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vertically trapped at photospheric l evels. Al though most of the wave energy
is contained in the penumbra l photosphere and subphotosphere , the maximum
vertical veloci ty occurs in the chromosphere where the waves are evanescent
(and where they are observed in Hct).

An exact analytica l solution for magneto-atmospheric wave modes is found
in the case of an isotherma l atmosphere permeated by a uniform horizontal
magnetic field, without making the usual short-wavelength approximation.
This solution is applied to an idealized model of the low-corona-chromosPhere
transition region as a model for flare- i nduced coronal waves. Disturbances
propagate horizontally in the waveguide formed by the rapid density increase
into the chromosphere below and the rapid increase in Al fvén speed into the
corona above . -

—
~ The exact solution mentioned above is also used in conjunction with a

simpl e two-layer model of a sunspot penumbra to further study the mode of
running penumbral waves. The lowestfplu s”eigenmode of the model is in
good agreement with observations of penumbral waves. -

The theory of penumbral waves devel oped here predicts that these waves
should be observabl e in the photosphere as wel l as the chromosphere. This
predi ction prompted a search for penumbral waves in the photosphere, carr ied
out wi th the tower telescope and diode array at Sacramento Peak Observatory.
Simultaneous observations have been made of vel ocities in the chromosphere
(in Hc&) and in the photosphere (in the nonmagnetic Fe I line X5576) of
three sunspots. The results reveal waves propagating horizontally outward
across the penumbra in the photosphere with about the same period as the
running penumbral waves in Hc~ (250-290 s). The photospheric waves are more
intermittent and have higher horizontal phase velocity (by a factor of 2 or
more) than the chromospheric penumbral waves. The connection between the
photospheric and chromospheric penumbra l waves is unclea r at present, and in
any case is more compl icated than the resonant mode model presented here.
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THE NATU RE OF Rt ~~~~i~~C PENUM B RAL W A V E S

A L A N  H. NY E and JOHN H. THO MAS ’
Mu.I—Pkulcl. —hzsutI , I für Phi.s ik tint! ..4.strophi ’sil. . Munich , G,’rniw,i

( Received 22 March; revised 25 June, 1974)

Abstract. A model of a sunspol penumbra, including the eliects of magnetic field, compressibility, and
buoyancy, is studied in order to identify the mode of running penumbral ~aves. It is found that the
penL.mbra l waves may be identified with gravity-modified magneto-acoustic ~ avcs of the ‘plus ’ type
that are vertically trapped at photosphcrtc levels. Alt hough most of the v.ave energy is contained in
the penumbral photospherc and subphotosphere, the maximum verti cal velocity occurs in IhC chro-
mosphere where (i) the waves are evanescent and (ii) t hc vertical velocity is in fact observed (in H s .

I. introduction

Recent observations have disclosed an interesting pattern of velocity fields in sun-
spots. The most recent discovery is that of waves propagating radially outward in

sunspot penuinbrae (Zirin and Stein , 1972: Giovanelli, 1972). Zirin and Stein refer to
these waves as running penumbra) waves. With the further observations of Giovanelli
(1974), we now have a fairly clear picture of the properties of these waves. The purpose
of this theoretical paper is to study possible wave modes in a model of a sunspot
penumbra in order to identify the mode of the running penumbral waves. We shall
argue that the running penumbral waves are gravity.modThed magneto-acoustic
waves (of the ‘plus’ type) that are verticall y trapped at photospheric levels.

Giovanelli ((974) has summarized the observations of running penumbral waves,
and he presents the following picture. The waves are observed in H~ by means of
their line-of-sight velocity. They occur in almost every sizable spot with a regular
stab le structure , but only rare ly in active spots with complex structure. The waves
trave l outward in the penumbra at a typ ical speed of 15km s~~ . The observed waves
have periods in the range 180-240 s and horizontal wavelengths in the range 2350—
3800 km. Observations near the limb have failed to reveal any hor izontal motions
assoc iated w ith the penumbral waves , so the wave motion is predominantly vertical
inH~ .

Thus far no detailed theoretical study of the mode of the running penumbral waves
has appeared, although Moore (1973) has studied the related problem of the genera-
tion of penumbral waves in the umbra. Zirin and Stein (1972) ~tentat ivel y identified
the penumbral waves as sound waves , whereas Giovanelli (1972, 1974) identified them
as Alfvén waves. The penumbral waves , w ith their predominant vertical motions, no

uoubt involve the combined effects of restoring forces due to compressibility, magnet ic

* Also National Science Foundation Predoctoral Trainee, Dept. of Mechanical and Aerospace
Sciences, University of Rochester , Roc hester . N.Y., U.S.A.
~~‘ On cave of absence from the Dept. of Mechanical and Aerospace Science~ and the C. E. Kenneth

- 
. Mees Observatory, University of Rochester , Rochester, N.Y., U.S.A.

Solar Phy.sic .~ 38 (1974) 399 4 13. 41/ Rights Reserved I(~opyr igIst 1974 hi’ 0. Reidel Publishing Company, Oordrech(-Hol land
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field, and buoyancy. and a comp lete t heory should account for all three effects. [his
is d~sne in the present paper.

In st ud ing penuinl r;il vs;iv es , we l~ice a difficulty, in that t here seems to he no
complete , general ly accepted petiumbra l m odel on which to base our calculat ions .
We h;is c therelore ci m ust tuc ted ;i pcnuirthr;il model f i r  usc it vi udving vsav e ittodes .
Ibis model (prcscnk’d mu Section 3) . whdc simple enough to periltit .inal~ Sis ol vs is e

mode s , nevertheless reproduces all ol the rcle’.aut features ul’ penumbral structure .
and is in reasonab le quantitative agreeiveu t sv ith observat ;on~. We have assumed the
penumbral magnetic held to be purely horizontal, but vary ing with height. True pe-
numbral magnetic fields are not purefy horizontal , although they may be very nearly
so (Nishi and Makita , (973). Thcre is some disagreement over the inclination of the
magnet ic field in a penumbra (see Beckers and SchrOter ((969) for a surnmar~ of
observations ). The assumption of a horizontal field here is mostly a mutter o) con-
venience~ t he basic mechanism we propose for the vertical trapp ing of penum bral
waves wi ll also work for an inclined field. W~ have a lso taken our model to be horizon-
tally uniform - that is, we have not tried to represent the horizontal filamentary
structure of a penumbra or the radial geometry.

In Sect ion 2 we present the basic equations for waves in our model penumbral
atmosp here. The basic atmosphere is completely characterized in these equations by
the vertical distribution of three parameters : the sound speed c, the Alfvén velocity
L A . and the local density scale height II. In order to illustrate the properties of the
var ious wave modes that can occur , we study the dispersion relation that holds in the
case of constant c. VA , and H. In Section 3 we present the basic penumbral model in
terms of the distributions of c, L A, and H with height. In Section 4 we show that the
penumbral waves may be identified with ‘plus’ modes that are trapped in the photo-
spheric-subphotospheric region in our model. We discuss these modes further in
Section 5.

2. Basic Equations and Dispersion Relations

In our simplified treatment ofa sunspot penumbra we shall ignore t he radial spreading
of magnet ic field lines, and cons ider the undisturbed magnetic field to bc purel y
horizontal (in the x-direclion) and varying with height i.e., B0 = (B ~(:).  0.0).
We assume the field permeates an inviscid , perfectl y conducting. plane s;ratified
atmosphere with constant acceleration of gravity g (=0.274 km ~

_ 2
) in the negative

z-direction. The undisturbed pressure, density, and temperature are denoted by
p 0(z) , p0 (z) , and T0 (z) ,  respec tivel y. The atmosp here is in hydrostatic equilibrium.
so that

d (  B~\ (I)

We then consider small adiabatic perturbations of this equilibrium atmosphere .
We consider wave vectors only in the x: plane, and assume that the perturbation
velocity u =(u , e , se) has the form u=ü ex p i ( k ~x— w: ) , with u=u(z)= (z2 (z),  P ( :) ,

6
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i (z)). Starting w ith the linearized equations of continuity, energy, and momentum,
we can eliminate the pressure and density perturbations , and arrive at the set of three
linearized momentum equations lor the veloci iy components ü, ~~. and i’ , in which the
basic atmosphere is coutplete lv dess ri bed hs the vist ind speed e (:), the A lt ’vén ve locity
PA (:). and ilic local dei~sit~ scale licig lil /1 ( z ) .  dcliii~d h\

= (~Po~ 
I 

= 
I ‘~L’u (2)

Yeo )5 4ire0 H 
~

The linearized momentum equations are the following:

(w 2 
— c 2 k~) ü + ik~c’ 2 ik~gi ~ = 0 , ( 3 )

dz

(~~2 
— v~k~) 11 = 0, (4)

(c 2 + v~)
d
~~ + (c~ + v~) — + ( o 2 

— v~k~) ~‘ +

rdc2 c2 1 dü
+ ik~ I — — + g I ü + ik~c2 = 0. (5)

Ldz H J dz

We can eliminate the horizontal velocity components ü and D from the system of
Equations (3)—(5) to obtain a single equation for the vertical velocity si’, in the form

d2 s ’  d~- 2 +A ( z ) — + B ( z ) s~’ =0 , (6)
dz dz

where

A ( z )= _
H [ ai’ dc2

x [ v,~ (w
2 

— c2k~) + c2w2] ~~‘ (7)

and

B (z)  = [(w
2 

— v~k~) (~~ 2 
— c 2k~) — g (g — k~ —

— 9  X 
(

2 ~~~~~~~~~~~~~~~ 
— c2 k~) + c2w 2 ] _ t . (8)

With the transformation

i~i ( z ) = s ~( z ) exp {3 - 5 A ( z ) d z }  (9)

Equation (6) assumes the form

+ f (k ~, w; z) çb = 0, (10)

7
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where

f = B_ ~~A 2 _~~~
A

. ( I i )

Here. I~~ I
2 

is  roughl~ proport ional to the kinetic energy of wave motion. Equation
( 1 0) is the propagation equation for waves in an atmosphere with vertically varying
~.2 , ~~~~ and II. For given distributions ofc 2 (z ) ,  t ’ ,~ (z) ,  and 11 (z) ,  w e can u se the expres-
sion for J (z )  (E quat ion (I I  )~ to distinguish roughly between local regions where a
wav e with a particular frequency w and horizontal wavelength k , is vertically propa-
gat ing (J >0) or verticall y evanescent (f <0). We shall use this approach for our
penumbral model in Section 4.

The simp lest case to study is that of constant c 2 , z’~, and H. We shall consider this
case now in order to show the kinds of wave modes which can occur. Although this
case does not apply strictly to a real penumbra , or in fact to our penumbra l model, we
can nevert heless apply the resulting dispersion relation locally to get an approx imate
picture of the wave modes. We can also approximate a continuous vertical variation
of the parameters in the penumbra by a series of layers in which they are constant. In
the case of constant c2 , v~, and H. Equations (3)—(5) have constant coefficients, and
we can assume a solution of the form ü (z ) = ü  exp (ik ~z + z/ 2 H ) ,  where ü= (ü, 1, i~) is
a cons tant vector. Here , the factor e x p ( z / 2 H )  accounts for the fact that, to conserve
energy, the perturbation amplitude must grow as the density decreases. The system of
Equat ions (3)—(5) then becomes (cf.. Yu , 1965) :

(w 2 
— c 2k~) ü + ik~ [ 1k c 2 

— (~ — ii = 0 , ( 1 2)

(w 2 — t ~k~) f = 0 , (13 )

ik~ [/k c 2 + (g — u + 
[
~w 2 

— t~ h~ ) — (c 2 + v~) x

I 
~~~~~~~~~~~ (14)- 4H 2 ) J

The dispersion relation for waves is obtained from the condition for nonzero solu-
tions of the homogeneous system (l2)— (14), i.e., the vanishing of the determinant of
t ie  coefficients. This yields the dispersion relation

(w 2 
— t~k~) 

{
~~4 

— (~.2 ± t)~~) (k ~ + + 
4112) 

~~2 +

+c 2 v~k~ (k ~ ÷k ~~+ 4~~2) _ 9 ( 9
_

~~ ) k~} =0 .  ( 15)

\Ve now discuss the var ious wave modes given by this dispersion relation, with some
ci) rirnents on their relation to running penumbral waves.

8
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2. 1. Tini PUR E ACOUSTi C MODE

The dispersion relation ( IS ) is satislied with w = c2 k~ for t he particular imaginary
“alue of k .  g isen by ik =( ( 211)— ( g e 2 ). From Eqwi t ions ( l2 ) -- ( (4) we see the cor-
responding motion has ü�0, w hereas i~=i~=0. This mode is thus a purely compres-
siona). acoustic mode with dispersion relation identical to that of a homogeneous
isothermal gas. This can occur since the motion ‘. horizontal and parallel to the
magnet ic field, and t hus there is no contribution from buoyant or magnetic forces.
The amplitude behaves as

U = ü exP[ ( 

~ 
— :~) 

:].
and thus grows exponentially with height (since H <C 2 ‘g for stability of the unpertur-
bed atmosp here (Yu . 1965)). The total momentum and energy are finite , how ev er,
provided there is a lower boundary confining the motion to a semi-infinite range of: .
This mode is identical to the Lamb mode in the non-magnetic case, except that here
the scale height H is modified by the magnetic field. Since this mode has no vertical
motion, it can not be associated with the running penumbral waves.

2.2. THE PURE ALFVEN MODE

A root of the dispersion relation ( 15) .  for arbitrary k ., is given by w2 = v~k~, which is
t I~e same as the dispersion relation for a pure Alfvén wave in a homogeneous atmos-
phere with uniform magnetic field. With w 2 =v~k~, howeser , the other factor in the
dispersion relation (15) is in general riot zero, and thus Equations (12)—(14) show that
the motion has i~~0, whereas ü=~ ’=0. The motion is purely horizontal and purely
t ransv erse to the magnetic field. Thus, the pure Alfvén mode in a stratified atmosphere
is.. so to speak , ptane polarized , with no vertical motions. With ~ =0 there is no con-
tribution from the buoyancy force, and, further, with Q=0 the motion is incompres-
sible, so the wave behaves as a pure Alfvén wave (with the ampli tude factor
ex~~(:’2 H)). Again, since this mode has no vertical motions, it can not be associated
with the running penumbral waves. W e turn now to the remaining roots of the dis-
persion rela t ion (15) ,  which do permit vertical motions.

2.3. THE PLUS AND M I N U S  MODES

The remaining roots of the dispersion relation (15) are given by

W~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (16)

We shall refer to these two modes as the ‘plus’ and ‘minus’ modes. These modes
invol ve the interaction of all three restoring forces: buoyant, pressure, and magnetic.

9
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They reduce to more familiar ssave modes in certain limiting cases. For example , in
the limit of vanishin g magnetic field ( t A —.0) they reduce to the acoustic and gravity
modes of an isothermal atmosphere (see, for examp le. Thomas ef a!., 1 971). Alter-
native ly, in the limit of no stratification (H —. ‘i , ,q —.0 ), they reduce to the fas( and
slow magnetoacoustic s~as es tn a homogeneous atmosphere (see, for examp le, Oster-
brock, 1961) . For intermedt ate cases (such as for penumbral conditions), we can look
at the modes as being either magnetically modified acoustic-gravity waves or gras it’s-
modii.ed magnetoacoust ic waves. We shall continue to use the terms plus and minus
modes here.

The plus and minus modes, for k = 0 , are shown schematically in a diagnostic
diagram in Figure I. The asymptotic behavior of the dispersion relation (16) for
k~=0 is such that

2 ~ +V A 2w. —. 0 for k , —. 0 , ( (7)

~5nd

—‘ k~ max (c 2 , vi), cu~. —. k~ mm (c 2 , v~) for k~ 
—+ 

~~~~ . (18)

W 
w~.k~ mox(c~,v i -~

/
/ /

~ * ~~z /

2 HV/

/ ~~ 
- k~ mm (c a,V )

/ v~~

Fig. t. Schematic diagnostic diagram of the plus and minus modes, showing curves for k , -=0(soLd lines). The plus mode has a finite cutoff frequency as k~,, —~-o. For k~-.-~ , the plus and minus
modes approach the dispersion lines for the pure acoustic and pure Alfvcn modes. For strong stratifi-
cation and weak magnetic field, the minus mode approaches the line o = k~vA from above rather

than below.
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lit the di agnostic ~li.i gratsi ti igure I). th ere arc verticall y-propagating waves (k -~ 0)
above t he t i , curve and below the w curve , and evanescent waves (k ~ <0) in the
region between t he two curves .
The plus mode has a finite cutoff frequency o1 (w ,) , = (c 2 +r .~) i 2 / 2H as k~ —. 0.

Estimates of this cutoff frequency at photospheric levels in a penumbra give values
just a little lower than the frequencies ot penumbral waves. This suggests that the
penumbral waves might he iden tified with plus modes. We shall show this in more
detail through the use of our penumbral model.

3. The Penumbral Model

We now present t he penum bral model to be used in our wave calculations. For our
purposes , a penumbral model consists of specified distributions of c2 , v.~, and H wi th
height z. To simp lify the calculations, we have chosen to represent the expected verti-
cal variation of these parameters by piecewise linear functions. The specified forms
of c2 (z), v~ (z) ,  and H (z) are sho wn in Figure 2. The important features of the model
are as follows. The sound speed increases with depth into the convection zone from
a broad minimum in the penumbral photosphere and chromosphere. The Alfvén
veloc ity increases rapidly with height due to the nearly exponent ial decrease of
den sity while the magnetic field decreases nearly linearly. The density scale height
increases on either side of a mini mum in the penu mbral photosphere and low chromo-
sp aere. The model thus reproduces the main expected features of vertical penumbral
structure. The numerical values of the parameters were chosen to represent a typ ical
penumbra.
The distribution of the sound speed was determined primarily from the expected

temperature distribution. Kjeldseth Moe and Maltby (1969) report that the tempera-
ture T in the penumbra may be obtained by adding a constant AU =0.055 to the 0
values of the quiet photosp here , where 0= 5040/ T. With this AU, the calculated relative
intensities averaged over the penumbral fine structure agreed well with observations.
Kjeldseth Moe and Maltby used the Bilderberg Continuum Atmosphere (Gingerich
and de Jager , 1968) for their quiet photospheric temperatures; here, we use the more
recent Harvard-Smithsonian Refere nce Atmosp here (HSRA , Gingerich el a!., 1971).
Using the constant 40=0.055, the penumbral temperature minimum is found to be
3989 K, yielding a minimum value of the sound speed squared of c2 =43.5 km2 ~~2 ,
The slope of the linear increase of ~.2 into the convection zone was taken to be 0.1
km 5 _ i ; this choice is also based on the behavior of the HSRA. The distribution of
sound speed (in km s ’) is given by

2 (63.5—0.1: z~~ 200
c (z) =

143 5 z>200 . (19)

At some point in the penumbral chromosphere the sound speed will increase rapidl y
to coronal values. However , this increase takes place above the region where the
penumbral waves are trapp ed in our model, so we have not included this in the model.

11
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—2z~10 (km)
-10 -8 -6 -4 -2 0 2 4 6 8 10

— 250 k
200 k
150

700
600
500

lOO L

~~ -8 -6 -‘ -2 0 2 4 6 8 ~
z.10~ (km )

Fig. 2. Dtsiributton of ( 2 , 1A .  and H with height in the penumbral model (solid lines). The data
(cro’scs) for 1 A are based on penumbral observations (see text ) . Data points for quiet photospheric
va luis of c 2 and H, based on the HSRA . are shown only for comparison with the penumbral mood .

The distribution of c2 is shown in Figure 2. aloiig with quiet atmospheric values of c2

from the HSRA (Nakagawa. 1973) for comparison.
To determine the A lfv én v elocity , we assumed that the magnetic field strength

decreases linearl y with height and is 1000 G at z=0. The rate of decrease of field
strength with height was taken to be 0.2 G km ~, in accordance with observations (see
t ray and Loughhead, 1964). The photospheric densities were estimated from the
penumbral model of Makita (1963), the only penumbral model to give densities. His
densities are consistent with more recent quiet photospheric models. The resulting

12
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values of t~ are plotted in Figure 2. The vertical distribution of these points wa s
approximated in our model by two strai ght-line segments, with the upper segment
extrapolated to gre ater heights. In the convection zone, the Alfvén velocit~ w as
approximated h another strai ght line segment which goes to zero at := — 500 km.
due prim arily to the increase in density with depth , but also to the fact that the penum-
l.~ral field probably lies over the convection zone. The resulting distribution of the
Alfvén velocity (in km s~~) is given by

0 :<_ 500

— 
25 ± 0.05: — 500 ~ - <0 2025 + 0. 1 72: 0~~:~~ 400
94 -s- 0.75 ( z — 4 0 0 ) :>400 .

The distribution of the local density scale height H (in km) with height was chosen
te be

230 — 0.375: : < 200
H ( :) =  155 200~~ :<400 (2!)

I l 5 5 + 0 . 5 5 (z — 4 0 0 ) :~~ 400.

l r .  choosing values for H, we were guided by the following expression for the vertical
ertropy gradient in the atmosp here :

ds ~c ic  ~f 2 z~ \ I d fv~\1= I t c + I — 9 — I I I , (22)
d: fiT L~ 

2 ) H  d:\2)J

where ç is the specific heat at constant volune, K is the isothermal compressibility,
and (I is the coefficient of thermal expansion. This relation follows from the hydro-
static equat ion I) and the basic thermod ynamic relation

Td s = ( d p — c d Q ) .  (23)

The distribution off/ given in (2 1)  is such that the entropy gradient d id: is negative in
the upper convection zone and positive in the penumbral photosphere and chronto-
sphere. The distribution of // is shown in Figure 2, along with quiet atmospheric
va lues of H from the HSRA (Nakagawa. 1973) for comparison. Here we can see the
effect of the supporting magnetic field ; the scale height is greater in the penumbra
than in the quiet atmosphere. The effect of the magnetic field increases as the density
decreases.

4. Trapp ing of Plus Modes in the Penumbral Photo sphere

We mow shovv that the running penumbral waves can be identified in our model with
plus modes that are vertically trapped at photospheric levels. The basic mechanism for
the trapp ing is the refraction due to (i) the increasin g Alfvén velocity with increasing
height in the photosphere-low chromosphere, and (ii) the increasing sound speed with
deptn in the convection zone. We shall demonstrate the trapping mechanism in two

13
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way s : first , by considering the local dispersion relation (16) at three distinct levels in
the model penumbra (assuming locally constant parameters), and second, by con-
sidering the propagation equation (10) for the complete continuous penumbral
model (Figure 2).

4.1. THREE-LEVEL MODEL

A convenient method of looking at wave modes in our model is to draw diagnostic
diagrams such as Figure I for various hei ghts in the atmosphere , assuming locally
constant values of c 2 , v~, and H — that is, ignoring the derivatives of these parameters
in Equation (3)—(5). Although only approximate, this method does give some feeling
for the behavior of the wave modes. We shall draw diagnostic diagrams for three
different levels in our model penumbra ; one in the convection zone, one in the
photosphere, and one in the chromosphere . We may interpret these diagnostic

X’10 3(km)

kr .103 (km 1)
Fig. 3. Superimposed diagnostic diagrams for values of c2 , VA

2
, and H at three different levels in

he model penumbra : level, I z = — 1400 km; level 2,: -- 50 km; level 3, = 500 km. The shaded
region is a region of vertical trapping of plus modes around level 2. The crosses correspond to

observed running penumbral waves (Giovanelli, 1974).
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diagrams more properly as representing a three-layer model of the penumbra. w here

in each layer the parameters are con stant. A middle layer of finite thickness represent-
ing the penumbral photosphere is bounded above and below by semi-infinite layers
representing the penumbral chromosphere and convection zone, respectivel y.

Figure 3 shows diagnostic diagrams for values of ( , ~~~ and I! at three different
levels in the penumbral model : := — 1400 km (layer I, convection zone), := —50 km
t layer 2. penumbral photosp herel, and :=50() km (layer 3, penumbral chromosp here).
The important feature of this figure is the existence of the shaded region in which the
plus modes are verticall y propagating in layer 2, but are vert ically evanescent in
layers I and 3. These modes are thus trapped in layer 2. The plus mode diagnostic
cur v e for layer 3 lies above that of layer 2 because of the higher Alfvén velocity in
layer 3. For higher levels in the chromosp here, the plus mode curve for layer 3 will be
higher than that shown. The plus mode diagnostic curve for layer I has a lower cutoff
frequency than layer 2 due to the larger scale height in the convection zone, but lies
above the curve for layer 2 for higher values of k, because of the higher value of c2 in
layer I. For deeper levels in the convection zone, the plus mode curve for layer I will
have an even lower cutoff frequency and a steeper slope. The existence of the region of
t apping in the diagnostic diagram is a consequence of the qualitative features of our
model and is not dependent on the particular choice of numerical values.

There is no trapp ing of minus modes in Figure 3. All the minus modes propagating
iii layer 2 are also propagating in layer 3. The minus mode curve for layer has
vanished since the Alfven velocity is zero and the atmosp here is convectively unstable
at that level.

Also shown in Figure 3 are four data points corresponding to penumbral waves
observed in different sunspots by Giovanelli (1974) for which he gives specific wave-
length and periods. These points tend to cluster in the long-wavelength end of the
shaded region of trapping of the plus modes. The one point which lies outside the
shaded region does lie in the region of trapp ing if the parameter values in layer I are
chosen to represent a lower level in the convection zone. That is, a wave of this fre-
quency and wavelength is reflected at a lower level in the convection zone in our
model. This data point is considered atyp ical by Giovanelli, however. The observation-
al data correspond to different sunspots , no doubt having different field strengths,
whereas the diagnostic curves are for a single choice of the model parameters. Never-
theless, the resulting picture in Figure 3 clearly shows that the running penumbral
waves should be identified with plus modes which are vertically trapped at photo-
spheric levels in our model.

4.2. CONTINUOUS MODEL

We now illustrate more accurately the trapping of the penumbral waves by making use
of our complete penumbral model (Figure 2) in conjunction with the propagation
equation (10). Roughly speaking, a wave is vertically propagat ing when the function
f ( i:~, w; z) (Equation (II)) is positive, and is vertically evanescent whenf is negative.
In Figure 4 we have plottedf as a function of z for our penumbral model (Figure 2) for
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8 T 0 T — r  T T ~~~~~~~~~~~~~~ T~~~~~ I I

10~ (km)

Fig. 4. The function f(k~, (o: :) evaluated for the penumbral model (Figure 2) with k~, = 2 ~ I0— ~km ~, (‘) = 3 x I0~~ s~
1.

a typical value of horizontal wavenumber (k~=2x  I0-~ km ’) and frequency
( w =3 x  1 0 2  s~~ ) for penumbral waves. The function f (z) is discontinuous due to
the discontinuities in the first derivatives of the parameters c2 , v~, and H in our model.
Tha general behavior of f is that it is positive in a central region extending from

— 1000 km to roughly z~ 300 km. arid negative above and below this region.

~n the lowest order WKB approximation, the general solution to (10) is given by

~~(z) = exp [ t i f s J f d z j . (24)

1ff is positive for 0<: <z 0 and negat ive for z> z~, then the solution for z > z~ which is
bounded as z— P cI. can be written as

~ (z) = ex~ [ ±  i f ~ / f d z_  f ~ 
_ f dz] . (25)

Thus , for z>z 0, the solution has the form of an exponential decay (with variable
exponent ial factor), and the wave may be characterized as evanescent in the vertical
direction. This analysis is somewhat crude, however , since the WKB solution (24) is
not accurate in the neighborhood of z0. The same analysis applies to the case wheref
is positive for —z ~ <z< 0 and negative for z< — z~. The wave then becomes evanes-
cent as z decreases below — z~. Applying this to Figure 4, we conclude that a wave
with the specified horizontal wavelength and frequency is trapped roughly in the

16
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central region — 1000<: <300 where / is positive. The exact location of the upper
boundary of the trapping region is somewhat unclear due to the complicated dis-
continuous behavior of (there . This is due to the piecewise linear nature of our model;
with smoother distributions of c2 , v~, and H, the function f would have a single,
smoot h zero crossing at some :>O.

We have been discussing the behavior of the function ~ (z).  Comparison with the
case of constant parameters shows that ~~j

2 is roughly proportional to the kinetic
energy of vertical motion of the wave (o/ ~~ w). Thus, it is the kinetic energy that is
trapped in the region of positive f. The amplitude of the vertical velocity behaves
somewhat differe~. From Equations (9) and (25) we have, for z >z 0,

~~, ~~1i f s J f d z + Q (z )] ~ (26)

where

Q (:) = -~~f A d z- f ~~~- f d z .  (27)

The function A (z )  (Equation (7)) is negative over a range in z, and the function Q(z )
will remain positive over a range of z beyond Z

~ 
before becoming negative. Thus, the

vert ical velocity continues to increase above z~ before reaching a maximum at z=z~,
where z~ is determined from the relation Q(z~)=0. This can occur in spite of the
decreasing energy above z= z 0 due to the rapid decrease in density.

By numerically eva luating the integrals in (27), we have estimated the point z1 of
maximum vertical velocity in our model, again for the choice k~=2 x l0-

~ km ’ and
w= 3 x 10_ 2 s~~. The resulting value is z1 1250 km. This is at a level where the wave
is evanescent , and is well into the region of formation of H~ (Vernazza et a!., 1973).
Thus, although the trapped waves have their maximum energy at lower levels (z~~0)
w here the density is higher, the vertical velocity is greatest at chromospheric levels
where is it observed.

5. Discussion

An important conclusion that emerges from our model is that the running penumbral
waves are basically a photospheric phenomenon, even though they are observed at
chromospheric levels. This is really an expected result; the phase velocity of the
penumbral waves is typical of photospheric conditions rather than chromospheric.
For example, the Alfvén velocity at H~r levels in the penumbra is far greater than the
phase velocity of the penumbral waves. In our picture, the waves are evanescent where
they are observed. That is, the observed vertical motions are a passive response to an
act ively propagat ing wave at lower levels. We have shown that although the energy is
trapped at photospherie levels , the vertical velocity reaches its maximum value at
levels of formation of H~t, consistent with observations.

The concept of the penumbral waves as a photospheric phenomenon is also quite
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consistent w ith their espected source of excitation. Moore (1973) has shown that the
Iikel~ source of excitation of the penumbral waves is oscillatory convection in a sub-
photospheric layer in the umbra. The observation that the penumbral waves d~s-
appear suddenl y at t he boundary between the wh ite-l ight penumbra and the sur-
rounding photosp here also supports the photosp heric nature of the wave s . In the
chromosphere , t he penumbral libril structure extends outward beyond this boundary.

The bas ic mechanism for the vertical trapping of the penumbral waves is not sensi-
Live to the deta ils of our penumbral model. This mechanism is based primaril y on t he
increase in the sound speed as w e go down into the convection zone and the increase
in the A lfvén velocity as we go up into the chromosphere.These features are certain
to rema in in an~ improved penumbra l model. Observationall y. t he insensitivity of the
basic mechanism is confirmed by the fa’~ tb ~.st penumbra l waves are seen in almost
every stab le, regular sunspot (Zirin and Stein , 1972).

The character of the trapped plus modes is different at different heights . The wa v e is

more nearly acoustic at low levels (convection zone), but is more nearly A lfvénic at
higher levels (photosphere and low chromosphere). The effect of stratification and
grav ity, w hile not doirinant . is kIt throug hout t he trapp ing reg ion.

Although we have not attempted to calculate them, t here are certainly resonant
modes in our model w hich arise from the constructive interference of plus modes
reflected from above and below in the trapp ing region. The resonant dispersion curves
would lie in the shaded region in Figure 3. Hovvever . s ince the penumbral wa v es are a
somew hat transitory phenomenon, there is no reason to associate them specifically
w ith such a resonant mode : it is sufficient that a wave of the proper frequency and
horizontal wavelength be verticall y trapped.

Since our penumbral model is horizontally uniform, it cannot account for any
observed hor izontal (radial) variations in the penumbral waves. We can roughly
account for the radial geometry of the penumbra by noting that the energy in a verti-
ca lly trapped w ave will decrease as h r . w here r is radius measured from the spot
center , as the wave propagates radially outward. This accounts at least in part for the
observed decrease in wave amplitude w ith radius. The sudden disappearance of the
waves at t he outer edge of the penumbra is associated with the more fundamental
problem of the basic existence of the sharp boundary between the white-light penum-
bra and the surrounding photosp here.

Finall~. vve should note that our assumption of adiabatic ; erturbations is invalid
over a limited range of height in the low photosphere, say the first few hundred
kilometers abov e = 0. Here one should account for the rapid radiative exchange. The
ma in effect of the radiative transfer on the plus modes is to effectively replace the
adiabatic sound speed in this limited region by something nearer to the isothermal
sound speed. The overall effect on the trapped plus modes discussed here will be quite
small , even quant itatively.

Acknowledgements

This work was done during our one-year stay in the Max-Planck-lnstitut für Physik

18



-

~~~~~~~~~~~~~~~~

THE NATUR E 01 RUNNiNG PENUMBRAL WAVES 4 13

und Astroph ys ik. We wish to thank Prof. Bier mann for the hosp itality of the In-
st it ut . We are gratefu l to Drs T. Hiroyama , F. Meyer , and H. U. Schmidt for helpful
discussions. This work was sup ported in part by the U.S. Office of Naval Research.

References

Iteckers . J. M. and Schr Oier , E. H.: 1 969, Solar Phys. 10 , 384.
Ltray, R. J. and Loughhead, R. E.: 1964, Sunspo ts, Chapman and Hall , London , pp. 212—214.
Ginger ich . 0. and de Jager, C.: 1968, Solar Phy.c. 3, 5.
Gingerich . 0.. Noyes, R. W., Ka lkofen , W ., and Cuny, Y.: 1971 , Solar Phys. 18, 347 .
Giovanelli , R. G.: 1972 , Solar Phi’s. 27, 7 1 .
Giovane lli , R. G.: 1974 . in R. Grant Athay (ed ), ‘Chromospheric Fine Structure’. MU Synip. 56,

137.
Kje ldseth Moe. 0. and Maltby, P.: t969 , Solar Phys. 8. 275.
Mak ita , M.: 1963, Pub!. .lslron. Sac. Japan 15, 145.
Moore, R. L.: 1973 , Solar Phys. 23, 403.
Nakagawa, Y . : 1973, Solar Phys. 33, 87.
Nishi , K. and Makita , M.: 1973 , Pub!. Astron. Soc. Japan 25, 51.
Osterbroc k, D. F.: 1961 , Asirophys. J. 134, 347.
Thomas, J. H., Clark , P. A., and Clark , A., Jr.: 1971 , Solar Ploys. 16, 51.
Vernazza, J . F., Avrett , F. H., and Loeser , R.: 1973 , Astrophys. J. 184, 605.
Yu , C. P.: 1965, Phys. Fluids 8, 650.
Z~rin, H. and Stein, A.: 1972, Astrophys. 1. 173, L85.

19

-. ~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ -~~= ... , . I— =..-.--- ,--~~.--~.-- .~~ .



Convective instabilit y in the presence of a nonuniform
horizontal magnetic field

John H. Thomas* and Alan H. Nye
Mox.Planck.lnstitut für Physik ,uzd Astrop hysik . München. Federal Republic of Germany
(Keceised 14 August 1974 : final manusc ript received 6 December 1974)

Newcomb ’ s cnter io n for i co nve ct lve stability in (he presence of a horizontal magneti c field is w ntt en
in a form whi ch exp licitly shows the effect of vertical variations of the magnetic field strength. tt is
shown ihat a nonuniform horizontal magnetic field can be des tabilizing as well as stabilizing.

We consider the convective instability of a compres- Using the equation of hydrostatic equilibrium,
sible, inviscid , per fect l y conducting gas permeated by da horizontal magnetic field B=[B (z) , 0, 0] that may vary —~~~~~~, (2)
with height z , under a uniform gravitational accelera-
tion g (in the negative z direction), assuming adiabatic and the equation of state of a perfect gas, p = pR T, the
perturbations. The first complete treatment of this stability criterion (1) can be written in the form
problem was given by Newcombt using the energy inte-

dT dT 1gral method. He showed that a necessary and sufficient — > — , (3)
dz pR dz

condition for stability is given by
where (dT/dz)3 = — = .-g(v — 1) / y R is the adiabatic

~~ (1) temperature gradient. The new form (3) of the stability
dz YP criterion has an advantage over the form (1) in that it

shows explicitly the effect of vertical variations of thewhere p is mass density, p is pressure , and y is the
ratio of specific heats. In the case of instability, the magnetic field, since the temperature distribution is
most unstable mode has the form of an interchange of independent of the magnetic field. For a uniform mag-

netic field (B= const), (3) reduces tolong but finite segments of magnetic field lines. The
stability criterion (1) was also derived by Yu2 by con- dT dT

dz (dz )3
sidering the force balance on a displaced magnetic flux — >0
tube.

which is identical to the Schwarzschild criterion in the
Newcomb noted that the critical density gradient on absence of a magnetic field. [Note that usually, e.g. ,

the right -hand side of (1) is , at least explicitly, m dc- 
in a star, dT/dz and (dT/dz)3 are both negative.j Thus,

pendent of the magnetic field, and is, in fact , that given a uniform horizontal magnetic field has no effect on the
by the Schwarzschild criterion5 in the absence of a mag- condition for the onset of convective instability, al-
netic field. However , in  the case of a nonuniform hori-
zontal magnetic field (for which Newcornb’s analysis is 

though, as Newcomb t also showed, it does have :~n ef-
fect on the growth rates of unstable modes.

valid), the static distribution of pressure and density is
affected by the magnetic field , and thus the stability If , however , the magnetic fieh~ is nonuniform, then
criterion (I) depends implicitly on the magnetic field. (3) shows that the field can be stabilizing (in the case
This point, which was overlooked by Newcomb, will be dB/dz >0) or destabilizing (dB/dz <0). A field that in-
pursued here, creases with height (dB/ dz >0) can stabilize the atmo-
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~ sphere In the presence of a ~uperad~abat1c temperature

gradient. When ~he field decreases with het~ ht (tl~~/ i l 1 
~~ <

~~~~) ‘  (7)

0), the critical temperature gracth’nt i~. rt ’~iu~’&d be—
wiit’re (VR T ) U Z  is the adiabatic sound speed. This

low the adiabatic gradient.
~t.dn1ity criterion w as obtained for this speCial case by

As an illustration of the destabilizing eff e I for dB/ Yu5 from a normal mode analysis. Parker ° has studied
dz <0 , consider the case of an isothermal ,it nos phere , th is Case , including the effect of cosmic-ray pressure ,
which is convectively stable in the absence of a mag- in connection with the gaseous disk of the galaxy.
netic field. The stability criterion (3) reduces to The destabilizing effect of a nonuniform magnetic

field with dB/dz <0 is similar to the phenomenon of

~

- -
~
-(

~
) .- R(~-~~) =g(~

-
~
-
~-) . 

(4) “magnetic buoyancy” analyzed by Parker 7 and by We iss.
p dz Sir \dz ,5 Magnetic beoyancy is attributed to an isolated tube of

If the magnetic pi essure decreases more ra )idly with magnetic flux in thermal equilibrium with its nonmag-
netic surroundings. The instability discussed here isheight than the critical rate
due to the buoyancy of an arbitrary tube of flux within
a smoothly varying magnetic field.r d I~~\1

~~~~~ 
_~(~ !), (5) 
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Thus, in the state of marginal stability in an isothermal 14627.

‘ W. A . Newcomb , Phys . Ftu ids 4 , 391 (1961).atmosphere, the gradient of gas pressure balances the 2 c. P. Yu , Phys. Fl uids 9 . 412 (1966).
fraction Ify of the gravitational force , while the grad- 3 K. Schwarzschitd , Nachr . K. Ges. ‘VisS. Gdtt. , p. 41 (1906);
ient of magnetic pressure balances the remaining frac- see also M. Schwarzsch itd , Structure and Evolution of the
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SOLAR MAGNETO-ATMOSPHERIC WAVES. I . AN EXACT
SOLUTION FOR A HORIZONTAL MAGNETIC FIELD
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ABSTRACT
The linearized theory of magneto-atmosp hcric wavc s (involving ~he combined restoring forces

due :o buoyancy, compress ibility, and magnelli. iie,d) is developed for the case of a horizontal
magnet ic field. A general propagation equat ion is derived for adiabatic perturbations with arbitrary
vert ical distributions of the sound speed c, Alfv én selocity V A , and local density scale height II.
An exact analytical solution to the propagation equation is obtained for the case of an isothermal
atmosp here permeated by a uniform horizontal magnetic field, w ithout making the usual short-
wavelength assumption. This solution is applied to an idealized model of the low-corona-.
chromosphere transition region for comparison with observations of flare-induced coronal waves.
The results show that disturbances may propagate horizontally in the low corona in a wave
guide formed by t he sudden density increase into the chromosphere below and by the rapidly
increasing Alfvén velocity with height in the corona. The group velocity of the guided wave modes
is nearly independent of wavelength, so t hat a disturbance propagates as a compact wave packet.
Subfrct headings: hydromagnetics — Sun: atmosp heric motions — Sun: corona —

Sun: magnetic fields

1. iNTRODUCTION
The theory of waves in a compressible, stratified, electrically conducting atmosphere permeated by a mag-

netic field is of considerable importance in astrop hysics, especially in solar physics where there is a wealth of detailed
observations of such waves in the solar atmosphere. Following Yu (1965 ), we shall refer to waves which involve
compressibility, buoyancy, and magnet ic forces as magneto-atmospheric wates . Among the many solar phenomena
that are seemingly attrit utabk to magneto-atmospheric waves are the heating of the corona and of chromospheric
plages, the 5-minute oscillations in active regions, oscillations in sunspot umbrae and penumbrae, and flare-
induced coronal disturbances.

The theory of magneto-atmosp heric waves is complicated by t he anisotrop ic nature of the medium; the gravita-
t ional field and the magnetic field each introduce preferred directions. Additionally, t he disturbance is subjected
to the combined restoring forces due to compressibility, buoyancy, and the magnetic field, so that pure wave
modes (i.e., acoust ic, Alfvén, and gravity) exist only as special cases. In general, magneto-atmosp heric waves
involve the efflcts of all three restoring forces. The problem is compounded by the fact that ~he basic parameters
describing waj e propagation in the solar atmosphere (the sound speed c, the Alfvén velocity L’A, and the local
density scale height H) are, in general, functions of height , and therefore the disturbance cannot be represented by
plane waves propagating in the atmosphere.

Previously, t he problem of magneto-atmosp heric waves has been studied by either of two basic approaches , each
yielding a dispersion relation based on constant values of the atmospheric parameters. The first approach has been
to assume that the vertical extent of the disturbance is much less than the smallest scale height for variation of the
atmosp heric parameters. The parameters can then be taken as eons~ .int locally. MeLellan and Winterberg (1968)
studied an isothermal atmosphere permeated by a uniform magnetic field with arbitrary orientation. Then, assum-
ing that the Alfvén velocity is constant locally (although it actually ncreases exponent ially ‘with height), they
derived a local dispersion relation that is valid for short wavelengths (short compared with the density scale height).
This local dispersion relation has been studied by several authors (Bel and Mein 1971; Michalitsanos 1973;
Nakagawa eta !. 1973) to determine 1the effects of different propagation directions and magnetic field orientations.

The second basic approach has been to investigate an isothermal atmosp here permeated by a horizontal magnetic
field that decreases exponentially with height such that the Alfvén velocity is constant , as are the sound speed
and the density scale height. Yu (1965) derived the dispersion relation whicji in this case is valid for all wavelengths.
He evaluated the three modes of propagation for various angles between the wave propagation vector and the
magnet ic field. Chen and Lykoudis (1972) used the dispersion relation of Yu to stud y the 5-minute oscillations in
plage regions. Nyc and Thomas (l974a ) used Yu’s dispersion relation in connection with a multilayer model for
running penum ,ral waves.

~ Also C. E. Kenneth Mees Observatory.
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W~ consider only plauie—p ~tra Ikl :11 tUos liliCtes . wit It ito htntiontal vitrt~il ion, in order to penn it l tun er de-
composition in the horutiutal dii’ecl t i l t s  . is ~ell .~~~ lut e. Wi th  v.t~~il iofls in tIi~ :—d ircction only, t he goveriiiiig
partial dillerential equ:ttioii~ rettii ~c l i t  oi ) I i l . i rv  d )lei~ iit i i i  et lt iat il ins . Fherc are only two magtk’tic tickl ~~~~~~ti~ ur~ItIon5 ~ot1stsl ~ iit w i th  s ta t i c  cqiiilihi ii~ •~nd l i i i  u i  iit iit~tl ~~~~~~ ‘ I hey arc H constant and B
B~(:) ,  B~( : ) ,  0). We shall res tr ict  our study to the case il a unidirectional horitontal magnetic licld that may % iry

wi t h height . Wc ~Ii,iIl iti t fo llow citl ie r ot l~ic Iwo bas ic approaches discas sed above, however . hccau~c of the
inheren t Iimit ~l Iu i ios  i t  r u  h il lliriii t r  sid:i r ;ipt ilii , i i i i  ii.. ‘ I tic Ir~ gi li ‘~ i;Ic for iiiiIgn(’Itt fie ld thut igc’. in I t ic ~ d :ti
~It u i I lPc f ) l I r i r  i ’ . ~.c i i i i . i t t y i i u i ~ Ii p i c . i I c t  t t i , , i  lit - di— i t a t y - .~ ,ilr li r ig lil o h o t  d ie ii~ su i i i p t I i Ii i t t  ~ i’ iI!, t , i i I t  A t l ’.~’ t i
velt ;cily Is itul J I s h u n t  (l i i  t i i c  uihicr li.ttt d , t h i c  tcii 1.th i scale oh uhserveil disturhanLes in the solar atmosphere is h o t
genera lly small .ompared ~t i t h the dens ity sca e heig ht . This is especi~ iiy true in the photosp here where the density
scale height mai he smaller than 100 km , and hence smaller than the limit of observational resolution.

In § 11 we dertve a general propagation equation for an arbitrary direction of propagat ion and arbitrary vertical
variations of th.~ atmospheric parameters. For the case of an isothermal atmosphere permeated by a uniform
horizontal mag.let ic field, t he Alfvén velocity incr ease s expone~ti..lly with height. In § I l l  we obtain an exact
general solution of the propagation equation in this case. We compute eigenmodes for the case of a rigid lower
boundary in § IV , and apply this to a specific solar wave phenomenon, t he flare-induced coronal waves , in § V.

The analyt ical treatment in §~ II and Ill also forms the basis of a following paper in which we deal with running
penumbral waves.

II. BASIC EQUATIONS

The atmosphere is assumed to be a compressible , inviscid, per fectly conduct ing gas under a uniform acceleration
of gravityg(=O.274 km s 2) in the negative :-direction. The undisturbed magnetic field is taken in the x-direction
and may vary w ith height:; i.e., B0 = [B0(:). 0, 0]. The undisturbed pressure , density, and temperature may all be
functions of height :, and are denoted by p~(:). po(:), and T0(:) .  respect ively. We shall see that wave propagation
in the basic atmosphere may be completely characterized by the vertical variation of the sound speed c(z), the
Alfvén velocity t A(:), and the local density scale height H(z), defined by

a j t ~Po\ 2 B02 
I= _ !~~~~~~.C =

~~bp0~ 3 ’ t A 4’rrp~,
’ H po dz U

The unperturbed atmosphere is taken to be in static equilibrium:

d l  B02\
~~ ~Po + -

~
— ) —p 0g . (2)

If the magnetic fi.~ld is a function of height :, then it has a role in the basic equilibrium of the atmosphere. We
consi der only stable atmospheres , which requires that

dT0 IdT0\ I ~I f B 02\— 
~Ji~J~

> 
~~~~

w here (I T  I:) is the adiabatic temperature gradient and R is the gas constant (see Thomas and Nyc 1975 for a
recent discussion) ,

Consider small adiabatic perturbations of the equilibrium atmosphere , letting p. p. u, and B denote the per-
turbat ions in pressure, dens ity, ve locity, and magnetic field, respect ively. Then, t he basic linearized equations of
cont inuity, momentum , energy , and induction are

+ V (p 0 u) = 0 , (3)

p 0~~~ + V p~~~pg~~~~~~[ ( V x B 0 ) x B + ( V x B ) x B 0 ] = O ,  (4)

+ U V p~1 = + u.V p0) (-i)

~—~~-- V x ( u x B 0) = O .  (6)
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After taking the time derivative ni the m omentum equation (4), w e may eliminate the perturbation quantit ies
p. p. and 8 by using equations ~3). (5), and (6). This leaves a single vector equation for the velocity perturbation
ii = (u. v, ii’):

~ u I A I dB~ \
Po~~~ + r j p 0 w~g + 

~~

.—-.

~~
—)  

— 
~~~~~ -t [(u V)po + p0 V .u j g

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (7)

Next , we assume that the perturbation velocity has the form u = üexp i(k .r  — wi) ,  with a = â(z) = [ü(z) , i ( :) , ~‘(:)1
and k r = k ,x + k~y. Then, using the definition of VA

2
, the three components of the momentum equation (7)

become

(w2 — c2k
~

2) ü — c2k~Jçi3 — ,m~c x (g ~ 2 = 0 , (8)

—c 2k
~k~i2 + [w 2 — c2k 9 2 — VA

2 (k x 2 + k~2)]O — ik~[g — (c 2 + VA2) 

~~~
}I

~ 

= 0 , (9)

and

ik~(~~
. — + g + c2 -~)a + iks[j -(c2 + V A2) — 

(c 2 
~~~~~ + g + (c 2 +

+ (c2 + L’A2)
72 + 

[
~~.(c 2 + VA2) — 

(c2 ± V *2)] 
~~~ + (w 2 V A2 k~

2) w = 0.  (1 0)

These are the linearized perturbation equations. They give important information about particle motions for various
modes of propagation in the atmosphere.

The horizontal components of the perturbation velocity can be eliminated from the system of equations (8)—(lO )
to yield a single equation for the vertical velocity st’. The resulting equation is

d2
~’ d~ (11)

where the co&licient 4(z) and B(z ) are given by

4(z) 
— j 7  

± . ( w 2 — VA2k
~,.

2)2 ~ - + .~ [_ w ~ + (w 2 — c2k
~

2) (w 2 — V A ZkX2)( l + 
dr 2 

(12)

and

B(z) = 
~ {w

s — [(c 2 + V A2)(kX
2 + k52) + VA2kX2JW 4

+ {v A2k X z(k Xa + k~2) (2c 2 + V A2) — g(k~
2 + k52)(g — + ~~ VA~k5~]w~

— vA2k X 2(k X 2 + k Y2) [ c 2vA2k X 2 — g (g — 

~) } — (w~ — vA2k X 2) 2 w2(k~
2 + k9 2) ~~~~

- — 
~~~
. k~

2g

(13)
Here, D an d E are given by

D = (w2 — I) A k X ) [ W (C + VA )  — c2 1’A2k X 2] (14)
and

£ = — (k~
2 + k~

2) [w 2(c 2 + t’A )  — c2 m’.52k~2] . (15)

Equation ( I I )  is a general equation for the vertical component of velocity for a perturbation propagating in
an arbitrary direction, in an atmosphere with a horizontal magnetic field and arbitrary vertical distributions of c2,
tm A ’  and If. This propagation equation has been given previously (Nye and Thomas 1974a ) in the case k 5 = 0.
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ill. ISOTI-IERMAL ATMOSPHERE WITH A UNIFORM HORIZONTAL MAGNETIC FIELD
Now cons ider the case where the undisturbed temperature and magnetic field are constant with height. Since the

magnetic field is uniform, it )~as no effect on the hydrostatic equilibrium of the atmosphere, and the equilibrium
pressure and density both decrease exponentially with height. The sound speed and the density scale height are
both constant , with values determined by the temperature of the atmosphere. The Alfvén velocity increases
exponentially with height due to the decreasing density. The sound speed, density scale height, density, and Alfvén
velocity are given by

c = (yRT0) n2 = Coflst. , (16)

H = ~.r2 = const. , (17)

p0(z) = p00e~~
11’ , (18)

and
VA (Z) = v0e~

2H , (19)

where Poo and v0 are the values of the undisturbed density and Alfvén velocity at z = 0.
The nondimensional parameter fl2 v02/ c 2 is introduced as a measure of the relative importance of the restoring

forces due to the magnetic field and to compressibility at the point: = 0. For values of~
2 < 1, there is a region of

the atmosphere above : = 0 where compressibility has more importance as a restoring force than does the magnetic
force, but in any case the magnetic field always becomes dominant as z becomes large.

In the remainder of this paper we shall consider only waves whose horizontal component of propagation is
parallel to the magnetic field (k 1 = 0). Using (l6)—(19), we may write (11) as

[ c 2w2 
~i (w~ — L~2kx2) vo2e~ H] — + {(~~2 — c2k~2) (w2 — t’o2?”k~2) — g(g — ~~) k~2 J m = 0. (20)

We define the nondimensional frequency IT� and the nondimensional horizontal wavenumber K by

12 Hat/ c , K Hk~ . (21)

By transforming the dependent and independent variables according to
122

— ‘K IH — - e - ZIH 
~22— ‘ fl2(K2 122) ‘

we may put equation (20) in the dimensionless form
d2W dWx(l — x )-~p- + [C — (A + B + 1)x] -~-. — 48W = 0 , (23)

with

A + B = C = 2 K + 1 , AB = 122 + K + (2 ’ ~_~_~)~~~~. (24)

Equation (23) is the standard form of the hypergeometric differential equation.1 The solutions of this equation
may be expressed in terms of hypergeometric functions, given for x~ < 1 by

F A B~ c — ~(C)  ‘~~~ r(A + n)r(B + n) x” 25( , , , x) — r’ (A)l’ (B) 6~ 
l’(C + n) ~

i• ( )

The general solution of equation (23) may be written, for ~~ < 1, in terms of the original variables : and s~(:)as

mi’(z) = D1e~~”°’F A , B; C, 
~2(K2 — 122) e

~
2(K 2 — 122) 2K 112

+ D2e~’~1f{ 
112 J F [ A — C +  I , B —  C +  1;2 — c; p 2 (K2 — 112)

e _zhhl
] 
, (26)

where D1 and D2 are arbitrary constants.

L The hypcrgcometr c nature of the wave equation in this case was noted by us earlier (Nyc and Thomas 1974b), and also in-
dependently by Adam 1975).

25

4.~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~
-

~~~~ —— ~
———- .-—-- —-= - ..——-— ----- . .—. . — -  —



___________________ - -

No. 2, 1976 SOLAR MAGNETO-AT MOSPHER IC WAVES 577

IV. EIGENMODES FOR A RIGID LOWER BOUNDAR Y

We now examine modes of propagation in the relatively simple case of an isothermal atmosphere with a uniformhorizontal magnetic field, bounded from below by a rigid wall a t :  = 0. The general solution (26) is subject to
boundary conditions at z = 0 [x = 123/ $2(K2 — 112)] and at = ~ (x 0).

As a condition at z = ~~~~, we require that the total energy of the perturbation be integrable over 0 � : <
The magnetic energy of the perturbation is proportional to the square of the velocity. Since

l im F( a , f l ; y ; x) = 1 , (27)
x~~o

we see from equation (26) that we must take D2 = 0 .
The second boundary condition is that the vertical velocity vanish at the rigid wall, i.e., ~ = Oat z = 0, i.e., at

x 113/f l2(K 2 — Q2) Provided

~2( K2 — 112)~ 
< 1 . (28)

we may apply this condition directly to equation (26) with D2 = 0 to obtain the dispersion relation

F {A , B; C; 
~
92(K2 — 112)] 

= 0. (29)

If, however, (28) is not satisfied, then other re presentations of the general solution (26), valid for xJ � 1, must be
used in order to apply the boundary condition at z = 0. For

112

~2 (K2 — 112) 
� I , (30)

the interval 0 � x � 112/~
2(K2 — 122) contains the regular singular point at x = I, and no solution that satisfiesthe boundary conditions and is also regular at x = I is to be expected. For the range

(31)

we may use analytic continuation to extend the general solution (26). The analytic continuation of(26) with D2 = 0,valid for x � — I, is given by

= D1e KI H {r
[

[’(B A) [p2(11
2 K2)]A e~A!HF{A I — B; I — B + A;  ~

2(K2— 122) 
ez1

~1]

+ 
r(c)r(A — B) 

[~
2(c12-~ K2) J B~zf lf H F [ B  1 — A; I — A + B; ~

2( K2 ~~ 112 
e~~~]}. (32)

Thus, for the ringe of parameters (3!), the dispersion relation is given by
f (B — A) [p2( 122 — K2)1A I I fl2(K2 — 112)

[ f ( B) ] 2 [ c22 —] F[A~ I — B; — B + A; 112

+ 
[p2(122 .... K2) ] B {  I — A; I — A + B; ~

2( K2— 112)] 
= 0. (33)

The dispersio a relation (eq. [291 or [331) has been evaluated for various values of the nondimensional parameter
~~2• Examples are plotted in Figures 1 and 2 (also see Fig. 4). The curves in these figures represent well-defined
eigenmodes of wave propagation in the atmosphere. These curves represent trapped waves propagating horizont-ally in the wave guide formed by the solid boundary below and the exponentially increasing Alfvén velocity above.There are several ways of interpreting the effect of changing ~~2 on the dispersion relation. First, different valuesof~

2 can be taken to represent the same magnetic field strength and the same density at z = 0, but different atmos-pheric temperatures. A second interpretation is that different values of fl2 represent the same magnetic field strengthand the same ten- perature, but different densities. This is equivalent to placing the solid lower boundary at succes-sively hi gher leve,s in the atmosphere corresponding to larger values of~
2. A-t each higher level the magnetic restor-ing force becomes more important due to the decreased density, while the compressible restoring force remains thesame.

26

-- -----C -- - . ~~~~~~~ -~~~~~~~~~~~
--

~~
--,.-

~~~~~
- . . : - ~~~~- . —-. - -- -~~---- .-~- -.— -----——-—- ---—



r ~~~ ~~ 

. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

578 NYE AND THOMAS Vol. 204

-~~~~~~~ 
— _ / / 7 /

1 / 
/ A

- / 
- / 7

/

~~~~~~ :- - - _it _
__ 

/ /
~ -~~~~~

-
~~~~~~~

- -.- 
~~~~~~~~~~~~~~~~~~~~~~ 

/ )(
‘ 

-
, 7

~T —~~~~~~ 
- z’ ~~~

8 ~~~~
- 8 

/ 
/ 

/
/ /

— _ _ _ *  
- 4- 

~ 
x

*BETA 2 = 

~ 
BEIR 2 -

— 1O~~ GAI*IA — 5/3
GAMMA — 5/3

8 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  8 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Ll~ L32 LU L&4 a.ea L~~ 2.~~ 3.T ~.T S.~~K K
F,a. I Fio. 2

Fio. I —Dispersion diagrams (nondimensional frequency versus nondimensional horizontal wavenumber) for an isothermal
atmosphere with a uniform horizontal magnetic field and a solid lower boundary, with y = 5(3, ft 2 l O s , and ft2 = 1 0 g . The
curves represent eigenmodes , and the crosses indicate the computed points. This figure should not be confused with a diagnostic
diagram for an atmosphere with constant parameters (e.g., Yu 1965).

FIG. 2.—Same as Fig. 1, but with ft2 0.5.

The third interpretation is to consider changes in $2 to be due to changes in the magnetic field strength, with
fixed values of temperature and density. Since the soun d speed and the density scale height then do not change, the
scales for the frequency and horizontal wavenumber are the same in each case and the dispersion diagrams can be
compared directly. From Figures 1 and 2 it can be seen that increasing the magnetic field strength (increasing $2)
increases the cutoff frequency. As $2 increases, the slope of the dispersion curves, and hence the group velocity,
also increases.

Lowering the v~sIue of y to represent crudely the effect of radiative transfer has little effect on the non dimensional
dispersion diagra its. However , the frequency scaling depends on y as at (y)1I211, while the wavenumber scaling
is independent of y. Therefore, for lower y (lower sound speed) the wave oscillates less rapidly and the phase and
group velocities are correspondingly lower.

The vertical velocity of the disturbance (eq. [26] or [32]) can be calculated as a function of height for any point
on a dispersion curve. Figure 3 compares the lowest mode of oscillation for the same horizontal wavenumber but
different values of $2 (i.e., different magnetic field strengths), and shows that for increasing magnetic field strength,
the wave oscillates more rapidly and is trapped at lower levels in the atmosphere. We now discuss the eigenmodes
given by the dispersion relation (29) or (33) in relation to an observed solar oscillation.

V. APPLICATION TO FLARE-INDUCED CORONAL WAVES

On 1963 September 20, Moreton and Ramsey (Moreton 1965) observed a chromospheric disturbance, apparently
caused by the flas~a phase of a flare, propagate at a nearly constant velocity of 750 km s~~ for several hun dred
thousand kilometers across the solar disk. Many other flare-induced disturbances have been reported (Moreton
1960; Athay and Moreton 1961; Dodson and Hedeman 1968), and the propagation velocity is usually on the order
of 1000 km s ’. Dodson and 1-ledeman (1968) report that the width of the disturbance created by the proton flare
of 3966 August 28 was greater than 100,000 km.

These disturbances could not have been propagating solely in the chromosphere, since in the chromosphere the
sound speed is only of the order of 2O km s ’ and the Alfvén velocity is only of the order of SO km s~~. Thus a
purely chromospheric disturbance would have created a shock wave and been rapidly dissipated. In the corona ,
however, both the Alfvén velocity and the soun d speed are an order of magnitude higher than in the chromosp here
due to the increased temperature and decreased density. It has been proposed (Meyer 1968; Uchida 1968, 1970 ,

27
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FIG . 3.—Direct comparison of the first mode of oscillation of the atmosphere for the same nondimensional horizontat wave-number (K = (‘.25) but for two values of $2 (ft~ = 10-s , $2 = to_i).
1974; Uchida et a!. 1973) that the disturbance is a magnetohydrodynamic wave propagating in the low corona and
that the motion of this wave at the corona-chromosphere transition region is what is actually observed. There is,however, no general agreement as to the wavelength of the disturbance or even whether the observed disturbance
is a single wave or a wave packet.

Meyer (1968) studied the propagation of the magnetoacoustic fast mode in an isothermal corona permeated
by a uniform vertical magnetic field, with a rigid lower boundary representing the chromosphere-corona transition
region. He found eigenmodes with nearly constant horizontal group velocity. Equating the group velocity to the
observed propagation velocity, Meyer found that for a horizontal wavelength on the order of 100,000 km, the
coronal magnetic field must be approximately 6 gauss, a reasonable average value.

Uchida, in ~: series of papers (Uchida 1968, 1970, 1974 ; Uchida et a!. 1973), studied the propagation of short-
wavelength (-.. 5000 km) disturbances in various realistic coronal models. Using a ray- tracing technique, he obtained
horizontal and vertical refractions in close agreement with the observed waves.

Although the magnetic field structure of the corona is quite complicated, the field changes fairly slowly and there
are probably regions of nearly uniform field with almost any orientation. We study the case of a uniform horizontal
field in connection with the coronal wave problem only as a means of understanding the mechanism of wave
propagation for waves of arbitrary wavelength. Our model supplements Meyer’s (1968) work by considering the
case of a uniform horizontal magnetic field, and by including effects of gravity and stratification. As in Meyer’s
model, we use the rigid lower boundary to represent upward reflection from the chromosphere-corona transition
layer.

We have evaluated our solution for a temperature of 1.6 x 106 K and $2 = 10, which is fairly typical of the base
of the corona. These values correspond to a sound speed of 180 km s 1 and a density scale height of approximately
71,000 km. Figure 4 shows the dimensional dispersion relation for these parameters. We see that the dispersion
curves are nearly straight, which means that these modes have very little dispersion and will propagate for great
distances with little change in character. The first three modes have been calculated for a wavelength of 75,000 kmin Figure 5. The first mode has nearly zero vertical velocity above two scale heights and is therefore trapped in
the low corona.

The phase velocity and group velocity of the first mode have been plotted as a function of horizontal wavenumber
in Figure 6. For any wavelengt h of 100,000 km or less, the group velocity is near ly constant at about 610 km s~~.Since the energy of a disturbance propagates at the group velocity, it is nnt important which specific wavelength,
or spectrum of wavelengths, receives energy from the flare. The energy at all wavelengths will propagate together
as a wave packet near the lower coronal boundary.
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FIG. 4. —Dimensional dispersion diagram for $2 = to, y = 5/3 , and 1’~ = 1.6 x tO’ K. The curves represent eigenmodes of the
corona which are trapped by the increasing Alfvén velocity with height.

The present model is not proposed as a realistic model of the solar corona, although it may be fairly accurate
over certa in regions. ~ o attempt has been made to include the effects of horizontal variations. The value of the
model is that a mechanism for s~ave propagat ion can be studied for arbitrary wavelengths. These results close the
gap between the short-wavelength ray-tracing theory and the long wavelength, vertical field case. We show that
t he question of ~ ave length is not particularly important since the group velocity of the trapped modes is essentially
independent of wavelength. For the relatively large value of$2 (=  10), t he wave modes are basically t he magneto-
acoust ic fast r- iCCs (studied by Meyer and by Uchida) modified by gravity. For an inclined magnetic field, there
must also be trapped modes of propagat ion involving a coupling of the present modes and tne type of mode
studied by Meyer for a vertical field. The present results , taken with those of Meyer and the work of Uchida. present
a consistent pictwe of flare-induced coronal waves as guided magneto-atmospheric waves.

Ftc ,. ~ First three modes of oscillation of the model corona for $2 = 10, v = 5/ 3 .  The vertical velocities have been normalizedto maximum value unity.
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FIG. 6.—Phase velocity v, and group velocity v, of the first mode of coronal oscillation plotted as a function of horizontal
wavcnumbe r .
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SOLAR MAGNETO-ATMOSPHERIC WAVES. H. A MODEL
FOR RUNNING PENUMBRAL WAVES
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ABSTRACT
A simple two-layer model of a sunspot penumbrs is used to study the mode of running pen-

umbral waves. Exact solutions of the linearized wave equation, not limited to the small-wavelength
approx imation, are emp loyed in each layer. The lowe’ t “plus” eigenmode of magneto-atmospheric
waves in the model penumbra is in good agreement with observations of running penumbral waves.
The results indicate that running penumbral waves should be observable in a photospheric spectral
line.
Subjeci headings: hydromagnetics — Sun: atmospheric motions — Sun: magnetic fields —

Sun: sunspots

I. INTRODUCTION

In Paper I of this series (Nye and Thomas 1976) we presented an exact analytical solution for magneto-atmos-
pheric waves in the case of an isothermal atmosphere with a uniform horizontal magnetic field. In the present paper
we apply this solution to a simple two-layer model penumbra in order to study the mode of running penumbral
waves.

Running penumbral waves (Zirin and Stein 1972; Giovanelli 1972, 1974; Moore and Tang 1975) are good
examp les of magneto-atmospheric waves. These waves propagate radially outward across sunspot penumbrae,
with predominantly vertical motions in Ha. The observed range of frequency and propagation speed is fairly well
established (see discussion in § IV).

Moore (1973) has concluded that the source of excitation of the penumbral waves is overstable convection in the
low umbra. In an earlier paper (Nyc and Thomas 1974 [NT)) we studied the mode of propagation of penumbral
waves on the basis of a piecewise linear model of the vertical structure of a typical sunspot ?enumbra. We found
the penumbr.tl waves to be magneto-atmosp heric waves (of the “plus” type) that are vertically trapped at photo-
spheric levels. This trapping is primarily due to the increasing sound speed with depth into the convection zone
and the incre1sing Alfven velocity with height into the chromosphere.

Here we ex:end our earlier work by comput ing actual eigenmodes of propagation for a somewhat s;mpler model
penumbra, which nevertheless retains the essential features. The properties of the lowest mode of propagation of
the model penumbra turn out to be in good agreement with observations, and give some useful clues for further
observation of running penumbral waves.

II. THE TWO- LAYER PENUMBRAL MODEL

The entire penumbral model consists of a compressible , inviscid, perfectly conducting, strat ified perfect gas
subject to a constant acceleration of gravity g (=0.274 km s 2) in the negative :-direction. The upper layer is
isothermal and is permeated by a uniform horizontal magnetic field, which yields an Alfvén velocity that increases
exponentially with height due to the decreasing density. An exact solution of the linearized propagation equation
for this case was given in Paper 1.

This upper l.syer is a suitable model of the penumbral photosphere and chromosphere, where observed penumbral
magnetic field; are very nearly horizontal (Ni shi and Makita 1973) and decrease slowly with height (Bray and
Loughhead 1954). The scale height for variation of the magnetic field is very large compared . to the density scale
height, so the assumption of the uniform horizontal magnetic fiela is reasonable. Our earlier calculations (NT)
showed that running penumbral waves are trapped at photospheric levels, so that the increasing sound speed in
the upper chromosphere has little effect on the trapping. Taking the upper layer to be isothermal is therefore also a
reasonable assumption .

• The vertical distributions of the sound speed and Alfvén velocity for tie two-layer model penumbra are shown
in Figure 1. Subscripts 1 and 2 denote quantities in the upper and lower layers, respectively, and the subscript 0
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FIG. 1.—Distribution of c2 and VA
2 with height 2 lfl the two-layer penumbral model. The upper layer (I) is isothermal with auniform horizontal magnetic field. The lower layer (2) has an adiabatic temperature gradient and no magnetic field.

refers to quantities evaluated at z = 0. The sound speed, density scale height, and Alfvén velocity in the upperlayer are given by
C12 = y1RT1 Const. , - (1)

H 1 = const. , (2)
and

vA2 (z) = v02 exp (z/ H 1) .  (3)
The lower layer of the penumbral model (layer 2, figure 1) is adiabatic with no magnetic field. The temperaturedecreases with height (increases with depth) at the adiabatic lapse rate, (dTfdz)2 = —gJc~, and thus this layer isneutrally stable. The actual temperature distribution in the convection zone below a penumbra is probably verynearly adiabatic, except for a thin superadiabatic layer just beneath the photosphere that we neglect here. There isno magnetic field in this layer since we assume that the penumbral magnetic field lies over the convection zone.The sound speed squared and local density scale height each increases linearly with depth in the lower layer, theirfunctional forms being

c22(z) — c2~
1 — g(y2 — l)z (4)

and
112(z) = H20 — (Y2 — 1)z . (5)

The corresponding density distribution is

p 2(z)  = P2011 — (Y2 — l)z/H2oJ Va 1
~. (6)

At the interface between the two layers (z = 0), we require the undisturbed density to be continuous to avoidintroducing interfacial gravity waves and wave reflections; therefore, Pio = P20. In the unperturbed penumbra,there must be pressure equilibrium at the interface; that is, the gas pressure in the lower layer at z = 0 must equalthe sum of the gas pressure and the magnetic pressure in the upper layer at z = 0. Therefore, the gas pressure isgreater in layer 2 than in layer 1; and since the density is continuous across the interface, the temperature is greaterin layer 2. This may be expressed in terms of the sound speeds and the Alfvén velocity at z = 0 as

C20
2 = 2 ~~ C1

2
+~~~~~V0

2 . (7)

We now turn to the problem of computing eigenmodes of magneto-atmospheric waves in this penumbral model.
III. ANALYSIS

Consider first the behavior of small adiabatic perturbations in the lower layer (layer 2), an adiabatic atmospherewithout magnetic field. Leibacher(197l) solved this problem in his stud y of oscillations of the quiet photosphere.Here we ta ke a slightly different approach from his, using other transformations which yield a different form of the
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propagation equation. For vanishing ma~i~etic field (B0 = B = 0), the vector equation for the perturbation
velocity (eq. [7). Paper I) becomes

-r (VI — I) ~g ± V(u 2 .g) , (8)

where~~ = V u 2.
W e assume that the perturbation velocity has t~ e form u2 = i~(:)e~.p (i( k ~x -— w i) ) ,  with propagation in the

x-direction (k ,, 0). This implies t hat j~ i)~~~~ j ü~ = &(:) [ü 2(:), 0, w 2( ) J . All other perturbation quantities
• are represented in a similar manner , with a iaret denot ing the :-dependent amplitude in each case. From the two

components of equation (8) and the deiiniti .n of~ . we obtain the following relation :

— 
g[y2 — e22kxh/w 2]~ — c22dç~Jdz 9tv2(_ ) — 

w 2 — g 2k
~2/ w 2 ( )

The pressure perturbation can also be written in terms of ~~, using the continuity and energy relations (see Paper I):

— ~P2 ( 2
2 [(w 2 — g 2v2Ic 2 2) r ~ + g4/dz 10)P2 — -.- ;— 

~ 
w~ — g 2k~2/ w 2

Upon substitution of equation (9) into the :-component of equation (8), we obtain the following second-order
differential equation for 9S:

d2c~ I I ck 2 2 gy2\ dt,~ ~~
2 

k 2 g 2k
~

2 
I + 

g~~ dc22 
— I I.v 2 2  )

The nondimensional frequency, horizontal wavenumber, and depth, based on the values of sound speed and
density scale height in layer 2 at 0, are defined by

1120w/ c 20 ,  K2 H 20k,,.,  and f z/ H 20 .  (12)

By transforming the independent and dependent variables according to

= 
2K2 

— 
~~~~~~ c/i = ~~i’i2~~ (13)

Y2 —

equation (11) assumes the form

Y~~/ ~+ (b _ Y) ~~~ — a ~~= 0 , (14)

where

a = 
(2yz — I )  

— 
£~ 2 

= 
(2V2 — I) 

(15)
2(y2 — I) 2K2(y2 1) (Va — I)

Equation (14) is the standard form of Kumnier ’s equation (see Abramowitz and Stegun 1964). The sotutions of
this equation are given in terms of Kummer’s functions,

M(a, b; Y) = 
± i-;-• (16)

The general solution of equation (14) is

= D3 M(a, b; Y) + D4 U(a, b; Y ) ,  (17)

where D , and D4 are arbitrary constants and U(a, b; Y)  can be written in terms of Kummer’s functions. To insure
finite total perturbation energy, we must require that the vertical velocity of the perturbation vanish as —

~ —~~~

or as Y - +~~~. This in turn requires that fl, = 0. The solution for ~ as a function off in the lower layer is then
~~~~ 

D ~

‘ 
~~~2 K ~ 

fM[ a,  b; 2K2/(y4 — 1) — 2K2!]9%-) = 4 b ex
~~ 

— 

(VI — I )  
— 

l’(l + a — b)F(b)
- 2K2 2K ~1 1 _ b  M[ l  + a — b. 2 —  b ; 2K 2/ (y2 — I) — 2K 2!] ’ 8— 

(VI — I ) 
— 2~ 1’(a)l’(2 — b) (

~ )
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The vertical velocity and pressure perturbation are given in terms of~ by equations (9) and (10).

The form of the solution in the upper layer has been given in Paper 1, and we shall not repeat the analysis here.
The general form for the vertical velocity in the upper layer that gives finite total perturbation energy is given in
terms of hypergeometric functions by either

= D1 exp (_ z K i/ H i) F [ A , B; C; 
~2(K Q12) exp (_ z/ H i)] (19)

for

fl2(K 2 ~~~ 2) j 
< exp (z/ H1) , (20)

or else by
r (c)r ’(B — A) ~~~ 2 — K 2) 1A

= D 1 exp (_ z K i/ H i) { [r(B)]2 — { 111~ J exp (zA/ H 1)

x F [ A~ 1 — B; 1 — B + A ; P (R ’1f ~~ ~ ‘~~exP (z/ H i)j

r (cw(A — B) [~~2(~~~ 2 — .1Cj 2) 18 
B H+ [F(A) ] 2 I~ 

a1~ ~ 
exp (z / ~

)

x F[B~ I — A; I — A + B; A’
~~~ ‘~‘

2
~ex~ (zfH )~} (21)

for

fl2(K12 . Q 12) > exp (z/ If~) .  (22)

Here
A + B = C = 2K1 + 1 , (23)

AB = ~~~~ + K2 + (Vi — 
1) 

~~~~ 
(24)

= v02/c12 
, (25)

and L~ and K1 are nondimensional frequency and wavenumber defined as in (12), except sealed with c1 and H~.The pressure perturbation in the upper layer consists of the sum of the gas pressure perturbation and the niag-
netic pressure perturbation. The gas pressure perturbation can be expressed in terms of the vertical velocity and
its derivative as

p i — ip~ci~w 
(ci 

— i~ t~ i) /(w2 — c12k
~2). (26)

The magnetic pressure perturbation 
~
6m is found from the linearization of

• (B0+á).(B0 ± .~ )
Prn +P m 8ir

where p,,, is the unperturbed magnetic pressure . The components of the perturbed magnetic field are determined
by the linearized induction equation (eq. [41 of Paper I). We find

2 •.J—
— _ j

~~._&J~ I ’) 7
w dz

The total pertur’,ed pressure ,3~, in layer I is expressed in terms of the density and the Alfvén vetoc ity as

= ~~~ ~[ (c12 + t A2)W 2 — c12vA2k X 21 ~~~~
‘
-‘ — w2g~ s

i}/(w
2 — ca 2k~2) .  (28)

iv. EIGENMODES AND RUNNING PENUMBR A L WAVES
We now have expressions for the vertical velocity and the pressure perturbation in each layer of the penumbralmodel, such that the total perturbation energy is finite. The remaining conditions are the matching of the vertical

velocity and the perturbed pressure at the interface: = 0.
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The scaling of frequency and wavenumher w as done separatel y for eac h layer in order to simplify the pro-
pagation equation us much as possible in each case. In matching across the interface, we need the following re-
lations between parameters in the two layers:

= V2(i + ~) f l 2y ,)H 1 ,  (29)
U22 = VjVz ( l + ~ft2yj )U~

2
’ (30)

K22 = Y22(l + -~~
2y 1) 2 Kj 2 

, (31)
and equation (7).

Continuity of the vertical velocity across : = 0 requires, after normalization, that

= w2(0) = I . (32)
This condition fixes the values of the coefficients D, in equation (19) or (21) and D4 in equation (18). The remaining
condition, the continuity of the perturbed pressure, requires that we equate (10) aod (28). This then leads to the
nondimensional condition

J[(l + $2)U 2 — $2K19(ds~’1/df 2) j 0  — (U 12Jy2 )s~1(0)~ — 
1 {U ~v~~(0) + (d~/ dz2) J0 (33)1 — K12 J — 

Vi L ~~ 2
2 — K22/U22

where ~ = ~H20. Equation (33) is only sat isfied by particular values of frequency and wav enumbe r, and gives the
dispersion re1ati*~n for eigenmodes of oscillation in the penumbral model.

In order to evaluate the dispersion relation (33), the free parameters ~ 2, Vt and V2 must be spec ified, which then
effective ly determines the properties of the model. Although it is possible to evaluate (33) for different values of
v in each layer (for examp le, a lower value of y, could be taken to represent radiative transfer in the upper layer),
we chose the usual value of 5/3 for both layers. The dispersion relation (33) was solved numerically by inserting
values of K1 and then computing and comparing the two sides of (33) for small increments in U~.Figure 2 shows the first several cigenmodes of the two-layer penumbral model for ~~2 = 0.5 and y

~ 
= VI = 5/3.

The value offl2 was chosen to represent a typical penumbra and is slightly less than the value of~
2 at : = 0 in our

earlier penumbral model (NT) .  Here we have classified the eigenmodes as plus ” or “minus” modes, following
the terminology used in the case of an atmosphere with constant spound speed, density scale height , and Alfvén
velocity (see McLellan and Winterher g 1968 and NT). The plus modes all lie above the upper dashed line U K
in Figure 2 . which corresponds to w = e 1 k . (the Lamb mode ’. The minus mode (there is only one in this case)
lies below the lowe r dashed line U = ~k which corresponds to w = z - 0k~. There are no eigenmodes in the region
between the dashed lines. This classification of plus or minus modes refers here to the character of the eigenmode

K
Usc;. 2. The first fi ve plus cigenmodcs and the only min us cigenmode of the two-layer penumbral mod el for $2 = 0.5, y,

Yz = 5i3.  The quadrangle rcprc sents the range of observational data (see text). The crosses correspond to particular observations
(Giovane lls 1974).
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in the upper layer; in the lower layer, all of the modes have the character of acoustic waves (no magnetic field and
no buoyancy).

Observational data on penumbral waves are included in Figa~e 2 for comparison. The most commonly reporte d
observational quantities are the period and the horiLontal phase velocity, although they are not always measured
simultaneously. Giovanelli (1974) reports a typical phase velocity ol running penumbral wa ves of 15 km ‘ and
typical periods in the range of 180—240 s. lie did report phase velocities of up to 2 1 km s , however , and gave
specific periods and wavelengths for four sunspots (denoted by crosses in Fig. 2). The data of Beckers and Schultz
( 1972) appei r to indicate a penumbral oscillation period of 255 s . Moore and Tang ( 1975 ) observed penumbral
waves with period 270 lOs in a single sunspot. Zirin and Stein (1972 ) sta t e that the periods of penumbra l waves
in 20 sunspots were almost all between 240 and 300 s, and the measured horizontal phase velocity of 9.4 km s~ ’
in one spot was more or less the sante in other spots even when the period varied.

The quadrang le in Figure 2 representc the range of observations: periods fro m 18010 300 s, and phase velocities
from 9.4 to 21 km s ‘ , with a dashed line at 15 km s - ‘  to indicate the value that Giovanelli considers typical .
The first plus mode of the penumbral model passes through this quadrangle. Although the particular eigenmode
of oscillation of the penumbra is determined by t he excitation , the deta ils of which are uncertain, t he present
results indicate that it is the first plus eigenmode that is being excited. This agrees with our earlier conclusions
(NT).

The value ~ 2 0.5 used in Figure 2 was chosen to represent a typical penumbra. In Figure 3 t he effect of changes
in ~ on the first plus mode ’s shown for a range of~

2 of two orders of magnitude (0.05. 0.5. 5.0). This constitutes
a reasonab le set of limits on $~ t~ r penumbral conditions , and is obtained by looking at the normal variation of
B (factor of4), p (factor of4), and c2 (factor of 1.5) expected in different penumbrae. We see that for any reasonable
value of~

2, t he penumbral model has a first plus mode within the range of observations.
The vertical distributions of velocity and kinetic energy of the first plus mode (for ~ 2 = 0.5) are shown in Figure

4 for K, = 0.1995 and U1 = 0.3628, corresponding to a horizontal wavelength ~‘t = 3,000 km and period —

250 s for c,2 = 43.5 km2 ~ -2~ Here the nondimensional height is scaled everywhere by the density scale height in
the upper Iay~r. H,. The velocity distribution is fairly symmetric , w ith the maximum amp litude occurring sluihtly
above : = 0 n the penumbral photosphere. The kinetic energy, on t he other hand, is almost entirely trapped in
the lower Iay~r (convect ion zone)with maximum energy just below the interface. The velocity amplitude decays
slowly with height with a value of more than 25 percent of the maximum amplitude at a distance of 8 scale heights
above t he lev-~l of that maximum.

There is a discrepancy between the height of maximum velocity predicted here (: 100 km) and t hat  predicted
in our earlier paper (NT. 1000 km). Here the Alfvén velocity increases exponentially with height ~hov .~ the
photosphere. whereas in N T it increased linear ly. Thus, the downward refraction of waves is much sLronger in the

rj I 2 
K 

~ ~ ~

The (sr i plus csgcnsnodc evaluated for esi reme values of $2 for sunspot per’umbrae (see tes t l :  ~~~~~ — ~~ii• ~~~~~ =0.05. rh~ quadran tk represents the range ol observational data. The cros ’es correspond to part icular ohsL rs.slsons ~(,i~ s.,nelli
I974~.

FR, . 4. The distrt huiiun of vertical velocity and kinetic energy of the first plus cigen mode with no ndi mcnsiona l height :, II ..
The velocity and energy are each normalized to value unity at the interface :/11, = 0.

36

— — - —‘-~~~~‘-—--- •~-~ ~~ ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
,,



- ________ 
_ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _

588 NYE AND THOMAS

present model. The actual situation is probably somewhere between these two cases. In either case, the wave energy
Lies mostly below the height of maximum vertical velocity, in the convection zone and low photosphere.

V. CONCLUSIONS 
-

The present results, taken together with our earlier work (NT), indicate that running penumbral waves should be
identified with the lowest plus mode of trapped magneto-atmospheric wav e s in the penumbra. The vertical trapping
is primarily due to the increasing Alfvén velocity up into the chromosp here and the increasing sound speed down
into t he convection zone. Most of the energy of the penumbral waves lies in the convection zone and low photo-
sphere, at the same level as the expected source of excitation (umbral oscillatory convection). The maximum wave
amplitude occurs somewhat higher.

The results also indicate that penumbral waves should be observable in a photospheric spectral line (see Fig. 4)
as well as in I-la. There is some indication of this in the observation of l3eckers and Schultz (1972). Their data show
a 255 s period oscillation in the penumbra of one sunspot observed in a photospheric line. They present contours
of vertical velocity as a function of horizontal position and time (their Fig. I) in which one may note horizontal
propagation outward across the penumbra at about the right phase speed. We plan further observations in a search
for penumbral waves in the photosphere.

Much of this work was done while we were guests of the Max-Planck-institut für Physik und Astrophysik in
München, Germany. We are grateful to Professor Biermann for the hospitality of the lnstitut , and to Drs. H. U.
Schmidt . Friedrich Meyer, John Stewart , and Tadashi Hirayama for helpful discussions. We also thank Professor
Alfred Clark, Jr., at Rochester for helpful comments. One of us (A. H. N.) was supported by a National Science
Foundation Predoctoral Traineeship. This work was supported by Air Force contract F 19628-75-C-OO1 I through
Sacramento Peak Observatory, and by the Office of Naval Research.
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ind tc i t ise  i t  o nilit is iii the c i i  I r ii he rs X~~s uO ((‘ 10 1 is lint i I ris e n ih  i i  e r  ii

r:ithe’ r than the ,  }:r ns ss plte re. F r  i ’ x , i : . t h- . :~ w- ;~iiv, n j hotoslihere. AI~a’, K ci at. : 1075 - a t e  t 5 t . i t  in S ac is- I

iee 1 ii hi-i~ ht 1 f us rmi ij o n of lii, i~ i s : : : ,  ii l , i r ~ i - r  than photos phere 9)) percent ol the lint cU i l t i  — u ’’ n i r i lu .S iin
25 L i :  1’ . ‘l’h s sugge s t .  that n-tii i:1I r,ti wave s ire- i tt i nction is tor t o ed between 25) ) tub ‘5)) km .il,uve’

j ch~~~~~iucri~ p i ss -n o ni e-o n. We’ h i t -  giv a a theoretica l optica l depth units at 5(~ X ) A . \~ e .i~~:. t t te ’ .u stmilar
de-s cr i pt i ’ n ‘ Nv ’ - and ‘l ia r - ,5s 1’ i7-4 . I’ )70 - -f penumbral behavior for the pe is t i : l , r . i .  Each itle,t’ : r,-r :s-n: is lint-

is fli ugni is itilO slil CflC W, i\ ’ ,-S t hat are’ v c r l i u , t i\ t ied by a 1” (7 (8 ) kiss apertur e - and ~,cr f . r  ‘ c l  in 2 15
tra pped at ju holuss p bo’ric cvcl~, t he -  tra pping tit’ing dut- ot a second. E.sch in line e m, it .ss -P1 h~~~~

t i u t s s  w ith
ti, refrso t on liv the ins - r i- .aing ,\h fv ~n sliced tij i  into the’ 1” spacing. Each r.~~t s -r , n t , i l n s  hre-c ad iace - nt line’ s
chro msis phere and the ni rc usinc s u t n I  speed down wi th  I ‘ spa ing . 5 1 s t  take s 2 5 4  iii e ’ st : ; sk i s ’ - The
nt is t he o nv ect j s, n Zone’ . ‘l i e  ‘l iV e- s are evanescent st  raster  WOS pos it ions - i visualls si: ’h t h u  ti le c enter  scan

heights of fcs rnsa i t  f I l~~, bitt h ive t heir l . r ~i-st .iii j ul l  - tle i~ i~~cd t hroug h the ccnt -r if the i- t i’ , l r.i in
i s l t -  t here’ d ie ii, the ’ t- .i; i l  di ’crs - oe in de r a i l .  w i th  s’ . it observation : in this wa s , Ir I s u C , 0 t - ’fl t I s s u e ’  t l t - r

height - ‘l’hc w i ’. i cns ’ rg\ i5 ni~~ : ii in t i c  inhotusiiherc ~, In line’s e’orrcs ponels to ruli.iI p r .  . 2 - t - s n i r  ss the
and su)iphotospiiere , sch i , h ak, the s ( i ’ m  ,f  ~ 

s nsj iuut. A t \  pa ii run f l s i s t t ’ I ut ii4 ~ .n~ ~~~~~ r:ng a

~irohaliie ~‘ i r  c i f  e x c t t i t i n f the a .s v i - ,, na s i- Is . 
l ittle’ period 01 2 a: n i ies . .-\~t s - r c i ,  ~ s . u ii the ::.,ie’ ’ is

‘ v i ’ r s t ,s i,Ii convtc lion in the ’ :mo i - r ,  (~s lusni in i~~
’— . ret urne e ! to the center of t he ’  r.uste r ansi in h i s  1 11 5( 5

S ns’ igs’ 1909 ; ~d , r s -  1975 Fl Iph ut the’ slit , lic s 5 ak in. ‘t’ls s i s i s - . s

.c hsiut .~ s of the total  s~ :n time. l’fle- o’ I i i  ph ‘t izr.uphs
Nat ‘- sa t Rese,sn.  h I s u u , s s  I ki’s uu( s - , : ka,’,s ri i, \~~. cs. i : - lO re u s e r  isihin, ‘I t f - i  rts: a t’~ v i ’ ,
.\ Iso w i ih ( . I. Ke nne-iF. Mcs - ( i ( ,s i” ,s1 , , 55  \ ‘ e- Ios4 t i i ’~ are- olit,une ’ij by oc: i ( if l t  i s ,  , n  n ts -r ~f the

1.175
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line prohie liv interpolation on .i smoothed line l iroiule i~di at ive of white noise and consistent with the out~
as described b~- Musntiun ( 1974i. .-~ll velueiIi~s ire ri- - of lOCUS data.
ferreu l t i  the mean velocit y of e t c h  raster. We iver.ugi’ s i ‘[‘he t~1te’rcd data clearly show 5-minute oscillations in
the ve’locit ie’s of the three ad j acent lines in isrdt r to sup- t i e  portion of the scan outside of the spot. The data
press the noise in a single’ nieasiirenient anil ihjt,iine’d tiIs s t show 5-minute i,si’illations in the umbra , with
t he equivalent of one 40-point se- an line’ . Since’ the e’ t ’ hui ~ - typ ical ai.sp litudes of 5)) m s ; but since these are
itv is measured at a slightly d ifferent t inse ’ and we scan usuall 180~ out of Phase with the osci llati csn , i ut - ,is lc

— an odd number of lines in alternate directions , a h er- the spot , we suspect that this is a s~ ,t em.tih error i lw’
fectlv uniform oscihlator~- pat tern on the’ Sun c j uid give to referring all velocities to the average of each sear, -

rise’ to an apparent phase ve locity in the dir :ction sif Repeating one of the scans with a ve locity referenced
scanning of the odd.numbe’reel lines. Hiicvever this tsp. to the average t imbral velocity in an attempt to remove
parent phase velocity is greater than 3(XX) kru s and this effect does not significantly change the results re-
introduces a ncgli~ible error in me’asuring phase s’e’lIw ported below. The error in velocity reference is opposite
ities two orders of magnitude smaller , to the effect of scattered light , which would give oscilla-

We observe’I two sunspots in McMath regions 13875 tions in phase. We looked primarily for horizontally
and 13890 on 1975 October 5 9 and October 16-19 . ht re- propagating waves in the penumbra resembling those
liminary observat ions were also obtained for a sunspot observed in Ha, N either scattered light nor an m accu-
in McMath region 13738 on 1975 June 28-July 1, bitt rate ve locity reference could introduce such a systematic
detailed results will be given here only for the later two propagation.
spots. The filtered data show oscillations in the penumbral

ill . RESULTS photosphere , but not in the form of a continuous out-
ward-propagating wave train sometimes seen in Ha.

a)  C hromosphere There do appear , on four occas ions, what we term
\Vhen the Ha slit-jaw pictures are proje ’cted as a penu mbral photosp heric events. These are isolated wave

movie, the running penumbral waves are most con- packets that propagate outward across the penumbra.
spicuous for McMath region 13875. The waves appear ‘1 he packets consist of one or two complete oscillations
continuousl y for alt observations of this seiflSj )ut over a w hose penio(1 (250-290 s) is comparable to that of the
per iod of 5 days. They have an average period of 240 ehromosphcnic penumbral waves. Figure 1 shows an
10 s and propagation ve locities in the range from 10- examp le of one such event , as illustrated by the time
18 km s °, These waves then appear to he typical , con- history of the line-of-sight velocity at each scan point
sistent with the okservat ions of Zirin and Stein (1972) across the penumbra. The heliocentric angle of the sun-
and (jiovanehli (1972 , 1974).

On viewing the Ha movie of McMath region 13890,
one has the impression of waves propagating ou tward 33 ,r\ 1
across the penumbra , but the pattern is not distinct / \~ / 7 , ~~~ / ~- - “a -

enough to make measurements of per iods or velocities, 
32 
!‘

~~ / 
~~~~ 

~~
. 

- — / 
-

T’nere is no indication of running penuntbral waves in - \ - ‘ 
\ \ ‘  I ~~~~ .~~‘J - ‘ . - —

McMath region 13738 , but the tinte interval between ~
-- -~, s~~ “,- .- - -

pictures is longer in that observation , making the waves 31 / 
(\ - ‘ 

~ 
- ‘ 

- / --‘ - - 
-

more difficult to detect. ,—_~ ~ —‘ 1 -‘ /r~— a,, . - 
,
~

,
30 \ 

~~~~~ \
1.J/ ‘~ / ~~~~~~~ / -

-

In) P/solos pliere \ / - / 
/ / \ f- . -

~~ il l ., ~~~~~~~~~~~~~ J 1~~ i i I
J o  determine the reliability of the )s~~~iO velocity 29 . -

‘ / 5  .
. 

/
(haLt , it was first necessary to determine the noise in the’ 

,,
— 

~~~~~ 
\, / - , / \ I

signal . To do this , a series sf sca ns was made out of 28 “s,,,, _ . ,- \ f\ ~~ “s 
/ 

\
focus , giving it uniform solar signal. i’ rum this the noise - , - I \ /
seas found to ha~ e nearle eqe t ii pos~cr at all fncquencus 27 

/ / \ 
\J

w ith rms vel o c i ty isn the order of 26 itt s~~. We also - ‘- ‘ 
— 

“ - 
‘— ‘ 7”\ \ / — ‘— Ii -

me esured a nearle uniform spectrogr uph dri lt of 21 m 26 -
~~~ / c / \ ~-“ /

hr , The avc rtge- value c i f  each scan was subtracted to 
~~~~~~ 

i 
-‘ ~~~~~~~~~~~~ ~~~~~~ ‘ ,~~ \‘ -a

reniuvts the e ffect of the’ speet rograph t h r i f t .  Next , the 25 - - / ~ 
I \ ,;~~~

‘
~
- / \J/

time’ series f u r  each of t he 4)) points in the scan Was ‘- ‘ ,~~ \j (‘\ \..~~‘ -
‘

analyzed. Thc mean for each t inie series was removed. 24 \ ~/ \ . .~~~ . \ f .\j / ’ / 
- —

‘l’his e l i ni i i nat cd the i in~J,i cw in s effe ct of Evershed flow. ‘
~ 

-

~ ~~
“ \~ 

- \~,,/ ‘.—‘~~~~ \,_,/ ‘—

‘I’hc best es t i t oa t s of t t ne true signal se ts obtained be 2 / \ ~~ -
‘

us ing a hand isa~s t i - t s r  in the ’ manner described liv - . /
/ 

\ ~~~~~~ ~~~~~~~~~~ 

/ 
“~~ I —

Brault and Wh ,;e - 1) 71 - The a ir  rem iveul high.fre. /
quc-n ’s ‘per ’ is l < 70 - n’ dse Ill i s  it s i r s  low-frequency

crii,d > 8(81 s ‘ u l r i f ,  ‘ii e’ U ’ in ins i rument i l  >roble’m I to . I. - -‘os examp le of a penumbral photosp F.eric event (event
P , - 

, - - I , 3 in ‘Fable 1~. 1 he time records of the fi ltered velocity signal at
in the diode array . I tie ps sc v e ’r  spectra t s r  the unt iltered points across the penumbra are shown, The numbered scan posh.
data arc essentiall y ib it for h igh frequencies , which is tions (with 1~ spacing) correspond to those shown in Fig. 2.

39
.

I~
_ 

— -
~

—-—
~ 

- 
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~ — ~~~~. . —



No. 3, 19 7(5 I ’ENVM }tRA I.  W~\~ ’ES IN I’ll ) )TOSI’IIERE LI 77

spot dtiring each of the~ four events Wit s rsui ighiy 4 )) , si)  t he lirobahihity that the phase of a sequence of m dc-
that line-nsf-sight ve locities ee’ere predominantl y vert ical, pe’ndent oscillators with the same frequenc y hut ran-
The amplit ude of each of the four events is nearly an du,ini phase could combine to form an apparent l~ propa-
order of magnitude larger than the’ m i s  noise. There galing wave. This tYpe of problem has been treated by
ntav have been a fifth event in McMath region 13738 , Roac h (1968). ‘rhe probability of having the’ phase
but it occurred tot) near the’ beginning of t h e’ record t in  nlitiercnecs of five random oscillsiiors OUt of 4(1 within —
he identitied unambiguously. 20 is 5 X 10- ~ . We analyzed a detail six independent

The horizootal J)h~tsC ve locities of the four events arc s e t s  uif data fru,in 5ix different d:tys and two sunspots .
in the range 37—90 km s , Individual i hase ve locities , t s r  a total lime of 2.7 hours. Al four events , ‘ s i s -r ides i
amplitudes, ieriods, locations, dates , and t inles of the over ltve to seven positions and are s ta t  ist u a i i \  sig-
four events are listed in Table 1. The locations given in nificant,
Table I refer to the numbered pos it- ur is s - ’ros~ t he sun - iv. (oN( .’i ,USt ii\.,
spot shown ir. Figure 2, which also shosv s plots of the Our observations at chromospheric and photosp hericcontinuum intensity across the scan. [‘he times given levels in three sunspots lead us to the following conclu-in Table 1 refer to the central tune of each event. This ,. - .

is the tinte when the maximum amplitude of each sva ve l Tvp ical running penumbral uvaves were observe-dpacket passed the central location in its range of propa- 
~ chri;mospheric levels.gation. The periods histe’d in Tabk’ 1 are consistent with 2, At photospheric levels we sibserved statisticallythe data of Beckers and Schultz (19i2) , who found significant events consisting of isolated wave packet’spower at 2~~ sin the penumbral photosphere of the sum- (One or two complete s,ac il!ations propagating outtse’ardspot they stu~ied. 

. across the penumbra. I-’our events were seen during 2.7To determine whether these penumbral photospheric hours of observation. The period of these oseillat iort S isevents cou ld have been due to chance, we ca lculated contparable to that of the penumbral waves in I-Ia. The
existence of these events is a parttal confirmation of theMcMath Region 13890 prediction of Nyc and ‘l’homas (:974 , 1976),

3. The waves observed in the’ penumbral phr)tosp here
are more intermittent and have higher horizontal phase
velocity (by a factor of 2 or 3 or ntore than the penum -

bral waves in Ha. Thus, the connection / if any) between
_____________________________________ ________ 

the penumbral photospheric events and the chronto-
I 

;~~~~~

‘-‘- 1.. spheric penuntbrai waves is unclear at present , and in1 20 any event is more complicated than the resonant mode
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ model of Nve and Thomas (1976 .

We thank G, Richard Mann, Horsi, Mauter , and
Howard DeMasttts for help with t he’ (shis ers ’at ions .

McMot h Region 13875 Jacques M. Beckers provided valuable crit leisr is s s f  the
- - - manuscript. I. H, Thomas was st.t ip srt ed by .-~ir Force

for the ~
.—~ ont n~iu s~t ers s~~~sit~un across t,he s ~~n contract F 19628-75-C-0011 tiiruu.gh ~acrat lient ) Peak

40t have 1” spac;ng. Observatory.

TABLE 1
PARAMETERS FOR THE PHorosn’ltERtc PENUMBRAL EvF .NT S

Horizontal
Phase

Velocity Amplitude Period Date and
Event Sunspot I,ocation ’ (km s~~) (ms °/ ( s i  Time (t ‘1’ - ’

13875 2 1-27  ‘X) 220 264 10.6 75 ,
t4: 2 7 : ,42

2 13875 11—7 64 255 258 10-6 75 ,
14:22 :08

3 13890 2 5 — 3 )  37 .5  265 252 to ,- io ’ 75 ,
14:42 :54

4 I3~90 t s — l 3  47 170 290 tO 16 75 ,
14:26:53

Loc atiusn refe rs ts) the nU!iit,er&’d -can positions in Fig. 2.
‘f ime refers to the central time is1 the event.
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SOLAR MAGNETO-ATMOSPHERIC WAVES

John H. Thomas

Depar tment of Mechan ical and Aerospace Sc iences

and

C. E. Kenneth Mees Observatory

Un ivers ity of Roches ter

- 

Roc hester , New York 14627 , U.S.A.

(Paper to be presented at IAU Colloquium 36, “Energy Balance and Hydro-

dynamics of the Chromosp here and Corona ,” Nice, France , September 6-10, 1976)

I woul d like to say a few words about the theory of what I call

magneto—atmospheric waves, which also go under the name of magneto—

acoustic—gravity waves. These are waves that i nvolve the combined restoring

forces due to compressibility , gravity, and the magnetic field. For many
waves observed in the solar atmosphere, all three of these effects are

important .

Nearly al l work on magneto-atmospheric waves has been based on

linearized theory for a plane—stratified , nondissipative atmosphere.

(See Chiu 1 971 for a discussion of the nonl inear case.) Wave propagation

Is then determined by the vertical distri bution of three parameters:

the sound speed c, the A l fv én speed VA , and the local density scale

height H. The theory Is compl icated by the fact that the medium Is both
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anisotropic and Inhomogeneous. Gravity and the magnetic field each

Introduce a preferred direction. The inhomogeneity Influences wave

• propagation most strongly through the rapid increase of the Al fvén

speed with height.

The simpl est approach to atmospheric wave problems is to find

a dispersion relat’~on for plane waves. However, th is  ap proach has

not been very fruitful for solar magneto—atmospheric waves. Unless

all three wave parameters c, VA , and F! are cons tant wi th hei ght, we

can f ind only a “local” dispersion relation (MacDonald 1961; McLellan

and Winterberg 1 968; see also Be] and Mein 1971; Michalitsanos ‘1 973;

Nakagawa et al . 1973; Yeh 1974) that holds only for waves whose vertical

waveleng th is much smaller than the smallest scale height of the un-

disturbed atmosphere. We can see how restrictive this approach is by

recall ing that in the photc.~sphere and much of the chromosphere the

densi ty scale height is smaller than our limi t of observational

resolution.

There i s one s pecial case , first studied by C.P. Yu (1 965; see also

Chen and Lykoudis 1972; Nye and- Thomas 1974), in which a, VAI and H are

all constant. This is the case of an isothermal atmosphere with a

hori zontal magnetic field that decreases exponentially with height as

exp (— z/2H). This leads to a global dispersion relation. However,

magnetic fields on the sun usually vary more slowly than the density

so this case has limited appl icability .

Perhaps the simplest model atmosphere for solar magneto—atmospheric

waves is an isothermal atmosphere wi th a uniform magnetic field. In

this case the sound speed a and the density scale height If are constant,
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but the Alfvén speed increases exponentially wi th height as e~~
’211
. This

rapid increase of Alfvén speed with height causes strong refraction and

downwar d ref lect ion of wav es, which can not be adequat&y discussed with

the ‘I oc3l dispersion relation . We must go back to the basic wave

equations with variable coefficients, for which solutions have been

found in cer tai n cas es.
Approximate solutions for the case of a uniform vertical magnetic

fiel d were f i rs t g iven by Ferrar o and Pl umpton (1 958; see also Weymann

and Howard 1958; Stepien 1967). There are three types of wave modes

in this case. One is an Alfvén wave having only nondivergent horizontal

motions. The other two modes have both vertical and horizontal motions ,

and may 5e descri bed as gravity-modified magneto-acoustic waves, or as

magnetically-modified acoustic-gravity waves, depending on the relative

valves of the sound speed and Al fvén speed at some reference level .

Meyer (1968) used an approximate solution similar to Ferraro and Plumpton ’s

in a model for flare- i nduced coronal waves , or Moreton waves. In his model

the chromosphere-corona transition region provides a lower reflective

bound ary , and the resulting trapped modes of gravity—modified fast waves

are identified with the coronal waves.

For the case of an isothermal atmosphere with a uniform horizontal

magnetic field , Alan Nye and I (Ny e and Thomas l 976a) have recen tly

gi ven an exac t solu tion for the wave modes. The wave equa tion in thi s

case transforms to the hypergeometric equation , and sol utions can be

expressed In terms of hypergeometric functions. We appl i ed this

solu tion to a model of flare- induced coronal waves similar to Meyer ’s,
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but with the magnetic field horizontal instead of vertical. The

resulting trapped modes propagate horizontally, w i th very l i t t le

dispersion for all horizontal wavel engths less than about 100,000 km

(see FIg. 1). Thus a flare—induced pulse will propagate horizontally

over large distances with little distortion , as is indeed observed.

We have also used our exact solution in a model for running

penumbral waves (Nye and Thomas 1976b). The model consists of an

upper Isothermal layer with a uniform horizontal magnetic field ,

representing the penumbral photosphere and low chromosphere, and a

lower aciabatic layer with no magnetic field , representing the under-

lying convection zone. The penumbral waves are identified ‘with fast

modes that are trapped by the increasing Alfvén speed above and the

increasing sound speed in the convection zone below. Figure 2 is

a diagnostic diagram showing computed eigenmodes for a typical

penumbra, along wi th the range of observed frequency and wavel ength

of penumbral waves. There is good agreement between observations and

the lowest eigenmode. Based on the form of the eigenmode, the theory

predicts that penumbral waves, which were discovered in Ha, should a1so

be observable in the photosphere. This prediction was recently confirmed

by Steve Musma n, Al an t4ye , and myself (Musman , Nye , and Thomas 1976) in

observations with the tower telescope and diode array at Sacramento

Peak Observatory.

I want to mention briefly one other aspect of magneto-atmospheric

waves which I have been working on recently. In the case of a horizontal

magnetic field there Is a singularity in the basic wave equation at a
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height at which

2 2  1/2
tAt 

_ _ _ _ _

7Z~~ 2 2x a I V A

When a or 
~A ’ 

or both , vary wi th height , then for slow waves of a

cer ta in frequency ui and hor izon tal wavenum ber there ex ists a

cr itical he ight z~ at which this relation is. satisfied . In the local ,

or WKB approximation , the vertical wavenumber becomes infinite at

the cri tical leve l , and waves take an infinite time to reach this level ;

thus, the critical level acts as an absorbing barr ierfor waves. Bu t in

fact the WKB ap prox imation breaks down at the cr iti ca l l evel , so this is

not an adequate discussion.

This phenomenon is similar to the critical levels that occur in

the stability of ‘inviscid shear flow (Lin 1 966) and in the propagation

of internal gravity waves in a shear flow (Booker and Bretherton 1967).

In the presen t case the s i ngular ity is lo gar ithmi c and the s ingular

point i s thus a branc h point. We can use the technique of Boo ker and
Brethertc’n to decide on the proper branch of the solutions and to connect

solutions above and below the critical l evel . The conclusion is that

waves are not comple tel y absorb ed, but are attenuated as they pass through

the critical level . The attenuation is algebraic, ra ther than exponen tial

as in the case of internal gravity waves in a shear flow. Energy is

absorbed by the mean magnetic field. If the undisturbed magnetic field

Is slightly inclined to the horizontal , the attenuation is reduced . The

critical l evel phenomenon may be of Importance in the energy balance

of the chromosphere and corona.
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