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1. Introduction

The collocation method based on trigonometric interpolation is
called the Fourier (or pseudo-spactral) method. It has been used
extensively for the computation of approximate solutions of partial
differential equations with periodic solutions. A satisfactory
theoretical justification for equations with variable coefficients
has only existed for equations written in skew symmetric form [3, €, T].
Recent work of Majda, McDonough and Osher [8] treats hyperbolic systems
with C° coefficients.

In this paper we develop a stability theory for linear hyperbolic
and parabolic partial differential equations with variable coefficients.
The generalization of these results to nonlinear equations follows if the
problem has a sufficiently smooth solution. We restrict our discussion
to problems in one space dimension. The extension to problems in more
space dimensions is lmmediate. Error estimates can easily be derived
using our results following those in Kreiss and Oliger [7] and Fornberg

(31.
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D Trigonometric Interpolation

In this section we collect some known results on trigonometric

interpolation (see [ 4, 9, 71). Let N be a natural number,

)=1  and define grid points x, = Vh, V = 0,1,2,...,2N.

h = (2N+1 4

b
consider a one-periodic function v , vix) = vix+l), whose values
¥, = v(xv\ are known at the gridpoints x,. We define a discrete

scalar product and norm by

2N

=% T, | :;}
(C.l) kuxx\,v(x)) = uix, vix Jh , hu‘ = Kuaxl 5

h v=0 v v h h
The trigonometric polynomial w(x' of degree N which interpolates
vix) in the points X, Laesh,
(2.2) wix,) = vix,) V = 0,1,2,...,2N 3
is uniquely given by
I: ’“.Tr‘/
(2.3) wix) = £ a(W)e” A
W==N

where
. / y _2mi
(2.4 ) alw) = (vix),e” mx)h .

"hies follows from the orthonormality of the exponential function,

A ]m-n| < 2N

(e2W1nx’e2v1mx)h .

i if m=n .




[ ————

The usefulness of trigonometric interpolation stems from the fact
that the smoothness properties of the function are preserved and that
the convergence is rapid for smooth functions. Let the I?-scalar
product and norm be defined by

.

AL
(2.6) (w,v) = uvax , Hu”e = (u,u)
0

We will need the following well known theorem.

Theorem 2.1. If wl,w2 interpolate vy and Vs respectively, then

( = \ = |
(2.7) \wl’w?)h (W) 5w \Vl’vé)h and
2 S 2
(2.8) e, GIE = v, ®)E = 2 |a(w)]
1 LA h
w==N

It will be convenient to work with the following class of functions.

Definition 2.1. P(a,M) is the class of all functions v(x) which

can be developed in a Fourier series

@ .
(2.9) vix) = Z v(w)egniwx
W==o
with
=]
(2.10) 2o emol® + 119 @) |? < M
)= =

Pla,M) 1is contained in the Sobelev space Hg.

We now need the relationship between the Fourier coefficients G(w‘

ST |




of a given function vix) and the coefficients al®) of its
trigonometric interpolant w(x). This is contained in the following

well known result [ 4, 7].
‘heorem 2.2. Let v be given by (2.9) and w given by (2.3) and
(2.4) then

(2.11) aw) . viesjen+l)) , o] <N .

SR L

1l

We can now investigate the rate of convergence of the interpolating

polynomial to a function wv(x) ¢ P(g,M).
Theorem 2.3. Let vix) Plo,M) with ¢t > 1/2. Then
@ 1 iC
b e () e 1 A 1 Ll B X
<12 VAR -wix ) i< M 5 T S 4 : = s
(om )< (M) =1 (2j-1)°~ (emy )™
@®
2 L
where 2N ’—"—Y' .
' J=1 (23-1)=C
Proof. We write (2.9) as v(x) : v,,.\x‘ + vI,x):‘ where
e N a
N : .
\ A 2miwx \ T Ay PTIMX
v ix) = 7 viwe y volx) = L vw)e :
: w==N ‘ o> |>n
et w,.\x) and wR(x.’ be the trigonometric interpolants of VN\x\

and v, x), respectively. They are given by

i

N s i) o174
a(N)\w)e?Trum, a(N gk (vN\x\,emex\

h

wN\x) =
w=-N

w1




QWLLX‘

N :
wR\x) = 2 a(R)@D)eevubx 3 a(R)vD) = (kax),e .

The trigonometric interpolant of v(x) is
wix) = wN(x) + wR(x\.

wN(x) interpolates vN(x) in the 2N+l points of (2.2), and from

(2.3) we have

wN(x\ = VN(x)

Therefore,

&

Wv\x)-W\x)WQ = “vR(x\-w KX\”E = HVR‘\X)H2 + HWR(x

R

since vR\x3 is orthogonal to kax3. By (2.10) we can write

al
‘2mu|a+l

v(w) =

where

+o
T ]? < f

W==0

Therefore,

e @If = )l e 7§ |J—taeF@f <
. lw|] > N o] > n | lomo|%+1

By Theorem 2.2

6




N N

\ e ) 5‘ 2 m, o &
W:‘\X‘“ Y \” Ia\ \(031 = >_‘ ‘ Z V\(JLH'J \2N+l\ ,]I
g w==-N w=-N j=-o
J#0
N ® . y \ 2
Sy Y viw+j BN+ ) | &
w=-N | j== |om(®+; \:_ti\.:'l\\lo"“ll
J#0
N © ©
<< 2.; .\_‘ 1 = >74 1‘\7\
i - o i A & = A
ot | gm (lom(or) ) [%+2)2 jome
jfo j%(\
ﬂn2 ) ~
M % ( =Y
. Y (83=1)
m)ee 41
and the theorem follows.

Remark. Observe that the contributions to the error by

are of the same order if o > 1/2. Wi is often called
N

error. Thus, we see that if v 1is at all smooth, then

rlays no important role.

'he following result follows immediately from the last

Corollary 2.1. Let wv(x) ¢ P(a,M) with o> j + 1/2,

number. Then

~ % ) d'J (5 ML’]- j
el —_— y(x) - = w(x)] ¢ —Ed_ |
d-xl] d-x'} T quv )(Y o

-~

w+j (2N+1) )¢

Vi and wR
the aliasing

aliasing

theorem.

J a natural
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i Stability of Fourier Methods

Let vix) be a one-periodic function whose values, vxxv\ are
e

known at the gridpoints X, = vh, h = (2N+1

mate dv(xv)/dx we can compute the trigonometric interpolant (2.3) of
v(x), differentiate it, and use its derivative
N 2Tiwx

(3.1) dw(xv)/d.x= 2 (omiwa(we
W= -N

A%

as an approximation of dv\va/dx. The computation of (3.1) in all

of the gridpoints X, v = 0,1,2,...,2N can be done using two discrete
Yourier transforms (DFT) and 2N complex multiplications. Also, if
we know that vi(x) ¢ P(a,M) with o > 3/2, then Corollary 2.1 gives

us the error estimate

C
M el

(o)L

dv/ax ~ aw/ax!| < :
Higher derivatives can be computed analogously.

The above process is linear so it can also be represented using

matrix notation. Let

{ / ni
v = \V\xoﬁ,...,v\xeN))’ s ¥ = \dw(xo)/dx,...,dW\xEN\/dx)’
denote the (PN+1) dimensional vector formed of the grid values of

v(x) and dw/dx, respectively. Then there is a (2N+1) x (2N+1)

)
& if ¥ is a vector then y’ denotes its transpose and X* 148

conjugate transpose. The same notation will be used for matrices.

If we want to approxi-

R, f:l
wdn



matrix

»N

Formulas for the elements of C

[2;5])

such that

r<
(€5}
|<

S have been computed by B. Fornberg

‘e has also shown that S can be considered as the limit

of higher and higher order difference approximations.

1 5
l.C

he scalar product and norm of y and v are defined by (2.1),

3
2N
B ‘ 02
(u,v) L oulx v on , = (wu), .
—"="h ; Vv v = —<—"1
v=0
We need several properties of the operator S. In [6] we
proved the following lemma.
Lemma 3.1. S 1is skew Hermitian, S Lo 21N, the eigenvalues of S
T e R e i
are A, = 2mriw, and the corresponding eigenfunctions are
2mich 2miueNh \ , o =
€y = Jd,e g g )"y @ = 0,+l,0..,tN .
We next consider the approximation of b(x) du/dx where b(x)
is 2 smooth one-periodic function. The operator bix) d/dx is essentially
skew Hermitean because we can write
3.4 ) b(x) du/dx = Qu + Ru
where




Qu = %abdu/dx + d\bu)/dx) , Ru= - % db/dx u . |
i

Q 1is skew Hermitian and R is bounded. There are many problems where

oo
1

0. For example, we can write udu/dx in the form

udu/dx = T(udu/ax + B Jax)

llow consider the partial differential equation

u

+
193

then

\ \ \ = \ %
(wu), = (wu) + (u,u) = (w,au) + (Qu,u) + (u,Ru) + (Ru,u) = -(u,udb/dx

and we have an energy estimate. If we approximate the above problem by

where
i
bix ) [ R
o]
0 bix, )
b
ke

Then we obtain the

= b(x)du/dox = Gu + Ru , = du/dt

dv
S _l_‘~,, afy) !‘_ =
at = 2\b\) P ob«\_/. ) bXY‘
i b (x ) i
e ws O D = et aorae L O
r B go(x, )
QO ses U 2 0 i 0 0
5 b = ) dx '
o e o X
0 b\ng) : , db (x,,
i L SR e ——a;———_

same energy estimate because

(Bs + o6) = - (Bs + sB)*

10
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is skew Hermitian and therefore

(v,5_v)

jl(v v = =
Ghoo e -’ "x—"h

Me above procedure can be generalized considerably. Consider the

parabolic system

5 = ) + =
Bt uy \AuX " Bux e (Bap IS u, bu/bx
where u denotes a vector function with n components, A, B, and C

are n X n matrices, A and B are Hermitian, A is positive definite, and

5

C and OB/Ox are uniformly bounded. We can rewrite this system in the form

3t
(3.6) = Ml = = r ) ) o+ C
el u, \Aux,X + E\B u, (B u < *tC

where

1T =
C, =C - 5 OB/ox .

We then obtain the energy estimate

(u,u)t = -2(u,A ux) + 2 Real \u,clu\
which depends solely on the property that 9/dx is skew Hermitian.

Thus, we obtain a corresponding estimate if we replace o/bx by S

and approximate (3.6) by

¢

[op})]
o=
0
I<
+
=

~a ~

§+8SB)v+Cyv

T

dv
’7_") S
Juf at \

L




The estimate is

d 2 & ~5

& vl < (G + Ew),
where we extend our earlier definitions of the discrete norm and inner pro-
duct in the obvious way. Here v 1is the vector with vector components

V(XV) and A, B, C and S are block diagonal matrices with blocks

l’
A(xv), B(xv), Cl(xv), and S, respectively.

The system of ordinary differential equations (3.7) can be solved
using an appropriate difference method for ordinary differential
equations. However, the approximation (3.7) requires about twice as
much work as the simpler approximation

dv ~~~ ~

(3.8) — = SASy + BSv + Cv

of (3.5). Since numerical experience has shown that approximations

of the form (3.8) can be unstable, it is desirable to find ways of
stabilizing them which are cheaper to use than reverting to (3.7). We

can achieve this by adding appropriate dissipative or projective

It is easier to do this if we work within the space T of

1

i

1

i

operators. We will now develop this approach in detail. j
J

N |

Lrigcnometric polynomials

Nv
(3.9) pix) = X
w=-N

I’; (@ )82'"1(1))(

A vector function v(x) or a matrix function B(x) will belong to
if all their components do. There is a one-to-one correspondence

‘N

between a polynomial (3.9) and its values

12




v = \V(xo),...,VKXEN\\'

Thus, there is a linear operator P such that

Pv = v(x) , i.e., V\xv\ Bl TS G AR N

(3.10) PSv = dv/dx .

Let Bix), vix) ¢ T... Then we define w(x) = B(x)*v(x) to be the

convolution
N A 2TiVvx
\3.11) wix) = Bx)svix) = 2 w(v)e
v==N

with ]
2 |
+N %
2 B()(Wlv-u) * v(v-2N-1-y)) for v 3> 0 |
u=-N ;

(3.12) w(v) = ﬁ

N

L B(w)(v(v-u) + v(veen+l-y)) for V<O
=-N
0y

where we have used the convention that v() = B) = 0 if |o| > N.
Bix'v(x) 1is a trigonometric polynomial of order 2N. By theorem 2.2

its interpolant is given by B(x)*v(x). Therefore,

(3.13) wix) = P(ﬁg) = B(x)*v(x) .




Lemma 3.2. Let B(x) ¢ T, be a matrix and v,w € T be vector functicns.
Then
[(v,Bev)| < max [B(x)| -+ [l fivll .
0<x<1

and, if B is Hermitian,
(w,B¥v) = (Bxw,v) .
Proof. By theorem 2.1 and (3.13)

(w,B¥v) = (w,B*v)h = \E,ﬁv) ¢

If B is Hermitian, then

(w,By), = (Bu,v), = (Brw,v), = (Bew,v) .

Also,

(w0l < (Bl el = o180 Il

and the lemma is proved.

We can now write equation (3.8) as an evolution equation in TN

via the isomorphiam P.

\ -
(3.14 Vi kAN*vx)x + BN*VX + CN*V

where AN’BN’CN and v are the trigonometric polynomials in TN
which interpolate the discrete values A(xv), B(xv), C(xv\, v(xv),

respectively. The term w::BN*vx can be written as

w = BN*Vx = Qv + Rv

1k




where

Qv F\ﬁwyvx
(3.15)

nv

It follows from lemma 3.2 that

the operator

)

Q 1is skew Hermitian.

Straightforward application of (2.12 gives us
L 2miwx
Rv =Rjv+R,v, Rv 1‘3\%‘\'6" el = 1By
5 o W=<N 8
where ‘
N‘ Je N
2 wB (W) (viw-,) + v(w-2N-1-4)) for
w==N ’
(3.16) r (w)=—ﬂ'i<
1
el
) By () (Vw=y) + v(w+al+1-,)) for o < ¢
u=-N
I
- & Blu)viw-2N-1-y)  for @ > 0
(3.17) rg'\fﬂ) = i (2N+1)
+1N
HI.\“WW@I{*I-J‘, for o < (
u=-N
By (3.12)
(3+18) R.v = - s dB./dx * v .
1 5 dBy
Therefore, by lemma .2, the operator R is bounded if B € P(a,M) with
P ) 1% l ’

@ > 3/2, certainly if B is twice continuously differentiable (see [1])
In general we can not expect that (v,R,v) is bounded independent

of N. For example, if B(x) = T(1 + % sin 2mx) then




&

o

=
1

B (0) =1, B (1) = -8 \-l'=-,_i:I, By@ =0 if ol 0,1

E (2N+1)¥(-N) , T,(-N) = ’Er (eN+1)v(W) , £,@) = 0 if fof #u .

Therefore, by Parseval's relation,

YV,RBV) - g (2N+1) Real{v(N)v(-N)} .

Now assume that there are constants M and £ > 1, independent of N, such

that

(3.19) 1B, (W <

for pw#0

Then we obtain

N N
(v,R.v)| < wren+d) (| & v@) X2 ﬁN(u)v(w-QN-l-uH
; W=0 H;‘N

-1 N
+ | L ) § fa,\,\J)G(aszJrl-u)l,\
w=-N p==N -
vit) =0 for |7| >N. By (3.19)
- g 2
L win) L B,(u\vkw-QN-l-u)$ <
N =
u==N
N 1 - fets -
y ‘ A L IVKw)||V\m-2N-l-u)| <
u==N |2m{PF w=0
ufO
4 1 N ~ N
h : 3 L |v) ] |V(am2N=1-p)| <

o
u==N |27m IB W=N+,+1

16




M -1 I =
: 3 ,\ o
Tl 2, lv@)|© + |v(-0)|%) <

M N N

N A

© w=-N u=N-|o|+1 (27, )F
Ww£0

'here is a constant Kl such that

N
y i ity

11 (em )P T (N |of+1)Pt

u=N-|w

K = (1/27)7(8/(2-1)) will do. Furthermore, the same estimate holds for

the second sum on the right side of (3.20). We obtain

N

(5.2F) | (v,Bv)| < MK, - X r v e
2 I el w
where
_ __leN+1)m e e i 1
by o e if w#o0, Yo =0

(N o] +1)P~1

Consider the system (3.14). We have, using (3.15) and (3.10),

(V’V)t = 2 Real {(v,(AN*vx)x) + (v,Qv) + (v,Rv) + \v,CN*V‘]

~ \
«22)

1 )
-Q(VX,AN*VX) + 2 Real (v,(CN = bBN/cx) ¥ v) + 2 Real \V,Ryv




A 1is positive definite by assumption, i.e., there is a constant

> 0 such that A > ¢gI. Therefore,
(v #e.) = b, Av. ). > ollv H2
x’ A-N ’ 2 Q x !
By Parseval's relation and (3.21)

=9 o)
EkVX,AN*vx) + 2 Real (V,REV) <

(3.23)
N
2 B (=o(2mw)+ )| v(w)P< 2av]f, @ = S )+ ) ).
T {alamls sk, |v(w)|¥ < 20]v][® 0<Tﬁ5N( o(2nw)™+ MKy

Since ¢ > 0, and if B > 2, then « 1is bounded independent of Ii, and

\3.22) and lemma 3.2 give us the energy estimate

(v,v)t < 2 Real \v,kCN - bB /ox) * v) +-2a”v”2

< 2(max |CN - % bBN/bx‘ + a)”vug
X

If B> 3 then a simple calculation gives us

2
(oN+1)T < 2r(a + 1%) |w|

= (n-lof+1)? e

Therefore, if 27mo > M1K1(N ) then o in (3.27) is nonpositive and we
obtain the following theorem from (3.22).
Theorem 3.1. If B> 3 and 2mc > (M1K1(N'1+N'2), then the solutions of

(3.14 ) satisfy the estimate

18




(3.24) (v,v‘t < 2 Real \v,\LN -z bBN/bx\ * v)
2
i
This is entirely satisfactory since it is essentially the same as the . :
corresponding estimate for the differential equation. Furthermore, N can
= )
alwvays be chosen large enough so that 2ﬁot>M1Ki(N l*-N L), at least in principle.
For hyperbolic equations, A = 0, the situation is not as good.
In this case we have to control the smoothness of v. Experience has
shown that higher frequency modes can grow if this is not done.
Llet m> 1 bea natural number,
N s
v= Lo wlejer e
W= =N
and define Vl’ V? by ]
z *r) = L 2 2Tiwx : )
\5+25 Wy = L viw)e : V, =V =V :
1 2 1
‘L ' _<_ Nl

where Nl:(l—lﬁﬂh The smoothing operator H = H(Jj,m,D) mapping

T, into T_. 1is defined by

N N
N X 2miw |
(3.26) w=Hr = 2 ww)e T 4X 'I
w=-N
where
/G(w) it |o] £ (1 - rln)N !
. v, !
wiw) J V@) ir o] > 1-3n and V)| < —2— |
i (er|w|)d |
Dllv. |l 5w
\ 1 - YSu) otherwise .
erlw|)d |F@)| i

iy




J 1is a natural number and D 1is a constant. Thus, only the higher

frequencies are modified, i.e.,

Hv, = v vl < (vl

1L

2 i
We want to show that H is a very mild form of smoothing.

Lemma 3.3. Let Y > 0 be a constant and j a natural number. Consider

the class of functions with

7 j je 21112
(3.27) plu/ax?l© < ¥ Il .
If
(3.28) m-1),2J 2
(3.28) (o ( ~ e sp Y and Dz'\/? y
then
H o=,

Proof. Let wu ¢ TN and write it in the form

2 A iy m-1
u =y + u, where ul(a)) = 0 for lw] > & N

(3.27) implies

(=L 2P, 1P < foduy/oxtP < ¥R (g P+ Iha ).

By (3.28)

20




o ¥ < oy P

Therefore, for w # O,
& 2 =23 .12 2 -2
(31" < v (emleD) ™l 5 2v°(2nlw] ), |

and the lemma follows.

Instead of (3.14) we now consider the approximation
(3.29) o = * He +C._ % v
-t Bt Oy ’

To see that (3.29) has a unique solution we need.

Lemma 5.4. H is a Lipschitz continuous operator from T.. into T..

N N
Proof. Let v(l) € TN and w(l) = Hv(l), i=1,2. Note that
Iﬁ(l (w)] < [G(l)(m)] and arg ﬁ(l)(w) = arg G<1)(w), 1 = 1,2, both

follow from the definition of H. Consider the quantities

) « 5300

« We consider three cases. Let

J, = {L)HLLI <N, ﬁ(z)(no) = \’}(E)(a)), £ =1,2}

{wllwl <N, G(z)(w) f \;(z)(m), L

i
[
.
n
—

oy
n
I

<y
N
|

- {x)llml <N, o ¢ Jl U Jg}

From the definition of H it follows that w € J, if |w] <N, = N(1-1/m).

il
1f wedy, then [0) - 5®Nw)] = 1§00) - ¥ w)|. 1=
w € J?’ then
a(0) = F V@)= 5)w) | = () vy —m—(—l‘;(l) ) - (o)) el
Y ) 1 )
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where K(w) = D/( 2n|w|)3. We assume, without loss of generality,

that llv(l I > ||v(2) |. Using the triangle inequality we obtain

(1)
) IK(u:)llv(l)H __(jﬂw) o)l (2)“ —VTT%)—ll 3
W) 2(2),
e 2 - K™ i

We can bound the first term of our last expression by
k) - PN < @)t - W2l < o)) - (3]

since the two complex numbers have equal arguments. We can bound the

6300y = 8]

second term by utilizing the triangle inequality
i6 10
and the fact that the distance between two points rle and r.e ©

B S Finally, we obtain

is a non-decreasing function of rl 12 Tor

(3.30)  alw) < K@)V - B4 130 0) - $2)w))

if o € Jg. Let w € J3 and assume without loss of generality that
{0w) 4 iMw) ana #w) = i Bh). 12 KB > k@),

then

» 2 ) .
a(e) < [8() = k)W) Loyl + (k@) ) Loy - 7))

e Iv{ J

~(1) a(2 (1) _3¢2) (2), &2
< 1 (0) - 20| + [k(w)Iv |||7;W|'K(<D)”V1 I T-@T'
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99 @) - 9@ + k) I - IR

IA

< [#0) - 9] + k)W) - B
157 l\'}(c)(w)l < K(u))Hv:(Ll)H, then it easily follows that
d(w) < IQ(l)(w) - 9(2)(w)]. Thus, 3F  BiE J§’ d(w) satisfies the

inequality (3.30). Now we estimate

S WL
W) BN - 5 P

w==N

< 5 058l e

3 weJl

o (o @ 1 ) ) - 5B ) )P

wCJEUJS

< (2 + ul) - N - BP

which yields the desired result.

From Lemma 3.4 it follows that the operator on the right hand side

of (3.29) is Lipschitz continuous and it then follows that (3.29),
with initial data, has a unique solution v(t). We will now derive
estimates for the norm of this solution.

We have

2
at||v|| = 2 Real (v,vt) = 2 Real (V,BN * Hv, +Cy * v) .

The term (V’CN % v) is easily bounded as before using Lemma 3.2 if

c ¢ P(a,M) with a>1/2, or is continuously differentiable.
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we write

(vyBy % Br) = (vBy * (v),) + (v % ((v), - Bv,)

splitting v = vy il Vo

alter the first Nl Fourier components of the vector it operates on.

We then further split By * (

and utilizing the fact that H does not

vl)X in terms of Q and R =R, + R,

as before to obtain
2 Real (v,By * Hv,) = 2 Real {(v,Ryv;) + (V,Rovy) + (v,By * ((vy), - Hv )}

where we have used the fact the Q 1s skew-hermitian. Recall that
Ryv, - - 3 4B /dx % v, vhich is bounded as before if B € P(qM)
with Q> 5/2. We have

e : & S i
(3.3 o, liwlI” = 2 Real (v,CN * V-5 dBN/dx * vl) + 2 Real (V,Rgvl) +
2 Real (v, By * ((vl)x - Hvx)

the first term is bounded and converges to the proper estimate for the
differential equation. We will now construct bounds for the last two

terms. We assume that BN satisfies (3.19) and obtain, corresponding

0 (5.20)
N N .
[(v,Rov))| < m(2v+1)(| T 9(w) T B(u)vq(ew-oN-1-u)]
\1‘,—0 :-N
(3.32) :
-l A N ~ A
+] T v(w) T Bylu)vy(eraN+l-p)|) .
w==N u==N

2k




Utilizing (5.19) we obtain

N N
I p2 ‘?((0) T %](p)\?l(w—QN-l-u)l < “
w=0 p==N

M w=2N=-1+Ny i
M T V(] oz Tlem]| TV (e-eN-lp) | <
w=1 u==N

N o w=2N-1+N
z )] T |vle-aN-1-p)| <
w=1 pu==N

m )5

M (5w

N
M ()PP | Z ()] <

() Ny vl

and the second term on the right hand side of (3.32) also satisfies the

same estimate. We obtain

2ty (2874 ) (o) v [ v

I(V}R2V1)| 1

IN

-B+2“

(3/(2n)> ™ N B2 v vl J

IA

We only have the term (v,BN * ((vl)X - Hvx) left to estimate. We

have, via lemma 3.2, that

(3:38) (v, By % ((vy), = v,)] < max |5l IVIICCvy ), - mv )l
X

From the definition of H we have

25




Theorem 3.2. Let J =2 > 2, then the solutions of (3.29) satisfy

| D[i(v, ), .
“(Vl)x = HV}:)L S 2 U r, —-—T
(2?')' I »Nl‘l l |
(5.35) 2 " |
= NS vl

B T

A
We can now collect our estimates (3.31), (3.33), (3.54) and (3.35)

to obtain

the estimate

non2 . / :
;'t:ivll < 2 Real (\r,CN * vV o= % dBN/d.x * vl) -+ .

(3.36)

(o o TS o

[(6/C2n " il 5 (n/(an )51 WY T ey I
X

If j =8> 2, then the estimate (3.35) converges to the corresponding

estimate for the differential equation as N » » .,

If the coefficients are smooth the estimate (3.35) is quite |
satisfactory for sufficiently large N. We have been able to obtain ‘
this estimate by introducing the smoothing operator H and by requiring !
that the coefficients C and B be smooth. A similar estimate can |
be obtained, with much less effort, if we were to alter the definition %
of H such that w(w) - O if |w] >N,, or w(w) = \‘;(m)/((r"—:[lu)l-NlL)J"l)
if  |w| > N, where [g], denotes the positive part of g. These are

both linear operators. However, the resulting methods are less accurate.

Convergence estimates can be constructed utilizing the estimates

of theorems 7.1 and 5.2 following those of Kreiss and Oliger | /] and
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Fornberg [3] and the approximation results of Bube (1].
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