ADAO46298

David R. Musser

CO% FILE coPY

AD Mo.—

UNIVERSITY OF SOUTHERN CALIFORNIA

ARPA ORDER NO. 2223

ISI/RR-77-62
October 1977

A Proof Rule for Functions

INFORMATION SCIENCES INSTITUTE

4676 Admivalty Way/ Marina del Rey/California 90291
(213)822-1511

DISTRIBUTION STATEMENT A

) Diztzibution Unlimited

Approved for public release;

—

‘ Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE B,

N1 _REPORT NUMBER 5 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
Jfl 1S1/RR-77-62 l
4. TITLE (and Subtitle) e TYYPE OF REPQRT 4 PERIOD COVERED
SR S P T ’v el
-] A Proof Rule for Functions, | 7 Resﬂearci:ﬁl-—:—J
' T . PERFORMING ORG, REPORT NUMBER
7.?}“0'({)“ o B o 9. EONi.Ac' Oi GRANi 3:.{0)
() P A oweosr o
9. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROCRAN ELEMENT PROJECT. TASK
o A . T e~—AREA & WORK UNIT NI
USC/Information Sciences Institute ~ k
4676 Admiralty Way _,.{': ARPA Orderen 2223 -

Marina del Rey, CA 90291 “Program Code 3D30 & 3P10

V1. CONTROLLING OFFICE NAME AND ADDRESS

y 12. REPORT QATE . —
Defense Advanced Research Projects Agency @ October 1977 |

e

i

1400 Wilson Blvd. 75 WUNBENOF PAGES
Arlington, VA 22209 10
T WONTTORING AGENCY NAWE & Aoon:ss(/ugum..x from Controlling Office) | 15. SECURITY CLASS. (of this report)
i m /ﬁ 35 J Unclassified
(Fri i
Y 8 [T SECEASHEICATION/ DOWNGRADING

6. DISTRIBUTION STATEMENT (of this Report)

This document approved for public release and sale; distribution unlimited.

-
~

. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. XEY WORDS (Continue on reverse side If necessary and identify by block number)

functions, program verification, proof rules

KOSTRACY (Continue on reverse slde If necescary and Identity by block number)

his report gives a rule of inference which permits a natural form of
reasoning about programs containing functions. The rule was obtained
by modifying the function rule of Clint and Hoare to include a premise
which requires consistency of preconditions and postconditions, and

a premise which requires deterministic computation. Examples of use
of the rule and versions tailored to the Pascal and Euclid

Janguages are also given

DD ,'on'7s 1473 eoimion oF 1 nov o8 MossoLETE Unclassified
S/N 0102-014- 6601
SECURITY CLASSIPICATION OF THIS PAGE en Deta tered)

ARPA ORDER NO. 2223

ISI/RR-77-62
October 1977

David R. Musser

e] A Proof Rule for Functions

INFORMATION SCIENCES INSTITUTE

4676 Admiralty Way/ Marina del Rey[Califormia 90291
UNIVERSITY OF SOUTHERN CALIFORNIA (213) 822-1511

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO. DANCI1S 72 C 0308. ARPA ORDER
NO. 2223 PROGRAM CODE NO. 3D30 AND 3P10.

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR'S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE
OFFICIAL OPINION OR POLICY OF ARPA, THE U.S. GOVERNMENT OR ANY OTHER PERSON OR AGENCY CONNECTED WITH THEM.

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE: DISTRIBUTION IS UNLIMITED.

Introduction

Clint and Hoare [2) gave a proof rule for functions (without side effects) which later was
shown by Ashcroft (1] to be unsound. The way of avoiding the unsoundness suggested in
(1] seems unattractive in that it requires “an unconventional interpretation for functional
notation," while other proof rules that have been proposed for functions are more complicated
(e.g., as in [7]) or require proofs of termination for functions. This paper suggests a simple
modification to Clint and Hoare’s proof rule--an additional “consistency premise”"--which makes
it sound without requiring proofs of termination. Although proving termination is in most
cases a worthy goal, one may wish to consider functions that fail to terminate because they
exit abnormally by a jump to an external label [2]). For such functions the present proof rule
will be especially useful. It also permits a simpler algorithm for generating verification
conditions than that described in [7]), and has been implemented by the author in a
verification condition generator at Information Sciences Institute.

The new proof rule, like the Clint and Hoare rule, allows (and requires) the result of the
computation performed by the body of a given function f to be specified as a mathematical
function! of the input values, using the name f as the name of the mathematical function also.
In order to make the proof rule applicable to programming languages in which nondeterministic
computations are expressible, the rule includes a premise requiring that the body of the
function deterministically computes its resuit value.

Following some simple examples of use of the new proof rule, we give versions of the rule
adapted to the Pascal [6]) and Euclid [9,11] languages, and conclude with a discussion of the
role in programming languages of tunction-like constructs which do have side effects.

Notation

Hoare’s notation P{S}R, where P and R are predicates and S is a statement in a programming
language, will be used to express the assertion that if P is true before the execution of S then
R is true after the execution of S. P{S}R is vacuously true if S fails to terminate. Rather than
considering this to be a different kind of assertion from an ordinary predicate, we will assume
P{S}R is defined as a predicate transformer; e.g., in terms of the predicate transformer wip
("weakest liberal precondition”) defined in [4), we have P{SJR = (P > wip(S,R)). Thus the
usual logical operators, including quantification, may be used in conjunction with these
assertions.

The notation

Py -

will be used to denote the predicate which is obtained by substituting y for all free
occurrences of x in P,

! Throughout this paper the term "function® will refer to a programming language concept and the term
“mathematical function® will refer to the function concept in ordinary mathematical -
exactly one element from one set with each element of another set.

BY
DISTRIBUTION/ £ VNI RBITTY CQNES)

I i CIALJ

|

| -

A PROOF RULE FOR FUNCTIONS Page 2
Thus, for example, P{x:=e]R & (P > Ry _,,).
The proof rule

A function is declared by the schema
function f(x) returns z; §

where f is the function name, S is the body of the function, z is a lst of formal parameters
including all of the free non-local variables appearing in S, and z is the return variable (which
is assigned to by one or more statements in S). It is assumed that S makes no assignment to
any of its parameters so that there is no possibility of side effects. Let P and R be predicates
(P will be referred to as a precondition and R as a postcondition for f; generally both P ard R
will depend on x and R will also depend on z). From

(1) [Consistency] Vz3z(P > R)
(2) [Determinism/] Vz3z1(P{S}z=21)
and

(3) [Property of S} Vz(P{S}R)

we may deduce the following implication:
(4) [Property of f] Vz(P > Rf(z)-u)'

This property (4) may be assumed in proving assertions about expressions containing calls of
the function f, including those occurring within S itself. If other properties of the function f
have been added to the proof system previously, then premise (1) should be replaced by

(1°) [Global consistency/ V23200 A (P > R))

where Q is the conjunction of all properties of f with all occurrences of f(x) replaced by z.
Discussion

This proof rule differs from the Clint and Hoare rule mainly in the addition ¢+ {1) (or (1°)) and
(2) as premises. The role of (1) and (1°) is to prevent the use of a postcondition that is so
strong that no mathematical function could exist satisfying (4). If each function has associated
with it a single precondition and single postcondition, as for example in the Euclid language,
then use of (1°) would be unnecessary. However, one may wish to state and prove properties
of a function incrementally, or by means of a collection of "axioms" about a whole set of
functions, as in the algebraic axioms method of specification of an abstract data type [5) In
this case (1°) should be used.

1 e b . B

TSP —

o A e

A PROOF RULE FOR FUNCTIONS Page 3

Premise (2) requires that the value of z computed by S is some mathematical function of x; i.e.,
S computes 2 deterministically from x. Without this requirement it would be possible to have
computations denoted by functional notation even though the result of the computation is
indescribable as a mathematical function of its inputs. For languages in which every
computation is deterministic, such as Pascal, this premise is trivially satisfied and can be
ignored. The Euclid language, however, permits a form of nondeterminism, as will be discussed
below.

If S contains (recursive) calls of f, then property (4) should be added to the proof system
before attempting to prove (3), so that (4) may be used in the proof of (3). Thus as a general
rule, first premise (1) (or (1°)) should be established without using (4), then (4) may be added
to the proof system, then the proof of (3) may be attempted. If (3) is not provable, then
either S should be modified or (4) should be deleted from the proof system.

Examples

In [1] the following example was given showing the unsoundness of the original rule, which
had only the property of S, (3) as a premise:

function f(x:integer) returns z:integer;
begin z:=0; while true do null end

P: TRUE

R: FALSE A 2=0

It is possible to prove (3) (taking z=0 as the invariant of the while loop), which would give
Vx(TRUE > (FALSE A f(x)=0)) or simply FALSE for the property of f, so that the addition of this
property to the proof system would make it inconsistent. For this P and R, however, the
consistency premise (1) is Vx3z(TRUE o (FALSE A z=0)), which reduces to FALSE. Thus the
requirement of premise (1) serves to prohibit the addition of (4) ‘to the proof system in this
case.

If R in this example were weakened to be just 2=0, then the consistency premise (1) would be
Vx32(TRUE > 2=0), which is trivially provable, and the property VYx(TRUE > f(x)=0), or simply
Vx(f(x)=0), could be added to the proof system. The fact that the body of the function always
fails to terminate makes it rather useless, but at least no unsoundness can arise from use of
the property Vx(f(x)=0) in any proofs.

To see how the consistency premise (1) comes into play in the verification of a useful function,
consider the example given in [2], a function lookup(AN,z) which searches for an element x
in a sorted array A of length N, returning an index m such that A[m]=x if x is contained in A,
and jumping out to an external label if not. If we take as pre- and postconditions for Loolmp2

P: 1<N A sorted(A,N)
R: A[m]=x

2 These were the pre- and postconditions used in [2], except for some inessential details.

_ 4 m-J

A PROOF RULE FOR FUNCTIONS Page 4

then the consistency premise would be YANx3m(1<N A sorted(AN) > A[m]=x), which is false.
However, if R is weakened to be 3i(1<isN A A[iJ=x) > A[m]=x, then the resuiting consistency
premise is true (and is trivial to prove). Since the weaker postcondition is a more accurate
description of the behavior of the function, the requirement of the consistency premise seems
to support the use of pre- and postconditions to document programs in a precise manner,
aside from its role in preventing inconsistency.

A simple example of the necessity of using the global consistency premise (1°) instead of (1) in
the case of multiple pre- and postconditions is the following:

function f(x:integer) returns z:integer;
begin if x=0 then while true do null eise z:=x end
PI:)(20
Rl: Z>o
P2: x<0
Rz: z<0

From Py and R; we obtain the property Vx(x20 2 f(x)>0) and from P, and R, we would obtain
the contradictory property Vx(x<0 o f(x)<0) if only premise (1) were required. However, (1°) is
Vx3z((x20 > 2>0) A (x<0 > 2<0)), which is false, prohibiting the adoption of the second
property.
To illustrate the role of the determinism premise (2), suppose that the construct S1 or S2
means that either statement S1 or statement $2 is to be executed, the choice being made
nondeterministically {10] Formally,

P{S1 or S2)R = P{S1}R A P{S2]R;
in particular,

P{x:=el or x:=e2]R e (P > Ry, A Rooy)

Then if we attempt to write

function f(x:integer) returns z:integer;
beginz =0 orz:= | end;

we obtain as premise (2)
Yx3z1(P o (z1=0 A zl=1))

which is false for any satisfiable P. Therefore this nondeterministic assignhment to z could not
be used as a function body.

Pascal functions

The proof rule given in [6] for Pascal functions was based on the rule of [2] and has the
same problem of unsoundness. The following differs from the rule given in [6] in the addition

maw .

A PROOF RULE FOR FUNCTIONS Page 5

of the consistency premises (P1) and (P1’) and in permitting postconditions to refer to initial
values of parameters (parameters to functions in Pascal are value-parameters).

A function is declared by the schema
function f(L)T; S

where L is a list of identifiers and types, T is a type name (the type of the return value of the
function, for which the name of the function, f, is used), and S is a statement. Let x be the
list of parameters declared in L, and let y be tiie list of nonlocal variables occurring within S
(implicit parameters). Given predicates P and R, where f does not occur free in P and none of
the variables of x occurs free in R (and occurrence in R of primed variables x* denotes initial
values of the parameters x), then from

(P1) [Consistency] Vx,y3f(P > R,)

and

(P2) [Property of S] Vz,9,2'(x=2' A P){S}IR)
we may deduce the following implication:

(P3) [Property of f] Vz,y(P > Ritr,y)of, x>z

Note that the explicit parameter list x has been extended by the implicit parameters y, that x
may not contain any variable parameters (specified by var) and that no assignments to
nonlocal variables may occur within S. It is property (P3) that may be assumed in proving
assertions about expressions containing calls of the function f, including those occurring
within § itself and in other declarations in the same block. In addition, assertions generated
by the parameter specifications in L may be used in proving assertions about S. If other
properties of the function f have been added to the proof system previously, premise (P1)
should be replaced by

(P1’)[Global consistency) Vz,y3fQ A (P> R,)

where Q is the con junction of all properties of f with all occurrences of f(x,y) replaced by f.
Euclid functions

’; In the Euclid language, the definition of functions is complicated by the possibility of
; nondeterministic behavior of operations defined in a Euclid module. The abstraction function
‘ of a module implicitly defines an equality relation on values of the type defined by the module;
with respect to this equality, operations of the module may be nondeterministic since they may
behave differently for different concrete representations of the same (abstractly equatl)
inputs. Thus the premise requiring deterministic computation is included in the following proof
rule for Euclid functions.

A function is declared by the schema

A PROOF RULE FOR FUNCTIONS Page 6

function f(L) returns z:7T = imports(M); pre P; postR; S

where L and M are Us'. of identifiers with types, z is the return variable, T is a type, P and R
are predicates, and S is a statement. Let x be the list of parameters declared in L and y be the
list of parameters declared in M. From

(E1) [Consistency] Yz,y3z(P > R)
(E2) [Determinism] Vz,y3z1(P{S}z=z1)
and

(E3)[Property of S} Vz,y(P{S}R)

we may deduce the following implication:

(E4) [Property of f] Vz,y(P > R[(z,y)—*z)'

Note that the definition of Euclid does not permit any of the parameters z or y to be altered
(they are const or readonly). It is property (E4) that may be assumed in proving assertions
about expressions containing calls of the function f, including those occurring within S itself
and in other declarations in the same block. In addition, the axiom R{return}fALSE and
assertions generated by the specifications in L and M may be used in proving assertions about
S.

Conclusions

We have given a proof rule for functions without side effects, essentially the Clint and Hoare
rule modified with some additional premises. These additions eliminate the possibility of
unsoundness and permit reasoning about functions to be carried out in familiar mathematical
notation even in cases in which the body of the function does not terminate for some inputs.
In many common programming languages, what are called functions have no strictures against
side effects and thus are not characterizable by the simple proof rule we have given. Proof
rules which have been proposed for such "functions” [3,8] effectively treat them as a
special kind of procedure call and require the introduction of new symbols to denote return
values. In languages such as Pascal and Euclid, any computations having side effects would
have to be programmed as procedures, and thus the proof rule for procedure calls would
apply directly. In most situations, this would seem to be the most satisfactory way of
programming and reasoning about computations, as it provides a clear distinction between true
functions and computations having side effects. It is difficult, however, to argue that all
computations which have traditionally been programmed as "functions” even though they have
side effects should instead be programmed as procedures. The Lisp function CONS, for
example, has a side effect on the free storage list, and thus all Lisp functions that use CONS
have side effects. In the design of future programming languages it will probably be
necessary to retain some sort of value-returning procedure (callable from expressions), but it
would seem worthwhile also to have a pure function construct to which the proof rule
discussed in this paper would be applicable. Then those computations which could be
programmed without side effects could still be characterized via the simple concepts of
mathematical functions.

—

VR

A PROOF RULE FOR FUNCTIONS Page 7

Acknowledgments
| wish to thank my colleagues at IS| for helpful comments on earlier versions of this paper. |

am especially grateful to John Guttag and Ralph London for a number of stimulating
discussions and useful suggestions.

REFERENCES
1. Ashcroft, E.A, Clint, M, and Hoare, C.AR: Remarks on "Program proving: Jumps and
functions by M.Clint and C.A.R.Hoare". Acta Informatica 6, 317-318 (1976)

2. Clint,M,, and Hoare, C.A.R.: Program proving: Jumps and functions. Acta Informatica 1, 214-
224 (1972)

3. Cunningham, RJ. and Gilford, M.E.J: A note on the semantic definition of side effects.
Information Processing Letters 4, 118-120 (1976)

4. Dijkstra, EW.: A discipline of programming. Englewood Cliffs, New Jersey: Prentice-Hall
1976

5. Guttag, J.V,, Horowitz, E., and Musser, D.R.: Abstract data types and software validation, USC
Information Sciences Institute Report ISI/RR-76-48 (August 1976)

6. Hoare, C.AR, and Wirth, N.: An axiomatic definition of the programming language Pascal.
Acta Informatica 2, 335-355 (1973)

7. lgarashi, S,, London, R.L., and Luckham, D.C.: Automatic program verification I: A logical basis
and its implementation. Acta Informatica 4, 145-182 (1975)

8. Kowaltowski, T.: Axiomatic approach to side effects and general jumps. Acta Informatica 7,
357-360 (1977)

9. Lampson, BW., Horning, J.J, London, R.L., Mitchell, JG., and Popek, G.J.: Report on the
programming language Euclid. SIGPLAN Notices, 12, 2 (1977)

10. Lauer, P.: Consistent formal theories of the semantics of programming languages. IBM
Laboratory, Vienna, TR 25.121 (November 1971)

11. London, R.L., Guttag, J.V., Horning, J.J, Lampson, BW., Mitchell, J.G, and Popek, G.J.: Proof
rules for the programming language Euclid. Technical Report (May 1977)

