in
which the desired en try can, be made. The total time covered by these
interval’ will add to the required durationi. The second list is one
of i,,tervals , also expressed as dotted pairs, In~ which the entry is
forbt -ldeni because of the presen~ce of data with too high a value of
LEVEL.. It Is d list of the gaps in the first list and is used to
determine where set demons should be attached . Two function s are
used by CHt ~C K . E N T R Y . 3 . LIM IT. LE VE L .FWD determines how far forwa rd
from a giveni starting time the given, entry cani be made as determined
by its level . A!~IIT.LE VEL.FWD determines the f i rs t time af ter the
specified time -it which the given entry can be made.

Oni~~- the suitability of the entry has been checked and , if
appropr iate , i ts parameters determined , ENT EH .TYFE calls ENTER .TY PE. 1 ,
EN TER . T Y P E .2 , or ENT~ R . T Y P E . 3 , again depending on, the type specified
by the model. These function s actually make the entry and set wha tever
iemoni~ are required .

A d e t a i l should be rioted t ha t can be overlooked easily.
Before ENThR .TYPE.2 I~ ca l led by ENTE R .T Y P E , a column is created by the
call of ST.COL just after the t ime returned by CHECIC.ENTRY.2. This
column span s just one Interval of the table. The reason for this is
so the set demon car, be attached to the cell in this column , and will.
rio t be replicated by any later manipulattonis of the table , or called
on any entry except one in that particular column .

Note that theSe functions construct the argument list of the
demonis so as to permit the auto—kill operation , implemen ting the
self—destruct property.

The A— lists used by the ENTER.TYPE functions, and passed to
TABLE.SETA, are constructed by MAKE.ALIST or MA KE.ALIST.1. The latter
is used by a type 3 entry, and includes the lists of dotted pairs
return ed by CHECK.ENTRY.3 as the values of ENTRIES and GAPS.

86

--- -- - - 5 - ---- -

- -,—-~~~~~~

The MAKE.ENTRY functions also call PUT.INSTANCE if, but only if,
the model specifies an ID—LABEL.. This function adds a property—value
pair to a list that is stored inn the table A—list , where there is a
list of the value of INSTANCES. This list is composed of a set of
lists, each of which is the value of a property, whose name is the
name of an entry type. It is the appropriate one of these lists that
PUT.INSTANCE adds the property—value pair whose property is the ID
of the entry. If the entry type is type 1 or 2, the value of ID in
this list is (<row name> <start> <end>) where start and end are the
start and end times of the actual entry. If it is type 3, the value
is (<row name> <list.1> <list.2>) where list.1 is a list of dotted
pairs indicating intervals over which the entry was made, and list.2
the complementary list of gaps in the entry. The value entered by
PUT.INSTANCE permits accessing the entry by its ID , without having
to search the table.

A further detail should be noted . The first time PUT.INSTANCE
adds a property—value pair unic~er a given entry type , it actually
constructs (<entry type> DEFAULT (ID <list>)). The inclusion of
DEFAULT avoids ever needing to remove all the values of the entry
type , so that A.REMPROP , and its related funct ions , can remove all
the significant property—value pairs in the structure.

The funct ion , ENTER.TYPE, also uses LAST.ENTRY if the entry
is type 3 to determine the time of completion. It searches a list of
dotted pairs, returning T if the second member of any pair is non-
numeric, otherwise returning the largest of the second members.

The function NLESSP should be mentioned. It is the same as
LESSP except that, if either value is not a number , it returns T,
rather than generating an error message.

These functions permit entry into the scroll table of data
in accordance with the rules and conistraints of the resource model.
They also set the demon s that will continue to enforce those rules
and constraints.

The functions described here are defined as follows:

CENTER. TYPE
[LAMBDA (TABLE NAME TDIE.1 TIME.2 ENTRY.TYPE ID CLASS PRINT.SUP.FL.G

OVERRIDE)
(PROC (MODEL TYPE END E.TIME DURATION ENTRY.LIST POST.ENTRY)

(COND
((SETQ MODEL (GET. R .MODEL.P R OP TABLE (LIST ENTR Y .TYPE]
((NULL PRINT.SUP.FLG)
(MAPPRIN Q (ENTRY.TYPE “ is not a model in “ TABLE “ .“

TERPRI))
(RETURN NIL.))

CT (RETURN NIL)))

87

-5~~~~~~~~~~~~~ -- --—---~~~~~~~--~~~~~~~~~ - - - - _ _ - - - _ _ - _ _-

(SETQ TYPE (A.GETP# MODEL (LIST (QUOTE E—L.IST)
(QUOTE TYPE]

(COND
((EQ TYPE 1)
(SETQ END TIME.2))

((NUMBERP TIME.2)
(SETQ END (IPLUS TIME.1 TIME.2]

(COND
((NOT (NUMBERP TIME.1))

(COND
(PRINT.SUP .FLG (RETURN NIL))
(T (PRIN1 “No start.”)

(RETURN (CHARACTER 127]
((LESSP TIME.1 (GETP TABLE (QUOTE START)))

(COND
[PRINT.SUP.FLG (SETQ TIME.1 (GETP TABLE (QUOTE START]
(T (PRIN1 “Start too early.”)

(RETURN (CHARACTER 127]
(COND

((AND (NUMBERP END)
(LESSP END TIME.1))

(COND
(PRINT.SUP .FLG (RETURN NIL))
(T (PRIN1 “End too early.”)

(RETURN (CHARACTER 127]
(COND
[(A.~~TP MODEL (QUOTE ID—LABEL))(COND

((NULL ID)
(PRIN1 “What ID? “)

(SETQ ID (READ]
CT (SETQ ID NIL)))

(COND
((AND (E Q TYPE 1)

(CHECK. ENTRY. 1 TABLE NAME TIME. 1 TIME.2
(A.GETP MODEL (QUOTE LEVEL))
OVERRIDE))

(ENTER.TYPE.1 TABLE NAME TIME.1 TIME.2 ENTRY.TYPE ID
CLASS)

(SETQ E.TIME (NEXTHIGHER TABLE TIME.2)))

88

~

~~~



-- —- -
—.—---~ I 

-

( ( E Q TYPE 2)
[COND

((NU MBERP T IME. 2 )
(SETQ DURATION TIME.2))

((SETQ DURATION (A.GETP MODEL (QUOTE DURATION]
(T (PRIN I “What duration? “)

(SETQ DURATION (READ ]
(SETQ E. T1ME (CH ECK.ENTR Y.2  TABLE NAME TIME. 1

(IPL.US TIME. 1 DURATION)
(A.GETP MODEL. (QUOTE LEVEL))
OVERRIDE ))

[COND
((OR (NOT (NUMBERP E.TIME))

(GREATER? E.TIME (IPLUS TIME. 1 DURATION)))
(SETQ E.TIME (IPLUS TIME.1 DURATION]

(EN TE R .TYPE.2 TABLE NAME TIME.1 (IPLUS TIME.1 DURATION)
E.TIME ENTRY.TYPE ID CLASS))

[(E Q TYPE 3)
[COND

((N I JMBERP TIME.2 )
(SETQ DURATION TIME.2))

[(SETQ DURATION (A.GETP MODEL (QUOTE DURATION]
(T (PRIN 1 “What duration? “)

(SETQ DURATION (READ ]
(SETQ ENTRY. LIS T (CHECK.ENTRY.3 TABLE NAM E TIME. 1 DURATION

(A.GETP MODEL
(QUOTE LEVEL))

OVERRIDE ))
(ENTER .TYPE .3 TABLE NAM E TIME . I DURATION ENTRY.L.IST

ENTRY.TYPE ID CLASS)
(SETQ E.TIME (L.AST.ENTRY (CAR ENTRY.LIST]

(T (PRIN1 “Can’t.”)
(TERP RI)
(RETURN N I L ) ) )

(COND
([AND (NUMBERP E.TIME)

(SETQ POST. EN TRY (A .GETP MODEL (QUOTE POST—ENTRY )
(ENTER.TYPE TABLE NAME E.TI ME NIL. POST.ENTR Y ID CLASS T

OVERRIDE )))
(COND
((NULL PRINT.SUP.FLG)
(PRIN 1 “OK”)))

(RETURN (CHARACTER 127])

(CHECK.ENTRY. 1
(LAMBDA (TABLE NAME INIT END LEVEL )
(EVERY (GET.COLS TABLE INIT END)

(FUNCTION (LAMBDA CX)
(NOT (LESS? LEVEL (A.GETP (ST.ELT TABLE NAME X)

(QUOTE LEVE L])

89



r --

~~~~

— -5 - - - -
~~~~~~~~

—

~~~~~

-

(CHECK. ENTRY. 2
(LAMBDA (TABLE NAM E INIT END LEVEL)
(PROG (NIL.)

[MAPC (GET.COLS TABLE INIT END)
(FUNCTION (LAMBDA CX)

(COND . -

((GRE ATERP (A .GETP (ST.ELT TABLE NAME X)
(QUOTE LEVEL))

LEVEL)
(RETURN X]

(RETURN T])

(CHECK. ENTRY. 3
[LAMBDA (TABLE NAME INIT DURATION LEVEL)
(PROG (TRIAL NEi4.TRIA L LST.1 LST.2)

(SETQ TRIAL INIT)
L (COND

[(SETQ NEW .TRIAL (LIMIT.LEVEL.FWD TABLE NAME TRIAL. LEVEL))
(COND

((NOT (NUMBER? NEW.TR I A L))
(SETQ LST.1 (CONS (CONS TRIAL (IPLUS TRIAL DURATION))

LST. 1))
(RETURN (LIST LST.1 LST.2)))

[(NOT (GREATERP (IPLUS TRIAL DURATION)
NEW.TRIAL.))

(SETQ LST.1 (CONS (CONS TRIAL (IPLUS TRIAL DURATION))
(RETURN LST.1 LST.2)

CT (SETQ LST. 1 (CONS (CONS TRIAL NEW.TRIAL)
LST. 1))

(SETQ DURATION (IDIFFERENCE (IPLUS TRIAL DURATION)
NEW .TRIAL))

(SETQ TRIAL NEW .TRIAL)
(GO L]

((SETQ NEW.TRIAL (LIMIT.LEVEL.FWD TABLE NAME TRIAL LEVEL T))
(COND
((NOT (NUMBER? NEW .TRIAL))
(SETQ LST.2 (CONS (CONS TRIAL (QUOTE INDEF))

LST.2))
(RETURN (LIST LST.1 LST.2)))

(T (SETQ LST.2 (CONS (CONS TRIAL NEW .TRIAL)
LST.2))

(SETQ TRIAL NEW.TR IAL)
(GO L])

90

- -— —~~~~~~ -- —

-

-~ -~~~

(LIMIT.LEVEL.FW D
[LAMBDA (TABLE NAME START LEVE L OVERRIDE)

(PROG (PTR)
(COND
((GREATERP (A.GETP (ST.ELT TABLE NAME START)

(QUOTE LEVEL))
LEVEL)

(RETURN NIL))
((AND (NULL OVERRIDE)

(EQP (A.GETP (ST.ELT TABLE NAME START)
(QUOTE LEVEL.))

LEVEL))
(RETURN NIL)))

(SETQ PTR (GET.C0L .PTR TABLE START))
L [COND

[(GREATER? (A.GETP (ST.ELT TABLE NAME START)
(QUOTE LEVEL))

LEVEL)
(RETURN (A.GETP PTR (QUOTE START)

((A ND (NULL OVERRIDE)
(EQP (A.GETP (ST.ELT TABLE NAME START)

(QUOTE LEVEL))
LEVEL))

(RETURN (A.GETP PTR (QUOTE START]
(COND
((NOT (NUMBER? (sETQ START (A.GETP PTR (QUOTE END]

(RETURN T)))
(SETQ PTh (A.GETP PTE (QUOTE FORWARD)))
(GO L))

(ADMIT. LEVEL. FWD
[LAMB DA (TABLE NAME START LEVEL OVERRIDE)

(PROC (PTR)
— L (SETQ ?TR (GET.COL.P TR TABLE START))

(COND
((LESS? (A .GE TP (ST.ELT TABLE NAME START)

(QUOTE LEVEL))
LEVEL)

(RETURN START))
((AND OVERRIDE (EQP (A.GETP (ST.ELT TABLE NAME START)

(QUOTE LEVEL))
LEVEL))

(RETURN START)))
(COND
([NOT (NUMBER? (SETQ START (A.GETP PTR (QUOTE END]
(RETURN NIL.)))

(GO L])

91

A

AD—AO% 312 STAffORD RESEARCH INST MEM O PARK CALIF F/S 12/2
TIE SCHEDULERS OF ACS.ldUP
SEP 77 M C P!$SE N000l. - 77—C—03Oe

UNCLASSIFIED $ffl-T R-1’4 ii.

I

- S

-

~1~

(ENTER.TYPE . ~
(LAMBDA (TABLE NAME INIT END ENTRY.TYPE ID CLASS)

• (PROC (A.LIST ID.LABEL CLASS .LABEL WATCH.FN)
(SETQ A.LIST (MAKE.ALIST TABLE NAME INIT END ENTRY.TYPE

ID CLASS))
(COND

(ID (PUT . INSTANCE TABLE ENTRY.TYPE ID (LIST NAME INIT END]
• (TABLE .SETA TABLE NAME INIT END A.LIST)

(CONI)
((SETQ WATCH.FN (GET.R.MODEL.PROP TABLE

(LIST ENTRY.TYPE
(QUOTE E-LIST)
(QUOTE WATCH—DEMON]

(SET.EL .DEMON TABLE NAME INIT END (QUOTE DUMMY)
(CAR WATC H. FN)
NIL NIL (LIST (LIST TABLE NAME INIT END

(QUOTE DUMMY)
(CAR WATCH.FN)
NIL NIL)

NIL ENTRY.TYPE ID])

(ENTER.TYPE.2
(LAMBDA (TABLE NAME INIT END E.TIME ENTRY.TY?E ID CLASS)

(PROG (A.LIST ARG .LIST. 1 ARG.LI ST.2 WA TCH .FN SET.FN)
(SETQ A.LIST (MAKE.ALIST TABLE NAME INI T END ENTR Y. TYP E ID

CLASS))
[SETQ LEVEL (GET.R .MODEL.PRO P TABLE (LIST ENTRY.T YPE

(QUOTE LEVEL]
[COND

((GREATER ? E .TIME INIT)
(TABLE .SETA TABLE NAME 1NiT E . TIME A .LIST)
(SETQ WATCH.FN (GET.R.MODEL.PRO P TABLE

(LIST ENTRY.TY PE
(QUOTE E—LIST)
(QUOTE WATCH-DEMON]

[COND
((LESS? E.TIME END)
(SETQ SET.FN (GET.R.MODEL.PROP TABLE

(LIST ENTRY.TYPE
(QUOTE E—LIST)
(QUOTE SET-DEMON]

(ST.COL TABLE (IPLUS E.TIME (GET? TABLE (QUOTE INTERVAL]
(COND
((AND ID (OR (NOT (NUMBER? E.TIME))

(LESS? INIT E.TIME)))
(PUT.INSTANCE TABLE ENTRLTYPE ID (LIST NAME INIT E.TIME]

92

(COND
t (OET .R.MODEL PROP TABLE (LIST ENT RY .TYPE

(QUOTE CLASS—LABEL]
(T (SETQ CLASS NIL)))

[COND
(WATCH.FN (SETQ ARG . LIST. I (LIST TABLE NAM E INIT E.TII4E

(QUOTE DUMMY)
(CAR WATCK.F N)
NIL NIL]

(C0ND
(SET.FN (SETQ ARG.LIST.2 (LIST TABLE NAME E.TIME E .TIM E

(QUOTE NLESSP)
(CAR SET.FN)
(QUOTE LEVEL)
LEVEL]

(COND
((AND WATCH.FN SET.FN)

(SET.EL .DEMON TABLE NAM E INIT E.TIM E (QUOTE DUMMY)
(CAR WATCH .FN)
NIL NIL

• (LIST ARG.LIST . 1 T ARG.LIST .2 ENTRY .TYPE
II) INIT END CLASS))

• (SET .EL.D€MON TABLE NAM E E.TIM E E .TIME (QUOTE NLESSP)
(CAR SET.FN)
(QUOTE LEVEL)

LEVEL
(LIST ARG.LIST.I T ARG.LIST.2 ENTRY.TYPE

ID INIT END CLASS)))
(WATCH.FN (SET.EL.DEMON TABLE NAME INIT END (QUOTE DUMMY)

(CAR WATCH .FN)
NIL NIL
(LIST ARG.LIST.1 NIL ~NTRY.TYPE IDINIT END CLASS)))

(SET.FN (SET.EL..DEMON TABLE NAME E.TIME E.TIM E
(QUOTE NLESSP)
(CAR SET.FN)
(QUOTE LEVEL)
LEVEL
(LIST ARG.LIST.2 NIL ENTRY.TYPE ID

INIT END CLASS])

(ENTER. TYPE . 3
CLAMB DA (TABLE NAME INIT DURATION ENTRY. LIST ENTRY. TYPE ID CLASS)
(PROG (A.L.IST LST.1 LST.2 ARG.LIST.1 ARG.LIST.2 WATCH .FN SET.FN)

(SETQ L.ST.1 (CAR ENTRY.LIST))
(SETQ LST.2 (CADR ENTRY.LIST))
(SETQ A.LIST (MAKE.ALIST.1 TABLE NAME LST.1 LST.2 ENrRY.TYPE

ID CLASS))

93

-

— _

• [MAPC LST. 1 (FUNCTION (LAMBDA (X)
(TABLE.SETA TABLE NAME (CAR X)

(CDR X)
A.LIST)

(COND
(ID (PUT .INSTANCE TABLE ENT RY.TYP E ID (LIST NAME L.ST. 1

LST.2]
(COND

((AND LST. 1 (SETQ WATCH.FN
(GET. R.MODEL. PROP TABLE

(LIST ENTRY.TY PE
(QUOTE E-L.IST)
(QUOT E

WATCH —D~ lON]
(SETQ ARG.LIST .1 (LIST TABLE NAME LST .1 (QUOTE DUMMY)

(CAR WATCH .FN)
NIL NIL]

(COND
((AND LST.2 (SETQ SET.FN

(GET.R.MODE L. PROP TABLE
(LIST ENT RY .TYPE

(QUOTE E—LIST)
(QUOTE SET-DEMON]

(SETQ ARG.LIST . 2 (LIST TABLE NAME LST.2 (QUOTE NLESSP)
(CAR SET.FN)
(QUOTE LEVEL)
LEVEL]

(COND
((AND ARG.L.IST.1 ARG.LIST.2)
(MAPC LST.1

(FUNCTION (LAMBDA (X)
(SET. EL.D€MON TABLE NAME (CAR X)

(CDR X)
(QUOTE DUMMY)
(CAR WATCH.FN)
NIL NIL
(LIST ARG .LIS~’ RG .L.IST.2

ENT RY. I • ‘ ~NIT DURATION
C LASS]

(MAPC LST.2
(FUNCTION (LAMBDA Cx)

(SET.EL ..DEMON TABLE NAM E (CAR X)
(CDR X)
(QUOTE NLESSP)
(CAR SET.FN)
(QUOTE LEVEL)
LEVEL
(LIST ARG.L.IST. 1 T ARG .LIST.2

ENTRY.TYPE ID INIT DURATION
CLASS]

94
S

L ~~~~~~~~~~~~ ~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



• • • .• • •

(ARG.LIST. 1 (MAPc LST. 1
• (FUNCTION (LAMBDA (X )

(SET.EL.DEMON TABLE NAME (CAR X)
( CDII X)
(QUOTE DUM MY )

• 

• 
(CAR WATCH.FN )
NIL NIL
(LIST ARG .LIST. 1 NIL

ENTRY .TYPE ID INIT
DURATION cuss]

(ARG .LIST.2 (MAPC LST.2
• (FUNCTION (LAMBDA CX)

(SET.EL.DEMON TABLE NAME (CAR X)
(CDR x)
(QUOT E NLESSP )
(CAR SET.FN)
(QUOTE LEVEL)

• LEVEL
• (LIST ARG.LIST.2 NIL

ENTPY .TYPE ID INIT
DURATION CLASS])

• (MA KE.ALIST
(LAMBDA (TABLE NAME INIT END ENTRY.TYPE ID CLASS)

(PROG (MODEL A.LIST ID.LABE L CLASS.LABEL)
• (SETQ MODEL (GET.R.MODEL.PROP TABLE (LIST ENTRY.T YP E )) )

(SETQ A.LIST (LIST (CONS (QUOTE ENTRY)
ENTRY. TYPE )

(CONS (QUOTE STATE—NAME)
(A.GETP MODEL (QUOTE STATE—NAME)))

(CONS (QUOTE LEVEL)
(A .GETP MODE L (QUOTE LEVEL )))

(CONS (QUOTE START )
(CONS ~~~~tE END)

END )) )
(COND

( (SETQ ID.LABEL (A.GETP MODEL (QUOTE ID-LABEL)))
(COND

( (NULL ID)
(PRIN 1 “What ID? “)
(SETQ ID (READ]

(A.PUT A.LIST ID.LABEL I D ) ) )
( cOND

( (SETQ CLASS.LABEL (A.G ETP MODEL (QUOTE CLASS—LABEL )))
(COND

((NULL CLASS)
(MAPPR IN Q (“What is “ CL.ASS.LABELI “? “))
(SETQ CLASS (READ]

(A.PUT A.LIST CLASS.LABEL CLASS)))
(RETUR N A.LIST])

95



F!’ , 

_-‘.-••—•-——-—,~~‘ ~~~~~~~“ ——- -‘ —-‘-‘ —“ --~ -, ~~~~~ ——~-——-- .-- - •~~~ --••.— ~~ _ -_~~ ~~~~~~~~~~~~~~~~~ ‘—-“ • .

(MA KE .ALIST. 1
(LAMBDA (TABLE NAME LST.1 LST .2 ENTRY.TYPE ID CLASS)

(PROG (MODEL A.LI ST ID.L.ABEL CLASS.LABEL)
(SETQ MODEL (GET.R.MODEL.PROP TABLE (LIST ENTR Y .T Y PE ) ) )
(SETQ A.LIST (LIST (CONS (QUOTE ENTRY )

ENTRY. TYPE )
(CONS (QUOTE STATE—NAME )

(A.G ETP MODEL (QUOTE STATE—NAME )))
( CONS (QUOTE LEVEL)

(A.GETP MODEL (QUOTE LEVEL)))
(CONS (QUOTE ENTRIES )

LST.1)
(CONS (QUOTE GA PS)

LST.2)))
(COND

( (SETQ ID.LABEL (A.GE TP MODEL (QUOTE ID—LABEL )))
[COND

• ( (NULL ID)
(PRIN 1 “What ID? “)
(SETQ ID (READ ]

(A.PUT A.LIST ID.LABEL ID)))
(COND
((SETQ CLASS.LABEL (A.GETP MODEL (QUOTE CLASS—LABEL)))

[COND
((NULL CLASS )

(MAPPRINQ (“What is “ CLASS.LABEL. “? “))
(SETQ CLASS (READ ]

(A.PU T A.LIST CLASS .LABEL. CLASS)))
(RETUR N A.LIST])

(PUT . INSTANCE
(LAMBDA (TABLE ENTRY.TYPE ID LST )

(PROG (TYPE .INST)
(COND

((SETQ TYPE .INST (A.GETP# (GETP TABLE (QUOTE A.LIST))
(LIST (QUOTE INSTANCES )

ENTRY TYPE )))
(A.PUT TYPE.INST ID LST))

(T (A.ADDPROP (GETP TABLE (QUOTE A.LIST))
(QUOT E INSTA NCES)
(LIST ENTRY.TYPE (QUOTE DEFAULT)

( CONS ID LST])

96



r r~

B. t~ ta Cancellation

Since much of the data is being entered with an ID , and since
a call on a scheduler by a planner during replanning is likely to
be through the ID of the plan , it is important to be able to cancel
an assigrun en t that is so designated. This i~ done by DELETE.ENTRY.IDor DELETE.ENTRY , depending on whether or not the entry has an ID and

• the ID is specified .

DELETE.ENTRY first looks for an occurence of the entry type ,
using FIND.ENT RY. If it can recover an ID from this entry, it calls
DELETE. ENTRY.ID. Otherwise, it goes ahead on its own . The actual
deletion of the entry in either function is done with CANCEL.ENTRY or ,
if type 3 and DELETE.ENTRY.ID, CANCEL.ENTRY.LST, given shortly. If
there is an ID , DELETE.ENTRY.ID removes the entry from the instances
in the table a—list .  If the entry has a post—entry associated with

• it , each function calls itself to delete the post—entry.

• Note that it would make little sense , generally, to have a
type 3 entry without an ID. For a type 3 entry can be discontinuous.
Without an ID , the seperate segments are not linked together except
through the watch arid set demons , if any. The deletion of a single
segment will have a generally undesired side—effect of removing the
watch and set demons from all segments , thus upsetting the procedure.

• Therefore , we assume that any such entry does have an ID , obtained
• if necessary by a GENS YM operation within the scheduler. This possi—
• bility is one reason why DELETE.ENTRY reverts to DELETE.ENTRY.ID
• if it can. It is also the reason why DELETE.ENTRY does not consider

the possibility that the entry is type 3 after it has failed to
rever t to DELETE.ENTRY.ID .

DE LETE. ENTRY. ID and DELETE.ENTRY use CANCEL.ENTRY and
CANCEL . ENT RY.LST . These functions first remove the watch arid set
demons , as required , so tha t the demons will not be fired by the
deletion. Then they call TABLE.SETA.TEST, given in section Vb6.
TABLE .SETA.TEST is used rather than TABLE.SETA because of the inten-
tion to permit the use of DELETE.ENTRY, or DELETE.ENTRY.ID, by the
watch and set demons. These demons may be fired as a result of chang-
ing the data in the table. We do not want the deletion to affect  the
data that may have already been changed. Hence TABLE.SETA.TEST is
used since it tests the existing data before it makes any change.

The function, KILL. DEMON .PR , searches for an occurence of
either the watch or set demon that may be specified by the model,
and uses KI LL .DE M ON .FN to remove them .

These functions are defined as follows:

97



r ~~~~~~~~~~~ 

:T~~~~~
-
~
---

~~.~JL ~~~~~~~~~~~~~~~~~~~~~~~~~ •-~~ —~
-•-

(DELETE. ENTRY. ID
[LAMBDA (TABLE ENTRY.TYPE ID PRINT.SUP.FL G )

(PROG (MODEL LST POST.ENTRY )
• (COND

[(SETQ MODEL (GET.R.MODE L..PROP TABLE (LIST ENTRY.TYPE]
(PRINT.SU P .FLG (RETURN NIL ))

• (T (MAPPRIN Q (“No model named “ ENTRY.TYPE “ in “ TABLE “ .“

TERPRI))
(RETUR N N I L ) ) )

(COND
( (SETQ LST (A. GETP# (GETP TABLE (QUOTE A.L.IST))

• (LIST (QUOTE INSTANCES)
ENTRY.TYPE ID)

(PRINT.SUP .FLG (RETURN NIL ))
• (T (MAPPRIN Q (“No entry of type “ ENTR Y .TYPE “ with ID “

ID “ in “ TABLE “ .“

TERPRI ))
(RETURN NIL)))

(COND
([EQ 3 (A.GETP# MODEL (QUOTE (E—LIST TYPE]

-• (CANCEL.ENTRY.LS T TABLE (CAR LET)
(2ND LET)
(3RD LST)
MODEL ))

(T (CANCEL.ENTRY TABLE (CAR LET)
(2ND LST)
(3RD LST)
MODEL )))

(REM.INSTANCE TABLE ENTRY.TYPE ID)
(COKD
((AND (SETQ POST.ENTRY (A.GETP MODEL (QUOTE POST—ENTRY)))

(NUMBERP (3RD LST)))
(DELETE.ENTRY.ID TABLE POST.ENTRY ID T)))

(COND
(PRINT.SUP .FLG (RETURN T))
(T (PRIN 1 “OK”)

(RETURN (CHARACTER 127])

(DELETE. ENTRY
[LAMBDA (TABLE NAME ENTRY.TYPE TRIAL.TIME PRINT.SUP.FL.G)

(FROG (MODEL ENTRY POST.ENTRY)
( COND
[(SETQ MODEL (GET.R.MODEL.PROP TABLE (LIST ENTRY.TYPE]
(PRINT.SU P .FLG (RETURN NIL ))
CT (MAPPRIN Q (“No model named “ ENT RY.TY PE “ in “ TABLE “ .“

TERPRI))
(RETURN N I L ) ) )

98



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~ ~~~~~~
- -

~~~~~~~~~~~~
-
~~~~~~~~~~~~~~~

-
~~~~~

—-— —

[COND
((NULL TRIAL.TIME (SETQ TRIAL .TIM E (GETP TABLE (QUOTE START]
((NOT (NUMBE RP TRIA L .TIME))

(COND
(PRINT.SUP .FL.G (RETUR N NIL))
(T (PR IN 1 “Can ’t. TRIAL .TIM E not a number. ”)

(RETUR N (CHARACTER 127]
(COND

((SETQ TRIAL.T 1ME (F lND .EN TR Y TABLE NAME TRIAL.TIM E
(A .GETP MODEL

(QUOTE STATE—NAME)
(PRINT.SUP.F LG (RETURN NIL))
(T (MAPPRIN Q (“No occurence of “ ENTR Y .TYPE “ in row “

NAME “ in “ TABLE “ .“

TERPRI))
TABLE “ .“ TERPRI))

(RETURN (CHARACTER 127)
(SETQ ENTRY (ST.ELT TABLE NAM E TRIAL.TIME))
(COND

((AND (SETQ ID .LAB EL (A.GETP MODEL (QUOTE ID-LABEL)))
(SETQ ID (.A. GETP ENTRY ID.LABEL)))

(DELE TE.ENT RY .ID TABLE ENTRY.TYPE ID T))
CT (CANCEL.ENT RY TABLE NAME (A. GETP ENTRY (QUOTE START))

(A.G E TP ENTRY (QUOTE END))
MODEL)))

(COND
((SETQ POST.ENT RY (A .GETP MODEL (QUOTE POST—ENTRY)))

• (DEL.E TE .ENTRY TABLE NAME POST.ENTRY (A.GETP ENT RI
(QUOTE END))

PRINT. SUP. FLG)))
• (COND

(PRINT .SUP.FLG (RETURN T))
(T (PRIN 1 “OK”)

(RETURN (CHARACTER 127))

(CANCEL. ENTRY
(LAMBDA (TABLE NAME I.TIME E.TIME MODEL)

(PROG (A.LIST !.ST WATC H.DE MON SET.DEMON TYPE)
[SETQ TYPE (A.GETP# MODE L (LIST (QUOTE E-LIST)

(QUOTE TYPE)
(COND
((SETQ I.TIME (CHECK.TIM E I.TIME E.TIME)))
(T (RETURN N I L)))

(KILL.DEMON .PR TABLE NAME I.TIME E.TIM E MODEL TYPE)
(TABLE .SETA.TEST TABLE NAME I.TIME E.TIM E

(A.GETP MODEL (QUOTE STATE—NAME))
(GETP TABLE (QUOTE DEFAULT.L.IST])

99

-
—- — -

~~~~~~~~~-— -
~~~~-— — 

~~~~
-

~~~~--


• —•—•—. • — —

(CANCEL .ENTRY. LS T
(LAMBDA (TABLE NAME LET.1 LST.2 MODEL)

(PROG (I.TIME E.TIME WA TCH. DEMON SET.DEMON)
(COND
((SETQ I.TIME (CHECK.TIME .LST LST.1)))
(T (RETURN N I L)))

[COND
(LST.2 (SETQ E.TIME (CHECK.TIME.LST LST.2]

(KILL.DEMON.PR TABLE NAME I.TIME E.TIME MODEL 3)
(MAPC (CHE CK.LET LST .1)

(FUNCTION (LAMBDA (X)
(TABLE.SETA.TEST TABLE NAME (CAR X)

(CDR X)
(A.GETP MODEL (QUOTE STATE-NAME))
(GETP TABLE (QUOTE DEFAULT.LIST))

(KILL.DEMON .PR
[LAMBDA (TABLE NAME INIT END MODEL TYPE)

(PROG (DEMON .FN TRIAL.TIME)
(SETQ TRIAL.TIME (CHECK.TIME INIT END))
(COND

((NULL TRIA L.T IME))
([SETQ DEMON.FN (CAR (A.GETP# MODE L

(QUOTE CE—LIST WATCH—DEMON]
(RETURN (KILL .DE MON .FN TABLE NAME TRLALI .TIME DEMON .FN

TYPE)))
((NO T (NUMBERP E N D)))
([SETQ DEMON.FN (CAR (A.GETP# MODEL

(QUOTE CE—LIST SET-DEMON]
(RETURN (KILL.DEMON.FN TABLE NAME (NEXTHIGHER TABLE END)

DEMON.FN TYPE])

100

~~~~~~~~~~~~~~~~~~~~~~~ 

_
T~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _



-

XII DEMON AND DIALO G FUNCTIONS

There remain the functions used for the watch and set demons
in the table. Other demons, used for alert requirements and to
initiate more general system actions, must be designed to meet their

• specific purposes since we cannot define what they should do in general
terms . The watch and set demons , however , which act to preserve the
self— consistency of the scheduler or to maintain retroactive consist—y ,
ency are reasonably general. The basic requirement for them is that,
when fired , they should reexecut e the original entry if possible, or
else cancel the entry.

The functions that have been defined for the watch and set
demons are WATCH.1 , WATCH.2 and WATCH.3, dpending on the type. The
same function can generally be used for both the watch and set demon ,
although with different preconditions, as discussed before.

With all three of these functions, the first action, after
recovering various data from the argument list, is to kill all
occurences of the demon and of its complementary demon if any.

WATCH. 1 then cancels the entry and then calls the function
specified by the model to determine what to do about it. For MISSION,
for example , DIALOG. 1 is specified . Note that a type 1 entry must be
made in its entirety or riot at all. Hence any interference which
causes WATCH.1 to be called requires its cancellation, although it
can be re—instated in another row of the table if one is available.

WATCH.2 and WATCH.3 can themselves reenter the entry in a way
to account for the change in the table data that caused the demon to
be fired. This is true whether it is the watch or set demon that was
tired . The key instruction in these functions is , therefore, the cal].
of ENTER.TYPE. Note that this call is with the OVERRIDE flag set.
It is therefore not necessary to remove the prior entries of the
given type, which might f ire other demons leading to other , undesired ,
side—effects.

All three of these functions must account for the possibility
tha t the system clock may have advanced considerably since the origin-
al entry. In fact, the start of the table may be after that of the
of the original entry. Therefore, adjustments need to be made. In
WATCH.3, two special functions are used for these adjustments.
CORRECT.DURATION adjusts the duration to account for that part of the
entry that has been completed. CORRECT.LIST takes a list of dotted
pairs identifying intervals of time , and compares it with a specified
time , removing any dotted pairs that are before the specified time

101



• • 
~~~~ •• •~~ •• •• • ---•.• — --- -— -~ •-. _ •  •-• • •  •—. . -

and correcting any pairs that start before the specified time. It
is used to determine which , if any, of the original entries must be
removed .

Note that WATCH. 1 , 2, and 3 remove entries, entering in their
place the default A.list specified by the table, only as needed. This
is of some importance since otherwise other demon s might be fired
accidentally, wi th possible undesired side—effects.

WATCH. 1 cancels out the en try. In the case of MISSION, as its
model is specified in Table 1! , DIALOG. 1 is then called , asking the user
if the assignment should be reinstated with another pilot. Alter-
natively, a function could be called to make the selection of a
substitute pilot, according to some specified criterion. The change
can be made by modifying the model for MISSION in the scheduler ,
specifying a different CALL—FUNCTION.

Table 9 gives a short exercise that illustrates the operation
of some of these functions . The initial state of the scroll table is
shown first ; e.g., ABLE is sick indefinitely, and BAKE R has been
assigned to a mission. Data is then entered that BAKE R is sick from
the present time to 8:30. The demon is fired by this entry. WATCH . 1
first cancels out this ass ignment, including the rest period follow-
ing it. It then calls DIALOG. 1 which issues an alert message and
reports that CHARLE S, DAVIS and ELLIS are available. The user
chooses DAVIS, which becomes the value that DIALOG. 1 returns.
WATCH.1 then reinstates the assignment with DAVIS as the pilot.

Table 9

A SAMPLE SCENARIO ILLUSTRATING
DEMON BEHA VIOR

9A
INITIA L CONDITION

(PRINT .PROP ‘PILOTS)

Table: PILOTS
Property: STATE-NAME (AVAIL replaced by ‘.)

Name\Time 00:00 06:30 12:00 18:00

ABLE I SICK SICK SICK SICK
BAKER 1 * ASG ASG. RET *
CHA R LES i * * * *
DA VIS I ~ * 0 *
ELLIS I * * * *

102

r~
~~~~~~~~~~~~~~~~~ - - - -• • • . • •~~~ •• • - - • -~~~~ •-~

• •
~~~

-•-w • ••——- • - • •. •

9B
• DATA ENTRY

(ENTER .TYPE ‘PILOTS ‘BAKER 0 500 ‘SICK NIL ‘32]

ALERT

0COHFLICT*

MISSION with ID Ml in conflict with entry of ~tate SICK.
The available rows are: CHA R LES, DA VIS , ELLIS.
Which row should be used? (Name or] to cancel.) DAVIS
OK

9C
FINAL. CONDI 1’ON

(PRINT. PROP ‘PILOTS]

Table: PILOTS
Property: STATE-NAME (AVAIL replaced by *~)

Name\Time 00:00 06:30 08:30 12:00 18:00

ABLE SICK SICK SICK SICK SICK
BAKE R I SICK SICK * * *
CHARLES * 0 * * *
DAVIS ASG A& ASG.RET *
ELLIS * * * * *

The functions described in this section are defined as
follows:

C WATCH. 1
[LAMBDA (OLD.ALIST NEW.A LI ST ARG.L.IST)

(PROG (TABLE NAME ENTRY.TYPE I .TIM E E.TIME CLASS.LABEL CLASS
CALL.FN NEW.NAME)

(SETQ TABLE (CAAR ARG.LIST))
(SETQ NAME (2ND (CAR ARG.LIST)))
(SETQ ENTRY.TYPE (3RD ARG.LIST))
(SETQ I.TIME (A.GETP OLD.ALIST (QUOTE START)))
ECOND

((LESSP I .TIME (GETP TABLE (QUOTE START)))
(SETQ I.TIME (GETP TABLE (QUOTE START]

• 103

—-—-if--— — nr ~~ n. •

[COND
((SETQ E.TIME (A .GETP OLD.ALIST (QUOTE END)))

(COND
((LESS? E.TIME I.TIME)

(RETURN NIL]
(T (SETQ E.TIM E (QUOTE INDEF]

(COND
([SETQ CLASS.LABEL (GET.R.MODE L .PROP TABLE

(LIST ENTRY.TYPE
(QUOTE CLASS—LABE L]
(QUOTE CALL—FUNCT ION]

(STRIP.ENTRY. 1 TABLE NAME I.TIME E.TIME ENTRY.TYPE ARG.LIST)
(COND

((SETQ ID (1$TH ARG.LIST))
(REM.INSTANCE TABLE ENTRY.TYPE ID)))

[COND
([SETQ CALL.FN (GET.R.MODEL.PROP TABLE (LIST ENTRY.TYPE

(QUOTE E-LIST)
(QUOTE

WATCH—DEMO N)
(QUOTE
CALL—FUNCTION]

(SETQ NEW .NA 14E (APPLY 0 CALL .FN TkBLE NAM E OLD.ALIST
NEW .ALIST ENTRY.TYPE ID)))

• (T (MAPPRIN Q (ENTRY.TYPE “ for “ NAME “ in “ TABLE
“ cancelled because of conflict.”
TERPRI))

(CON D
(ID (MAPPRINQ (“ID of entry was “ ID

“. Entry was from “

I.TIME “ to “ E.TIM E

• (T (MAPPR IN Q (“Entry was from “ I .TIME “ to “ E.TIME
ft .”]

(RETURN (CHARACTER 127]
(COND

(NEW .NAM E (ENTER .TYPE TABLE NEW .NAME I.TIME E.TIM E
ENTRY.TYPE ID CLASS T))

CT (PRIN1 “Entry cancelled.”)))
(RETURN (CHARACTER 127])

(WATCH.2
(LAMBDA (OLD.AL.IST NEW.ALIST ARG.LIST)

(FROG (TABLE NAME INIT LET ENTRY.TYPE ID END TIME.2 CLASS E.TIME)
(SETQ TABLE (CAAR ARG.LIST))
(SETQ NAM E (2ND (CAR ARG.LIST)))
(SETQ L.ST (AUTO.~~LL.DEMON ARG.L.IST))
(SETQ ENTRY.TYPE (CAR LET))

104

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



(COND
((SETQ ID (2ND LST))
(REM.INSTANCE TABLE ENTRY.TYPE ID)))

(SETQ INIT (3RD LET))
(SETQ END (~4TH LET))
(SETQ CLASS (5TH LET))
(COND
((LESS? INIT (GET? TABLE (QUOTE START)))

• (SETQ INIT (GETP TABLE (QUOTE START]
• 

. (COND
((NOT (NUMBERP END))
(SETQ TIME.2 NIL))

( (LESSP INIT END)
(SETQ TIME.2 (IDIFFERENC E END INIT)))

CT (RETURN N I L ) ) )
(SETQ E.TIME (CHECK.ENTRY.2 TABLE NAM E INIT END

(GET. R.MODEL. PROP TABLE
(LIST ENTRY.TYPE

(QUOTE LEVEL )))
T ) )

[COND
((AND (NUMBERP E.TIME)

(LESS? E.TIME END))
(TABLE.SETA .TEST TABLE NAME E.TIME END

(GET.R.MODEL. PROP TABLE
(LIST ENTRY.TYPE

• (QUOTE STATE—NAME )))
(GETP TABLE (QUOTE DEFAULT.LIST]

(ENTER .TYPE TABLE NAM E INIT TIME.2 ENTRY.TYPE ID CLASS T T])

C WATCH. 3• [LAMBDA (OLD.ALIST NEW.AL.IST ARG.LIST)
(FROG (TABLE NAME LET ENTRY.TYPE ID INIT DURATION CLASS OLD.LAST

NEW. LAST )
• (SETQ TABLE (CAAR ARG.LIST))

(SETQ NAME (2ND (CAR ARG.LIST)))
(SETQ LST (AUTO.KILL.DEMON.1 ARG.LIST))
(SETQ ENTRY.TYPE (CAR LST))
(COND

( (SETQ ID (2ND LST))
(REM.INSTANCE TABLE ENTRY.TYPE ID)))

(SETQ INIT (3RD LET))
• (SETQ DURATION (1~TH LET))

(SETQ CLASS (5TH LET))
(SETQ DURATION (CORRECT.DURATION (GET? TABLE (QUOTE START))

DURATION
• (3RD (CAR ARG.LIST]
• (COND
• ( (LESSP INIT (GETP TABLE (QUOTE START )))

(SETQ INIT (GETP TABLE (QUOTE START]

• 105

~~~~~~~~~~~~~~~~~~~ “-~~~~~ — -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~~~~~~~ -~~~~~~~~~~~-


(ENTER. TYPE TABLE NAME INIT DURATION ENTRY. TYPE ID CLASS T T)
(SETQ OL.D.L.AST (LAST.ENTRY (3RD (CAR ARG.LIST]

• (SETQ NEW.LAST (L.AST .ENTRY (CHECK.ENTRY.3 TABLE NAME INIT
• DURATION
• (GET.R.MODEL. PROP

TABLE
• (LIST ENTRY.TYPE

(QUOTE LEVEL)))
• T)))

(COND
((NOT (NUMBERP NEW.LAST)))
((OR (NOT (NUMBERP OLD.LAST))

(LESSP NEW. LAST OLD. LAST))
• (TABLE .SETA.TEST.LST TABLE NAME (CORRECT.LIST

= (NEXTHIGHER TABLE NEW .LAST)
(3RD (CAR ARG .LIST)))

(GET.R.MODEL. PROP TABLE
(LIST ENTRY.TYPE

(QUOTE
STATE—NAME)))

(GET? TABLE (QUOTE DEFAULT. LIST])

(CORRECT. DURATION
(LAMBDA (START DURATION LET.1)

(PROG (NIL)
(MAPC LET.1 (FUNCTION (LAMBDA (X)

(COND
((LESS? (CAR x)

START)
(COND

((OR (NOT (NUMBERP (CDR X)))
(GREATER? (CDR X)

START))
(SETQ DURATION (IPLUS DURATION (CAR X)

(IMINUS START]
CT (SETQ DURATION (IPLUS DURATION (CAR X)

(IMINUS (CDR X]
(RETURN DURATION])

106

-~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

(CORRECT. LIST
[LAMB DA (TIME LET)

• (PROG (NEW .LIST)
[MAPC LET (FUNCTION (LAMBDA (X)

(COND
• ((OR (GREATERP (CAR X)

TIME)
(EQP (CAR X)

TIME))
(SETQ NEW .LIST (CONS X NEW.LIST)))

((NOT (NUMBERP (CDR X)))
(SETQ NEW.LIST (CONS (CONS TIME (CDR X))

NEW. LIST)))
• ((GREATERP (CDR X)

TIME)
(SETQ NEW.L.IST (CONS (CONS TIME (CDR X))

NEW.LISTJ
(RETURN NEW.LIST])

(DIALOG. 1
(LAMBDA (TABLE NAME OLD. ALIST NEW .ALIST ENTRY.TYPE ID)

(PROG (NAMELIST X)
[MAPPRINQ ((TAB 20)

““ALERT””
(RPT Q 2 (TERPRI))

• (TAB 20)
“‘CONFLICT’”
(RPT Q 2 (TERPRI]

• [CON D
(ID (MAPPRIN Q (ENTRY.TYPE “ wi th ID “ ID

“ in conflict with entry of state “

(A.GETP NEW.ALIST
(QUOTE STATE-NAME))

“ .“ TERPRI)))
(T (MAPPRIN Q (ENTRY.TYPE “ for “ NAME “ from “

(A. GETP OLD.ALIST (QUOTE START))
to

(A.GETP OLD.ALIST (QUOTE END))
“ in conflict with entry of state “

(A.~~TP NEW.ALIST(QUOTE STATE-NAME))
“.“ TERPRI]

(COND
((SETQ NAMELIST (CHECK.NAMES . 1 TABLE (A.GETP OLD. ALIST

(QUOTE START))
(A.GE TP OLD.ALIST (QUOTE END))
(A.~~TP OLD.ALIST (QUOTE LEVEL]

CT (PRIN 1 “No alternatives available.”)
(TERPRI)
(RETURN NIL)))

(MAPRINT NAMELIST T “The available rows are: “ “ .“ “, “)

107

XIII CONCLUSIONS

We have described the design of a scheduler in ACS.1 in con-
siderable detail, defining the relevent functions that are used in its

• basic implementation.

In this discussion, we have limited ourselves largely to those
features, and their implementations, that provide the basic capabil-
ities required of a scheduler. Other features can be added for con-
venience or to meet special requirements. Some of these features have,
in fact , been implemented , although they have not been included in
this report. The functions given provide a foundation on which
additional capabilities can be built as required. The functions
described implement a number of interesting technical features. Among
these are the following:

The use of a scroll table as the structure within which to
retain the information given to the system, or developed by
it , that may affect the future availability of the designated
type of resource.

The encoding of the models that collectively form a resource
model as a data structure that is entirely separate from the
functions that manipulate the data. The models, therefore,
are available for modification or extension, and such changes
can be made without requiring the manipulative functions to
be reprogrammed; and with only minimal knowledge of the sched-
uler ’s operations.

The recognition of the property that we call “retroac tive
consistency” as that required to maintain the self—consistency
of the data held by the scheduler.

The use of demons to enforce retroactive consistency.

The specification of the format of a demon so as to allow a
simple implementation of the self—destruct property of a
demon. The self-destruct property is recognized as being of
major importance in the application enivironv~ent being studied.
It has been used previously, but not identified as such. It~
explicit recognition has lead to a possibly unique formulation
of the d emon structure.

109

While there are a large number of ways in which this work can
be extended , two extensions seem to be of particular importance:

Context Capability. The ability to hold and use data that
• is true only in some possible conting ency. Conflicting data

can then be admitted , providing the alternatives can be identi-
fied as applying under different conditions. Contingency plans
are an example. The work described here has already been ex-
tended to include the basic capabilities required for this type
of operation , but it has not yet been integrated into the com-
plete design of a scheduler .

Continuous Operations. The ability to handle conditions where
the desired state requires a continuing condition. The con-
tinuity of the condition may require an indefinite sequence
of assignments to different resources of a given type. This

• may impose a need for relationships that link entries in
different rows of the scroll table at different times . There
is no apparent reason why this should not be possible, but the
means for accomplishing it remain to be developed . No effort
has been mad e in this direction as yet , but it is recognized
as desirable to increase the scope of the system concept used
in ACS.1.

110

-

~~~~~~

- - -

~~~
--

_ _ _ _ _ _ _ _ _ _ _ _ A

