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A detailed model of a sunspot pﬁgymbra is studied in order to identify
the mode of running penumbral waves.->It is found that penumbral waves may
be identified with magneto-atmospheric waves of the ™plus™ type that are
vertically trapped at photospheric levels. Although most of the wave energy
is contained in the penumbral photosphere and subphotosphere, the maximum
vertical velocity occurs in the chromosphere where the waves are evanescent
(and where they are observed in Ho).

An exact analytical solution for magneto-atmospheric wave modes is found
in the case of an isothermal atmosphere permeated by a uniform horizontal
magnetic field, without making the usual short-wavelength approximation.

This solution is applied to an idealized model of the low-corona-chromosphere
transition region as a model for flare-induced coronal waves. Disturbances
propagate horizontally in the waveguide formed by the rapid density increase
into the chromosphere below and the rapid increase in Alfvén speed into the
corona above. =

~ The exact solution mentioned above is aiso used in conjunction with a
simple two-layer model of a sunspot penumbra to further study the mode of
running penumbral waves. The lowest Z#'plus® eigenmode of the model is in
good agreement with observations of penumbral waves. _

"~

The theory of penumbral waves developed here predicts that these waves
should be observable in the photosphere as well as the chromosphere. This
prediction prompted a search for penumbral waves in the photosphere, carried
out with the tower telescope and diode array at Sacramento Peak Observatory.
Simultaneous observations have been made of velocities in the chromosphere
(in Ha) and in the photosphere (in the nonmagnetic Fe I line A5576) of
three sunspots. The results reveal waves propagating horizontally outward
across the penumbra in the photosphere with about the same period as the
running penumbral waves in Ha (250-290 s). The photospheric waves are more
intermittent and have higher horizontal phase velocity (by a factor of 2 or
more) than the chromospheric penumbral waves. The connection between the
photospheric and chromospheric penumbral waves is unclear at present, and in
any case is more complicated than the resonant mode model presented here.
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THE NATURE OF RUNNING PENUMBRAL WAVES

ALAN H NYE*and JOHN H. THOMAS®**
Max-Planck-Institut fiiv Physik und Astrophysik, Munich, Germany

(Received 22 March; revised 25 June, 1974)

Abstract. A model of a sunspot penumbra, including the effects of magnetic field, compressibility, and
.- buoyancy, is studied in order to identify the mode of running penumbral waves. It 1s found that the
penumbral waves may be identified with gravity-modified magneto-acoustic waves of the *plus’ type
that are vertically trapped at photospheric levels. Although most of the wave energy is contained in
the penumbral photosphere and subphotosphere, the maximum vertical velocity occurs in the chro-
mosphere where (i) the waves are evanescent and (ii) the vertical velocity is in fact observed (in Ha).

1. Introduction

Recent observations have disclosed an interesting pattern of velocity fields in sun-
spois. The most recent discovery is that of waves propagating radially outward in
sunspot penumbrae (Zirin and Stein, 1972 Giovanelli, 1972). Zirin and Stein refer to
these waves as running penumbral waves. With the further observations of Giovanelli
(1974), we now have a fairly clear picture of the properties of these waves. The purpose
of this theoretical paper is to study possible wave modes in a model of a sunspot
penumbra in order to identify the mode of the running penumbral waves. We shall
argue that the running penumbral waves are gravity-modified magneto-acoustic
waves (of the ‘plus’ type) that are vertically trapped at photospheric levels.

Giovanelli (1974) has summarized the observations of running penumbral waves,
and he presents the following picture. The waves are observed in Hx by means of
their line-of-sight velocity. They occur in almost every sizable spot with a regular
stable structure, but only rarely in active spots with complex structure. The waves
travel outward in the penumbra at a typical speed of 15 km s™'. The observed waves
have periods in the range 180-240 s and horizontal wavelengths in the range 2350-
3800 km. Observations near the limb have failed to reveal any horizontal motions
associated with the penumbral waves, so the wave motion is predominantly vertical
in Hz. L

Thus far no detailed theoretical study of the mode of the running penumbral waves
has appeared, although Moore (1973) has studied the related problem of the genera-
tion of penumbral waves in the umbra. Zirin and Stein (1972) tentatively identified
the penumbral waves as sound waves, whereas Giovanelli (1972, 1974) identified them
as Alfvén waves. The penumbral waves, with their predominant vertical motions, no
doubt involve the combined effects of restoring forces due to compressibility, magnetic

* Also National Science Foundation Predoctoral Trainee, Dept. of Mechanical and Aerospace
Sciences, University of Rochester, Rochester, N.Y., U.S.A.

** On ‘eave of absence from the Dept. of Mechanical and Aerospace Sciences and the C. E. Kenneth
Mees Observatory, University of Rochester, Rochester, N.Y., U.S.A.

Solar Physics 38 (1974) 399 413. All Rights Reserved
. Copyright « 1974 by D. Reidel Publishing Company, Dordrecht-Holland




400 ALAN H.NYE AND JOHN H. THOMAS

field, and buoyancy, and a complete theory should account for all three effects. This
is done in the present paper.

In studying penumbral waves, we face a difficulty, in that there seems to be no
complete, generally aceepted penumbral model on which 1o base our calculations.
We have theretore constructed o penumbral model for use in studying wave modes.
This model (presented in Section 3), while simple enough to permit analysis of wine
modes, nevertheless reproduces all of the relevant features of penumbral structure,
and is in reasonable quantitative agreement with observations. We have assumed the
penumbral magnetic held to be purely horizontal, but varying with height. True pe-
numbral magnetic fields are not purefy horizontal, although they may be very nearly
so (Nishi and Makita, 1973). There 1s some disagreement over the inclination of the
magnetic field in a penumbra (sce Beckers and Schréter (1969) for a summary of
observations). The assumption of a horizontal field here is mostly a matter of con-
venience; the basic mechanism we propose for the vertical trapping of penumbral
waves will also work for an inclined field. We have also taken our model to be horizon-
tally uniform - that is, we have not tried to represent the horizontal filamentary
structure of a penumbra or the radial geometry.

In Section 2 we present the basic equations for waves in our model penumbral
atmosphere. The basic atmosphere is completely characterized in these equations by
the vertical distribution of three parameters: the sound speed ¢, the Alfvén velocity
ta. and the local density scale height H. In order to illustrate the properties of the
various wave modes that can occur, we study the dispersion relation that holds in the
case of constant ¢, v,, and H. In Section 3 we present the basic penumbral model in
terms of the distributions of ¢, v,, and H with height. In Section 4 we show that the
penumbral waves may be identified with ‘plus’ modes that are trapped in the photo-
spheric-subphotospheric region in our model. We discuss these modes further in
Section S.

2. Basic Equations and Dispersion Relations

In our simplified treatment of a sunspot penumbra we shall ignore the radial spreading
of magnetic field lines, and consider the undisturbed magnetic field to be purely
horizontal (in the x-direction) and varying with height z: i.e., B,=(B,(z), 0.0).
We assume the field permeates an inviscid, perfectly conducting, plane siratified
atmosphere with constant acceleration of gravity g (=0.274 km s~ ?) in the negative
z-direction. The undisturbed pressure, density, and temperature are denoted by
Po(2), 00(2), and T, (z), respectively. The atmosphere is in hydrostatic equilibrium,

so that
d +B§ )
== 00d -
dz Po 8 %09

We then consider small adiabatic perturbations of this equilibrium atmosphere.
We consider wave vectors only in the xz plane, and assume that the perturbation
velocity u= (u, v, w) has the form u=dexpi (k. x—wt), with i=i(z)= (d(z), 6 (z),
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W (2)). Starting with the linearized equations of continuity, energy, and momentum,
we can eliminate the pressure and density perturbations, and arrive at the set of three
linearized momentum equations for the velocity components 4, 9, and w, in which the
basic atmosphere is completely described by the sound speed ¢(z2), the Alfvén velocity

ra(2). and the local density scale height 2 (2), defined by

, (€Po ; B; I I doo
o (A . o= % = - gl
Co/s 4ne, H Qo 0Z
The linearized momentum equations are the following:

dw
(wz == Czki) ﬁ + ikx('z d -~ ik‘_gﬁl = 0‘

(w® — v2kY) D=0,

dw

d 2 4 o2 dW
A BT R P ER L G
z z

" H |dz

dz

de? ¢ da
ik, | ———+gla+ike® - =0.
+ i [ H g]u IKC dz

(2)

(3)

4)

)

We can eliminate the horizontal velocity components # and ? from the system of
Equations (3)-(5) to obtain a single equation for the vertical velocity w, in the form

d* dw :
azz"'A(Z)d—z+B(z)w=0,
where
1 w‘ dcz dvz
A T e e N 2j2y A
et my e
x [03 (@ = ?k3) + 0®] 7!
and

2
B(2) = (@ = i) = k)~ g (9=, ) -
wk?  de?

x —_— ——
(? — *k3) dz

-9 ][vﬁ (0 = k2 + *0?] ™"

With the transformation

z

$(2) = w(z) exp [5 4@ dz]

0

Equation (6) assumes the form

d%¢

dz?

+f(kx'w;z)¢=0’

(6)

)

®)

9)

(10)
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where
- dA
feB-ia =y . (1)

Here, |¢|* is roughly proportional to the kinetic energy of wave motion. Equation
(10) is the propagation equation for waves in an atmosphere with vertically varying
¢?, v}, and H. For given distributions of ¢2(z), v (z),and H (z), we can use the expres-
sion for f (z) (Equation (11)} to distinguish roughly between local regions where a
wave with a particular frequency @ and horizontal wavelength & is vertically propa-
gating (/' >0) or vertically evanescent (f <0). We shall use this approach for our
penumbral model in Section 4.

The simplest case to study is that of constant ¢2, v, and H. We shall consider this
case now in order to show the kinds of wave modes which can occur. Although this
case does not apply strictly to a real penumbra, or in fact to our penumbral model, we
can nevertheless apply the resulting dispersion relation locally to get an approximate
picture of the wave modes. We can also approximate a continuous vertical variation
of the parameters in the penumbra by a series of layers in which they are constant. In
the case of constant ¢2, v, and H, Equations (3)~(5) have constant coefficients, and
we can assume a solution of the form @(z) =1 exp(ik.z+2z/2H ), where i= (&, ¢, W) is
a constant vector. Here, the factor exp(z/2H ) accounts for the fact that, to conserve
energy, the perturbation amplitude must grow as the density decreases. The system of
Equations (3)—(5) then becomes (cf., Yu, 1965):

2
(0® = k)i + ik, [1/\-;2 - (g - :H)] w=0, (12)

(0® = vak3) T =0, (13)
.2 ;
ik, l:ik:cz + (g - 2(H>:l a+ I:(w2 — vk — (¢ + v}) x

[
x(kf+4H2>]W=0. (14)

The dispersion relation for waves is obtained from the condition for nonzero solu-
tions of the homogeneous system (12)—(14), i.e., the vanishing of the determinant of
the coefficients. This yields the dispersion relation

1 v
(w? — vik?) {w“ — (¢ +vd) (I\f + kI + 4”2) o’ +

l &
+ czuikf <Af + k2 + 4HZ>_ g (g - ;{)/\i} =0. (15

We now discuss the various wave modes given by this dispersion relation, with some
comments on their relation to running penumbral waves.
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2.1. THE PURE ACOUSTIC MODE

The dispersion relation (15) is satisfied with w*=c?k? for the particular imaginary
value of k. given by ik.=(1/2H)— (g/c*). From Equations (12)-(14) we see the cor-
responding motion has @#0, whereas ¢ =w=0. This mode is thus a purely compres-
sional, acoustic mode with dispersion relation identical to that of a homogeneous
1sothermal gas. This can occur since the motion is horizontal and parallel to the
magnetic field, and thus there is no contribution from buoyant or magnetic forces.
The amplitude behaves as

- : [(/‘ l ‘I | ]
u = 1exp -]z,
H (")

and thus grows exponentially with height (since H < c¢?/g for stability of the unpertur-
bed atmosphere (Yu, 1965)). The total momentum and energy are finite, however,
provided there is a lower boundary confining the motion to a semi-infinite range of z.
This mode is identical to the Lamb mode in the non-magnetic case, except that here
the scale height A is modified by the magnetic field. Since this mode has no vertical
motion, it can not be associated with the running penumbral waves.

2.2. THE PURE ALFVEN MODE

A root of the dispersion relation (15), for arbitrary k_, is given by w? =uv2k2, which is
the same as the dispersion relation for a pure Alfvén wave in a homogeneous atmos-
phere with uniform magnetic field. With w?=uv2k2, however, the other factor in the
dispersion relation (15) is in general not zero, and thus Equations (12)—(14) show that
the motion has t#0, whereas #=#w=0. The motion is purely horizontal and purely
transverse to the magnetic field. Thus, the pure Alfvén mode in a stratified atmosphere
is, so to speak, plane polarized, with no vertical motions. With w=0 there is no con-
tribution from the buoyancy force, and, further, with #=0 the motion is incompres-
sible, so the wave behaves as a pure Alfvén wave (with the amplitude factor
exp(z/2H)). Again, since this mode has no vertical motions, it can not be associated
with the running penumbral waves. We turn now to the remaining roots of the dis-
persion relation (15), which do permit vertical motions.

2.3. THE PLUS AND MINUS MODES

The remaining roots of the dispersion relation (15) are given by

4H?

1 ’ 2 1/2
— 4c2o2k? (kfr + kI + 4’H'2'> +4g (g = CH> kf] } (16)

I k-
ok =1 + b <k§ Sh2+ ) x [(cz s (ke ks 4H2> i

We shall refer to these two modes as the ‘plus’ and ‘minus’ modes. These modes
involve the interaction of all three restoring forces: buoyant, pressure, and magnetic.
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They reduce to more familiar wave modes in certain limiting cases. For example, in
the limit of vanishing magnetic field (v, —0) they reduce to the acoustic and gravity
modes of an isothermal atmosphere (see, for example, Thomas et al., 1971). Alter-
natively, in the limit of no stratification (H — =, g —0), they reduce to the fast and
slow magnetoacoustic waves in a homogeneous atmosphere (see, for example, Oster-
brock, 1961). For intermediate cases (such as for penumbral conditions), we can look
at the modes as being either magnetically modified acoustic-gravity waves or gravity-
modit.ed magnetoacoustic waves. We shall continue to use the terms plus and minus
modes here.

The plus and minus modes, for k,=0, are shown schematically in a diagnostic
diagram in Figure 1. The asymptotic behavior of the dispersion relation (16) for
&, =0 is such that “

, A+

Of > =y WL -0 for k.0, Ll

«nd

wi = kImax(c?,v}), @’ = k2Zmin(c 0}) for k, — 0. (18)

2
w?aky mox (c*,v2 IR

Fig. 1. Schematic diagnostic diagram of the plus and minus modes, showing curves for k. =0

(solid lines). The plus mode has a finite cutoff frequency as k, —0. For k,—cc, the plus and minus

modes approach the dispersion lines for the pure acoustic and pure Alfvén modes. For strong stratifi-

cation and weak magnetic field, the minus mode approaches the line « = k,v, from above rather
than below.

10
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In the diagnostic diagram (Figure 1), there are verucally-propagating waves (A% >0)
above the @, curve and below the w _ curve, and evanescent waves (k§<0) in the
region between the two curves.

The plus mode has a finite cutoff frequency of (w, ). = (¢ +vi)''?/2H as k,—0.
Estimates of this cutoft frequency at photospheric levels in a penumbra give values
just a little lower than the frequencies of penumbral waves. This suggests that the
penumbral waves might be identified with plus modes. We shall show this in more
detail through the use of our penumbral model.

3. The Penumbral Model

We now present the penumbral model to be used in our wave calculations. For our
purposes, a penumbral model consists of specified distributions of ¢, v, and H with
height z. To simplify the calculations, we have chosen to represent the expected verti-
cal variation of these parameters by piecewise linear functions. The specified forms
of ¢2(z), v (z), and H (z) are shown in Figure 2. The important features of the model
are as follows. The sound speed increases with depth into the convection zone from
a broad minimum in the penumbral photosphere and chromosphere. The Alfvén
veiocity increases rapidly with height due to the nearly exponential decrease of
density while the magnetic field decreases nearly linearly. The density scale height
increases on either side of a minimum in the penumbral photosphere and low chromo-
spiere. The model thus reproduces the main expected features of vertical penumbral
structure. The numerical values of the parameters were chosen to represent a typical
penumbra.

The distribution of the sound speed was determined primarily from the expected
temperature distribution. Kjeldseth Moe and Maltby (1969) report that the tempera-
ture T in the penumbra may be obtained by adding a constant 40=0.055 to the 0
values of the quiet photosphere, where 0 = 5040/T. With this 40, the calculated relative
intensities averaged over the penumbral fine structure agreed well with observations.
Kjeldseth Moe and Maltby used the Bilderberg Continuum Atmosphere (Gingerich
and de Jager, 1968) for their quiet photospheric temperatures; here, we use the more
recent Harvard-Smithsonian Reference Atmosphere (HSRA, Gingerich er al., 1971).
Using the constant 40=0.055, the penumbral temperature minimum is found to be
3989K, yielding a minimum value of the sound speed squared of ¢?=43.5 km? s~ 2.
The slope of the linear increase of ¢? into the convection zone was taken to be 0.1
km s~ Z%; this choice is also based on the behavior of the HSRA. The distribution of
sound speed (in km s~ ') is given by

3 63.5-0.1z z <200
3 ‘z’={43.5 2> 200. e
At some point in the penumbral chromosphere the sound speed will increase rapidly
to coronal values. However, this increase takes place above the region where the
penumbral waves are trapped in our model, so we have not included this in the model.




406 ALAN H.NYE AND JOHN H. THOMAS

2210 (km)
10 -8 6 -4 -
508842024680
| ’ ]
§ 250 ¢ ;’ ]
200 / ;
o \
= 150 + 1
> 100 +
50 z
0 ! .
ERE ] R "
3 |
g 200+ ] {
o~ 150' j
£ 1oor\ | .
v s0f NG ‘s
DNERl il .
OGS = 1. e e e
soo\ ‘
__ 500+ ]
E 400- )
= |
w0 | +
200+ ) )
100 - 1

DL el AL, Looat o oo
“0-8-6-4-20 24 6 81
2=107 (km)

Fig. 2. Distribution of ¢2, ra?, and H with height z in the penumbral model (solid lines). The data
(crosses) for v, 2 are based on penumbral observations (see text). Data points for quiet photospheric
values of ¢2 and H, based on the HSRA, are shown only for comparison with the penumbral mogel.

The distribution of ¢? is shown in Figure 2, along with quiet atmospheric values of ¢?
from the HSRA (Nakagawa, 1973) for comparison.

To determine the Alfvén velocity, we assumed that the magnetic field strength
decrcases linearly with height and is 1000 G at z=0. The rate of decrease of field
strength with height was taken to be 0.2 G km ™', in accordance with observations (see
Bray and Loughhead, 1964). The photospheric densities were estimated from the
penumbral model of Makita (1963), the only penumbral model to give densities. His
densities are consistent with more recent quiet photospheric models. The resulting

12
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values of vx are plotted in Figure 2. The vertical distribution of these points was
approximated in our model by two straight-line segments, with the upper segment
extrapolated to greater heights. In the convection zone, the Alfvén velocity was
approximated by another straight line segment which goes to zero at z= —500 km,
due primarily to the increase in density with depth, but also to the fact that the penum-
bral field probably lies over the convection zone. The resuiting distribution of the
Alfvén velocity (in km s™') is given by

0 2 <= 500
2 o 1255110.052 -500<z<0
tal2) =195 4 0.1722 0 < = < 400 &

94 + 0.75 (z — 400) z>400.

The distribution of the local density scale height H (in km) with height was chosen
to be

,230 - 0.3752 > < 200
H(:z)= 1155 200 < z < 400 21
ll55+0.55(z—400) 2>400.

In choosing values for H, we were guided by the following expression for the vertical
ertropy gradient in the atmosphere:

ds  oc.k > v\ 1 d [v}
= 2 4 -9- ; 22
dz = BT [(‘ 2>H ’ dz(z) =

where ¢, is the specific heat at constant volume, « is the isothermal compressibility,
and f§ is the coefficient of thermal expansion. This relation follows from the hydro-
static equation (1) and the basic thermodynamic relation

Tds=".(dp—c?d). (23)
f

The distribution of £ given in (21) is such that the entropy gradient ds/dz is negative in
the upper convection zone and positive in the penumbral photosphere and chromo-
sphere. The distribution of # is shown in Figure 2, along with quiet atmospheric
values of H from the HSRA (Nakagawa, 1973) for comparison. Here we can see the
effect of the supporting magnetic field; the scale height is greater in the penumbra
than in the quiet atmosphere. The effect of the magnetic field increases as the density
decreases.

4. Trapping of Plus Modes in the Penumbral Photosphere

We now show that the running penumbral waves can be identified in our model with
plus modes that are vertically trapped at photospheric levels. The basic mechanism for
the trapping is the refraction due to (i) the increasing Alfvén velocity with increasing
height in the photosphere-low chromosphere, and (ii) the increasing sound speed with
depth in the convection zone. We shall demonstrate the trapping mechanism in two

13




408 ALAN H.NYE AND JOHN H.THOMAS

ways: first, by considering the local dispersion relation (16) at three distinct levels in
the model penumbra (assuming locally constant parameters), and second, by con-
sidering the propagation equation (10) for the complete continuous penumbral
model (Figure 2).

4.1. THREE-LEVEL MODEL

A convenient method of looking at wave modes in our model is to draw diagnostic
diagrams such as Figure | for various heights in the atmosphere, assuming locally
constant values of ¢?, v, and H - that is, ignoring the derivatives of these parameters
in Equation (3)-(5). Although only approximate, this method does give some feeling
for the behavior of the wave modes. We shall draw diagnostic diagrams for three
different levels in our model penumbra; one in the convection zone, one in the
photosphere, and one in the chromosphere. We may interpret these diagnostic

A=10" (krn)
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Fig. 3. Superimposed diagnostic diagrams for values of c2, v,2, and H at three different levels in

the model penumbra: level, | z= — 1400 km; level 2, z = — 50 km; level 3, z = 500 km. The shaded

region is a region of vertical trapping of plus modes around level 2. The crosses correspond to
observed running penumbral waves (Giovanelli, 1974).
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diagrams more properly as representing a three-layer model of the penumbra, where
in each layer the parameters are constant. A middle layer of finite thickness represent-
ing the penumbral photosphere is bounded above and below by semi-infinite layers
representing the penumbral chromosphere and convection zone, respectively.

Figure 3 shows diagnostic diagrams for values of ¢?, vi. and H at three different
levels in the penumbral model: - = — 1400 km (layer I, convection zone), z= — 50 km
(layer 2, penumbral photosphere), and z=500 km (layer 3, penumbral chromosphere).
The important feature of this figure is the existence of the shaded region in which the
plus modes are vertically propagating in layer 2, but are vertically evanescent in
layers 1 and 3. These modes are thus trapped in layer 2. The plus mode diagnostic
curve for layer 3 lies above that of layer 2 because of the higher Alfvén velocity in
layer 3. For higher levels in the chromosphere, the plus mode curve for layer 3 will be
higher than that shown. The plus mode diagnostic curve for layer | has a lower cutoff
frequency than layer 2 due to the larger scale height in the convection zone, but lies
above the curve for layer 2 for higher values of k, because of the higher value of ¢? in
layer 1. For deeper levels in the convection zone, the plus mode curve for layer 1 will
have an even lower cutoff frequency and a steeper slope. The existence of the region of
t-apping in the diagnostic diagram is a consequence of the qualitative features of our
model and is not dependent on the particular choice of numerical values.

There is no trapping of minus modes in Figure 3. All the minus modes propagating
in layer 2 are also propagating in layer 3. The minus mode curve for layer ! has
vanished since the Alfvén velocity is zero and the atmosphere is convectively unstable
at that level.

Also shown in Figure 3 are four data points corresponding to penumbral waves
observed in different sunspots by Giovanelli (1974) for which he gives specific wave-
length and periods. These points tend to cluster in the long-wavelength end of the
shaded region of trapping of the plus modes. The one point which lies outside the
shaded region does lie in the region of trapping if the parameter values in layer | are
chosen to represent a lower level in the convection zone. That is, a wave of this fre-
quency and wavelength is reflected at a lower level in the convection zone in our
model. This data point is considered atypical by Giovanelli, however. The observation-
al data correspond to different sunspots, no doubt having different field strengths,
whereas the diagnostic curves are for a single choice of the model parameters. Never-
theless, the resulting picture in Figure 3 clearly shows that the running penumbral
waves should be identified with plus modes which are vertically trapped at photo-
spheric levels in our model.

4.2. CONTINUOUS MODEL

We now illustrate more accurately the trapping of the penumbral waves by making use
of our complete penumbral model (Figure 2) in conjunction with the propagation
equation (10). Roughly speaking, a wave is vertically propagating when the function
S (i4, w; z) (Equation (11)) is positive, and is vertically evanescent when f'is negative.
In Figure 4 we have plotted fas a function of z for our penumbral model (Figure 2) for
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Fig. 4. The function f (k,, w; =) evaluated for the penumbral model (Figure 2) with k, =2 x 10~3
km~ ', w=3x10"2s"1,

a typical value of horizontal wavenumber (k,=2x10"*km™') and frequency
(w=3x10"2s"") for penumbral waves. The function f (z) is discontinuous due to
the discontinuities in the first derivatives of the parameters ¢, vZ, and H in our model.
The general behavior of f is that it is positive in a central region extending from
zx — 1000 km to roughly zx 300 km, and negative above and below this region.
In the lowest order WK B approximation, the general solution to (10) is given by
6 (2) = exp [I if\/fdzJ .

0

(24)

If f'is positive for 0 <z <z, and negative for z> z,, then the solution for z> z, which is
bounded as z— a0 can be written as

z

¢(z)=exp[ii‘.\/fdz—f\/—fdz:l. (25)

Thus, for z>z,, the solution has the form of an exponential decay (with variable
exponential factor), and the wave may be characterized as evanescent in the vertical
direction. This analysis is somewhat crude, however, since the WKB solution (24) is
not accurate in the neighborhood of z,. The same analysis applies to the case where f
is positive for —zy <z<0 and negative for z< —z;. The wave then becomes evanes-
cent as z decreases below —z,. Applying this to Figure 4, we conclude that a wave
with the specified horizontal wavelength and frequency is trapped roughly in the
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central region — 1000 <z<300 where f is positive. The exact location of the upper
poundary of the trapping region is somewhat unclear due to the complicated dis-
continuous behavior of fthere. This is due to the piecewise linear nature of our model;
with smoother distributions of ¢2, vi, and H, the function f would have a single,
smooth zero crossing at some z> 0.

We have been discussing the behavior of the function ¢ (z). Comparison with the
case of constant parameters shows that |¢|* is roughly proportionai to the kinetic
energy of vertical motion of the wave (¢ ~ /¢ w). Thus, it is the kinetic energy that is ‘
s trapped in the region of positive f. The amplitude of the vertical velocity behaves

somewhat differei;. . From Equations (9) and (25) we have, for z>z,,

Ww(z)= c ;' Iif\/lfdz+Q(z)], (26)
L 0
where
; Q(z)=-13|Adz—- | /- fdz. (27)
, e

The function A4 (z) (Equation (7)) is negative over a range in z, and the function Q(z)
] will remain positive over a range of z beyond z, before becoming negative. Thus, the
vertical velocity continues to increase above z, before reaching a maximum at z=z,,
where z, is determined from the relation Q(z,)=0. This can occur in spite of the
decreasing energy above z=z, due to the rapid decrease in density.
By numerically evaluating the integrals in (27), we have estimated the point z; of
maximum vertical velocity in our model, again for the choice k,=2x 10~ km~! and .
w=3x 107257, The resulting value is z, ~ 1250 km. This is at a level where the wave :
is evanescent, and is well into the region of formation of Ha (Vernazza et al., 1973).
[ Thus, although the trapped waves have their maximum energy at lower levels (zx0)
where the density is higher, the vertical velocity is greatest at chromospheric levels
where is it observed.

| 5. Discussion

An important conclusion that emerges from our model is that the running penumbral
i waves are basically a photospheric phenomenon, even though they are observed at
' chromospheric levels. This is really an expected result; the phase velocity of the ‘
penumbral waves is typical of photospheric conditions rather than chromospheric.
For example, the Alfvén velocity at Hx levels in the penumbra is far greater than the
phase velocity of the penumbral waves. In our picture, the waves are evanescent where
they are observed. That is, the observed vertical motions are a passive response to an
actively propagating wave at lower levels. We have shown that although the energy is
trapped at photospheric levels, the vertical velocity reaches its maximum value at
levels of formation of Ha, consistent with observations.
The concept of the penumbral waves as a photospheric phenomenon is also quite
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consistent with their expected source of excitation. Moore (1973) has shown that the
likely source of excitation of the penumbral waves is oscillatory convection in a sub-
photospheric layer in the umbra. The observation that the penumbral waves dis-
appear suddenly at the boundary between the white-light penumbra and the sur-
rounding photosphere also supports the photospheric nature of the waves. In the
chromosphere, the penumbral fibril structure extends outward beyond this boundary.

The basic mechanism for the vertical trapping of the penumbral waves is not sensi-
tive to the details of our penumbral model. This mechanism is based primarily on the
increase in the sound speed as we go down into the convection zone and the increase
in the Alfvén velocity as we go up into the chromosphere. These features are certain
to remain in any improved penumbral model. Observationally. the insensitivity of the
basic mechanism is confirmed by the fact that penumbral waves are seen in almost
every stable. regular sunspot (Zirin and Stein, 1972).

The character of the trapped plus modes 1s different at different heights. The wave is
more nearly acoustic at low levels (convection zone), but is more nearly Alfvénic at
higher levels (photosphere and low chromosphere). The effect of stratification and
gravity. while not domrinant, is felt throughout the trapping region.

Although we have not attempted to calculate them, there are certainly resonant
modes in our model which arise from the constructive interference of plus modes
reflected from above and below in the trapping region. The resonant dispersion curves
would lie in the shaded region in Figure 3. However, since the penumbral waves are a
somewhat transitory phenomenon, there is no reason to associate them specifically
with such a resonant mode; it is sufficient that a wave of the proper frequency and
horizontal wavelength be vertically trapped.

Since cur penumbral model is horizontally uniform, it cannot account for any
observed horizontal (radial) variations in the penumbral waves. We can roughly
account for the radial geometry of the penumbra by noting that the energy in a verti-
cally trapped wave will decrease as |/r, where r is radius measured from the spot
center, as the wave propagates radially outward. This accounts at least in part for the
observed decrease in wave amplitude with radius. The sudden disappearance of the
waves at the outer edge of the penumbra is associated with the more fundamental
problem of the basic existence of the sharp boundary between the white-light penum-
bra and the surrounding photosphere.

Finally. we should note that our assumption of adiabatic perturbations is invalid
over a limited range of height in the low photosphere, say the first few hundred
kilometers above z=0. Here one should account for the rapid radiative exchange. The
main effect of the radiative transfer on the plus modes is to effectively replace the
adiabatic sound speed in this limited region by something nearer to the isothermal
sound speed. The overall effect on the trapped plus modes discussed here will be quite
small, even quantitatively.
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Newcomb's criterion for convective stability in the presence of a horizontal magnetic field is written
in a form which explicitly shows the effect of vertical variations of the magnetic field strength. It is
shown that a nonuniform horizontal magnetic field can be destabilizing as well as stabilizing.

We consider the convective instability of a compres-
sible, inviscid, perfectly conducting gas permeated by
a horizontal magnetic field B=[B(z),0, 0] that may vary
with height z, under a uniform gravitational accelera-
tion g (in the negative z direction), assuming adiabatic
perturbations. The first complete treatment of this
problem was given by Newcomb' using the energy inte-
gral method. He showed that a necessary and sufficient
condition for stability is given by

_do o

L M

where p is mass density, p is pressure, and y is the
ratio of specific heats. In the case of instability, the
most unstable mode has the form of an interchange of
long but finite segments of magnetic field lines. The
stability criterion (1) was also derived by Yu? by con-
sidering the force balance on a displaced magnetic flux
tube.

Newcomb noted that the critical density gradient on
the right-hand side of (1) is, at least explicitly, inde-
pendent of the magnetic field, and is, in fact, that given
by the Schwarzschild criterion® in the absence of a mag-
netic field. However, in the case of a nonuniform hori-
zontal magnetic field (for which Newcomb’s analysis is
valid), the static distribution of pressure and density is
affected by the magnetic field, and thus the stability
criterion (1) depends implicitly on the magnetic field.
This point, which was overlooked by Newcomb, will be
pursued here.
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Using the equation of hydrostatic equilibrium,

(%(mgfﬂ)hpg, @)

and the equation of state of a perfect gas, p=pRT, the
stability criterion (1) can be written in the form

dT [dT 1 d
() )
dz \dz /s pR dz \8w
where (dT/dz)s=-g/c,=-g(y-1)/7R is the adiabatic
temperature gradient. The new form (3) of the stability
criterion has an advantage over the form (1) in that it
shows explicitly the effect of vertical variations of the
magnetic field, since the temperature distribution is
independent of the magnetic field. For a uniform mag-
netic field (B= const), (3) reduces to

ar _(d_T) >0

dz \dz/,
which is identical to the Schwarzschild criterion in the
absence of a magnetic field. [Note that usually, e.g.,
in a star, dT/dz and (dT/dz), are both negative.] Thus,
a uniform horizontal magnetic field has no effect on the
condition for the onset of convective instability, * al-
though, as Newcomb! also showed, it does have an ef-
fect on the growth rates of unstable modes.

If, however, the magnetic fiel¢ is nonuniform, then
(3) shows that the field can be stabilizing (in the case
dB/dz >0) or destabilizing (dB/dz <0). A field that in-
creases with height (dB/dz >0) can stabilize the atmo-
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sphere in the presence of a §uperadfabatic temperature
gradient. When the field decreases with height (¢ B/d2
<0), the critical temperature gradient is reduced be-
low the adiabatic gradient.

As an illustration of the destabilizing effect for d B/
dz <0, consider the case of an isothermal at nosphere,
which is convectively stable in the absence of a mag-
netic field. The stability criterion (3) reduces to

FEEO A o

If the magnetic pressure decreases more rajidly with
height than the critical rate

[ZG) (54 ®

the atmosphere will be convectively unstable. For this
critical magnetic field gradient, the corresponding
pressure gradient is found from (2) to be

Thus, in the state of marginal stability in an isothermal
atmosphere, the gradient of gas pressure balances the
fraction 1/y of the gravitational force, while the grad-
ient of magnetic pressure balances the remaining frac-
tion (y = 1)/y of the gravitational force.

A special case of interest is that of an isothermal at-
mosphere in which the field decreases with height in
just the manner that causes the Alfvén speed v, = (B%/
4mp)*/? to remain constant. In this case, (4) can be
written as

491
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where ¢ = (YRT)' % is the adiabatic sound speed. This
stability criterion was obtained for this special case by
Yu® from a normal mode analysis. Parker® has studied
this case, including the effect of cosmic-ray pressure,
in connection with the gaseous disk of the galaxy.

(7)

The destabilizing effect of a ronuniform magnetic
field with dB/dz <0 is similar to the phenomenon of
“magnetic buoyancy” analyzed by Parker’ and by Weiss.®
Magnetic buoyancy is attributed to an isolated tube of
magnetic flux in thermal equilibrium with its nonmag-
netic surroundings. The instability discussed here is
due to the buoyancy of an arbitrary tube of flux within
a smoothly varying magnetic field.
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ABSTRACT

The linearized theory of magneto-atmospheric waves (involving the combined restoring forces
due ‘0 buoyancy, compressibility, and magnetic iic.d) is developed for the case of a horizontal
magnetic field. A general propagation equation is derived for adiabatic perturbations with arbitrary
vertical distributions of the sound speed ¢, Alfvén velocity v,, and local density scale height H.
An exact analytical solution to the propagation equation is obtained for the case of an isothermal
atmosphere permeated by a uniform horizontal magnetic field, without making the usual short-
wavelength assumption. This solution is applied to an idealized model of the low-corona-
chromosphere transition region for comparison with observations of flare-induced coronal waves.
The results show that disturbances may propagate horizontally in the low corona in a wave
guide formed by the sudden density increase into the chromosphere below and by the rapidly
increasing Alfvén velocity with height in the corona. The group velocity of the guided wave modes
is nearly independent of wavelength, so that a disturbance propagates as a compact wave packet.

Subject headings: hydromagnetics — Sun: atmospheric motions — Sun: corona —
Sun: magnetic fields

I. INTRODUCTION

The theory of waves in a compressible, stratified, electrically conducting atmosphere permeated by a mag-
netic field is of considerable importance in astrophysics, especially in solar physics where there is a wealth of detailed
observations of such waves in the solar atmosphere. Following Yu (1965), we shall refer to waves which involve
compressibility, buoyancy, and magnetic forces as magneto-atmospheric waves. Among the many solar phenomena
that are seemingly attributable to magneto-atmospheric waves are the heating of the corona and of chromospheric
plages, the S-minute oscillations in active regions, oscillations in sunspot umbrae and penumbrae, and flare-
induced coronal disturbances.

The theory of magneto-atmospheric waves is complicated by the anisotropic nature of the medium; the gravita-
tional field and the magnetic field each introduce preferred directions. Additionally, the disturbance is subjected
to the combined restoring forces due to compressibility, buoyancy, and the magnetic field, so that pure wave
modes (i.e., acoustic, Alfvén, and gravity) exist only as special cases. In general, magneto-atmospheric waves
involve the effzcts of all three restoring forces. The problem is compounded by the fact that the basic parameters
describing wave propagation in the solar atmosphere (the sound speed c, the Alfvén velocity v,, and the local
density scale height /') are, in general, functions of height, and therefore the disturbance cannot be represented by
plane waves propagating in the atmosphere.

Previously, the problem of magneto-atmospheric waves has been studied by either of two basic approaches, each
yielding a dispersion relation based on constant values of the atmospheric parameters. The first approach has been
to assume that the vertical extent of the disturbance is much less than the smallest scale height for variation of the
atmospheric parameters. The parameters can then be taken as constant locally. McLellan and Winterberg (1968)
studied an isothermal atmosphere permeated by a uniform magnetic field with arbitrary orientation. Then, assum-
ing that the Alfvén velocity is constant locally (although it actually increases exponentially with height), they
derived a local dispersion relation that is valid for short wavelengths (short compared with the density scale height).
This local dispersion relation has been studied by several authors (Bel and Mein 1971; Michalitsanos 1973;
Nakagawa et a!. 1973) to determinethe effects of different propagation directions and magnetic field orientations.

The second basic approach has been to investigate an isothermal atmosphere permeated by a horizontal magnetic
field that decreases exponentially with height such that the Alfvén velocity is constant, as are the sound speed
and the density scale height. Yu (1965) derived the dispersion relation which in this case is valid for all wavelengths.
He evaluated the three modes of propagation for various angles between the wave propagation vector and the
magnetic field. Chen and Lykoudis (1972) used the dispersion relation of Yu to study the S-minute oscillations in
plage regions. Nye and Thomas (1974a) used Yu’s dispersion relation in connection with a multilayer model for
running penumbral waves.

* Also C. E. Kenneth Mees Observatory.
573

22




574 NYE AND THOMAS Vol. 204

We consider only plane-parallel atmospheres, with no horizontal variation, i order 1o permit Fourier de-
composttion in the horizontal directions as weil as time. With vartations in the z-direction only, the governing
partial differential equations reduce to ordmary dillerential equations. There are only two magnetic field con-
figurations consistent with static equilibriam and no horizontal vaciation. They are B - constant and B
[B.(2), B,(2), 0]. We shall restrict our study to the case of a unidirectional horizontal magnetic field that may vary
with height. We shall not follow cither of the two basic approaches discussed above, however, because of the
inherent imitations of each of them for solar apphications. The length seale for magnetie field changes in the sola
atmosphicre s pencrally much greater than the densty scale heght, so that the assumption ol constant Allvén
velacity is not jestilied. Oui the other hand, the length scale of observed disturbances in the solar atmosphere is not
generally small compared with the density scaie height. This is especiaily true in the photosphere where the density
scale height may be smaller than 100 km, and hence smaller than the limit of observational resolution.

In § IT we derive a general propagation equation for an arbitrary direction of propagation and arbitrary vertical
variations of the atmospheric parameters. For the case of an isothermal atmosphere permeated by a uniform
horizontal magnetic field, the Alfvén velocity increases exponentizlly with height. In § 11l we obtain an exact
general solution of the propagation equation in this case. We compute eigenmodes for the case of a rigid lower
boundary in § 1V, and apply this to a specific solar wave phenomenon, the flare-induced coronal waves, in § V.

The analytical treatment in §§ I and 11 also forms the basis of a following paper in which we deal with running
penumbral waves.

II. BASIC EQUATIONS

The atmosphere is assumed to be a compressible, inviscid, perfectly conducting gas under a uniform acceleration
of gravity g (=0.274 km s~ 2) in the negative z-direction. The undisturbed magnetic field is taken in the x-direction
and may vary with height z; i.e., B, = [By(z), 0, 0]. The undisturbed pressure, density, and temperature may all be
functions of height z, and are denoted by py(z), po(2), and Ty(z), respectively. We shall see that wave propagation
in the basic atmosphere may be completely characterized by the vertical variation of the sound speed c(z), the
Alfvén velocity v,(z), and the local density scale height H(z), defined by

2= (ﬂ) s .2 B,? I I dpo

= ) e s A S i
Ipo) s N T, H po dz )

The unperturbed atmosphere is taken to be in static equilibrium:

{ B,
(o +22) = —pos. @

If the magnetic fizld is a function of height z, then it has a role in the basic equilibrium of the atmosphere. We
consider only stable atmospheres, which requires that

L
dz dz s poRdz\87 )’

where (dT,/dz), is the adiabatic temperature gradient and R is the gas constant (see Thomas and Nye 1975 for a
recent discussion)

Consider small adiabatic perturbations of the equilibrium atmosphere, letting p, p, u, and B denote the per-
turbations in pressure, density, velocity, and magnetic field, respectively. Then, the basic linearized equations of
continuity, momentum, energy, and induction are

o

0

é’ + V(o) = 0, A3)
poz—;‘+\'p~pg—$[(VxBo)xB+(VxB)xBo]=0. 4)
L+ u-Vp, = <2(z—;’ " u-Vpo), | )
%?—Vx(uxBu)=O. (6)
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After taking the time derivative of the momentum equation (4), we may eliminate the perturbation quantities
p, p, and B by using equations (3), (5). and (6). This leaves a single vector equation for the velocity perturbation
u = (o w:

3y 1 dB,? 2l o b e}

~ 2o (7 x Bo) X[V x (u x Bo)] ~ By x {V x [V x (u x B} = 0. (7)

Next, we assume that the perturbation velocity has the form u = dexpi(k-r — wt), with & = é(z) = [i(2), (z), w(z)]
and k-r = k,x + k,y. Then, using the definition of v,% the three components of the momentum equation (7)

become
. o d\ .
(w? — k2 — ch kb — ﬂ(,(g - ¢ d—z)w =0, ®)
— Pk ki + [0? — k2 — 0a2(k2 + kD6 — ik,,[g — (¢* + ,?) d—"z]w 0 ©
and
o fde? ¢ s d\ i lid o (€2 + 0,2) o o]
zkx(gz——-}-,+g+c dz)ui-lky[z(c +vA)———[{——- + g+ (¢ +v“)d—zv

2% 2 2 7
+ (et & vt’)%:%” + [;,d; (c® + 0a?) - (c——’},i‘—)] LA (@ — v %k 2P = 0. (10)

dz
These are the linearized perturbation equations. They give important information about particle motions for various
modes of propagation in the atmosphere.
The horizontal components of the perturbation velocity can be eliminated from the system of equations (8)-(10)
to yield a single equation for the vertical velocity w. The resulting equation is

dw aw -
22—2-+A(Z)-‘},;+B(Z)W=0, (ll)

where the coe Ticient 4(z) and B(z) are given by

el w! g 222‘_@’ 1 4 2 A2 2Y()2 9L 2 ‘Ui)ﬂ
A(z) = —I_—l-ﬁ-—D—E(m vA%k,2) T +B —w* + (o %k, ) (w? — v,%k,2) ]+f p s (12)

and

BE) = {0 — (6 + 02 + ) + 0,2kt

2
+ [vxk,f(k} + k22 + va2) — glk,? + kf)( = ;‘1-) + & v,ﬁkﬁ)w"’
o dc* 2 dvs’®

— 0%k 2(k 2 + kv2)[cﬁuA2kx2 = g( o __ﬁ)] = %(wz — 0%k 22wk 2 + k“z)?[z_ e “_é_kuzg _d_;_} A
(13)

Here, D and E are given by
D = (w? — v,%k,2)[w(c? + v,2) — a2k, 2 (14)

and

E =o' - (k? + k)0 + v,%) = ok, . (15)

Equation (I1) is a gencral equation for the vertical component of velocity for a perturbation propagating in
an arbitrary direction, in an atmosphere with a horizontal magnetic field and arbitrary vertical distributions of ¢2,
v,?, and H. This propagation equation has been given previously (Nye and Thomas 1974a) in the case k, = 0.
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1I. ISOTHERMAL ATMOSPHERE WITH A UNIFORM HORIZONTAL MAGNETIC FIELD

Now consider the case where the undisturbed temperature and magnetic field are constant with height. Since the
magnetic field is uniform, it has no effect on the hydrostatic equilibrium of the atmosphere, and the equilibrium
pressure and density both decrease exponentially with height. The sound speed and the density scale height are
both constant, with values determined by the temperature of the atmosphere. The Alfvén velocity increases
exponentially with height due to the decreasing density. The sound speed, density scale height, density, and Alfvén
velocity are given by

¢ = (yRT,)'? = const. , (16)
H = %‘-’ = const. , 17)
po(2) = pooe~*", (18)
and
V() = voe™?H (19

where pgo and v, are the values of the undisturbed density and Alfvén velocity at z = 0.

The nondimensional parameter 2 = vy?/c? is introduced as a measure of the relative importance of the restoring
forces due to the magnetic field and to compressibility at the point z = 0. For values of 82 < 1, there is a region of
the atmosphere above z = 0 where compressibility has more importance as a restoring force than does the magnetic
force, but in any case the magnetic field always becomes dominant as z becomes large.

In the remainder of this paper we shall consider only waves whose horizontal component of propagation is
parallel to the magnetic field (k, = 0). Using (16)—(19), we may write (11) as

d*w  w?dw o2 A
[Pw? + (w? — %k, 2)ve2e'H] P e [(w2 — %, 2)(w? — vo2e*'k,2) — g( g - ﬁ)k,’] w=0. (20

We define the nondimensional frequency Q and the nondimensional horizontal wavenumber K by
Q = Holc, K = Hk, . 21

By transforming the dependent and independent variables according to
QZ

e a2 KIH — -2/H

W=wetlt,  x KT - 09¢ (22)

we may put equation (20) in the dimensionless form

dzw dw k.
x(l—x)-‘?--i»[C——(A+B+1)x]7;—ABW—u, (23)
with
q y — 1\ K?

A+B=Ca=2K+1, AB=Q +1<+(7- e @4)

Equation (23) is the standard form of the hypergeometric differential equation.! The solutions of this equation
may be expressed in terms of hypergeometric functions, given for |x| < 1 by

NC) < LA+ nl(B+n)x"
P(A)I(B) &, I(C + n) n!

The general solution of equation (23) may be written, for |x| < 1, in terms of the original variables z and w(z)
as

F(A, B; C; x) =

(25)

w(z) = Die~*¥HF

A B: C Q2 e—le
- 32 ’ﬁz(Kz_ Qz)

BAKZ — Q?)]2« ) ) 02 o
ngzmﬁ[___-—z FlA-C+1,B-C+1;2 - C’ﬂ——_’(K’ Qz)e /H | | (26)
where Dl and 02 are arbitrary constants.

! The hypergeometr:c nature of the wave equation in this case was noted by us earlier (Nye and Thomas 19744), and also in-
dependently by Adam (1975).
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1V. EIGENMODES FOR A RIGID LOWER BOUNDARY

We now examine modes of propagation in the relatively simple case of an isothermal atmosphere with a uniform
horizontal magnetic field, bounded from below by a rigid wali at z = 0. The general solution (26) is subject to
boundary conditions at z = 0 [x = Q2/8*(K? — Q%) and at z = w0 (x = 0).

As a condition at z = oo, we require that the total energy of the perturbation be integrable over 0 < z < ao.
The magnetic energy of the perturbation is proportional to the square of the velocity. Since

lim Fla, B; 7, %) = 1, 27)

we see from equation (26) that we must take D, = 0.
The second boundary condition is that the vertical velocity vanish at the rigid wall, i.e., w = Oat z = 0, 1., at
x = Q%/B%K? — Q3). Provided

Q? :
B—z(Kz—_Qz)i < I, (28)
we may apply this condition directly to equation (26) with D, = 0 to obtain the dispersion relation
Pane 2 4 g 29
_’ ’ vﬁa(Kz__Qz)" . ()

If, however, (28) is not satisfied, then other representations of the general solution (26), valid for x| > 1, must be
used in order to apply the boundary condition at z = 0. For

Q2
ﬁ’(K’ = Qz) >1, (30)
the interval 0 < x < Q?/B%(K? — Q2) contains the regular singular point at x = 1, and no solution that satisfies
the boundary conditions and is also regular at x = 1 is to be expected. For the range
Q2
m < -1, (31)
we may use analytic continuation to extend the general solution (26). The analytic continuation of (26) with D, =0,
valid for x € —1, is given by
- . DB — A) [BA(Q* - KI)]* ., BXK? — Q)
= 2K/H 2A/H R SN R
w(z) = Dse { FBF [ ] . AHFIA 1 — By 1 — B + A; O
D(C)T(4 - B) [B%Q* — K»1® .o . BAK2 - Q)
+ AT 9? ePHEIB 1 — A;1 — A + B; Qz—ez - (32
Thus, for the range of parameters (31), the dispersion relation is given by

P(B = A) [BZ(QZ T K2)]AF[A, = B; 1 =8+ Aﬁz(Kz = 92)]

o]

(r®)yr Q2 Q2

I'(A — B) [BX(Q? — K2)]® ] BAKE - QY]
+ T [ o0 ] F[B,l —A; 1 -4 +B,——Q2——J =0.(33)

The dispersion relation (eq. [29] or [33]) has been evaluated for various values of the nondimensional parameter
pB?. Examples are plotted in Figures 1 and 2 (also see Fig. 4). The curves in these figures represent well-defined
eigenmodes of wave propagation in the atmosphere. These curves represent trapped waves propagating horizont-
ally in the wave guide formed by the solid boundary below and the exponentially increasing Alfvén velocity above.

There are several ways of interpreting the effect of changing 82 on the dispersion relation. First, different values
of 82 can be taken to represent the same magnetic field strength and the same density at z = 0, but different atmos-
pheric temperatures. A second interpretation is that different values of 2 represent the same magnetic field strength
and the same ten perature, but different densities. This is equivalent to placing the solid lower boundary at succes-
sively higher leve.s in the atmosphere corresponding to larger values of 2. At each higher level the magnetic restor-
ing force becomes more important due to the decreased density, while the compressible restoring force remains the
same. \
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FiG. 1.—Dispersion diagrams (nondimensional frequency versus nondimensional horizontal wavenumber) for an isothermal

atmosphere with a uniform horizontal magnetic field and a solid lower boundary, with y = 5/3, 82 = 10-%, and B2 = 10-%. The
curves represent eigenmodes, and the crosses indicate the computed points. This figure should not be confused with a diagnostic
diagram for an atmosphere with constant parameters (e.g., Yu 1965).

FI1G. 2.—Same as Fig. 1, but with g2 = 0.5.

The third interpretation is to consider changes in 82 to be due to changes in the magnetic field strength, with
fixed values of temperature and density. Since the sound speed and the density scale height then do not change, the
scales for the frequency and horizontal wavenumber are the same in each case and the dispersion diagrams can be
compared directly. From Figures 1 and 2 it can be seen that increasing the magnetic field strength (increasing £2)
increases the cutoff frequency. As B2 increases, the slope of the dispersion curves, and hence the group velocity,
also increases.

Lowering the value of y to represent crudely the effect of radiative transfer has little effect on the nondimensional
dispersion diagrams. However, the frequency scaling depends on y as w ~ (y)!2Q, while the wavenumber scaling
is independent of y. Therefore, for lower y (lower sound speed) the wave oscillates less rapidly and the phase and
group velocities are correspondingly lower.

The vertical velocity of the disturbance (eq. [26] or [32]) can be calculated as a function of height for any point
on a dispersion curve. Figure 3 compares the lowest mode of oscillation for the same horizontal wavenumber but
different values of 82 (i.e., different magnetic field strengths), and shows that for increasing magnetic field strength,
the wave oscillates more rapidly and is trapped at lower levels in the atmosphere. We now discuss the eigenmodes
given by the dispersion relation (29) or (33) in relation to an observed solar oscillation.

V. APPLICATION TO FLARE-INDUCED CORONAL WAVES

On 1963 September 20, Moreton and Ramsey (Moreton 1965) observed a chromospheric disturbance, apparently
caused by the flash phase of a flare, propagate at a nearly constant velocity of 750 km s~ for several hundred
thousand kilometers across the solar disk. Many other flare-induced disturbances have been reported (Moreton
1960; Athay and Moreton 1961 ; Dodson and Hedeman 1968), and the propagation velocity is usually on the order
of 1000 km s~*. Dodson and Hedeman (1968) report that the width of the disturbance created by the proton flare
of 1966 August 28 was greater than 100,000 km.

These disturbances could not have been propagating solely in the chromosphere, since in the chromosphere the
sound speed is only of the order of 20 km s~! and the Alfvén velocity is only of the order of 50 km s='. Thus a
purely chromospheric disturbance would have created a shock wave and been rapidly dissipated. In the corona,
however, both the Alfvén velocity and the sound speed are an order of magnitude higher than in the chromosphere
due to the increased temperature and decreased density. It has been proposed (Meyer 1968; Uchida 1968, 1970,
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FiG. 3.—Direct comparison of the first mode of oscillation of the atmosphere for the same nondimensional horizontal wave-
number (K = 0.25) but for two values of g% (8> = 102, g2 = 10-1),

1974; Uchida er al. 1973) that the disturbance is a magnetohydrodynamic wave propagating in the low corona and
that the motion of this wave at the corona-chromosphere transition region is what is actually observed. There is,
however, no general agreement as to the wavelength of the disturbance or even whether the observed disturbance
is a single wave or a wave packet.

Meyer (1968) studied the propagation of the magnetoacoustic fast mode in an isothermal corona permeated
by a uniform vertical magnetic field, with a rigid lower boundary representing the chromosphere-corona transition
region. He found eigenmodes with nearly constant horizontal group velocity. Equating the group velocity to the
observed propagation velocity, Meyer found that for a horizontal wavelength on the order of 100,000 km, the
coronal magnetic field must be approximately 6 gauss, a reasonable average value.

Uchida, in « series of papers (Uchida 1968, 1970, 1974; Uchida et al. 1973), studied the propagation of short-
wavelength (~ 5000 km) disturbances in various realistic coronal models. Using a ray-tracing technique, he obtained
horizontal and vertical refractions in close agreement with the observed waves.

Although the magnetic field structure of the corona is quite complicated, the field changes fairly slowly and there
are probably regions of nearly uniform field with almost any orientation. We study the case of a uniform horizontal
field in connection with the coronal wave problem only as a means of understanding the mechanism of wave
propagation for waves of arbitrary wavelength. Our model supplements Meyer’s (1968) work by considering the
case of a uniform horizontal magnetic field, and by including effects of gravity and stratification. As in Meyer’s
model, we use the rigid lower boundary to represent upward reflection from the chromosphere-corona transition
layer.

We have evaluated our solution for a temperature of 1.6 x 10° K and 82 = 10, which is fairly typical of the base
of the corona. These values correspond to a sound speed of 180 km s~* and a density scale height of approximately
71,000 km. Figure 4 shows the dimensional dispersion relation for these parameters. We see that the dispersion
curves are nearly straight, which means that these modes have very little dispersion and will propagate for great
distances with little change in character. The first three modes have been calculated for a wavelength of 75,000 km
in Figure 5. The first mode has nearly zero vertical velocity above two scale heights and is therefore trapped in
the low corona.

The phase velccity and group velocity of the first mode have been plotted as a function of horizontal wavenumber
in Figure 6. For any wavelength of 100,000 km or less, the group velocity is nearly constant at about 610 km s-!.
Since the cnergy of a disturbance propagates at the group velocity, it is not important which specific wavelength,
or spectrum of wavelengths, receives energy from the flare. The energy at all wavelengths will propagate together
as a wave packet near the lower coronal boundary.
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FiG. 4. —Dimensional dispersion diagram for 82 = 10, y = 5/3, and T, = 1.6 x 10° K. The curves represent eigenmodes of the
corona which are trapped by the increasing Alfvén velocity with height.

The present model is not proposed as a realistic model of the solar corona, although it may be fairly accurate
over certain regions. No attempt has been made to include the effects of horizontal variations. The value of the
model is that a mechanism for wave propagation can be studied for arbitrary wavelengths. These results close the
gap between the short-wavelength ray-tracing theory and the long wavelength, vertical field case. We show that
the question of wavelength is not particularly important since the group velocity of the trapped modes is essentially
independent of wavelength. For the relatively large value of 82 (=10), the wave modes are basically the magneto-
acoustic fast moces (studied by Meyer and by Uchida) modified by gravity. For an inclined magnetic field, there
must also be trapped modes of propagation involving a coupling of the present modes and the type of mode
studied by Meyer for a vertical field. The present results, taken with those of Meyer and the work of Uchida, present
a consistent picture of flare-induced coronal waves as guided magneto-atmospheric waves.
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FiG. 5.- First three modes of oscillation of the model corona for 82 = 10, y = 5/3. The vertical velocities have been normalized
to maximum value unity.
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Fi1G. 6.—Phase velocity v, and group velocity v, of the first mode of coronal oscillation plotted as a function of horizontal

wavenumber.
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ABSTRACT

A simple two-layer model of a sunspot penumbra is used to study the mode of running pen-
umbral waves. Exact solutions of the linearized wave equatnon not limited to the small-wavelength
approximation, are employed in each layer. The lowest ““ plus” eigenmode of magneto- -atmospheric
waves in the model penumbra is in good agreement with observations of running penumbral waves.
The results indicate that running penumbral waves should be observable in a photospheric spectral
line.

Subject headings: hydromagnetics — Sun: atmospheric motions — Sun: magnetic fields —
Sun: sunspots

I. INTRODUCTION

In Paper I of this serics (Nye and Thomas 1976) we presented an exact analytical solution for magneto-atmos-
pheric waves in the case of an isothermal atmosphere with a uniform horizontal magnetic field. In the present paper
we apply this solution to a simple two-layer model penumbra in order to study the mode of running penumbral
waves.

Running penumbral waves (Zirin and Stein 1972; Giovanelli 1972, 1974; Moore and Tang 1975) are good
examples of magneto-atmospheric waves. These waves propagate radially outward across sunspot penumbrae,
with predominantly vertical motions in Ha. The observed range of frequency and propagation speed is fairly well
established (see discussion in § IV).

Moore (1973) has concluded that the source of excitation of the penumbral waves is overstable convection in the
low umbra. In an earlier paper (Nye and Thomas 1974 [NT]) we studied the mode of propagation of penumbral
waves on the basis of a piecewise linear model of the vertical structure of a typical sunspot penumbra. We found
the penumbral waves to be magneto-atmospheric waves (of the **plus™ type) that are vertically trapped at photo-
spheric levels. This trapping is primarily due to the increasing sound speed with depth into the convection zone
and the increasing Alfvén velocity with height into the chromosphere.

Here we extend our earlier work by computing actual eigenmodes of propagation for a somewhat simpler model
penumbra, which nevertheless retains the essential features. The properties of the lowest mode of propagation of
the model penumbra turn out to be in good agreement with observations, and give some useful clues for further
observation of running penumbral waves.

1. THE TWO-LAYER PENUMBRAL MODEL

The entire penumbral mode! consists of a compressible, inviscid, perfectly conducting, stratified perfect gas
subject to a constant acceleration of gravity g (=0.274 km s~2) in the negative z-direction. The upper layer is
isothermal and is permeated by a uniform horizontal magnetic field, which yields an Alfvén velocity that increases
exponentially with height due to the decreasing density. An exact solution of the linearized propagation equation
for this case was given in Paper 1.

This upper layer is a suitable model of the penumbrai photosphere and chromosphere where observed penumbral
magnetic field; are very nearly horizontal (Nishi and Makita 1973) and decrease slowly with height (Bray and
Loughhead 1954). The scale height for variation of the magnetic field is very large compared to the density scale
height, so the assumption of the uniform horizontal magnetic fiela is reasonable. Our earlier calculations (NT)
showed that running penumbral waves are trapped at photospheric levels, so that the increasing sound speed in
the upper chromosphere has little effect on the trapping. Taking the upper layer to be isothermal is therefore also a
reasonable assumption.

The vertical distributions of the sound speed and Alfvén velocity for thke two-layer model penumbra are shown
in Figure 1. Subscripts 1 and 2 denote quantities in the upper and lower layers, respectively, and the subscript 0

* Also C. E. Kenneth Mees Observatory.
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Fi1G. 1.—Distribution of ¢? and v, with height z in the two-layer penumbral model. The upper layer (1) is isothermal with a
uniform horizontal magnetic field. The lower layer (2) has an adiabatic temperature gradient and no magnetic field.

refers to quantities evaluated at z = 0. The sound speed, density scale height, and Alfvén velocity in the upper
layer are given by

¢2 = y,RT, = const. , : (0}
H, = LA const. , ()
g
and
va%(z) = vo? exp (z/Hy) . 3)
The lower layer of the penumbral model (layer 2, figure 1) is adiabatic with no magnetic field. The temperature
decreases with height (increases with depth) at the adiabatic lapse rate, (d7/dz); = —g/c,, and thus this layer is

neutrally stable. The actual temperature distribution in the convection zone below a penumbra is probably very
nearly adiabatic, except for a thin superadiabatic layer just beneath the photosphere that we neglect here. There is
no magnetic field in this layer since we assume that the penumbral magnetic field lies over the convection zone.
The sound speed squared and local density scale height each increases linearly with depth in the lower layer, their
functional forms being

€2%(2) = 50 — gly, — )z )
and
Hy(z) = Hyo — (y2 — 1)z. ©)]
The corresponding density distribution is
p2(2) = pao[l = (ya — 1)z/HaoJ s~ (6)

At the interface between the two layers (z = 0), we require the undisturbed density to be continuous to avoid
introducing interfacial gravity waves and wave reflections; therefore, P10 = p2o. In the unperturbed penumbra,
there must be pressure equilibrium at the interface; that is, the gas pressure in the lower layer at z = 0 must equal
the sum of the gas pressure and the magnetic pressure in the upper layer at z = 0. Therefore, the gas pressure is
greater in layer 2 than in layer 1; and since the density is continuous across the interface, the temperature is greater
in layer 2. This may be expressed in terms of the sound speeds and the Alfvén velocity at z = 0 as

3. Y232, Ya. 3 7
Ca0 ” (S 3 Vo - O]
We now turn to the problem of computing eigenmodes of magneto-atmospheric waves in this penumbral model.

III. ANALYSIS

Consider first the behavior of small adiabatic perturbations in the lower layer (layer 2), an adiabatic atmosphere
without magnetic iield. Leibacher (1971) solved this problem in his study of oscillations of the quiet photosphere.
Here we take a slightly different approach from his, using other transformations which yield a different form of the
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propagation equation. For vanishing magretic ficld (B, = B = 0), the vector equation for the perturbation
velocity (eq. [7], Paper 1) becomes

a2
*u,
or?

= «'22v¢ T (y2 — g + V(uzg) ’ ™

where ¢ = V.u,.

We assume that the perturbation \n.loc.uy has u;‘. form u, = i,(z) exp [i(k,x — wt)], with propagation in the
_ x-direction (k, = 0). This implies that &, = ) and 4, = d,(z ) = [1y(z), 0, wy(z)]. All other perturbation quantities
| - are represcnled in a similar manner, with a caret denoting the z-dependent amplitude in each case. From the two
‘ components of equation (8) and the definiticn of ¢, we obtain the following relation:

glys — ek 2w?lp — c2dfldz

Wo(z) = o — g2k, %w?

®)
The pressure perturbation can also be written in terms of ¢, using the continuity and energy relations (see Paper I):

p = —lpecd’ [(w2 — g%/eD)d + gd$/dz] -

w wz — g2l\ 2/“)2

(10)

Upon substitution of equation (9) into the z-component of equation (8), we obtain the following second-order
differential equation for ¢:
d? 1 d d g%k,z2 de
d’4 ( des "“)"’+l——-k2 22(y2—1)+ 262‘1;]4) 0. (11)

e b

The nondimensional frequency, horizontal wavenumber, and depth, based on the values of sound speed and
density scale height in layer 2 at z = 0, are defined by

Q, = Hypwfcg s Ky = Hyk,, and = z/Hy . (12)
By transforming the independent and dependent variables according to
Y = 2K, ~ 2KE, ¢ = ‘,v12¢f’ (13)
y2 — 1

equation (11) assumes the form

4
jy"; -1k "’ =i, (14)
where
b Ry~ 1) Q,? (2}'4 - 1)
B 7 oy e e (15)

Equation (14) is the standard form of Kummer’s equation (see Abramowitz and Stegun 1964). The solutions of
this equation are given in terms of Kummer’s functions,

. vy = L0) < Fla 40y ¥*
M@ b Y) = 15 2. To +myal” s

The general solution of equation (14) is
W(Y) = DsM(a, b; Y) + D,U(a, b5 Y), a”n

where D, and D, are arbitrary constants and U(a b; Y)can be written in terms of Kummer’s functions. To insure
finite lO(dl perturbation energy, we must require that the vertical velocity of the perturbation vanish as 2 — —o0
oras Y -> +oo. This in turn requires that D, = 0. The solution for ¢ as a function of Z in the lower layer is then

v o ” K, i Mia, b; 2K, [(y, — 1) — 2K,Z]
¥ = Diins """{ =0 = H I + a = HIG)
2K, P MO+ a = 5,2 ~ b3 2K,/(ys — 1) — 2K,3])
o 2"*"] Mot - b) } ¥R
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The vertical velocity and pressure perturbation are given in terms of ¢ by equations (9) and (10).

The form of the solution in the upper layer has been given in Paper I, and we shall not repeat the analysis here.
The general form for the vertical velocity in the upper layer that gives finite total perturbation energy is given in
terms of hypergeometric functions by either

2

wi(z) = D, exp(—zKX/H,)F[A, B; C; '9—2(&%—_91,—) exp (-—z/Hl)] (19)

for .
0,2
K — 9| < P (z/Hy), (20)
or else by
s 2 2 2)14
ite) = Dy exp (=Ko MO (B 2 KN o oy
x F[A, l—-B:1-—58+ A;'ﬂ’%ﬁ—ﬁexp(z/ﬂl)]

+

o =t 2\18
O[O K

2K 2 _ 0.2
. F[B, B T e B;L(K‘Q—lagl—)exp (z/Hl)]} @1
for

P(KE = a7)| > &P (z/Hy) . (22)

Here
A+B=C=2K, +1, (23)

Sy 2

AB =02 + K, + (Zly—lz—l) g%, 4)
B? = vo’fe,?, (25)

and Q, and K; are nondimensional frequency and wavenumber defined as in (12), except sealed with ¢, and H,.

The pressure perturbation in the upper layer consists of the sum of the gas pressure perturbation and the mag-
netic pressure perturbation. The gas pressure perturbation can be expressed in terms of the vertical velocity and
its derivative as

b= _iPxfxzw(% - £ W1)/(‘”2 T (26)

c?
The magnetic pressure perturbation j,, is found from the linearization of

. (By+ B)(B, + B)
pm+pm" 877 4

where p,, is the unperturbed magnetic pressure. The components of the perturbed magnetic field are determined
by the linearized induction equation (eq. [4] of Paper I). We find

5o _jlalpdiy )
S = w dz 0
The total perturbed pressure fr, in layer 1 is expressed in terms of the density and the Alfvén velocity as
b, = =Bl + oa)a? - o,k D2~ w’gwx} / (@? = er%.?). (28)

\

IV. EIGENMODES AND RUNNING PENUMBRAL WAVES

We now have expressions for the vertical velocity and the pressure perturbation in each layer of the penumbral
model, such that the total perturbation energy is finite. The remaining conditions are the matching of the vertical
velocity and the perturbed pressure at the interface z = \

A\
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The scaling of frequency and wavenumber was done separately for each layer in order to simplify the pro-
pagation equation as much as possible in each case. In matching across the interface, we need the following re-
lations between parameters in the two layers:

Hyy = po(1 + ”3'182'/1)}[1 B 29)
Q2 = yya(l + 1B%1)2%, (30)
K = vl + 3B%.)°K,?%, (31)

and equation (7).
Continuity of the vertical velocity across z = 0 requires, after normalization, that

w1(0) = wy(0) = 1. (32)

This condition fixes the values of the coefficients D, in equation (19) or (21) and D, in equation (18). The remaining
condition, the continuity of the perturbed pressure, requires that we equate (10) aiid (28). This then leads to the
nondimensional condition

{[(l + BHQ® — BEK)(dW,/dz)|o (le/)'l)ﬁ'x(o)} s 1 [522'}’29;(0) + (d$/dzz)]o
Q%2 — K,? QF — K%Q,°

Y1
where ¢ = ¢H,o. Equation (33) is only satisfied by particular values of frequency and wavenumber, and gives the
dispersion relation for eigenmodes of oscillation in the penumbral model.

In order to evaluate the dispersion relation (33), the free parameters 2, v, and y. must be specified, which then
effectively determines the properties of the model. Although it is possible to evaluate (33) for different values of
y in each layer (for example, a lower value of ¥, could be taken to represent radiative transfer in the upper layer),
we chose the usual value of 5/3 for both layers. The dispersion relation (33) was solved numerically by inserting
values of K, and then computing and comparing the two sides of (33) for small increments in Q,.

Figure 2 shows the first several cigenmodes of the two-layer penumbral model for 82 = 0.5 and y; = y, = 5/3.
The value of 82 was chosen to represent a typical penumbra and is slightly less than the value of 82at z = 0 in our
earlier penumbral model (NT). Here we have classified the eigenmodes as **plus™ or “minus” modes, following
the terminology used in the case of an atmosphere with constant spound speed, density scale height, and Alfvén
velocity (see McLellan and Winterberg 1968 and NT). The plus modes all lie above the upper dashed line Q = K
in Figure 2, which corresponds to w = ¢,k (the Lamb mode}. The minus mode (there is only one in this case)
lies below the lower dashed line © = BKA which corresponds to w = 4k ,. There are no eigenmodes in the region
between the dashed lines. This classification of plus or minus modes refers here to the character of the eigenmode

» (33)

o a2 s W8 %

FiG. 2. The first five plus eigenmodes and the only minus eigenmode of the two-layer penumbral model for 82 = 0.5, v, =
y2 = 5/3. The quadrangle represents the range of observational data (see text). The crosses correspond to particular observations
(Giovanelli 1974).
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in the upper layer; in the lower layer, all of the modes have the character of acoustic waves (no magnetic field and
no buoyancy).

Observational data on penumbral waves are included in Figure 2 for comparison. The most commonly reported
observational quantities are the period and the horizontal phase velocity, although they are not always measured
simultaneously. Giovanelli (1974) reports a typical phase velocity of running penumbral waves of 15 km s~ ! and
typical periods in the range of 180-240 s. He did report phase velocities of up to 21 km s !, however, and gave
specific periods and wavelengths for four sunspots (denoted by crosses in Fig. 2). The data of Beckers and Schultz
(1972) appear to indicate a penumbral oscillation period of 255s. Moore and Tang (1975) observed penumbral
waves with period 270 + 10 s in a single sunspot. Zirin and Stein (1972} state that the periods of penumbral waves
in 20 sunspots were almost all between 240 and 300 s, and the measured horizontal phase velocity of 9.4 km s~*
in one spot was more or less the same in other spots even when the period varied.

The quadrangle in I"igure 2 represents the range of observations: periods from 180 to 300 s, and phase velocities
from 9.4 to 21 km s~ !, with a dashed line at 15 km s ! to indicate the value that Giovanelli considers typical.
The first plus mode of the penumbral model passes through this quadrangle. Although the particular eigenmode
of oscillation of the penumbra is determined by the excitation, the details of which are uncertain, the present
results indicate that it is the first plus eigenmode that is being excited. This agrees with our earlier conclusions
(NT).

The value 82 = 0.5 used in Figure 2 was chosen to represent a typical penumbra. In Figure 3 the effect of changes
in 82 on the first plus mode is shown for a range of 2 of two orders of magnitude (0.05, 0.5. 5.0). This constitutes

a reasonable set of limits on 82 for penumbral conditions, and is obtained by looking at the normal variation of

B (factor of 4), o (factor of 4), and ¢* (factor of 1.5) expected in different penumbrae. We see that for any reasonable
value of 82, the penumbral model has a first plus mode within the range of observations.

The vertical distributions of velocity and kinetic energy of the first plus mode (for 82 = 0.5) are shown in Figure
4 for K, = 0.1995 and Q, = 0.3628, corresponding to a horizontal wavelength A = 3,000 km and period = =
250 s for ¢,* = 43.5 km? s~ 2. Here the nondimensional height is scaled everywhere by the density scale height in
the upper layzr, H,. The velocity distribution is fairly symmetric, with the maximum amplitude occurring slightly
above z = 0 in the penumbral photosphere. The kinetic energy, on the other hand, is almost entirely trapped in
the lower layzr (convection zone)with maximum energy just below the interface. The velocity amplitude decays
slowly with height with a value of more than 25 percent of the maximum amplitude at a distance of & scale heights
above the leva] of that maximum.

There is a discrepancy between the height of maximum velocity predicted here (z 100 km) and that predicted
in our earlier paper (NT, z 1000 km). Here the Alfvén velocity increases exponentially with height above the
photosphere, whereas in NT it increased linearly. Thus, the downward refraction of waves is much sironger in the

-

Bf B2-05

K, =01995 !
, Q.=3623
e A = 3000 km

T = 250 sec

K J
FiG. 3 ¥i6. 4
FiG. 3. The fir.t plus eigenmode evaluated for extreme values of 82 for sunspot penumbrae (see text): Jmax® = 5.0, Bmin” =

0.05. The quadranle represents the range of observational data. The crosses correspond to particular obscrvations (Giovanelli
1974).

FiG. 4. The distribution of vertical velocity and kinetic energy of the first plus eigenmode with nondimensional height z/#..
The velocity and energy are each normalized to value unity at the interface z[H, =0
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present model. The actual situation is probably somewhere between these two cases. In either case, the wave energy
lies mostly below the height of maximum vertical velocity, in the convection zone and low photosphere.

V. CONCLUSIONS

The present results, taken together with our earlier work (NT), indicate that running penumbral waves should be
identified with the lowest plus mode of trapped magneto-atmospheric waves in the penumbra. The vertical trapping
is primarily due to the increasing Alfvén velocity up into the chromosphere and the increasing sound speed down
into the convection zone. Most of the energy of the penumbral waves lies in the convection zone and low photo-
sphere, at the same level as the expected source of excitation (umbral oscillatory convection). The maximum wave
amplitude occurs somewhat higher.

The results also indicate that penumbral waves should be observable in a photospheric spectral line (see Fig. 4)

as well as in He. There is some indication of this in the observation of Beckers and Schultz (1972). Their data show
a 255 s period oscillation in the penumbra of one sunspot observed in a photospheric line. They present contours
of vertical velocity as a function of horizontal position and time (their Fig. 1) in which one may note horizontal
propagation outward across the penumbra at about the right phase speed. We plan further observations in a search
for penumbral waves in the photosphere.

Much of this work was done while we were guests of the Max-Planck-Institut fiir Physik und Astrophysik in
Miinchen, Germany. We are grateful to Professor Biermann for the hospitality of the Institut, and to Drs. H. U.
Schmidt, Friedrich Meyer, John Stewart, and Tadashi Hirayama for helpful discussions. We also thank Professor
Alfred Clark, Jr., at Rochester for helpful comments. One of us (A. H. N.) was supported by a National Science
Foundation Predoctoral Traineeship. This work was supported by Air Force contract F 19628-75-C-0011 through
Sacramento Peak Observatory, and by the Office of Naval Research.
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ABSTRACT
Simultaneous observations have been made of velocities in the chromosphere (in Ha) and in the
photosphere (in the nonmagnetic Fe 1line A5576) of three sunspots. The results reveal waves propa-
gating horizontally outward across the penumbra in the photosphere with about the sume period
as the running penumbral waves in Ha (250-290 s). The photospheric waves are more intermittent
and have higher horizontal phase velocity (by a factor of 2 or more) than the chromospheric penum-
bral waves.
Subject headings: hvdromagnetics — Sun: atmospheric motions - - Sun: sunspots
I. INTRODUCTION For a maximum vertical velocity of order 1 km s!
One of the most interesting recent discoveries con- in He (Giovanelli 1974), the theory (Nve and Thomas
% T H 3 : % : Z 07 07 «1 LV '.‘ relocities of » ( g—1!
cerning the dy namics of the solar atmosphere is that of o ,1)’)6).1””11““ \ut}(}:l > "1“‘ Hics ol "rdf r ‘ 0 el
waves observed in Ha that propagate outward across QEgicd et . ”}c photosphere; thus, penumbral waves
- : : »observable in ¢ tospheric spectr .
sunspot penumbrae. These “running penumbral waves” ;‘S:’,“ld 1153‘1?(‘ e ‘f’l‘ 1.n] 1 l;‘h" ‘jr“l)h“‘ EiC ‘P‘“ r ”} line
{or simply “penumbral waves”) were discovered inde- h‘s pre (;“;"“ I’””}”P‘.“ 11 < “I‘!““““”“"“-‘ ]}}’1101”'
5 rprt e - e . TiC & O ‘ric observ: S re » Te.
pendently by Zirin and Stein (1972) and by Giovanelli spheric and chromospheric observations reported here
(1972, 1974). They are often seen in large sunspots with 1. OBSERVATIONS
3 a stable, regular penumbra, and their observed hori- Wi e e Sh Peak o oy |
b zontal ])hilSt‘ velocities are in the range 8 25 km s—t, ¢ used the Sacramento Peak vacuum tower tele-

periods in the range 150-270s, and horizontal wave-
lengths in the range 2300-3800 km. The associated
motions are largely vertical (i.e., normal to the solar
surface).

The nature of the wave motion indicates that com-
pressibility, buoyancy, and magnetic field all play a role
in penumbral vaves. The observed phase velocities are
indicative of conditions in the penumbral photosphere
rather than the chromosphere. (For example, the Alivén
speed at height of formation of Ha is much larger than
25 km s 1. This suggests that penumbral waves are a
photospheric phenomenon. We have given a theoretical
description (Nye and Thomas 1974, 1976) of penumbral
waves as magnetoatmospheric waves that are vertically
trapped at photospheric levels, the trapping being due
to refraction by the increasing Alfvén speed up into the
chromosphere and the increasing sound speed down
into the convection zone. The waves are evanescent at
heights of forma ion of He, but have their largest ampli-
tude there due to the rapid decrease in density with
height. The wave energy is mostly in the photosphere
and subphotosphere, which is also the location of the
probable source of excitation of the waves, namely,
overstable convection in the umbra (Musman 1967
Savage 1969; Maore 1973)

* National Rescarch Council Resident Research Associate
T Also with C. E. Kenneth Mees Observatory.

scope (Dunn 1969), echelle spectrograph (Dunn 1971
and the diode array (Dunn and Spence 19731 to obtain
spectral scans in a manner similar to that of Musman
(1974). At each position of a two-dimensional raster we
recorded on magnetic tape the irtensity measured at
40 equally spaced wavelengths in « spectral interval of
1 A centered about the nonmagnctic line of Fe 1 at
A5576.099. This line is formed in the upper penumbral
photosphere. Altrock et al. (1975) s ate that in the quiet
photosphere 90 percent of the line center contribution
function is formed between 250 and 330 km above
optical depth unity at 5000 A. We assume a similar
behavior for the penumbra. Each measurement is lim-
ited by a 1”7 (700 km) aperture and is performed in 2/135
of a second. Each scan line contains 40 positions with
1”7 spacing. Each raster contains three adjacent lines
with 1”7 spacing and takes 25.4 ¢ to complete. The
raster was positioned visually such that the center scan
line passed through the center of the sunspot umbra in
each observation; in this way, propagation along the
scan lines corresponds to radial propagation across the
sunspot. A typical run consisted of 04 scans covering a
time period of 27 minutes. After each scan the image is
returned to the center of the raster and an Ha photo-
graph of the slit jaws is taken. Th's process occupies
about § s of the total scan time. These Ha photographs
were later combined to form a movie.

Velocities are obtained by locating the center of the

s
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line profile by interpolation on a smoothed line profile
as described by Musman (1974). All velocities are re-
ferred to the mean velocity of each raster. We wveraged
the velocities of the three adjacent lines in order to sup-
press the noise in a single measurement and obtained
the equivalent of one 40-point scan line. Since the velog
ity is measured at a slightly different time and we scan
an odd number of lines in alternate directions, a per-
fectly uniform oscillatory pattern on the Sun ¢ould give
rise to an apparent phase velocity in the dir:ction of
scanning of the odd-numbered lines. However this ap-
parent phase velocity is greater than 3000 kms™! and
introduces a negligzible error in measuring phase veloc-
ities two orders of magnitude smaller.

We observed two sunspots in McMath regions 13873
and 13890 on 1975 October 5-9 and October 16-19. Pre-
liminary observations were also obtained for a sunspot
in McMath region 13738 on 1975 June 28-july I, but
detailed results will be given here only for the later two
spots.

I11. RESULTS

a) Chromosphere

When the Ha sht-jaw pictures are projected as a
movie, the running penumbral waves are most con-
spicuous for McMath region 13875. The waves appear
continuously for a:l observations of this sunspot over a
period of 5 days. They have an average period of 240 +
10s and propagation velocities in the range from 10-
18 km s~!. These waves then appear to be typical, con-
sistent with the observations of Zirin and Stein (1972)
and Giovanelli (1972, 1974).

On viewing the Ha movie of McMath region 13890,
one has the impression of waves propagating outward
across the penumbra, but the pattern is not distinct
enough to make measurements of periods or velocities.
There is no indication of running penumbral waves in
McMath region 13738, but the time interval between
pictures is longer in that observation, making the waves
more difficult to detect.

b) Photosphere

To determine the reliability of the N5576 velocity
data, it was first necessary to determine the noise in the
signal. To do this, a series of scans was made out of
focus, giving a uniform solar signal. From this the noise
was found to have nearly equal power at all frequencies
with rms velocity on the order of 20 ms~!. We also
measured a nearly uniform spectrograph drift of 21 mA
hr 1. The average value of each scan was subtracted to
remove the effect of the spectrograph drift. Next, the
time series for each of the 40 points in the scan was
analyzed. The mean for each time series was removed.
This eliminated the conspicuous effect of Evershed flow.
The best estimate of the true signal was obtained by
using a bandpass fiite: in the manner described by
Brault and White (1971). The filter removed high-fre-
quency (period < 70 s) noise plus a very low-frequency
(period > 800 s) drifi due to an instrumental problem
in the diode array. The power spectra for the unfiltered
data are essentially flat for high frequencies, which is
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indicative of white noise and consistent with the out-
of-focus data.

The filtered data clearly show 5-minute oscillations in
the portion of the scan outside of the spot. The data
also show 5-minute oscillations in the umbra, with
typical amplitudes of S0 ms!; but since these are
usually 180° out of phase with the oscillations outside
the spot, we suspect that this is a systematic error due
to referring all velocities to the average of each scan.
Repeating one of the scans with a velocity referenced
to the average umbral velocity in an attempt to remove
this effect does not significantly change the results re-
ported below. The error in velocity reference is opposite
to the effect of scattered light, which would give oscilla-
tions in phase. We looked primarily for horizontally
propagating waves in the penumbra resembling those
observed in Ha. Neither scattered light nor an inaccu-
rate velocity reference could introduce such a systematic
propagation.

The filtered data show oscillations in the penumbral
photosphere, but not in the form of a continuous out-
ward-propagating wave train sometimes seen in Ha.
There do appear, on four occasions, what we term
pennumbral photospheric events. These are isolated wave
packets that propagate outward across the penumbra.
The packets consist of one or two complete oscillations
whose period (250-290 s) is comparable to that of the
chromospheric penumbral waves. Figure 1 shows an
example of one such event, as illustrated by the time
history of the line-of-sight velocity at each scan point
across the penumbra. The heliocentric angle of the sun-
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F16. 1.—An example of a penumbral photospleric event (event
3 in Table 1). The time records of the filtered velocity signal at
points across the penumbra are shown. The numbered scan posi-
tions (with 1” spacing) correspond to those shown in Fig. 2.
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spot during each of the four events was roughly 30°, so
that line-of-sight velocities were predominantly vertical.
The amplitude of each of the four events is nearly an
order of magnitude larger than the rms noise. There
may have been a fifth event in McMath region 13738,
but it occurred too near the beginning of the record to
be identified unambiguously.

The horizontal phase velocities of the four events are
in the range 37-90 km s ! Individual phase velocities,
amplitudes, periods, locations, dates, and times of the
four events are listed in Table 1. The locations given in
Table 1 refer to the numbered positions across the sun-
spot shown in Figure 2, which also shows plots of the
continuum intensity across the scan. The times given
in Table 1 refer to the central time of each event. This
is the time when the maximum amplitude of each wave
packet passed the central location in its range of propa-
gation. The periods listed in Table 1 are consistent with
the data of Beckers and Schultz (1972), who found
power at 255 s in the penumbral photosphere of the sun-
spot they studied.

To determine whether these penumbral photospheric
events could have been due to chance, we calculated

McMath Region 13890

g

)
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N
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w
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McMath Region 13875

F16. 2.—Cont:nuum intensity versus position across the scan
for the two sunspots in Table 1. The numbered scan positions (0-
40) have 1” spacing.
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the probability that the phase of a scquence of inde-
pendent oscillators with the same frequency but ran-
dom phase could combine to form an apparently propa-
gating wave. This type of problem has been treated by
Roach (1968). The probability of having the phase
differences of five random oscillators out of 40 within
207 is 5 X 104, We analyzed in detail six independent
sets of data from six different days and two sunspots,
for a total time of 2.7 hours. All four events extended
over five to seven positions and are statistically sig-
nificant.
IV. CONCLUSIONS

Our observations at chromospheric and photospheric
levels in three sunspots lead us to the following conclu-
sions:

1. Typical running penumbral waves were observed
at chromospheric levels.

2. At photospheric levels we observed statistically
significant events consisting of isolated wave packets
(one or two complete vscillations) propagating outward
across the penumbra. Four events were seen during 2.7
hours of observation. The period of these oscillations is
comparable to that of the penumbral waves in Ha. The
existence of these events is a partial confirmation of the
prediction of Nye and Thomas (1974, 1976).

3. The waves observed in the penumbral photosphere
are more intermittent and have higher horizontal phase
velocity (by a factor of 2 or 3 or more) than the penum-
bral waves in Ha. Thus, the connection (if any) between
the penumbral photospheric events and the chromo-
spheric penumbral waves is unclear at present, and in
any event is more complicated than the resonant mode
model of Nye and Thomas (1976).

We thank G. Richard Mann, Horst Mauter, and
Howard DeMastus for help with the observations.
Jacques M. Beckers provided valuable criticism of the
manuscript. ]. H. Thomas was supported by Air Force
contract F 19628-75-C-0011 through Sacramento Peak
Observatory.

TABLE 1

PARAMETERS FOR THE PHOTOSPHERIC PENUMBRAL EVENTS

Horizontal
Phase
Velocity ~ Amplitude  Period Date and
Event Sunspot  Location* (kms™1) (ms™1) (s) Time (UT 1
Yoy v onnivind s 13875 21-27 90 220 204 10/6 75,
14:27:52
G/t o e L SR B8 13875 11-7 255 258 10/6/75,
14:22:08
e e 13890 25-31 265 252 10/16/75,
14:42:54
ot vt 13890 18-13 170 290 10/16/75,
14:26:53

* Location refers to the numbered scan positions in Fig. 2.
t Time refers to the central time of the event.
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I would like to say a few words about the theory of what I call
magneto-atmospheric waves, which also go under the name of magneto-
acoustic-gravity waves. These are waves that involve the combined restoring
forces due to compressibility, gravity, and the magnetic field. For many
waves observed in the solar atmosphere, all three of these effects are
important.

Nearly all work on magneto-atmospheric waves has been based on
linearized theory for a plane-stratified, nondissipative atmosphere.

(See Chiu 1971 for a discussion of the nonlinear case.) Wave propagation
is then determined by the vertical distribution of three parameters:
the sound speed e, the Alfvén speed Vys and the local density scale

height #. The theory is complicated by the fact that the medium is both




anisotropic and inhomogeneous. Gravity and the magnetic field each
introduce a preferred direction. The inhomogeneity influences wave
propagation most strongly through the rapid increase of the Alfvén
speed with height. k

The simplest approach to atmospheric wave problems is to find
a dispersion relation for plane waves. However, this approach has
not been very fruitful for solar magneto-atmospheric waves. Unless
all three wave parameters c, Vs and # are constant with height, we
can find only a "local" dispersion relation (MacDonald 1961; McLellan
and Winterberg 1968; see also Bel and Mein 1971; Michalitsanos 1973;
Nakagawa et al. 1973; Yeh 1974) that holds only for waves whose vertical
waveleng:h is much smaller than the smallest scale height of the un-
disturbed atmosphere. We can see how restrictive this approach is by
recalling that in the photusphere and much of the chromosphere the
density scale height is smaller than our limit of observational
resolution,

There is one special case, first studied by C.P. Yu (1965; see also
Chen and Lykoudis 1972; Nye and Thomas 1974), in which e, v, and # are
all constant. This is the case of an isothermal atmosphere with a
horizontal magnetic field that decreases exponentially with height as
exp (-z/2H). This leads to a global dispersion relation. However,
magnetic fields on the sun usually vary more s]ow}y than the density,
so this case has limited applicability.

Perhaps the simplest model atmosphere for solar magneto-atmospheric
waves is an isothermal atmosphere with a uniform magnetic field. In

this case the sound speed ¢ and the density scale height H are constant,
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but the Alfvén speed increases exponentially with height as e
rapid increase of Alfvén speed with height causes strong refraction and
downward reflection of waves, which can not be adequately discussed with
the local dispersion relation. We must go back to the basic wave
equations with variable coefficients, for which solutions have been
found in certain cases.

Approximate solutions for the case of a uniform vertical magnetic
field were first given by Ferraro and Plumpton (1958; see also Weymann
and Howard 1958; Stepien 1967). There are three types of wave modes
in this case. One is an Alfvén wave having only nondivergent horizontal
motions. The other two modes have both vertical and horizontal motions,
and may be described as gravity-modified magneto-acoustic waves, or as
magneticelly-modified acoustic-gravity waves, depending on the relative
valves of the sound speed and Alfvén speed at some reference level.
Meyer (1968) used an approximate solution similar to Ferraro and Plumpton's
in a model for flare-induced coronal waves, or Moreton waves. In his model
the chromosphere-corona transition region provides a lower reflective
boundary, and the resulting trapped modes of gravity-modified fast waves
are identified with the coronal waves.

For the case of an isothermal atmosphere with a uniform horizontal
magnetic field, Alan Nye and I (Nye and Thomas 1976a) have recently
given an exact solution for the wave modes. The wave equation in this
case transforms to the hypergeometric equation, and solutions can be
expressed in terms of hypergeometric functions. We applied this

solution to a model of flare-induced coronal waves similar to Meyer's,
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but with the magnetic field horizontal instead of vertical. The
resulting trapped modes propagate horizontally, with very little
dispersion for all horizontal wavelengths less than about 100,000 km
(see Fig. 1). Thus a flare-induced pulse will propagate horizontally
over large distances with little distortion, as is indeed observed.

We have also used our exact solution in a model for running
? penumbral waves (Nye and Thomas 1976b). The model consists of an
upper isothermal layer with a uniform horizontal magnetic field,
representing the penumbral photosphere and low chromosphere, and a
lower aciabatic layer with no magnetic field, representing the under-
lying convection zone. The penumbral waves are identified with fast
modes that are trapped by the increasing Alfvén speed above and the
increasing sound speed in the convection zone below. Figure 2 is
a diagnostic diagram showing computed eigenmodes for a typical
penumbra, along with the range of observed frequency and wavelength
of penumbral waves. There is good agreement between observations and
the lowest eigenmode. Based on the form of the eigenmode, the theory
predicts that penumbral waves, which were discovered in Ha, should also
be observable in the photosphere. This prediction was recently confirmed
by Steve Musman, Alan Nye, and myself (Musman, Nye, and Thomas 1976) in
observations with the tower telescope and diode array at Sacramento
Peak Observatory.

I want to mention briefly one other aspect of magneto-atmospheric
waves which I have been working on recently. In the case of a horizontal

magnetic field there is a singularity in the basic wave equation at a




height at which

When ¢ or vy, OF both, vary with height, then for slow waves of a
certain frequency w and horizontal wavenumber kx there exists a
critical height 2, at which this relation is satisfied. In the local,
or WKB approximation, the vertical wavenumber becomes infinite at
the critical level, and waves take an infinite time to reach this level;
thus, the critical level acts as an absorbing barrier for waves. But in
fact the WKB approximation breaks down at the critical level, so this is
not an adequate discussion.

This phenomenon is similar to the critical levels that occur in
the stability of inviscid shear flow (Lin 1966) and in the propagation
of internal gravity waves in a shear flow (Booker and Bretherton 1967).
In the present case the singularity is logarithmic and the singular
point is thus a branch point. We can use the technique of Booker and
Bretherton to decide on the proper branch of the solutions and to connect
solutions above and below the critical level. The conclusion is that
waves are not completely absorbed, but are attenuated as they pass through
the critical level. The attenuation is algebraic, rather than exponential
as in the case of internal gravity waves in a shear flow. Energy is
absorbed by the mggn magnetic field. If the undisturbed magnetic field
is slightly inclined to the horizontal, the attenuation is reduced. The

critical level phenomenon may be of importance in the energy balance

of the chromosphere and corona.
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Fic. 1—Phase velocity v, and group velocity v, of the first mode of coronal oscillation plotted as a function of horizontal
wavenumber.
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Fici. 2.- -The first five plus eigenmodes and the only minus cigenmode of the two-layer penumbral model for B2 = 0.5, y, =
Y2 = SlJ.l Th;;;uadranglc represents whe range of observational data (see text). The crosses correspond 1o particular obscrvations
(Giovanelh 1974).
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