
nawmmmmp~*-n™-™,,r*m*^^&mr& • -~< tt^fgßßjm/^i9>Mmim\>mmm!imtmK>KMmt0Kii! PPPPUPmNp«-.'.^ AAPfft*W*WWP ~

»
e
3

3

ARPA ORDER NO, 2223

CO

CM
to

iSI/RR 77-6/
September IT7

Stephen 0. Crocker

State Deltas: A Formalism for Representing

Segments of Computation

to
3

o
3

■o

o

CD

rsui Rsnv or \i/i iiii.Rs cmroRsu JMT
ISFORMATIOS SCMSCIS ISSTITl Til

■''•7l AJ»m\tlf\ W'a\/Mar/n.idel Rn/Cjhfonua '»>:<)!

Approved for public relate-
Distribution U,' . ;

,,.

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY,

......................... . ,.££1

3^ K

M

■Mi ua
,!■»«■-11-11..». - .I,« ■IM*» rlii-'

viiuknww i i i t-w

SECURITY CLASSIFICATION OF THIS PAGE (Wh+n Dmta Enfrmd)

€t
©
L-

REPORT DOCUMENTATION PAGE
REPORT wSS^F

ISI/RR-77-61

2. GOVT ACCESSION NO

»i TITLE I'llJ auUlllll) ' ' '

State Deltas: A Formalism for Representing
Segments of A Computation i

7. AllTHClBril

Stephe n D.yfcrocker /

9. PERFORMING ORGANIZATION MAME AND ADDRESS

USC/lnformation Sciences Institute/
4676 Admiralty Way
Marina del Rey, CA 90291

It CONTROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209

II.

READ INSTRUCTIONS
BEFORE COMPLETING FORM
IPIENT'S CATALOG NUMBER

IHLtl HEPUHI « "iHIJU LUmWEU-

Research

anm WWl WljORT-WUMBERf

i eenfn>ci IE IV«

DAHC \5-72-C-sbfij'

10. PROGRAM ELEMENT. PF
AREA A WORK UNIT NU*

/A
JECT, TASK
3ERS

ARPA Order-^2223
ode Program Code 3D30 & 3F10

T. ■'WEPBR't UAIE I

OcfiM» g77j

127
U MONITORING AGENCY NAME 4 ADDRESSf" dttttfnt from Controlling Olli cm) IS. SECURITY CLASS, (ol thlt »port;

Unclassified

ISa. DECLASSIFICATION/DOWNGRADING
SCHEDJLE

so. DiSTRiDuTiON 5" A i EMENT for thii Kmport)

This document approved for public release and sale; distribution

unlimi ted.

«7. DISTRIBUTION STATEMENT (ol «.• aötfract mnltnd In Block 20, II dlllotonl from Rmpott)

Q^0
'& SUPPLEMENTARY NOTES

It. KEY WORDS (Conllnum on ir»v»r.» «Ma II nmeftmry •"<* Idonllly by block number;

ARPANET IMP, correctness, first-order predicate, program verification,
proof system, state delta

20 ABSTRACT fConllnu* an revaraa tld» II nKiiury and Idontlty by block nuaiear;

(OVER)

DD I JAN 71 1473 EDITION OF 1 NOV65 IS OBSOLETE

S-'N 0 I02-O14- 6601

1*07 9SJL SECURITY CLASSIFICATION OF THIS PAGE fWhon Data «mar*«)

mmmmkkmmm^k ■MIMMMaaMi

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS F-AOEHWii» 01« KnffQ

20.

v A state delta is a first-order predicate taking a precondition, a post-
condition, a modification list and an environment list. State deltas
are to be used in a proof system in which predicates describing the
machine's current state are cross-referenced by the locations containing
values used in each. Reasoning about a machine's forward progress may
be carried out by successive application of state deltas. Application
is legal if the precondition is true and if none of the locations in the
environment list has been changed since the state delta was entered into
the system. Afterward, all predicates cross-referenced to any of the
locations in the modification list are delated, and those in the post-
condition list are added to form a new current state. If some locations
hold arrays or lists, the cross-referencing part of the system may
provide for attaching predicates to location components. If names may
be given to individual location components, different predicates may
depend upon the same values under different names. To keep track of
all ttnr overlap conditions possible among a set of named locations, a
graph structure with two node types is used to show ali tfce possible
overlaps. A small proof system has been built and used to prove the
correctness of a slice of the code in the ARPANET IMPs.

SETUKITV CLASSIFICA I ION C" T^iS PAOEfWh«! Dal« Eni«r»rf)

^

ARPA ORDER NO. 2223

ISI/RR 77-6/
September l')77

\\
«I

Stephen D. Crocker

State Deltas: A Formalism for Representing

Segments of Computation

/ sniMsn v 01 son HERS < AUIOKSIA MT
IKFORMATIOS SCIl.SCIS ISSTlTL'TIi

■i(r(> AJmn\ill\ Va) /Marina del Re) /California 'Hi:')!

t2H) x:: i in

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT "< DAHCI5 72 c 030« ARPA ORDER

NO 2.223 PROGRAM CODE NO 3D30 AND 3P10

\. I .%'-> AM, CONCLUSIONS CONTA'NFD '. THIS ST1 D> J«! 1M| AUTHORS AND HHQl LD NO' HI INTERPRLTFD AS RFPRESFNTNG THE

Ot 1 •. I AL 01'INI ON OR POL 'C Y 0< ARPA 'Hi U S GO\ > RNVt M OH ANY OTHER PFRSCN OH AGENCY CONNECTED WITH THE M

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE DISTRIBUTION IS UNLIMITED

a
,~c-\. ^ ■

—--«-■■- — ■ - -

;,..--r, ,-... ■.T^^rm^^ym^^v^aim^nmi?^^

vk
-^^■"•::•'-■-•-•- --■-^^..-

Jt2t»-' -■
 ■ lif - imn""' Tu-'8- -^—■---»-^

f 1

Contents

Acknowledgments v

Summary ix

1. Introduction 1

2. The Formalism 8
2.1 Descriptions 8

2.1.1 Contents-of 10
2.1.2 Selection 10

2.1.3 Indexof 11
2.1.4 Scgthru and Segfrom 11

2.2 Overlap among places 12
2.3 Computation 14
2.4 Definition of the 316 15
2.5 Computation of support 17
2.6 Machine descriptions revisited 20
2.7 Formal basis 28

2.7.1 State deltas 28
2 7.2 The proof system 29

2.8 Comparison with other formulations 31

28.1 Fluents 31
2.8.2 STRIPS 32
2.8.3 Hoare's axiom system 32
2 8.4 The frame axiom 33
2.8.5 Intermittent assertions 34

3. The Proof System 35
3.1 Contexts 36

3.1.1 USABLE 36
3.1.2 riflf 38
3. i.3 Places 38
3.1.4 MOO and SUPPRESS 40
3.1.5 LNV 41
3.1.6 Ancillary components 41

3.2 The checker 4?
3.2.1 Opening and closing subproofs 42
32.2 Advancing the computation 43

,•*•.

■- »^.„.r-,■,,:.,.. ,.

"l

3.2.3 Entering new placcnames 44
3.2.4 Not mal derivations 45
3.2.5 Simplification 47
3.2.6 Definition of new terms 48

3.3 The place system 48
3.3 I FmdPbceNode 49
3.3.2 Traversing algorithms 49

A Slice of the IMP Code 51
4.1 The ARPANET 51
4? The 3IG 5?

4.9.1 No-.iddress instructions 53
4.22 Memory referencing instructions

4.3 OF R IF. 51
4.4 Specification of GFREE 55
4.5 Informal proof of the correctness of GFREE 57

53

5. Proof of GFREE 62
5.1 Proof plan G3
5.2 General facts G5
5.3 Definition of the 316 66
5.4 Listingof GFREE 68
5.5 Additional notation 69
56 Specification of GFREE 71
5.7 Execution of the first instruction 75
5.8 Consideration of an empty free buffcrlist 77
5 9 Consideration of a nonempty free bufferlist 84

6. Conclusions and Future Directions 103
6.1 Theoretical issues 106
6.2 Engineering issues 108
6 3 Prognosis 112

P.ibliogiaphy 115

IV

^ — -

Acknowledgments

The research reported here was carried out over a three-year period while 1 have
been a staff member of the Information Sciences Institute of the University of Southern
California. Interactions with colleagues at UCLA, ISI and elsewhere have been
invaluable in developing the ideas presented here. Charlie Hayden and Dono van-
Mierop helped implement the ISPS translation program and the proofchecker; this
project would surely have been less successful withou' their help.

Discussions with Susan Ccrhart, Ralph London, Mac McKinley, Dave Musser,
Ron Tugender and Dave Wile of ISI, with Bill Overman of UCLA, with Bill Carter
and Bill Joyner of IBM, with James H. Morris Jr. and Ben Wegbreit of Xerox PARC,
with Zohar Manna of Stanford University, with Richard Waldinger of SRI, Rod
Burstall of Edinburgh University and with Vint Ccrf of ARPA all contributed to a
greater understanding of the problems involved in specification and proof of computer
programs.

In addition to benefits gained from persona! discussions, two papers stood out as
containing essential insights into the problems of representing computational activity.
John McCarthy's "Situations, Actions and Causal Laws"1 introduced the notion of
fluents which arc implicit functions of the current state of the world. The formulation
of state deltas is closely related to McCarthy's fluents, although there are specific
differences noted in the text.

The other paper of major importance is Rod Burstall's "Some Techniques for
Proving the Correctness of Programs which Alter Data Structures."" The fundamental
idea is simply a bookkeeping system for partitions, and this is applied to the problem of
keeping track of what space is covered by which data structures. This paper crystallized
some ideas 1 had been playing with and became the basis for the design of the place
system for handling overlap relationships. I'm particularly indebted to James H. Morris
Jr. for directing mc to that paper.

' .Mm McCarthy, "Situations, Actions and Causal Laws," Semantic Information

Froccssinp, edited by Marvin Mmsky, MIT Press, Cambridge, Massachusetts, 1968, pp. 410-111.

" Hoil M. IViirstall, "Some Techniques for Proving Correctness of Proprams which Alter
Data Struct tires," Machine intelligence 7, Kdmhurph University Press, Kdinhurph, Scotland,

1072, pp. 2.V50.

MUM,
i ,„■.. „a

The oiif,mnl goal was to formally specify the operation of the IMP program and

prove that its cade was correct with respect to the specification. Although this goal was

sei aside in favor of re examination of the basic formalisms, the early part of the work.

was devoted to an intensive study of the IMF code and the architecture of the

Honeywell 310. During this period, a number of pcoole at the IMF* project at Bolt,

r.eranck and Newman in Cambridge, Massachusetts, including Ben Barker, Herb

Brown, Steve I'.utteifield, Bcrnie Coscll, Bill Crowther, Frank Heart, Joel Levin, Alex

McKenzie, Paul Santos and Dave Waiden, provided extensive assistance and

consultation.

As part of the early effort to formalize the description of the Honeywell 316, 1

experimented with I'.ell and Ncwell's ISP notation. Mario Barbacci, Gary Barnes, Rick

Cattcll and Dan Sicwiorck of Garncgie-Mellon University developed a revision of the

notation called ISPS and wrote a number of programs to process ISPS descriptions.

The key tool is a parser which accepts ISPS descriptions in source form and outputs a

fully parenthesized parse tree in a text file for further processing. With their assistance,

1 was able to use their programs over the ARPANET and experiment with translation

of ISPS descriptions into both executable programs and sets of state deltas for use in

proofs.

Tin tools available to use during the course of a research project always have a

major impact on the outcome. I was foitunatc to benefit from very powerful tools and

fiom help ftom experts. By far the most important tool is lntcrlisp. Years of

refinement have produced a system far more sophisticated and useful than the original

implementations of LISP 1.5. The file package, record package, read macros, CLISP

extensions, pattern matcher and dv.imificr all played major roles in the design and

Implementation oi the programs As powerful as these facilities are, however, they

would hardly be useful without supporting documentation. The lntcrlisp manual' is a

masterpiece ot documentation and surely represents one of the most successful products

to come out of the computer science research community. Beyond the production of

their excellent system, Alice Hartley, Daryle Lewis, Larry Masintcr and Warren

Teitelman also exhibited great patience in answering questions and responding to

problems At ISI, Marty Yonke shepherded our local version of Intel lisp and protected

Warren and the others from the more naive questions

Document preparation plays an important role in any project, perhaps even more

so when a dissertation is involved This document was prepared using PUB, a rather

elaborate but very temperamental system. Ray Bates, Norton Greenfeld and Marty

W.uMH 'IYileltii.il! lntcrlisp Hcfcren.ee Manual, Xerox I'alo Alto Research Crnlcr,

I'.ilo Allo.Calilonn.i, 1975,

VI

- - -

Yonke provided extensive assistance in building the macros necessary to drive PUB and
in guiding the secretaries and me through the PUB maze. Actual printing of the
documents were earned out on the XCP, also a temperamental device. Very little

trouble was encountered with the XCP, however, because Pete Alfvin mastered the
XCP software completely Pam Kaine and Rcnnie Simpson typed this document and
wrestled with PUB to make it look right. Their patience and pcrserverance cannot
adequately be rewarded.

This work was carried out under the guidance of UCLA faculty members Ken
Colby, Donald Kalish. Leonard Kleinrock, David Martin, Gerald Popek and Gerald
Fsttin. As a committee and as individuals, these people provided exactly the kind of
probing and feedback needed at critical points in a research project. Professor Estrin
served as chairman of the committee, but his role went well beyond the mere formalities
of chairing a dissertation committee. He has been a friend, a counselor, a colleague and
a teacher; 1 could not have found a more supportive, patient, tenacious or insightful
adviser.

Financial support for the work reported iiere came from the Advanced Research
Projects Agency and the Rome Air Development Center, both through contract DAHC-
7:>-C-0308. The financial support and the personal support of Bill Carlson, Dick
Nelson and Don Roberts are gladly acknowledged.

Norton Grcenfeld. Chloc Uolg, Bob Metcalfe, Vint Cerf and my irrepressible wife
Both have provided moral support and encouragement during this period, and my
pleasure in completing this work comes partly trom their participation.

Finally, despite the help and encouragement of all of these people, the views
expressed here are purely my own and neither the people nor agencies named above
may be held responsible for errors or misstatcments.

VII

m^^g^^-^^^^^^f- .yw^pvvw*^*^ .M^jM'i^iff ffl&fr~^^^ ..' JJjf j1|Jjg||g|pWjjpp|P|p

yih

||||i||jg^^—
 - —--- —— ■■

Summary

A jrafe rff/ra is a form for representing segmerus of computation. A state delta is
a first-order predicate which takes a precondition, a postcondition, a modification list
and an environment list. The semantics of a state delta are "if the machine is in a state
which satisfies the precondition, it will eventually reach a state which satisfies the
postcondition, and it will do so without modifying any locations except (possibly) those
listed in the modification list."

It is intended that state deltas be used in a proof system in which predicates
which describe the current state of a machine are cross-referenced according to the
locations containing values used in each predicate. In such a system, reasoning about
the forward progress of a machine may be carried out by successive application of state
deltas. Application of a state delta is legal if the precondition is true of the current state
and if none of the locations in the environment list has been changed since the state
delta was entered into the system. After these checks have been made, application
consists of deleting a!! predicates cross-referenced to any of the locations in the
modification list and adding the predicates in the postcondition to form a new current
state.

If some of the location in the machine being modeled hold arrays or lists, the
cross-referencing part of the proof system may provide for predicates to be attached to
components of the locations. If the proof system further allows for names to be given to
individual components of locations, it is entirely possible for different predicates to
depend upon the same values under different names. Under these circumstances, it is
necessary to keep track of all of the overlap conditions possible among a set of named
locations. In most cases of interest, a graph structure with two types of nodes can be
employed to represent all of the possible overlaps, and this graph can be searched quite
efficiently whenever the current state is to be modified.

A small proof system has been built along these lines and has been used to prove
the correctness ol a slice of the code in the IMPs in the ARPANET. This code
allocates a buffer off the free bufferlist and uses indirect addressing and other pointer
techniques to accomplish its task Representing the allocation of storage and following
the trail of the pointers fully illustrates the utility of the graph system for representing
storage relationships.

IX

„j,!^^^,. (| jtMMt, ■ ■ ,11 ii i- ■ ■

I wWWWjg'y'»»'ä«<!!!«»-»^iauMlj)l|[|MBIl mm mmwm

1. Introduction

I have been interested in applying formal verification techniques to real
programs. What's a "real" program? One whose reason for being written is to
accomplish some computational task and not solely to serve as an »sample for
verification research.

I chose the code for the IMPs in the ARPANET as a real program to study."1 For
the present discussion, it is sufficient to know that the code consists of about 10,000
instructions (including load-time constants), runs on a Honeywell 316, which is a rather
standard minicomputer, and is written in the assembly language for the machine. Its
purpose is to ship messages around the network from source "hosts" to destination hosts.

When I began looking into the IMP code, 1 hoped that existing theory and
techniques would be sufficient. My task would be only to extract the relevant details
from the IMP code and submit them to an existing verification system. 1 was prepared,
of course, to supply all of the assertions that might be required, define the concepts and
terms specific to the IMP code, and write some sort of preprocessor to transform the
machine language (or its assembly level representation) into some more pleasant form
consumable by existing verification systems.

It didn't take long to find out this approach wouldn't work.

Two classes of problems emerged. First, existing verification systems are sti'd in
an early stage of development. Verifying a program of any si?c would require both
extension of the existing system to handle primitive operations such as anding and
oring of t/itstrings and extensive interactive direction to drive the system. Were these
the only problems, the right course would have been to help extend an existing system.

The problems in the second class arc more fundamental. 1 could not find a way

* Tbc AHI'ANKT is iJescribcil by Lorry Hohem ami Harry Messier in "Computer

Networks to Achieve Kcsouree Sharing", Proceedings of the At IPS Sprtnp Joint Computer

Conference, Vol. .%, Aimnr.iti Kr.If ration of Information Pioccssnif! Societies, Monlvalc, New

Jersey, 1970, p|>. M.V.V19. for a description of ihr IMP program, see 'The Interface Mcssapc

Processor for I lie ARPA Computer Network", by frank Heart, ct a/., pp. 5S1-567 in the Mine

volume.

 i in in i

.,tj!iij^^,w«gi».i[»p^;»^^ Wm' wiiiiij,ipyipütM,iW

to n>ap the following facts and practices pertaining to the IMP code into the formalisms
accepted by existing verification systems.

Induce! addressing, computed branches and program modification are used
extensively.

Pointers arc used extensively to manage space and eliminate expensive
copying of data from one location to another.

All of the code and all of the data share a common residence - the memory
of the machine. Any proof of correctness of the system needs to include a
proof that data and programs assumed to be separate from each other are
indeed disjoint and do not clash.

The code consists of a number of routines driven by interrupts and
operating concurrently. Some of the interactions are timing-dependent,
slowing down or speeding up the processing time for some of the routines
could cause the system to fail.

Why ate these aspects of the IMP code unacceptable to existing verification
systems? Current efforts to build program verification systems are based on Floyd's

approach.■' In these systems, a program is represented in a flowchart form and
augmented with assertions which relate current values of the various program variables.
1 he assertions are then combined with tl."1 program text to produce a set of lemmas --
called verification conditions - to be proven. Simplification and theorem-proving
programs are then used to prove each of the lemmas. When all of the lemmas have
been proven, the program is guaranteed to be consistent with the assertions embedded
in the program; in particular, if one of the assertions is attached to an entry arc and one
to an exit arc, then this pair of assertions forms the input-output assertions for the
program. Systems built along these lines have a number of limitations.

Generation of the verification conditions is completely automatic and thus
depends upon a purely syntactic analysis of the program. For programs

•' Tlw llieoiy i«. outlined in "AsMfMiui/L' Mr.ihitij-s to Programs," by Kobcrt W. Floyii,

iniiilcil in Mathematical Aspects of Computer Science, Vol. XIX, Proecedin/rs of Symposia in

Applied .M.ilhein.ilir*,, American M.illi< in.itu.ii Sonrly. Providence, Klioilr Island, 1961, pp. 19-

.'!;' A typical sysiwn li.w-il on tins lltrory has horn implemented under ihr direction of Kalph

London. "An Interactive I'IO/T.HM Verification System," by Donald I. Good, Kalph London arid

W. W. Hledsoe, published in It if. Transactions on Software tnptnecrtnp, Vol. SK-1, No. 1,

pp. S9-67, M.irtb 107S, describes the system.

c^^ ..^^^JLiL-i^. mtmmm

, j.,.,,,-^^, ,-..,,.. -<~- ■.■■.■,ii»ii.TWI^.Hi,LI II I. .PIIIIIHIIHII^PW»—^Pl>l1^—^*** "^■■■1

written in restricted high-level languages, such syntactic analysis may be

possible I lowever, for programs written at the assembly level or in rich

languages which permit program modification and computed branches,

determination of the paths must be combined with the proof process itself.

Another facet of the same problem is that the programmer may want to

analyze his program in terms of execution sequences which do not

correspond to successive values of the program counter. Table-driven or

interpretive systems may look like reasonably simple repetitive loops if only

the apparent flow of control is followed, whereas the actual complexity of

the program may be buried in the "data".

No distinction is made between the value stored in a program variable and

the name of the program variable itself. Without this distinction it is

unclear how to represent the state of affairs for programs using pointers,

indirect addressing and related practices.

Arnys are usually treated as closely as possible as simple variables so that

assignment to a component of an array is considered to have changed the

value of the entire array. As a consequence, every fact known about the

array must be redenved after an assignment to any part of it. This is

particularly disastrous for verification of machine language programs; all of

memory is one array!

There are simply no provisions at all for treating timing-dependent code.

In addition to these fundamental limitations, there aie also some engineering

considerations that materially limit the utility of existing systems.

Termination is one of the most common properties requiring verification.

Unfortunately, lloyd's theory treats termination quite separately from

attainment of correct values. A completely separate set of assertions and a

separate proof are required, approximately doubling the work. This cost

lias not yet been passed on to the user, however, because the implemented

of verification systems have not yet built the additional machinery to

handle termination.

The separation of the verification process into two distinct stages,

generation of verification conditions and proof of the verification

conditions, means that much of the structure of the program i inaccessible

during the proof process. In my view, this is an unnatural separation

which will tend to make verification unnecessarily difficult in practice

Si—mm^jm Mia mi in

?-*=*-*TT~-^~-- "*<-*■'' "^^^-^-'~^ ■BJWWWWiWW '■•'•■■ (imp ppw«p»npw "»^WWWWWWüP

Current practices require that the programmer write down all facts relating

to the current state in every assertion. Since an assertion is required for

every loop, the programmer will frequently need to copy facts which are

irrelevant to the loop but which must be brought forward across the loop.

For example, if one section of the program sets the value of hüO to be zero,

and the next section uses a loop to clear an array but docs not change F00

in the process, the assertion attached to the loop for clearing the array must

nevertheless include a clause stating that the value of FÜ0 is zero.

One possible response is to suggest that the IMP code is a poor choice for

verification and that only programs which satisfy a particular set of constraints should

be considered for verification. This point of view is usually espoused under the

"structured programming" label or, more recently, under the "quality software" label.

In general, 1 can agree that structuring techniques should be used whenever

possible and I am a strong proponent of higher-level languages and strong conventions,

pwvided the languages and conventions do not interfere with the accomplishment of the

primary task. In many cases, however, languages for programming an important

application on a particular machine either do not exist or else impose intolerable time or

space limitation. In such cases, assembly language or other loose forms of code

generation arc essential.

More to the point, perhaps, is a strong feeling on my part that the essentials of

program verification need not be tied to any particular language. In my own experience

as a programmer, 1 find that there is only a little variation in the analyses of (say) LISP

programs versus machine language programs.

Finally, from a common sense viewpoint, the IMP code is not very complex. Most

competent programmers would find it possible to learn the code and relate observed

behavior of the IMP to the structure and content of the code.

As a consequence, I prefer to take programs like the IMP program as fixed points

on the landscape and ask whether there are techniques possible for analyzing them and

proving their properties.

This line of inquiry has yielded the following results.

A new fcnm for representing a segment of computation has been invented.

The new form is a state delta (SD). The essential components of a SD are

a pieconditioii, a postcondition and a modification list. The pre- and

postconditions arc predicates on the machine's state vector and the

modification list is a set of names of components of the state vector. The

: ■ - .- .- -- ^ '• «ä&^Jj -dtCt..»- _ •» ■}■'-
■UM

 mmmmmm mmmmmmmm nmmtiummmm »■»
MM

semantics of a slate delta is "if the machine is in a state which satisfies the
precondition, it will eventually reach a state which satisfies the
postcondition, and in (he course of the intervening computation, only the
places listed in the modification list may be changed." The modification list
is the mechanism which relieves the pre- and postcondition of the burden
of copying static information forward through a proof.

State deltas are first-order predicates in their own right, and a proof theory
has been developed which provides the lopical machinery for using state
deltas in proofs and proving new state deltas. The proof theory is a direct
extension of the theory in Kalish and Montague's treatment of first-order
predicate calculus with identity and definite description and contains two
new inference rules. One of these rules provides the basis for forward
reasoning through the sequential parts of a program. The other provides
for combination of state deltas which cover alternative paths. No new
inference rules are required for loops; the usual forms of mathematical
induction arc completely adequate.

One of the intended uses for state deltas and the new proof machinery is to
provide rigorous proofs of correctness of code which involves indirect
addressing and list structures. This requirement led to an understanding of
the role of placcnames, i.e., names of components of the state vector. In
most theories used in pioejam verification, these names are fixed and
represent disjoint components. Tart of the theory developed here provides
machinery for referring to overlapping components of the state vector and
for using proof variables as well as constants to refer to parts of the state
vector. In essence, all possible overlap relationships among the placcnames
in use must be known. A compact form for representing this information
and an extremely efficient method for searching the representation to find
the most highly intersecting set of places has been developed.

Rased on the proof theory developed, a trial verification system has been
developed and tested. The system is a blend between a proofchecker and a
symbolic cxmition system. State deltas arc used to progress forward
through a computation symbolically and a complete record is kept of the
effects. One of the design goals for this implementation was that the cost of
making a single step should be nearly independent of the size of the state
description at any point. This goal wa<> only partly realized, but the
difficulties became clear and provide direction for future implementations.

" Don.ilil Kalisli ami lixliaril Mnntafuc, LOGIC: 7cchntqucs of Formal Reasoning,

ll.irrourl, Mr.irr anil Wotlil, Inc., New York, 1961.

wm*fpw ^»-wwwiiiMHPPi jpoHmppgi mmmm

As part ol the experimentation with the verification system, the operation

of the 3IG was coded into a set of state deltas. This led to an exploration of

oilier forms of description of machine behavior, and an experiment was

earned out to translate machine descriptions in L'.ell and Ncwelfs ISP

notation mtu state deltas This translation was successful, but an excessive

number of state deltas were generated. I developed an alternative scheme

for translating ISP descriptions into far fewer slate deltas, but have not

implemented this new scheme. One byproduct of the experimentation with

ISP has been a set of interactions with other researchers using machine

descriptions for simulation, code generation, hardware design and other

applications. Out of these interactions there is emerging sufficient

experience to design a machine description language which is rigorously

defined and suitable for a wide spectrum of applications.

Finally, the system was used to prove the correctness of a tiny section of the

IMP code. 'I his section of the IMP code allocates a buffer from a free

storage list. T!;c pioof of correctness of this section of the IMP code

required specification of the list structures used in the IMP code and

provides a blueprint for verifying related implementation of other list

processing code The proof itself is quite long and reflects the primitive

nature of the verification system. As may be expected, however, the tedium

of preparing a long proof of very small steps has provided substantial

guidance for future improvement of the verification system.

In addition to the limitations mentioned above, the present work makes essentially

no contribution toward an understanding of concurrency and timing. The concept of

keeping track of what may be changed between two points in time seems to be necessary,

but a much stronger formalism will need to be created to represent the interactions

among multiple processors.

These results arc elaborated in the succeeding chapters. Chapter two contains the

detailed formulation of state descriptions and state deltas. Chapter three describes the

structure of a small proofchecker which uses and proves state deltas. Chapter four is

devoted to a description of the IMP and and a description and informal proof of

correctness of the buffer allocation routine, named 01 KFF A complete formal proof of

correctness of this same code has been verified by the verification system and it is

displayed and annotated in chapter five. Chapter six contains reflections on the current

work and directions for the future.

All of the programs developed during the course of this research were written in

Interlisp This choice was intentional, for it was clear at the outset that only the

availability of such a powerful system would enable one person to experiment with a

,.•■»■

-*BaM«m ■"■W" 1 ' ' P1H

theory by implementing; and re-implementing various ideas, lnterlisp not only supported
all of the programming 1 needed to do, but it also supported the definition of language
for state descriptions and state deltas and provided a powerful pattern matching facility
for use in a command language for the verification system. These uses of lnterlisp fall
somewhat outside the design intentions of the lnterlisp architects and the fit was not
quite perfect; some of the syntax may seem a little awkward. For a production version
of the verification system, it is almost certain that all of the interfaces would have to be
redesigned.

■ fci^Miii'i" fihrMMiiMim MM ■ ■— -■ .

■ •-■>■ ...-.;.,„., Sipsssaaonilllilllllji.lJU,.! JjJ..k;»J,JMWJiwiuiJ.JMi«!li!ls|l«lll«pi.

2. The Formalism

The pattern for proving facts about a program is to represent each of its steps as
a state delta and then prove facts about sequences of steps. The new facts will also be
represented as Sl)s and thus may be used in further proofs.

We will come to the precise formulation of SUs shortly, but we know that they
rnnfain a mnHiticatinn list and two partial state descriptions, viz. the precondition and
the postcondition. Given a set of known SDs, we will attempt prove a new SD in the
following manner.

1. Write down the precondition for the SD to be proven. This constitutes the initial
"current state".

2. Select a known SI) whose precondition is true for the current state and apply it.
After the Si) is applied, there will be a new current state.

3. If the new current state meets the requirements of the postcondition in the SD
being proven, the proof is finished. If not, step two is repeated until a state is
reached that is satisfactory.

"Application" of a SI) to the current state has two subparts. First, clauses in the
current state that depend upon the contents of one or more places being modified must
be removed from tiie current state. After this has been done, the postcondition of the
SI) being applied is added to the state and the total result is the new current state.

?.l Descriptions

A computer has a set of places (sometimes taiicd locations) which hold values.
The collection of values stored in the places at a given time is the state of the machine
at that time

Places aic cither simple, structured or invented. Simple places hold non negative
integers in the range 0 through 2n~ , where n is the length of the place. Simple places
are used to model single registers or flip flops.

m^amm

BBpOTWJPMMtRIM H.JI III.IUII.I.Ii.JIIWRpi "Wui'iMomump

 "W

Structured places hold lists. Structured places are used to model the memory
array and other places which hold more than one element. As we will sec later,
structured places will also be used to model subsections of memory, including non-

contiguous subsections.

Invented places are used to map control into the state description. Our only use
of invented places in the present work is to model a fictitious microprogram counter and
a set of places to hold "return addresses" for the microprogram. The values stored in
invented places are just labels with no intrinsic structure. The only operations available
for labels are movement from one place to another and comparison for equality.

1 considered formulating simple places as holding bitstrings and defining the
various operators accordingly. Selection of a field from a word is a typical operation
performed on values in simple places and has a very simple definition in terms of
bitstrings. The major drawback of using bitstrings, however, is that there has to be an
interface to the integers at some point, and it becomes tedious if car icd out at the bit
level. For example, after selecting a single bit from a bitstring, the value is still a
bitstrmg (of length 1) and is not officially comparable to an integer 0 or I. Just the
matter of writing down constants becomes a chore, either a constant is an integer and
must be explicitly 'inverted to a bitstring of some length, or it is initially a bitstring and
the length must be s, -cificd along with its value.

Using integers as the values for simple places turned out to be easier than 1 had
first guessed. Selection of fields and other "bitstring-oricnted" operations can be
characterized in terms of integer division (remainder and quotient) and the interface
between selection of elements from an array and selection of "bits" from an integer can
be formulated relatively cleanly.

Out concern is almost always with a set of related states instead of just a
particular state. To describe just the set of states of interest, we use a state description.
A state description is just a list of clauses in the fust-order predicate calculus. The list
is understood to be a conjunction. In addition to the logical connectives, quantifiers and
equality, a number of operators and predicates are predefined. The user may also
define his own operators and predicates. The predefined operators are introduced
below. For each of these operators, there is an infix form and an prefix form. The
verification system accepts either form for input and converts all inputs to prefix for
processing. When clauses arc output, they are converted to infix form.

'iVlliMMMfcilBi _

' ™?7. .w.mu..Ji.»"ir.wwipwppiji-'ivWPJijwu"»? ■ ";«».■» w»w ^«IBppilSpiJiipjIIJpHllilii.»- _-*?'-»* ■ «-'y'^mmmmmmmiimmmimKlliim

2.1.1 Contents of

I nsr a contents-of operator to refer to the value stored in a place in a given state.
Its external syntax is a unary prefix period and its internal form Is DOT.

The use of a contents-of operator provides for a distinction between the name of
a place and its contents. We will need this distinction in analyzing indirect addressing
computations and structures involving pointers.

Using the contents-of operator, we can write an example of a simple state
description:

• POG and .A--0.

This state description refers to any state which has 5 stored in PC and 8 in A .
The values in all the other places are unconstrained.

2 1.2 Selection

Many of the places will be consideird to hold arrays or sequences. In order to
refer to a particular clement, a selection operator is provided. The external syntax for
the selection operator is ■> and its internal form is SLL. MLN=S represents the sixth

element of MtM. (Al! arrays and sequences are indexed from zero.)

NtrlnO is the name of a place. Us contents are .r1tr1°5. This notation is
potentially ambiptious, for it is not clear whether the selection operator or the contents-of
operator has higher precedence. If the contents-of operator has higher precedence, then
.firrin5 means (.MtM) »5. This means that the value of the whole array is first
obtained and then clement 5 is extracted. This interpretation means that the selection
operator would be operating on a value instead of a place.

In contrast, if the selection operator has higher precedence, .f1EM<>S will be

The choice of notation is heavily influenced hv llic availability of Cl.ISP which

It a us la Irs automatically from internal to external syntax a>nl bark apam. The convenience of

tins facility has oulwciphed (lie nuisance ol usinp a non-.standard notation. For a production

system, I expect thai a different external syntax Mould he developed.

10

M^Mi
Krf^^J^^^^egOTj.
 ■ "" '"IT ' 11|-—■ •

•WWMfHMWWHIW^

interpreted as . (r1[ri°5), meaning the contents of the place designated as the sixth
component place cf rlLM.

Hither of the these interpretations should lead to the same value, but we will see
that it is desirable to minimize the size of the places that appear under the contents-of
operator. Accordingly, 1 have chosen the latter interpretation for .MEM°S. Of course,
the former interpretation is still available if extra parentheses are supplied.

Selection is also defined for integers; the result is equal to the corresponding bit in
the binary representation of the integer, i.e., x»0 * 0 if K is even, etc.

2.1.3 indexof

Given a placcnamc like FREE, it is often desirable to find its address in memory.
If FREE^HEf1°i for some i, we'd like a way to refer to i. The indexof operation is
provided for this purpose.. Its external syntax is an infix /; its internal syntax is
indexof. If FHf F = MEr1°i, then i=F HEE/MEU The second name must be a structured

place and the first name must be one of us elements.

2.1.4 Segthru and Scgfrom

These operators select subsequences of structured places, structured values or
integers, (occithru X N) extracts elements 0 through N of X. If X is an integer,
(segthru X N) takes X modulo 2^ . The external syntax for segthru is ";".

(r.ccifrom X N) extracts elements from N through the end. If X is an integer,
(segfrom X N). is the integer quotient of X divided by 2 . The external syntax of
srgfrom is ",".

Typical use of these operators is to extract a bit field from a word. .11; 13,10
extracts four bits, bits 10, II, 12 and 13. from registers N and returns an integer in the
range 0 through l!> Reversing the operators provides a way of stating the first element
and the numbci of elements: .11; 13,10=.N, 10:3. Note that X.0 X. When working
with integers, X°i r X; i, i. However, for structured places and values, X; i, i has the
same number of dimensions as X with the outer dimension equal to I, while X»i has one
less dimension than X. Consequently, X»i « X;i,i»ü X,i»0.

II

rfWatftM J^^^iSmk»^^^^ - , .-

wmmmmmmmmm nun »mm mm ********
^wo«««»«^'/-.'

Following the policy established for StL, sccjfrom and sccithru have lower
precedence than LiDT. When more than one occurs, they are performed left to right.

22 Overlap among places

Usually, eiich place has a single name and is isolated from all other places.
Changing the value stored in one place doesn't affect the value stored in another place.

Arrays, indirect addresses and list structures all require a different point of view.
In one form or another, these mcchansims each involve dynamically changing
placcnamcs. As a consequence, we may not know whether two names refer to the same
or different places.

Our general plan for following programs is to step through them symbolically.
Whenever an assignment is made to a place, its old value will be discarded. Values in
other places remain undisturbed until assignments are made into those places.

This plan clearly requires that we know which places are disjoint from each other
whenever an assignment is made. How do we resolve these conflicting requirements?

First, we adopt the conservative rule that unless we know that two places are
disjoint, we must assume that they might overlap. Second, we provide a fast and
reasonably flexible mechanism for recording and accessing the overlap relationships.

Since our default rule is that places overlap unless we know definitely that they
do not, we need some means of saying that two places do not overlap We could adopt a
predicate, say Dir. jointp(x y), which asserts that x and u ate disjoint, and then we
could make up axioms for deriving disjointness from other properties. If we tried to do
so, we would encounter a ma |or difficulty in working with a large number of places. To
assert that three places art each disjoint from each other takes three statements, four
places requires six statements, five takes ten statements, etc. In practice we need to assert
that perhaps several hundred places are each disjoint from each other; several thousand
individual occurrences of Uicjointp would required. "1 his difficulty could be remedied
by expanding the predicate to take an indefinite number of arguments. The semantics
would be that each of the arguments is pairwisc disjoint from each of the others.

In addition to specifying which places are disjoint from which other places, there
is ficquent need to specify that one or more places arc wholly contained within another
place Both of these concepts - disjomtness atn.. mbtcrntory - are common, and 1 have

1?

tfitftiMliw

mmmimmmggmf&iBnqmiamMt 1""! "■'-" '■"'■ ■'■'-"-'»'imiWWgWffB ■"WM «"•^■I^Bl

chosen to combine them into a single predicate, Cover inri (Covering <A Bi Bp • • •
Dn>) states that Bj through BR ate disjoint from each other and that they are all
contained within A.

It is not sufficient to have these relationships scattered about in the state
description. When a modification is made to one of the places, it is essential to know
what other places may overlap with the modified place. To speed up the search among
these relationships, a separate data structure is maintained which duplicates the
information contained in the Cover inet predicates and provides immediate access to all
of the interactions among them. 1 his data structure is called the place graph and is
explained in detail in the next chapter. The most important point about the place
graph is that every place that is referenced within a proof is expected to be listed in the
place graph. Places listed in the place graph are said to be registered. Because the
place graph expects to know about all places, it assumes that the Covering relationships
it knows about arc definitive and that all overlaps which are not explicitly barred might
actually exist.

Although the default assumption is that two places overlap if it is not Known that
they do not, the place graph is organized so that its connections show what does overlap
(or at least might overlap). As a consequence, the actual searches of the place graph
touch only the nodes corresponding to possible overlapping places. Since most places do
not overlap with most other places, the searches of the place graph tend to be
independent of the size of the place graph. This is an important result and contributes
significantly to the design goal of a symbolic execution system whose execution time for
a single step is independent of the size of the program.

The place graph is initially set to hold a single node corresponding to the place
OMEGA. ONEGA represents all of the space in the machine and everything is considered to
be a subplace of ONEGA. Relationships are added to the place graph by attachment to
existing nodes, so the first relationship added to the place graph must be (Covering
ONEGA ...).

" Tin«; formulation of how 10 handle the problem of overlap;?-,;,,,' names was influenced

liy Moil tiiif'slaM's elegant paper "Some Tfchinqucs for Provinz» Coi icctitcss of Programs which.

Alier Data Structures," in Machine intelligence 7, Kdnihur/'h I diversity Press, Kilmhurph,

Scotland, 1972, pp. 2.1-50. I am indebted to James H. Morns Jr. for pointing out this paper

ihirui,» a discussion on the subject of how to represent list structures.

I?

•>•
..; * * -— ■. m V* & *„-..«.— *

^HBPBpwppSgPBSgP l,P|»W|y|jHlipB!!
lf!l!i^i!!",l^.'l

Jflj(l

?.3 Computation

State descriptions provide a characterization of a machine at a single point in

time. The next step is to describe the computational process as the machine proceeds

from one ii:,lv to another. The basic requirement is for some way to state "if the

machine is in a state characterized by l\ it will eventually reach a state characterized by

Q", where P and Q arc staie descriptions, lor brevity we can write "P leads to Q".

The general plan is represent the hardware as a set of statements in this form and

then combine these statements together to cover long sequences of computation. Thus, if

wc have "P leads to O" and "O leads to R", we expect to be able to write "P leads to R".

However, this notation by itself suffers from a problem mentioned in the introduction:

everything relevant to later computations needs to be included in each of the state

descriptions between the first time it becomes true and the last time it is used

To avoid this burden, an explicit list of places which arc modified is included in

the description of the the computation. The semantics of a computation arc now "if the

machine is in a state characterized by P, it will eventually get to a state characterized by

Q, and it will do so without modifying the contents of any place except (possibly) those

listed in M." All of this is summarized by (SLHpreiP) (niod:M) (env:) (post:Q)

(vars:)).

The vars clause binds variables th..' appear in P, O ~nd M. It is simply a

convenient alternative to using a universal quantifier.

Vx (SU (pre: P(x)) (mod: MM) (env:) (post: O(x)) (vars:))

is identical to

(Sli (pre: P(x)) (mod: M M) (env:) (post: CM*)) (vars: x)).

Matemcnts of this form arc called state deltas and form the basis for reasoning

about the computational process We can still combine two state deltas to form a third

by extending our previous notion a bit: if P leads to O modifying only places in M and

O leads to R, modifying only places in Nr then P leads to R modifying only places in

MuN.

The env clause is a list of places; it is used to abbreviate the precondition. In

oicler to characterize the operation of a subroutine, the precondition would need to

include a listuip of the code as well as the constraints on the data structure. Listing the

code in the precondition is unwieldy and inefficient, it the code is never modified, we

II

-*• *

'-' ' Il '■"■

would like to avoid both the repetition of the code in the precondition and the cost of
rechecking that it hasn't changed.

When the SI) is entered into the proof system, it is connected to the current
machine st.itc by its environment clause When the SI) is used, the values in the

environment places must not have been changed since the SD was entered into the
system. If they had been changed, the SD is no longer valid and must be discarded.

2 4 Definition of the 316

I'.clow is an abbreviated description of the Honeywell 316 in terms of SDs. Only
six of the instructions usually found on 316s are included here. This example will be
used later as part of the input for the proof of GFREE. The SDs in the definition of
the 3i6 will not have any places listed in their environment clauses, since their validity
docs not depend upon some part of the machine state remaining constant. We will see
examples of the use of the env cl«usc later.

The machine is assumed to have a memory flfcfl, a program counter PC, an A
register A, and internal registers M, Of, I and UPC to hold an address, operation code,
indirect addressing flag and microprogram locations, respectively. These internal
registers arc all considered to be subcomponents of Q, so a change to Q changes (perhaps)
all of the internal registers.

This use of Ü is merely a convenience; the list of M, OP, I and UPC could have
been written explicitly in the mod clauses of the SDs, but it was convenient to
summarize the set with a covering place.

The following list of SDs is the actual set used in the proof of GFREE described
later. The place named UPC is an invented place, and it represents a microprogram

counter. For this simple example, its values are represented as top, arlclr and action"

(SO (pre: .UPOtop .PDpc .HEM- (.PC) ■ 1400400)
(mod: 0 PC A)
(env:)

'.poet: .UPDtop .PCr(pcil);13 .A-0)

(v.irs: pc))

' The suffix Q on numbers itwlicalcs llic number is octal. This convention was chosen

to conform wiih I ho available facilities in Inlcrlisp.

1!)

HW
»J*..».»fc_j.^«;fcX^ -. ,,

i^i..:....;;.,,,,,^..,. ,^,.,-,..,.,-.,.,.,,,,. „. ..,., ... ,„ ■ I— 111

(SO (pre: .UPC-top .PC=pc .iltTU {.PC)--10104BO)

(imKl: Ü PC)

(env:)

(post: .WC- tup (if .A^O
then .PC-(pc-*l);13

else .PC--(pc+2);13))

(vars: pc))

(SU (pre: .UPC-top .ULn-(.PC);13,10~-0)

(mod: Q)
(env:)
(post: .Or-.ritrW.PC);13,10 .UPC=addr . I =.t1EM«. (.PC) »15

(it .ni n-.(.pc)n3,0
then .M= .MErin(.PC);8

eise .n=.Mtno(.PC);8+(L0GAN0 .PC 377000Q)))

(vors:))

(SU (pre: .WC-iddr .1-0)

(mod: UPC)

(env:)
(post: .UPC:-act ion)

(vors:))

(SU (pre: .UPC-addr .1=1 .fUni)

(mod: UPC I H)

(rnv:)

(post: .UiPC-atklr .rU.nLM°m;13

(vars: ni))

.Mtn-molS)

(SU (pre: .WC*-act ion .UP-1 .M--m)

(mod: () PC)

(env:)

(post: .UPC-top .PC-m)

ivars: m))

(SU (pre: .UPC = action .OP-'i .fl-ni .PC=pc)

(Mud: Q PC H[rir-m)

(fov:)
(post: .UPC^ top .PC-(pc-i]);13 .MLM«>m-.A)

Ivars: ni pc))

IG

JblBHilHBMl«Mi»»ftt~ _~

■HHHHHI

(SU (pre: .UPOaction .OP-18 .M=m .MEM-m^v .PC=pc)

(mod: Q PC hEMom)

(I'ITV:)
(post: .UPOtop .MÜ1«>ft=(v+l);lS (if .MEr1n:ii=0

then (.POpc+2);13

else .PO(pc+l);13))

(vcirs: m pc v))

(SO (pre: .UPOaction .OP-11 .POpc .A=a .11=« .r1ErW,=b)
(mod: Q PC A MEM°m)
(t:nv:)
(poet: .UPC: top .PC=(pc-tl);13 .A=-b .tlErl-n^a)

(vcirs: pc m a b))

2.5 Computation of support

P>y support 1 mean the set of places whose contents ate referenced in the
expression. The truth value of a predicate depends upon the contents of the places
referenced remaining the sartu. If any of the contents are changed, then the truth of the
predicate is suspect. Our strategy will be to delete predicates from the list of known-to-
be-valid predicates whenever my place in its set of support is changed. This strategy is
conservative and can never ;cad to an inconsistency. However, it is quite possible for
information to be lost, lor example, the predicate .X-.X=-0 is always true, ro matter
how the contents of X ate modified. The algorithms 1 am using to compute support
treat this predicate as if it is supported by X. As a consequence, some care by the user
may be necessary in constructing his predicates.

The basic rule for computing support is just to collect the set of places that occur
within a predicate under the scope of the contents of operator (DOT). 1 here are several
exceptions, however. The following is the precise formulation used in the system.

Two functions arc used to compute the support of an expression, Support and
Structure. Structure analyzes expressions containing names of places which are used
within the scope of a DOT. Support takes the union of the support of the
subexpressions until it reaches a (JOT or another special form. When reaching a DOT,
Support uses the structure of the referenced place or place-expression.

The special cases arc the following.

17

m^mmmmm ■ *-*,«■*-)• .».._»* •li-_L,.

Itiriill

State deltas have an explicit representation of their support, declared when

they ate proven. In the state delta this is the environment clause.

Quantified expressions behave as if the structure of each of the bound

variables is CMEGA.

The support of expressions headed by a use; defined name is dependent

upon the definition of the name. When the name is defined, the user is

responsible for declaring the rule to be used in computing the support of

expressions headed by the name. The default rule is to take the union of

the support of each of the arguments to the expression; if the default rule is

correct for a particular name, then no specific rule need be stored and

Support will assume the default rule. If a special rule is necessary, it must

be in the form of the union of some subset of (usually all) of the arguments

and a list of constants.

In all cases, when a new name is introduced, the user must prove that the

rule foi computing support of expressions headed by that name is correct.

"C'.oncct" means that the rule computes a list of placenames which entirely

covers the places holding values used in the definition of the predicate. For

predicates which are not defined recursively, this simply means that the list

of places computed by the rule must cover the list of places computed by

applying Support to the definition of the predicate.

1 or predicates defined recursively, the same criterion is used, except that the

pioposcd rule for computing support is used in the appearances of the new

predicate in the definition.

The following example illustrates computation of support for a new predicate.

(F'ackctDuf ferl ictp x ijJ is defined tobe

(Subset x I'.uf iv.r space) and

ij/0 ant!

hi ir. It-/; Hum 3/7770) and

(if (!! NG1II xi-0

then u ZHiO/ltttl

clue (I'ockettHif ferp x) and

ij xoöofl/ii{ n and

(I'arkrtBuf fcrListp x.l .x<-B°0))

The rule for computing the support for this predicate is

(UNION (Support .x) (Support u))

18

i^^.^...^*^^^-.-.^,,.:..:'.^.^., /. ''•■ I HJ&£ \.,V a ■ i ; -.^'_ ■!■ ,._,

llIHlMHMIIM^nil^Mi^^ÜMgMI

■i^^l^^-™ ^■»-^■"•s^glre-i(™^l»»?g-^^

This rule is correct if it can be shown to cover the support of the definition. The

support of the definition is

(UNION (Support (Subset x Duffer space))

(Support i|/0)

(Support (y is less than 3//77Q))

(Support (IFNGTtl x)-0)

(Support y- ZfcRQ/tlEM)

(Support (PacketBufferp x))

(Support y-x°0°0/NEf1)

(Suuport (PacketBufferListp x,l .x°0o0)))

The first seven clauses simplify to

(UNION (Support x) (Support y))

The last clause makes use of the rule being tested and produces

(UNION (Support .x,l) (Support .K°0°0))

Altogether, it thus required to show that

(UNION (Support x)

(Support y)

(Support .x,l)

(Support .x°0°0))

is a subset of

(UNION (Support .x) (Support y))

The rule for computing the support of a "dotted" form is just to take the union of

the structure of form under the dot with the support of the form under the dot. (This

latter part is icquired because the form may have other dots nested deeper.) For the

cases at hand, wc have

(Support .x) = (Structure x) U (Support x)

(Support .x,l) : (Structure x,l) U (Support x)

(Support . x°0<>0) - (Structure x°0o0) u (Support x)

19 «SI «NUB* &1

1 ii. ,i , iil.,.J;lJUUJj»Jilii»ii»w™nniw.i1»iti^^

Since (Structure x,l) and (Structure x°0°8) are both subsets of
(Structure x), tlic proof is complete.

?.G Machine descriptions revisited

As described above, the plan is represent the basic machine in terms of a set of
SDs and to use these SDs to prove facts about the operation of the IMP code. The
original set of SDs tc represent the machine must be invented by the user and input to
the system.

While it is feasible for the user to write his own machine descriptions using SDs,
I»c 11 and Newell have already pioneered the machine description area and invented a
quite reasonable notation, iSP. More recent work by F.arbacci, Barnes, Cattell and

Sicwiotek has evolved the language and provided tools for manipulating descriptions

written in ISPS, the current derivative of ISP.10

I experimented with ISPS and wrote the following description of the Honeywell
316 in ISPS. Only a skeleton of the input-output structure is given, but the rest of the

description is intended to be complete.1'

'I'lte oiifirial ISP notation is locurncnted in Computer Structures: Headings and

[ramplcs, l>y ('.. (.'onion Hell arid Allen "NCWCII, published by McGraw-Hill Hook Company, New

York, 1071. 'I'd o most recent description of IS PS is on internal Caincpic-Mcllon University

report, "The ISI'S Computer Description l.anpuapc," by Mario Barbarei, Gary Barnes, Hick

C.itlell and Daniel Sicwiorek, dated August M, 1977 and available from the Computer Science

Department at Carne/'ic-Mcllon University.

The bulk of this description comes from the Programmers Reference Manual: DDP-

516 General Purpose Computer, published by Honeywell Inc., r'rannnpham, Massachusetts,

lOtiH. However, a number of details were not clear in the manual and 1 asked for assistance

from the IMP rrew at HBX. Most of the questions 1 asked were answerable immediately from

practical experience with the hardware. A few questions, however, required experimentation

with the machine io sec how it would behave. These questions arose jusl from the attempt to

prepare a formal description of the machine. The fact thai this exercise forced these details to

be made explicit su|-,"
,sts that formal description of eompuiers may be beneficial to

architecture desipncrs aid technical manual writers independent of any automatic processes

that may be applied lo ti e descriptions. I am indebted to entire IMP crew at BBN for their

assistance in preparing this description and their patience and responsiveness is ferretinp out

the details e.f how the machine nehaves under various unlikely sequences of instructions.

20

taMM
"..' ■

immwj^gr^^^^^-^ -. ■-.--•..-

H31B :- (

tilt Up.State idi

mcniIB: #77777] <15:B>,
x<lS:0> :- mem [0]<15:0> llndcx register is cell 0

Mi Pc.State ihv

c<>,
a<15:0>,
y<14:0>.

ea<14:0>
m<15:0>,
op<3:0>,
ri w w ^ *> t* *% r\ ■»■. *- |

b<lS:0>,
pc<14:0>,

sc<E>:0>,
xao,

scxt f o,
extmclo,
pmio,

p i < >,

spi <>,

intcn<]5:0>,

2<>

Icarry bi t

laccumulator -- referred to below as A

! internal register — holds effective address

:= y<14:0>, lanother name for same

internal register — holds word fetched from mem

internal register — hangs onto op field

internal register -- hangs onto index bit

extension of accumulator

program counter

shift counter — used only for shifts, OTK and INK

extend mode option:

1 => extended addressing hardware exists,

0 => not

0 => disable extended addressing at next JUP

1 = > in extended addressing mode, 0 => not

previous mode indicator for extended addressing —

set hy interrupt and read by INK

1 => interrupts are permitted, 0 -> not

1 -> enable interrupts after next instruction

vector of enable/disable bits for devices

a source of zero bits for the shift inp*ructions

Mi External .Pc.State frit

intrq<lS:0>, (vector of interrupt requests, set by devices

solo, Iscnse switch .1

ss2<>, Iscnse switch 2

ss3<>, Iscnse switch 3

ss4<> Iscnse switch 4

ftV fa \\\ &R1 ; m

?i

--■--

- - -* m* -- -

 —"" ~— '" ■-" ' • ' ' ■ ' ' ' '.. ' • ! > " . Uli.."»»» ' ' ' .1*41

lift Effective.Address.Calculation it-it

hunippc 0 : (Decode cxtmd = > < pc<l 3: 0>< pc-i 1, popc+D),

clxeaO :* (If m<]4> => (ea<-(ea+x)<13:0>) next

If m<lS> -> (nit mem [ea] next y<-m next Loop dxea)),

exeaO := (Decode m<lS> -> (0 : = (if «<14> => ea<~ea+x) ,

1 :- Cm« mem tea] next y«-m next Loop exea))) ,

effaddrO :- (Decode extmd => (dxeal), exeaO)),

xeffaddrO :- (Decode extmd => (

0 := (If m<lb> => m<-met,itea] next dxeaO),

1 :- (If m<15> => m<memrea] next Loop xeffaddr)))

VnV Instruct ion. Execution Vnv

interrupts!) := (

iit Internal.Registers fn'<

\<\i<:Q>,

imr.b<14:0>,

xmsb<lb:0>

irit Internal .Procedure Mt

prioritijO :- (If i and xmsb eql 0 => (

imsb«- impb-f 1 next

xnu.b« xmsb<lb: 1> next

loop pr i or i ty))

VnV Ma i n. Rou t i nc VnV

Start.HainO := (

i« inten and intrq next

If pi and (i ncq 0) -> (

(inisb«//G't; xmsbW/1 00000 next priority!));

(rpi« 0; pi* 0; pmi«-cxtmd; scxtf«-xa next cxtmd»xa) next

ci« mem [ititsb] next

intrq« intrq xor xmsb next

jrtO))).

??
PST'AVAiLABL J?f

MMMMM
^*-JLZ:'-,^&£.t-£*L*\ß^«V' ..'^Mi-JL^S^L

* ,, r* - *

 • —^—»•----—'■-

^«'iwiiss^'-fsrswBros-??'*4^'^ " "'°^m

fetch0 :- (

m<mem{pel next !Ectch instruction

exx*m<14>; op<m<13:10>; y<8:0>«-m next ISave index bit and opcode

•fxtmd address with either 0 or high-order bits of pc,

(according to page bit

decode m<9> => (y<l'V:9>»-0, y<14:9>*pc<14:9>) next

bumppc 0),

generics0() :«-. (tlecode m<9:0> *> (

//11\EXA

//13\DXA

043UNK

0201\I AB

MBINENB

//l 001 \ I Nil

= (sextf«-xa; extmd«-xa),

- scxtf<0,

- (a<lb>< c;

a<14><-undef inedO;

a<13>< pnti;

a<12:5>*0;

a<4:0>«-sc),

:= (ai?b*bea; sc«-undef inedO),

:= spi«-l,

(pi<0; spi«-0))),

(Enter extended addressing mode

Heave extended addressing mode

! Input keys

! Interchange A and B

(Enable interrupts

! Inhibi t interrupts

shift. loopO :- (

If sc EÜL 0 ~> (leave shift, loop) next

Decode m<9:6> -> (

0\LRL

1\LRS

?\LRR

3NS403
4MGR

5\ARS

6\ARR

7\S407

8YLIL

9\LLS

IBSLLR

11NS413

I?\LC;L
13\ALS

14NALR

1&XS417

= aeb(?c«-ae>b,

= a<14:0>©b<14:0>@c«-a@b<14:0>,

= a(r-bec»-b<0>eaeb,

= unclef ined. act ion(),

- acc*-o,

= a<14:0>ec«-a,

= aec* a<0><?a,

- undefined.act ion0,

■■ ceaeb« aobez,
= (c«-c or (a<15> xor a<l4>) next

as; u<l 4:0>* a<l4: 0>eb<l4: 0>ez),

<- ccaeb»-a<?bea<15>,

- undefined.act ion0,

- ci?a«aez,

- (c< c or (a<lb> xor a<14>) next

a< a<14:0>©z),

= c«?a< apa<lE»>,

« undef ined.act ionO) next

(Long r ight logicaI

(Long right arithmetic

(Long right circular

!Non-exi stent

!LogicaI right

!Ar i thmet ic r ight

(Circular right

(Non-exi stent

ILong left logical

ILong left arithmetic

ILong left circular

!Non-exi stent

(Logical left

!Ar i thmet ic left

{Circular left

(Non-cxi stent

sc^sc-fl next loop shift, loop),

?? m AVWIABIB COPV

m tmmum

3kip() := (If m<9> cqv ((m<8> and a<l&>) or

(m<G> and a<H>) or- (»<&> and (a NI.Ü 0)) or SSLN/SLZ & SNZ/SZE

(m<4> and or.l) or (m<3> and ss?) or IBS1/SR1 & SS2/SR?

(t»<2> and cs3) or («<1> and sa4) or ISS3/SR3 & SS4/SR4

(m<0> and cl) --> (bumppcO I), ISSC/SRC

qener icsl400()

//0B40\CRA

//]?1G\ACA

//1?BG\A0A

//I40ATCA

//B3?0\CSA

#0024YCHS

//04Bl\Ct1A

//BSBBXSSM

//0100\S9P
//0?B0\RCR

/'Br»00\SCD
//;B'J0\CAL

tnawscm
//1340MCA
01)43\1CL
//]248\ICH

:= (Decode m<9:0> ■=> (
a<0.
cir-a« a+c,
cca« a+1,
a«-- a,
(c«a<][)> next a<15>«-0),
a<lS><Not a<lB>,
a«-Not a,
a<lS>«-l,
a<lS><0,

c« B,
cl,
a<lb:8><0.
a<7:0>< 0.
a< a<7:8>e>a<IB:8>,
a«a<lS:8>,
a<7:0>e?a<lb:8>»-a<7:0>)),

Clear A

Add carry to A

Add one to A

Two's complement of A

Copy s i cp

Change sign

Complement A

Set sign minus

Set sign plus

Reset carry bi t

Set carry bi t

Clear left part of A

Clear right part of A

Interchange characters in A

Interchange and clear left

Interchange and clear right

ycnericsO :- (Decode m<lb:14> -> (

0 : -- gener icsBO ,

1 :• (i.om; c-0 next shi f t. loop 0), (shifts
? :' skipO , (skips
3 :- cj'r.ericsI'.BBO)).

jmpO := ((Decode extmc! *.» (pc<13:Bxca, pc«~ca)) next
extnul« sext f and xa), (Jump

klal) : -- (a« mem lea)), «Load A

nnaO '. - (o<'mm (ea) and a). !And to A

sta 0 : t- (mem tea] »a), (Store A

ci a() •.' (a« room leal xor a), (Exclusive or to A

atklO : ■ (CP3< a+nieni(ca]), !Add

?■!

mmm •i^sw^-SEiA^aa^fc
- - - ' mm A

w***»«*«,w«««^^

subO := (ce>a< a-mem[ea)), (Subtract

jst() := (

decode extmd -> (0 :

1 :

!Jump and store

■= (mem lea) <13:0>« pc next pc<13:0>«-ea+l),

•-- (mem leal <14:0>f-pc next pc«-ca+l))),

casO :*= (

BK-meni tea) next

Decode a tst m => (0\LSS

1 \EQL

?\CTR

!Compare A and storage

(bumppcO next bumppcO),

bumppcO ,

pc«-pc)),

irs() :* (

nx mem [eal-»l next

mem leal <-m next

If m EQt- 0 ■> bumppcO),

i ma () : ■= (

m< mem tea] next

mcm[ea)«-a next

a< m),

!Increment and skip on zero

! Interchange memory and A

ocp() :*- (Decode m<9:0> *> (
l\ := ocp'i 0 ,

//0101 :^ c^c,

//0104 x» c<c.

//0041\TASK := intrq<0>»-l)),

lOutput control pulse

sks() '.* (Decode m<9:0> «=> (ISkip if ready line set

<i : *■ bumppc (),

//010A :^ bumppcO.

01777\dummy : ^ undefined.act ionO)),

inaO := (If m<9> *> (a< 0) next (Input to A

Occode m<8:0> «> (
l\ :* (inaM) next bumppcO),

//777\dummy := unclef ined. act ionO)),

25

utaO : = (Decode m<9:0> -> ((Output from A

4 :- (ota'tO next bumppcO),

W0]?0\SMK :■■- intcn.-a,

//1020\OrK :< (

c.»a<H>>; i.vx\ f <-a<13>; sc<-a<4:0> next

extmd«extmd or ocxtf))),

i.ol) (Decode ni<Jb:11> => (

0\OCP = orp 0 ,

1 \SKS = r-ksO,

?\INA -- inaO,

3\0TA - otaO !SMK and OIK are special case OTAs)),

Idx.stxO •.' (Decode exx => {

mem Leal <-x,

x«-mem lea]))

ILoad index register

IStore index register

Vnv 1nstruction.Interprctation iv>v

Start.Main() :■■ (
interrupts!) next

pi* c.pi next

fetchO next

Decode op •> (0

]

?
3
h

r;
7

//18

II] 3

//]4

//lt>

//If,

1117

[oop Star t .Main))

qcner i cs 0,

(effaddrO Next jnip(

(effaddrO Next lda(

(effaddrO Next ana(

(effaddrO Next sta(

(effaddrO Next cra(

(effaddrO Next add(

(effaddrO Next sub(

(effaddrO Next jct(

(effaddrO Next car.(

(effaddrO Next ire(

(effaddrO Next i ma (

i.ol),

(xeffaddrO Next Idx.r.txO),

undcf incd.act ion0,

undcf incd. act ionO) next

!reserved for MPY

!reserved for 01V

?r>

smmm

w^^PPÜWSS " ***"-?-'■■-'■ "■" " WHMRIVIIlPW'niappVPPVpiHHIl ÜHRi vwrnwy-w'*. ww-w SWWWPBPÜ

One of the tools provided by the CMU group is a parser which accepts an ISPS
description and outputs a parse tree, fully parenthesized in prefix format and available

in an ASCII file. Using the facilities of the ARPANET, we have found it very
convenient to generate ISPS descriptions at ISI in Los Angeles, ship them over the
ARPANET to Carnegie-Mellon University in Pittsburgh, parse the description at
CMU, and bring the pars'.' output back to ISI. The whole process takes 10 to 15
minutes.

Charlie Haydcn has written a program which accepts the parse tree as input and

generates state deltas.1 a The current translation of the fuli description of the 316 results
in 310 slate deltas. This is a large number of state deltas, and they were put aside for
possible later use. The primary reason for the large number is that a separate state
delta is generated for each invocation of a function within an expression. Moreover,
distinct values are invented for the fictitious microprogram counter, resulting in a very
large number of unreadable, generated symbols.

To a certain extent, this expansion of text as ISPS descriptions are translated into
SDs is unavoidable because SDs provide no implicit control structures and all "control"
has to be encoded as a set of changes to the state description. Perhaps the most
troublesome aspect of this large number of SDs is that it is difficult to design an
efficient, automatic strategy for selecting v»hich SU to use for advancing to the next
state. With respect to this particular issue, an dca has recently emerged for an alternate
representation of the internal state of the machine in terms of what state deltas are
applicable instead of giving an explicit label to each internal state. This idea is detailed
in chapter six.

' During my first experiments with ISPS, I wrote a translator from ISPS parse, trees

into exeeutable Inlerlisp emle. Willi the help of llie (.Ml) group on ISPS <1« tails anil some

handhold ing from Marly Yonke on Inlerlisp details, I was able to pul together a rudimentary

translator in about three weeks. Charlie's pro-pram is much cleaner and outputs both

exeeutable eode in Bliss and slate deltas. The 01 /\uii/.,\t ion of the program permits easy

addition of other modules to output code in other hngiiapcs. Keeenlly, Hill Overman has

exercised this possibility by willing a trial version of a PI./I code generator. The cost of each

of these efforts has been quite modest and probably would not have been undertaken if the

parser were noi available.

?7

 — ~ - ■! MM —-- - - - ■"■*' -- in

2.7 Formal basis

One of the classical formal views of computing looks at a computer as a transition
function f-:S->S, where S is the set of possible state vectors and h is the rule for
advancing the computation one step. Components of a state vector are accessed by
using the name of the component as an index, eg., S"A refers to the A component of the
state vector and s°{Htri°S) refers to word b of the MtM component of the state vector.

(In prefix form, these are (SELL c A) and (SEI ü (SEL MEM 5)), respectively. By

treating SLL as an associative operator, the latter expression is equivalent to (SEL (SEL
s Hfrl) 5), which corresponds to Is »MEM) <>S).

2.7.1 State dt.as

One way to look at state deltas is as a shorthand for a specialized class of
formulas involving state vectors and transition functions. The first specialization is the
suppression of any explicit representation of state vectors. The "." operator takes a
name and treats it as an index into the current state vector. Within the proof system,
only one state vector is "current", and every occurrence of a "•" outside of a SÜ is
understood to represent access into this state vector.

The second specialization is the suppression of any explicit representation of the
transition function. In place of statements about F-, state deltas represent statements
about the closure of F- The closure of P is defined by

F "(s) = if ' tsl i>0l

that is,

P"".o) - Is. F"(s). F?(s), F3(c). FHC), ... I

If P* and C aic the pre- and postcondition of a SD with the "."'s replaced by indexed
accesses of c, the SI) slates tha'

IVsl («.tS A F" (s) -> OS'HB'CF*!«!» AQ'IS'IV

In common sense terms, this means that state deltas say that the postcondition will be
true sometime in the future, but nothing is said about exactly how many steps are
needed to reach such a state. VV'iile we normally ?. -sume that the SÜs that we use as an

?8

'"■'" '■?.^TW3Sflf«^.W-,«>.'[-"i'«sj.,T-.?

axiomatic description of the hardware are somehow fundamental or atomic, nothing in
our theory or proof system can know whether a particular SD represents an atomic step
or a long sequence of steps. This limitation simplifies the theory by providing uniform
treatment of all computational statements, but it fails to provide a basis for certain
classes of arguments in which it is important to know all of the possible states that the
machine might be in.

The third specialization concerns the machinery to relate s' to s. The
modification list, M, shows which components of s' may have /alues which are different
from the same components of s. By implication, components of the state vector which
haven't changed must be the same. The statement above thus requires amendment to
show that s and s' are the same except for the components listed in the modification
list. Because component names are permitted to overlap, the precise relationship
between s and s' has to be stated in terms of disjoint indices. If we use • to stand for
disjoint, the statement that s' is the same as s except possibly at places listed in 11 is
written

Vi(Vj(jcM -» ie>j) -* s'°i=s»i).

Thus,

(SO (pre: P) (mod: M) (env:) (post: Q) (vars:))

is an abbreviation for

VslscS AP'(S) -* 3s' l«'cF*(sl AQ'(S') A

Vi(Vj(jeN -• i®j) -» s'»i = s»i))).

2.7.2 The proof system

The proof system detailed in the next chapter provides the machinery for
deriving new state deltas as theorems using a given set of state deltas as axioms. From
the point of view of a state dei:a as an abbreviation of a formula involving state vectors
and transition functions, the basic design of the proof system is simply the following.

When a proof is begun, the SD to be proven is given. The precondition of the
SI), P' (ü), is assumed to be true, and the goal is to prove

?9

'.' (Ü' is') /. Vi (Vj(jcM - i®j) -* s' °Ws°i)).

The pi oof steps that arc used in the course of the proof fall into two basic

categories. One category is normal derivation in winch formulas are combined using

the normal inference rules to derive additional formulas. 1 he second kind of step is

one which advances the computation. In terms of state vectors, this means that a SD is

used to derive a fact about a future state vector s'. In order to keep the bookkeeping

quite simple, a rule is imposed that all of the formulas in the proof must refer to the

same, "current", state vector. Thus, when a SD is used to derive a fact about a later

state vector, all of the formulas in the proof must be checked for consistency with the

new stare vector. This checking consists of nothing more than an examination of the

support of the formula to sec if substitution of s' for s would be valid. If so, the

formula is retained. If not, the formula is deleted. Deletion of facts from the proof

system may result in difficulty in proving a true theorem, but it cannot result in

inconsistency.

The tornKilas that are valid when s' is substituted for s are not actually

manipulated because they do not actually contain occurrences of s. Wherever s would

be expected to occur, "." occurs instead. Thus, "." serves as a kind of pronoun for the

current state vector, and all formulas that remain valid when the state is updated from s

to s' arc simply left intact. The interpretation of the "."s in the formulas simply

changes.

lor straiphtlme code, all that is required is that a sufficient number of SDs be

applied to detivc the postcondition in the SD being proven. For loops, induction is

required. Normally, this induction will be carried out using the natural numbers, but

any well-founded set may be used. The usual form of a SD that covers a loop is

(Vi>0) (SD (pre: P(il) (mod: 11) (poet: Q)).

The postcondition of this SD specifies what the situation is when the loop is

finished, independent of the number of times the loop was executed. The precondition,

however, specifies the situation at the top of the loop in terms of the number of

iterations yet to go The method for deriving this SD is to derive two simpler SDs and

then use standard mathematical induction rules to derive the form above. The simpler

SDs arc

(Ml (pre: (MB)) (men.. 1) it: ,)) and

(Vir-OUSIl (pre: PCMD) (rnod: ill (poet: P(i))).

30

The first SD describes the behavior of the system when no more iterations are left
and serves as the initial step in the induction. The second SD describes the behavior of
the system as it makes one step through the loop and serves as the increment step in the
induction.

2-8 Comparison with vther formulations

State deltas ate related to a number of earlier attempts to formalize the effects of a
computational process, particularly McCarthy's "fluents", Fikcs and Nilsson' operators in
STRIPS, Hoare's axiom system, Igarashi, London and Luckham's "frame axiom", and
Manna and Waldinger's "intermittent assertions".

2.8.1 Fluents

John McCarthy considered the problem of how to represent chains of reasoning
involving cause and effect relationships. In his memo entitled "Situations, Actions and

Causal Laws",1'' he introduced the idea of a predicate which takes a "situation" as an
extra argument. The situation argument plays essentially the same role that the state
vector s plays in the preceding section. McCarthy also introduced an abbreviation
using a similar device of factoring out the situation argument. Predicates which
implicitly depended upon a situation were called "fluents".

In McCarthy's formulation, fluents were connected in sentences either by ordinary
sentential connectives or by a special operator, "cause". The cause operator is quite close
to the idea of a state delta, but McCarthy never made clear how to keep track of which
fluents referred to which situations. An additional difficulty is no machinery was
provided for removing facts which ceased to be true.

Tim memo is reprinted in Semantic Information Processing, edited by Marvin

Minsky, MIT Press, Cambridge, Massachusetts, 1068, pp. 410-417. A lalcr paper with P. J.

Hayes titled "Some Philosophical Problems from the Standpoint of Artificial Intelligence," in

Machine Intelligence 4, edited by B. Mcll/.er and I). Mieltir, American Klscvier Publishing Co.,

Inc., New York, I9<>9, pp. 46.V5Ö2.

31

.,-;-::-. -^■-.'.-■■V-. .. -.;,,,,).■,:,:-'..>;.,-.

2.8.2 STRIPS

In the context of building a robot which can solve problems such as moving
objects from one room to another, Richard Fikes and Nils Nilsson designed the STRIPS

problem solving system.''1 In the STRIPS system, actions are represented by operators
which are composed of a precondition, an add list and a delete list. They serve
essentially the same role as our precondition, postcondition and modification list, but the
delete list seems to be structured differently. Elements on the delete list usually specify
which predicates to delete, compared with our formulation of specifying which places no
longer hold the same values and thus searching for all predicates dependent upon the
old information.

That difference aside, the STRIPS operators and the state deltas developed here
arc quite similar. The biggest difference comes in the application. In the STRIPS
system, the primary focus is how to build a system which will invent programs composed
of the STRIPS operators. In contrast, the work here focuses only on how to represent a
sequence of actions. The invention process is assumed to be a separate problem.

2.8.3 Hoare's axiom system

Turning our attention to formulations specifically oriented toward program
verification, we sec that state deltas bear some resemblance to Hoare's systems of

axioms. ' In Hoare's system, actions are represented as PISIQ, where P is the
precondition, Q is the postcondition, and S is a segment of program code. Although this
notation is similar to ours and each lends itself to reasoning about sequential code by
simply matching up the postcondition of one predicate with the precondition of the
next, there are several differences.

I. With state deltas, termination is included. There is no possibility that

' ' Sec "STRIPS: A New Approach to the Application of Theorem Provinp to Problem

Solving", in Artificial Intelligence, Vol. 2, Nos. .1 ami 4, Noi lb-Holland Publishing Co.,

Amsterdam, 1071, pp. 189-208, ami a later paper by hikes, Peter Hart and Nilsson, "Learning

and Kxcculinp Generalized Kobot Plans," in Artificial Intelligence, Vol. 3, 1972, pp. 2S1-288.

C. A. K. Hoare, "An Aviomatic Basis for Computer Proprarnminp," Communications

of the ACM, Vol. 12, No. 2, pp. 576-581

3?

the system will fail to reach state Q. In Hoare's notation, all that is
implied is that if the system finishes the stated computation, then Q
will be true.

With state deltas, the segment of program executed is implicit in the
precondition and is not explicitly listed. No distinction is made
between control and data. In Hoare's notation, the segment of the
program that is executed is listed explicitly. The flexibility provided
by my notation permits the user to move the boundary between
"control" and "data" whenever he chooses. Moreover, induction over
computation sequences requires no special rules; normal mathematical
induction may be applied in all circumstances.

With state deltas, the effects of the computation are bounded by the
list of places modified.

2.8.4 The frame axiom

In their axiom system for characterizing program behavior, Igarashi, London and
l.uckham extend Hoare's rules to a variety of syntactic forms found in programming

languages."' For procedures, a "frame axiom" is introduced. The content of their frame
axiom is simply if P is a predicate which is true before procedure Proc is entered, and if
P and Proc have ro variabl:s in common, then P will continue to be true when Proc is
exited. This axiom provides some leverage for reasoning separately about the part of
the state that has changed during a segment of computation and the part that has not.
However, the axiom is restricted to procedure calls and is not applicable to bodies of
loops or alternative paths in a conditional statement. At present, 1 don't believe that
any program verification system based on the Moyd-Hoarc system makes use of the
frame axiom or anything similar to avoid processing the entire state vector at every
juncture.

■ Shiperu l/'arashi, Ralph London ami David l.uckham, "Automatic Program

Verification I: A Logical Basis and Its Implementation," Ada Informatica, Vol. 4, No. 2,

pp. 145-182.

33

—■-.., . - ii mm

2.8.5 Intermittent assertions

More recently, Manna and VValdinger have taken an idea presented by Burstall

and constructed the notion of intermittent assertions.^' Intermittent assertions are very
close in spirit to state deltas For higher level language programs in which the code is
pure and effectively d'rjoint from the data, intermittent assertions correspond to state
deltas in which the environment clause points to just the code and the modification list
points to all of the data. Intermittent assertions provide the same power to prove
termination as state deltas, but provide no difference in representation of state
information from the ujual inductive assertion technique introduced by Floyd.

The term "intermittent" refers to a slightly different point of view about execution
histories. In their treatment of intermittent assertions, the pre- and postconditions are
divided into two parts. One part is a special predicate At which specifies (effectively)
the value of the program counter. The other component is a general predicate that
specifics all of the other relationships that have to hold. Under this dichotomy, Manna
and VValdinger take the point of view that the general predicate holds sometimes when
the program counter has the right value. Accordingly, they say "if at sometime when
the program is at L j f is true, then sometime the program will be at L2 and Q will be

true." This is fully equivalent with our formulation. For most applications, the general
predicate associated with a particular place will always be true when control reaches that
point. However, in some applications, different predicates will be true at different times
when control reaches the same point in the program. This latter concept is just as easily
expressed in the state delta formulatun as it is in intermittent assertions, although the
point is emphasized more clearly with intermittent assertions.

17M
lltitslaU's paper is "Program Proving as Hand Simulation with a I,title Induction,"

published in Information Processing 1974, Proceedings of the IF IP Conpre.ss,North~Hollanrl

Publishing Co., Amsterdam, pp. 308-312. Zoliar Manna and Richard Waldingcr's paper

introduces llic term "intermittent assertions" and will appear in the Communications of the

ACM, with the title "Is 'Sometime' Sometimes BcUcr than 'Always'? Intermittent Assertions in

Proving Program (loircctness".

31

3. The Proof System

We arc now ready to look at the complete structure of the proof system. The
purpose of the proof system is to check proofs about the operation of programs or pieces
of programs. Statements about the operation of a program are expressed as state deltas,
and we can assume that all theorems to be proven are in this form. Since state deltas
degenerate into normal conditionals when the mod and env clauses are empty and all of
the predicates in the pre- and postconditions are support-free, the proof system contains
all the power of a standard proof system for first-order predicate calculus1'' and could
be used for that purpose. However, most of the machinery in this system is geared to
the proof of SDs, and we can assume that it is used only to prove SDs.

The general method of proving things is to enter a series of hypotheses into the
proof system which define the machine, list the code and define the initial state, and
then to enter a scries of commands which advance the state of the machine until the
final state is reached. Other actions are required for case analysis and induction
through loops.

The proof system is divided into two main sections, a checker and a proposer.
The checker maintains a symbolic snapshot of the state of the machine, augmented by
various theorems and declarations. The checker is driven entirely by commands it
receives from the proposer. The checker examines each command to see if it is well-
formed and applicable to the current state. If the command is well-formed and
applicable, the checker executes the command by updating its internal state. The only
direct output from the checker is a signal back to the proposer indicating whether or not
the command worked. However, the checker's lists of known theorems and state
information is accessible to the proposer for examination.

The role of the proposer is to suggest reasonable next proof steps. It may do so
based on heuristics, by asking the user or by reading a prepared proof from a file.
Regardless of where the proof steps originate, the proposer sends edch step to the
checker to cause the checker to update its internal state.

At the moment, the proposer contains no heuristics. Thus it is simply a small

If (he precondition is also empty, llie SI) is equivalent to the conjunction of the
predicates in the postcondition, with whatever quantification is required in the vars clause.

35

•■'■ "'■; ■..*"!'■'.?- Tf-^-^r-i'-

executive routine for obtaining information from the user and/or pulling in prepared
proofs from files. Possible extensions to the proposer are discussed in chapter six.

The checker is recursive. During any proof, a new subproof may be started.
When that subproof is complete, the newly proven SD is added to the list of known
theorems in the original proof.

3.1 Contexts

Within a subproof, the internal state of the checker is called a context. The
primary components of a context arc a list of predicates which describe the current state
of the machine, a list of names which are "in use", cither as place names, as variables, or
both, and a map of the overlap relationships among the various places. Two other lists
of places play an important role in connecting lower level contexts to higher level
contexts. They arc the list of places which may be modified and the environment list.

A new context is created when a new subproof is begun and is destroyed when
the subproof is complete. Many of the components of the context are initialized to the
current value of the corresponding component of the superior subproof. In principle,
the new context's components arc copies of the old context's components. However, one
of the goals in the design of the system is to minimize the copying of constant
information, and with one exception the initial values for the new context are formed
simply by setting up a pointer to the current value in the upper context. The exception
will emerge in the discussion below.

3.1.1 USABLE

The most important component of a context is the list of accessible predicates.
This list is called UÜADLE Conceptually, four different kinds of predicates cohabit this
list:

I. state predicates

These predicates constrain the values stored m the places. Since the machine state
must satisfy all of these predicates, their conjunction is the current state
description.

36

2. state deltas

These predicates describe what changes to the state may take place by forward
execution of the machine. The precondition of the SD determines when the SD is
applicable, so the mere appearance of the SD on USABLE does not guarantee that
the SD will ever be useful.

3. place relationships

These predicates relate sets of places to each other. The key relationships of
interest are that two or more places are disjoint from each other and that a set of
places is a decomposition of another place. These two relationships are
summarized in the predicate

(Covering Pg <Pj ... P^>)

which states that Pj ... Pk are pairwise disjoint and that each is contained in
Pg. Place relationships are also stored in the place graph, described below.

A. general facts

Definitions of basic terms and various lemmas are often needed in the course of a
proof. These predicates are not specific to the state of the machine, or even to the
notion of computation. For example, the definition of factorial or the definition
of ordered fall into this category.

Since any two predicates on thi". list may be combined to form a conjunction, these
categories are not rigorous. However, the proof system does not try to classify the
predicates according to these categories. Each command executed by the checker has its
own criterion for applicability.

All predicates on USABLE are cross-referenced according to the places they depend
upon. The purpose of the cross-referencing is to be able to find and delete any
predicate which depends upon a place which has been modified (or is assumed to have
been modified.)

The mechanism for cross-referencing the predicates is the following. Whenever a
predicate is added to the USABLE, it is analyzed syntactically to determine the list of
places which support it. The intent is that a predicate should be left on the list until
the value stored in a supporting place is changed. For example . A=0 is supported by A
and .A-i.B'0 is supported by A and B. The precise rule for computing support for a
predicate was discussed in chapter two.

37

^mm
MlmmäkiHammmik

K.«;^RMÖäf'«W'1
u«?*fW^^."v

After computing the support of a predicate which is to be added to USABLE, the
predicate is added to USABLE and it is also added to the picdicat< list of every one of
the places in its support. The predicate lists are part of the graph .structure maintained
for places.

USABLE is implemented as a list of predicate records. Each predicate record has
a flag, exp, env and p lace list component. The exp component is the actual
predicate, place! ist is the list of supporting places, flay and env are explained
below. The initial value of USABLE is a selected subset of the predicates on the copy of
USABLE in the superior context, augmented by the precondition of the SD to be proven.
The details of the selection process are discussed below.

3.1.2 FREE

FREE is the set of variable names which appear free in formulas in the proof.20

When a new subproof is started, any variables in the vars clause of the SD to be proven
are added to FREE. (They must not appear there beforehand, of course.) Similarly,
when a new variable name is assigned to a value through the InstantiateContents
command, that name is added to FREE.

3.1.3 Places

One of the goals of this system is to provide an efficient method for treating
aliasing and overlap among places. In contrast to most verification systems, we do not
assume that different place names refer to different piaces. However, most place names
do, in fact, refer to different places, so we need a way of determining the clash (or
potential clash) among place names reasonably efficiently.

"Ilccord" is a il.iia structure in Irilcrhsp. Records have a fixed number of

components, accessible by field names. Kach component may be accessed and/or modified

separately.

:>o In llns chapter, "FREE" refers only to a component of the context of a subproof ant!

is completely unrelated to the IMP code. I apolopi/c for the confusion.

38

M.
I-II • r r ■ "•-"

The place system maintains a database of relations among the various place
names and is consulted whenever the checker needs to know all possible overlaps among
a set of names. The place system is also consulted whenever it is necessary to check that
a set of place names refers to completely disjoint places.

The key data structure in the place system is the place graph. The place graph
contains two types of nodes, place nodes and family nodes. Place nodes are connected
only to family nodes and family nodes are connected only to place nodes. The arcs are
directed and the graph is acyclic, so the notions of "up" and "down" are well defined,
lach family node contains exactly one arc going up to a place node, but may contain
any number (but at least one) of arcs going down to a place node. Place nodes may
have any number of arcs going in either direction, including none.

The place graph encodes relationships of the form

(Covering Pg <Pj ... P'K>)

A relationship of this kind is a family and is encoded as a single family node in the
place graph. Pp is called the mother of the family and each of the P-, are daughters.

Fach place node is implemented as a record with the following components:

names

flag

The names of the places associated with this place
node. Multiple names are synonyms.

A space for marking whether this node has been seen
during a traversal. In between calls to the place
system, the flag is NIL.

motherfami I ies A list of family nodes in which this place node is a
daughter.

daughterfami I ies A list of family nodes in which this place node is the
mother.

Tlio idea of usinp IMO types of rioilrs in the place graph is due lo Dave Wile. Prior

to his isuggeMian, I hail been strupplinp with a giaph structure with only place node«, and

connections onion/' the nodes in the form of lists of lists. After «witching to explicit

representation of the families, the traversing algorithms became clear. Since the traveling

algorithms rn.ikc use of the family nodes «s more than simple lists of lists, explicit

representation of the family nodes was a critical step in formulating the ideas.

39

_M.

precll ist The list of predicates (in all contexts) which are
supported by this place.

Fach family node is implemented as a record with the following components:

flag A space for marking whether this node has been seen
during a traversal. In between calls to the place
system, the flag is NIL.

motherplace The place node for the mother of this family.

'.laugh terp I aces A list of the place nodes for the daughters in the
family.

3.1.4 Hut and SUPPRFSS

Wlrn a subproof is begun, one of the parameters supplied is a list of places
which may be modified during the course of the proof. This list is accessible during the
proof as fl.iU. Commands which attempi to modify the contents of a place first check
MOn. Wher tie subproof is complete, HOU becomes the mod clause in the proven SD.

When a subproof is started, the predicates that are accessible in the new context
include a s' biet of the picdicates from the higher context. If these predicates are
constant for th ? life of the subproof, no copying is required and they may be accessed
directly. Hov ever, predicates which are attached to places that may be modified must
be moved out of the way and restored when the subproof is complete; this applies to all
predicates attached to modifiable places irrespective of whether these predicates will be
used at the low <*r level.

The predicates arc moved out of the way by adding them to a list called
SUPPRESS. Wh n the subproof is complete, the predicates on SUPPRESS are put back
onto USABLE. In the current implementation, predicates arc not physically removed from
USABLE during his process; a flag attached to the predicate is set to mark it as
unavailable. Wl rn the subproof is finished, the flag is reset. This mechanism was
adopted to per mi: he proposer to keep pointers into the list of accessible predicates;
when the "suppi 'Sied" flag is set, routines in thr proposer would know that that
predicate is not ;i ti ally available, although it will be available ia^r when the prior
context is restored The proposer docs not yet take advantage of this capability.

•10

Ü v.- MM K * * ■"«-. ■ iiAi'.^ mäU^Jk —-■--- — ii HI ■ Harn '- - „m n - ■ .. -n-,—,— I,.- «.

3.1.5 ENV

ID addition to the list of places which may be modified, another list of places is
also supplied when a subproof is begun and maintained during the proof as ENV. F.NV
is a list of places whose values ate brought down from the immediately superior context
and made available in the new context. Since values are represented only by the
predicates on USABLE which reference them, "bringing down the values" translates into
bringing down the predicates whose support is entirely contained within ENV. Predicates
whose support is partly but not wholly within ENV are not brought down. Note that
predicates which do not depend upon any place are always brought down, even when
ENV is null.

If ENV and MOD arc disjoint, predicates on USABLE in the superior context whose
support is entirely contained within th^ places on ENV are not actually copied to the new
context. Whenever they arc referenced, the place system is called to see that the higher
level predicates are legally visible in the lower context.

If ENV and MOO intersect, predicates whose support is entirely contained within ENV
and whose support is at least partially within MOO are actually copied to the new context
and the f I acj component of the original copy of the predicate is set to T to mark the
predicate as inaccessible. When the subproof is complete, the flag is reset to NIL, and
the predicate becomes accessible ir its own context again.

Further details of the algorithms which bring down predicates according to ENV
arc given below.

When complete, the ENV becomes the env clause of the returned SD.

3.1.6 Ancillary components

Two additional components complete the implementation of a context. SDGOAL
holds a copy of the entire SD to be proven and GuAL holds a copy of the postcondition
of the SD to be proven SUGOAL is not referenced during the course of the subproof.
When the subproof is complete, the SD that is added to the superior context comes from
SUGOAL.

GOAL is used only slightly during a subproof. When the Close command is
executed, USABLE is examined to sec if the postcondition stored in GUAL is currently true.

41

Mttii ■MMtMu«^,.

At some future point, it is contemplated that the proposer may be able to make use of
GOAL to determine which command to send to the checker.

3.2 The checker

Commands from the proposer fall into five main classes: opening or closing
subproofs, advancing the computation, adding new place relationships, combining
aspects of the current state, adding definitions of new terms.

The checker is divided into three subcomponents, the kernel, the place system and
the slmplificr. The kernel receives the commands from the proposer, checks each one
for applicability and makes the appropriate changes to the context. Whenever one of
these actions requires knowledge of the relationships among the places, the place system
is consulted. Whenever a new predicate is added to the state description or whenever
the kernel needs to know if a predicate is true, the simplifier tries to reduce the
predicate.

The remainder of this section describes the commands currently implemented.
For each command, there is a scries 01 conditions which are checked before any action is
taken. If the command is not recognized or if one of the checks fails, no action is taken
and the kernel returns NIL. If the check: succeed, the context is modified (or created or
destroyed) according to the rules given below. The kernel then returns with a non-NIL
response.

3.?. I Opening and closing subproofs

A new subproof is initiated by the (Open pre mod env post vars) command,
whore pre, mod, env, post, and vars are the components of the new SÜ to be proven.

The variables in the vars clause must not be in use, i.e., none of them may be
members of Miff- The places in mod must all be registered in the place system. If
cither of these checks fails, no action is taken and NIL is returned

After these checks are passed, a new context is created.

The old value of FFIEF is saved and then FHEF. is augmented with the variables in
vars.

4?

The old value cf MOD is saved and then MOD is set to mod.

The old values of SUPPRESS and USABLE arc saved and then SUPPRESS is set to
NIL.

ENV is augmented by env and this new value is put at the top of ESTACK.
(OMEGA) is then pushed onto ESTACK.

All predicates which are supported by any of the places listed in mod or by places
which overlap with mod are added to SUPPRESS and marked as suppressed.

Predicates on SUPPRESS whose support is entirely contained within the
environment are added to USABLE.

Predicates in pre are also added to USABLE.

A copy of the pre mod env post and vars clauses is kept in SDGOAL.

Finally, PuchPlaceSus is called to prepare the place system for new declarations.

A subproof is terminated by the (Close) command. The only check is whether
the predicates in the pre clause in the corresponding Open command are all on USABLE.
If they are, the old context is restored and the new SD is added to it.

3.?.2 Advancing the computation

Only one rule is implemented for advancing the computation, (ApplylnstSD patt
varlist). ApplylnotSU instantiates a SD on USABLE and applies it to the current state.
patt is an Interlisp pattern which is matched against USABLE to find a SD to apply. See
chapter five for examples of patterns.

varlist is a list of variables and terms in property list format. The terms are to be
substituted for the variables.

Several checks are made before taking any action.

patt must match a SD on USABLE.

varlist must match the vars component of the SD.

-33

All of the substitutions must be proper.

The mod component of the SI) must be entirely contained within MOD.

All of the predicates in the precondition must be on USABLE.

If all of these checks succeed, predicates supported by places which overlap with

the mod list of the SÜ are deleted from USABLE and then the predicates in the

postcondition are added.

3.2.3 Entering new placcnamcs

Three commands arc available for adding new names to the place system.

(NeuDeconipos i t ion (Cover i nc? ...)) adds a family to the place graph when the

mother place is already registered and the daughter places are not. Each of the

daughters is added to the list of all registered places and a family node and a set of

place nodes are added to the plnce graph. The whole relationship is also added to

another list to keep track of what additions to the place graph have taken place during

this subproof. When the subproof is complete and has been closed, these relationships

are deleted and the place system is restored to its previous state.

(NeuComposi t ion (Cove-ing ...)) also adds a family to the place graph. In

this case, however, the daughters must all be registered and the mother must not be.

While the NcuUecornposi t ion command requires that the Covering relationship be

accessible within the current context, the requirements for the NeuComposition

command arc somewhat stiffer. All of the daughters listed in the covering relationship

must be known to be disjoint within the place system. The place system is very

conservative about disjointncss, and it can happen that a set of places can be proven to

be disjoint by manipulation of the (Covering ...) predicates within the proof system,

while the algorithms of the place system declare that overlap is possible. For example, if

(Covering A <[t C>) and (Covering A <U E>) are two relationships that have been

entered into the place system using the NewUecomposi t ion rule, the place system will

assume that B and C each overlap with D and E. At a later time, it may be discovered

that Ü and U aic equal and that C and E are equal, thus eliminating two of the four

possible overlaps. The place system, however, cannot accept this information and is

committed to believing that all of the overlaps are possible The reason for this

restriction lies in the representation used in the place graph. The place graph consists

of a set of connections among the places. The algorithms which search the graph are

based on the idea that if another place is reached at any time during a search, then that

•II

■,■

place may overlap with the original place. Adding new links to the graph could only
have the effect of showing that places not previously thought to overlap actually do
overlap. Since this particular kind of change implies that predicates which were
retained during a computation should have been deleted, even this change is ruled out.
In summary, once the place system registers a place, the relationships of that place with
all other currently registered places is fixed. NewComposi t ion, therefore, must check
that all of the daughters are known by the place system to be disjoint.

The last command to enter new place names is (LnterSynonym Pj Pp)- Pj must
already be registered and Pp must be new. The name Pp 's simply added to the list of
names in Pj's node. In an earlier implementation, this facility was not provided. As a
consequence, equality relationships were represented in terms of one place covering the
other. At certain points in the proof, it became necessary to show that one of the points
covered the other, while at other times it was necessary to show the reverse. The
structure of the place graph forced an ordering between the places and prevented
demonstration that each covered the other.

3.2.-4 Normal derivations

The commands in tins section derive consequences from the predicates in the
current context. The computation is not advanced and the place graph is not affected.
F.xcept in the case of the Subst i tute command, predicates added to the current context
arc simplified according to the following rules in the next section:

(CombincCascs pattj patty) takes two SDs and combines them into a single SD.
The pre- and postconditions of the new SI) are the disjunctions of the pre- and
postconditions, respectively, of the two existing SDs. The modification and
environment lists are the unions of the modification and environment lists,
respectively of the two existing SDs. The vars list of the existing SDs must be
empty.

(Instant iotcContcnts placename variable) adds . placename^variable to the
current context provided variable is new.

(ForSomc varslist pied substlist) adds (FS varslist pred) to the current context
provided there is a predicate already in the current context which is equal to the
result of substituting the terms in substlist for the variables in varslist. All of the
substitutions must be proper, substlist is in property list format.

45

fit ^JZ^&M^^*Lii*: fc*T-J ».,- __V«.. **

(Subotitutc new old patt) locates both a predicate which matches patt and the
predicate new-old. The term new is tnen substituted for old in the predicate
matchinp, patt and the result added to the current context without simplification.
The old predicate is not deleted.

(SimplcFval patt) forces the predicate located by patt back through the
simplification routines. The most common use for this command is reprocess an
if-then-else expression after the "if" part has been specified.

(SuapDOfSEL cxp patt) substitutes an expression of the form (SEL (DOT c) b)
for an expression of the form (UOT (SEL a b)) and then simplifies, exp
must be an expression of the form (DOT (SEL a b)) appearing in a predicate in
the current context located by patt. The substitution of (SEL (DOT a) b) usually
makes it possible to evaluate the term completely.

(SwapOOTsecithru cxp patt) is similar to SuapDOTSEL except that exp must be an
expression of the form (DOT (secjthru a b)) and it is replaced by (segthru
(DOT a) b).

(Over limit cxp patt) examines cxp to see if it can be shown to be zero. If so,
all occurrences of exp in the predicate located by patt arc replaced by zero, exp
must be of the form (SEL cxp! n), where n is an integer and the current context
has knowledge that expl is less than 2n.

(Under I im it cxp patt) expects cxp to be of the form (occithru expl n), where
n is an integer. If the current context contains knowledge that expl is less than
2n, then expl is substituted for exp in the predicate located by patt.

(Makeindexof exp patt) looks for (EQ c (SEL a exf)) or (EQ (SEL a exp) c)
in the current context. If either form is found, (indoof c a) is substituted for
cxp in the predicate located by patt.

(Derive exp) simplifies cxp and adds it to the current context. This command
directly violates the integrity of the proofchcckcr, since no checking is performed
to make sure that cxp is derivable from the other predicates in the current
context. This command is used as a temporary expedient to skip over derivations
that are not yet supported by the proof system but appear (to the user) to be

sound Naturally, proofs containing Derive commands are not considered
complete.

46

3.2.5 Simplification

As noted above, except in the case of the Substitute command, before a
predicate is added to the current context, it is simplified. The simplification rules
currently in use are the following.

If a form is atomic, no further simplification is attempted.

If a form is not atomic, its arguments are simplified before an attempt is made to
simplify the form itself.

If the form is headed by an arithmetic operator and the (simplified) arguments
arc numbers instead of symbolic expressions, the indicated arithmetic is
performed.

If the form is headed by SLL, segthru or segfrom and if the arguments are
numbers, the indicated operation is performed. If the first argument is of the
form (00T x), the DOT is moved to the outside and the form is returned; pushing
the DOT to the outside minimizes the support.

In some cases involving application of two selection operators, it is apparent that
one of them is redundant. The cases that are implemented are

(SEL (segthru x y) 2) -> (SEL x z),ifz<y;

(segthru (segthru x y) z) >^> (segthru x u), where u «= nin(y.z).

If the form is headed by DOT, an attempt is made to evaluate it by looking in the
current context. If this fails, but the argument is headed by SLL, segthru or
segfrom, this operator and the DOT are commuted and the current context is
again consulted. This process is designed to evaluate forms such as (DOT (SEL
GFRFF 15)) when the current context is holding a value for all of GFREE but not
explicitly for GFREE"15. When the process of pushing the DOT in and looking up
a value has completed, the resulting form, whether or not an evaluation has been
successful, is resimphficd in accordance with the above rules for SLL, segthru
and segfrom. For forms which were not evaluated, and thus were left with an
embedded DOT, rcsimplification results in the DOT being moved back out. For
forms which were evaluated, resimplification selects out the component of interest.

"I f" statements are simplified if the antecedent can be simplified to either T or
NIL

47

Arrayx/Array is simplified to just x. Similarly, Array° (PI ace/Array) is
simplified to just Place. Note that in the first case, x is a selector into the list
Array, while in the second case, Place is a placcname.

3?6 Definition of new terms

The last set of commands provide a way of introducing new predicates to the
proofchecker. Two commands are provided, one for introducing the syntax of the new
predicate and one for introducing the definition. If tht predicate has only a prefix
form and no syntactic extension is required, no command is required for the syntax.

The command for introducing new syntax has the following format.

(üef incSyntax netupred (NEUISUORD ' (full English singular form)
' [partial English plural form)
' {prefix form)
' (variables)))

NFIJISUORD is a CUSP function and the body of this command is simply
executed. The details on the execution of NEUISUORD are contained in the Interlisp
manual. Examples of how this command is used are contained in chapter five.

The command for defining the semantics of a new predicate is

(DnfincOpcrator netupred definition support-rule).

The support-rule is a pattern used for computing support of forms involving the
new predicate. In principle, the support-rule should be checked in accordance with the
discussion in chapter two. At present, however, this requirement is not implemented.
Examples of the use of this command are also contained in chapter five.

3.3 The place system

The place system is a more or less self-contained set of routines which are called
from the kernel at various points in the execution of a command.

4S

3.3.1 FindPlaceNode

F inciPlnceNode is the function which translates a place name into a place node.
If a simple place name is not registered, NIL is returned. If FindPlaceNode is given »
subscripted place name, a pointer to the node corresponding to the smallest registered

component is returned. If the base name is not registered, NIL is returned.

Place names are added to the hash table by the kernel commands
NeuComposi t ion, NewDecomposi t ion and EnterSynonym. A record is kept of each of
the actions which causes names to be added to the place list and nodes to be added to
the place graph, and all of the actions carried out during the course of a subproof are
undone when the subproof is closed. This is a mechanism for permitting names and
their overlap relationships to exist just within the scope of a subproof (and its
subproofs). PushPlaceSys is the routine called by the kernel when a subproof is begun;

PosP I aceSyS is called when the subproof L complete.

3.3.2 Traversing algorithms

(FindAf fectedPlaces placet ist) returns a list of all of the place nodes which
are not guaranteed to be disjoint from the places listed (by name) in placelist.

F indAffectedPlaces is called during execution of the ApplylnstSD.

(MarkP p fprime), (MarkFM f) and (MarkFD f) are the basic graph

traversing functions.

In a call to ParkP, p is a pointer to place node and fprime is a pointer to the
family node, if any, from which p is being reached. MarkP checks flag in the place
node. If flag is not NIL, this place node has been visited already and no further
action is taken except to set CONFLICTFLAG to T. (C0NFL1CTFLAG is checked by

Al IDi s jointp; see below.)

If f lag is NIL, it is set to T, the place node is added to MARKEOPLACES, MarkFM is
called for each of the families listed in motherfami I ies and MarkFD is called for each
of the families listed in daughterfami I ies, except that the family fprime is exempted

from exploration.

MarkFM is called from tlarkP with a pointer to a family which contains the place
node as a daughter. MarkFII checks flag in the family node. If the flag is already set,

49

no further processing takes place. If flag is not already set, it is now set and (MarkP

f :niotherplace f) is called to explore the mother of the family and her relatives. The

inclusion of f in the calling sequence to MarkP prevents MarkP from attempting to re-

explore the graph through this family, f is also added to the MARKEDFAMLIES list for

use by UnMark in erasing all of the flags.

MarkFD is called from MarkP with a pointer to a family which contains the place

node as a mother. MarkFD checks flag in the family node and terminates if it is

already set. If flag is not already set, it is set now and f is added to MARKEDPLACES.

MarkP is called for each of the places listed in the daughterplaces component of the

family. MarkP is prevented from re-exploring this family by including f in the call to

MarkP.

(AlIDisjointp place I ist) is used by NcuConiposi t i on to check if all of the

places listed (by name) in placelist are known to be disjoint.22 AMDisjointp is

implemented by setting CONFL1CTFLAG to NIL, calling MarkP for each of the place nodes

corresponding to a place listed in placelist, and returning the value of

CONFLICTFLAG. UnMark is called after the graph is traversed to erase all of the flags

that had been set.

(tnt irelyContaineclinp subp lacenodes superp I acenodes) checks to see if

each of the places listed in subplaccsnodes is a subplace of at least one of the places

listed in superp I acenames. Entire IyContainedinp operates by setting flag in each

place node corresponding to a place named in superp I acenames and then calling

Containcclinp for each of the nodes listed in subp I acenodes. Containedinp explores

every upward path either until it encounters a marked place node or until all paths

have been exhausted. If a marked place is encountered, Containedinp returns T;

otherwise it returns NIL. Ent irelyContainedinp returns T if each of its calls to

Containcclp returned T; otherwise it returns NIL.

Ent ire I yContainedi np is called to determine if the support for a particular

predicate is entirely within the set of places which form the environment for the

subproof which is immediately subordinate to the proof in which the predicate was

created. If so, the predicate is considered "visible" and is available for use in all

subordinate suboroofs.

9'J
"" After I first coded AIMisjouitp, I re-examined NcwC.omposition and revised it to

require only «i Covering predicate similar to NewDecornposition. Later, 1 discovered

Alldisjointp was not used anywhere. 1 let the mailer set for a while. Hod Hurslall came by and

examined Jiie praph structure. As the result of that discussion, I re-examined the algorithms

in the place system, and I discovered that 1 had erred in the implementation of the

NewComposition and that Alldisjointp was required as desenhed earlier.

50

4. A Slice of the IMP Code

While the whole of the IMP code was considered in formulating the theory and
building the system, only a small slice of the code was examined in detail. This code is
central to the operation of the IMP and posed a large number of theoretical problems.
Solving these problems took us much further than I anticipated. While 1 have not
pushed any other sections of the code through the system, I believe that the existing
theory and system are sufficient to support proof of much of the rest of the code.

This chapter covers just the slice of code, including a description of the hardware
and an overview of the ARPANET. In chapter five, we will return to this code and
show its complete proof through the system.

4.1 The ARPANET

The ARPANET is a communication system which connects a number of "host"
computers. These host computers send messages to each other through the ARPANET.
The ARPANET is implemented as a connected set of IMPs and telephone lines. The
IMPs are small computers, predominantly Honeywell 316s, located next to the various
hosts. Each host is connected to a single IMP, but one IMP may be connected to more
than one host. The IMPs are connected to each other through leased, non-switched
telephone lines, usually capable of carrying 50 kilobits per second.

Hosts send messages to other hosts by transmitting each message to its local IMP.
Messages are limited to about 8000 bits and begin with a leader which includes the
address of the destination host.

The sole role of the IMPs is to move messages between hosts. To accomplish this,
messages are broken into smaller units, called packets, and the packets are sent from
IMP to IMP until reaching the IMP connected to the destination host. Packets are no
longer than about 1000 bits. Messages are subdivided Into packets solely for efficiency
reasons which are not relevant to the present discussion.

The program within the IMP consists of several interrupt-driven processes.
When a packet arrives from another IMP or a message arrives from a host, the modem-

51

■ ■ -.'.";: : V ' y£y

to-IMP process or the Host-to-IMP process is started to read the packet or message.
Messages are broken into packets as they are read in, so we may view the input from
the host as just a sequence of numbered packets.

Space for packets is allocated dynamically as needed. There is a fixed number of
packet buffers, each capable of holding exactly one packet. Packet buffers are attached
to various queues using standard list processing techniques. A packet remains in the
packet buffer it was read into until it is transmitted out to another IMP or a host:
packets are never copied from one place in core to another.

There is a fixed number of queues in the program: one for each output port, one
for packets waiting for routing, the free packetbuffer queue. Every packetbuffer is on
just one of these queues or is serving as an input buffer for one of the input ports.
Collectively, the queues and the input buffers always account for all of the buffers in
the system. The complete set of buffers is determined at assembly time.

4.2 The 316

The Honeywell 316 is a one address, 16 bit minicomputer. In the standard
configuration, the memory may have 16K words of 16 bits, thus requiring 14 bits to
address each word.

The CPU has a single general purpose register (A) and a program counter (PC).
Word zero of memory acts as the index register.

All instructions are one word long, and have one of two formats. Instructions
which reference memory have the following format (bit 0 is the least significant bit):

flit 15 Indirect addressing flag
FJi t 14 Index inci f lag
Hits 13-10 Operation code (not equal to zero)
Eli t El Page flag
Bits 8-0 Address field

P»ecause only nine bits are provided in the address field, an instruction cannot
address all of memory directly. If the page flag is zero, the addi ?ss field holds an
absolute address and thus refers to a cell in the first 512 words of memory.

If the page flag is one, the address field holds a local address and thus refers to a

52

—- - - - ■ - v " ' 9

cell in the same 512 word page as the instruction, i.e., the high-order 5 bits are the same
as the location of the instruction.

If the index flag is set, the contents of cell zero is added to the direct address
calculated above.

!f the indirect flap is set. the address is used as the location of another address.
In the new address word, bit 15 is again the indirect flag, bit 14 is the index flag and
bits 13-0 are a full 14 bit direct address, indirect addressing continues until an address
word is encountered with the indirect flag set to zero. Indexing is applied at every step
if the index flag is on.

Instructions which do not reference memory are no-address instructions. Bits 13-
10 of these instructions are zero and the other bits form an extended operation code.

The specific instructions of concern are the following:

4 2.1 No-address instructions

Clear A register (CRA); 1488480

The effect of this instruction is to set all sixteen bits of the A register to zero.

Skip Not Zero (SNZ); 10104BQ

This instruction tests the A register. If any of the bits are 1, the next instruction is
skipped. If the A register holds zero, the next instruction is executed.

4.2.2 Memory referencing instructions

Jump LIMP); opcode * 1

This instruction transfers control to the effective address.

Store A register (STA); opcode •= 4

The contents of the A register are copied into the referenced memory location.

5?

.

Increment and t.kip (iRS); opcode = 18Q

1 he value in the rrferenced memory location is increased by 1 (modulo 2'°). If
the result is zero, the next instruction is skipped.

Interchange Memory an:l A register (IMA); opcode - 11Q

This instruction exchanges the contents of the A register with contents of the cell
referenced in memory.

4.3 GFREE

We now come to a specific section of code, GFREE. GFREE is called by an input
process to allocate a buffer from the free packet buffer queue. Two returns are possible,
one indicating success and the other indicating that no free buffers existed.

Location Contents Label Source Code Comments

010611 GFREET: BSS 1 /LAST BUFFER USED
010512 000000 GFREE: 0 /GET A FREE BUFFER

010513 140040 CRA
BJ0Ü14 12G277 IMA FREE I /CLEAR CHAIN PTR
010515 101040 SNZ
010516 103512 JFIP GFREE I /NO BUFFERS. NO SKIP
010517 0;;4500 IRS NFS /KEEP COUNT
010520 02R277 IMA FREE /UPDATE FREE LIST
010521 011511 SI A GFREET /LEAVE A CLUE
010522 025512 IRS GFREE /SKIP=SUCCESS
010523 103512 JMP GFREE I

Fntry is via a subroutine call instruction which leaves its return address in GFREE
and transfers control to the cell after GFREE, 10513Q. If no buffers are available, the
return docs not skip. If successful, the return skips one Instruction and the A register
contains a pointer to the allocated buffer.

The free list consists of packetbuffers whose first words are strung together in a

51

*__
ÄÄiJLfiÜ

tm mä^Ma**m—

pointer chain. The last packet buffer header points to a word which contains 0. (This
in not the same as having the last element point to 0.) FREE points tc the first packet
buffer if there is one, or to the dummy packet buffer if the list is empty. No packet
buffer begins at word 0.

NF-A and NFS contain counters. NFA is incremented whenever a packet is put onto
the free list, and Nf S is incremented whenever a packet is taken off. The difference
between the contents of NFA and NFS gives the actuai number of packets on the free list
at any time, except in the middle of routines which change them.

As a convenience to one of the callers of GFREE, GFREET also contains a pointer
to the allocated buffer if successful.

It is intended that NFS never be incremented up to 0 (thus causing the second IMA
to be skipped). The mechanism for preventing this is a background program which
periodically stores the difference between the contents of NFA and NFS in NFA, and sets
NFS to 0. This routine inhibits interrupts when it dors this. Correct operation of this
routine is thus timing-dependent. We will avoid this problem by explicitly assuming
that the contents of NFS be less than 177777Q when GFRtE is entered.

The places which can be modified are PC, A, GFREE, GFREET, NFS, FREE,
ZERO and the first word of the first packetbuffer. There are also internal registers
which are modified. If we let Q stand for the internal registers and X stand for the
whole packetbuffer list which begins at FREE, we can say that nothing outside of the list
Q, PC, A, GFREF, GFREET, FREE, ZERO and X is modified.

The final IRS must not skip. It could only skip if the calling location were
17/77GQ, so that 1777770. would be stored into GFREE upon entry. Addresses in this
range would require a 64K address space - far more than the machine has.
Consequently, the final IRS cannot skip if GFREE actually holds a legal address.

4.4 Specification of GFREE

I'.cfore we can contemplate proving the correctness of GFREE, we need a clear
statement of the intended effect of GFREE. One straightforward way to write down the
intended effect is to compare the state of the machine before GFREE is entered with the
state after it has been executed.

The conditions that are assumed to hold before GFREE is entered are the
following:

55

^MM^ttftHMMW^

Bl. 1 he program counter holds 10513Q;

B2. GFREE holds a return address ra, and ra is strictly less than 37777Q;

B3. The code listed above has not be i modified;

Bi. The free packetbuffer list is well-formed, a concept we will expand below;

B5. NFS holds a value nf s which is strictly less than 17777Q

The conditions that are assuned to hold after GFREE has been executed

depending upon whether there were any packetbuffers available on the free

packctbuffer list. If there were not, the following conditions are expected:

AZ1. The program counter holds ra;

A7.2. The code listed above has not been modified;

AZ3. The free packctbuffer list is still well-formed but empty;

AZ4. NFS still holds nfs;

AZ!i. Only the places listed in item 7 above may have been modified. This restriction
is one-sided. It means places not listed have not been modified. It does not

gi arantcc that listed places wete modified.

If there was a packctbuffer available, we expect the following conditions to hold:

AN1. The program counter holds ra-tl;

AN?. The code listed above has not been modified,

AN3. The free packctbuffer list is still well formed and accounts for all but one of the
packetbuffers in the original list;

AN1 The A register and Gf REET hold a pointer to the other packetbuffer;

AN5 NFS holds nfDU.

AN6. Only places listed in item 7 may have been modified.

Packetbuffers are packet length words long and the entire set of possible

f»G

-■-, v. -.* v -

packetbuffcrs is determined at assembly time. Bufferspace is the name of that set.
None of the packetbuffers begin at word zero in memory. Bufferspace is separate
from the code, NFS, GFREE, GFREET, NFS, FREE and ZERO.

A packetbuffer list is a finite sequence of packetbuffers with the first word of all
but the last packetbuffer holding the address of the first word of the next packetbuffer
and the last packetbuffer holding a pointer to a word which contains 0. By convention,
this word is the cell ZERO.

A slightly more precise way to characterize packetbuffer lists is the following: X is
a packetbuffer list beginning at y if X is a zero-length sequence and y is the address of
ZERO or X is a sequence whose length is not zero, the first element of X is a packetbuffer,
y is the address of the first word of that packetbuffer and the rest of X is a packetbuffer
list beginning at the address contained in the first word in the first packet buffer in X.
The list of free packetbuffers is the packetbuffer list beginning at the address contained
in FREE.

4.5 Informal proof of the correctness of GFREE

We are now ready to look at the reasons why we believe GFREE performs correctly.
Our goal is to show that if the initial conditions Bl through B5 are true at some time,
then execution of GFREE leads to either AZ1 through AZ5 or AN1 through AN6. Our
technique for achieving this goal is to display the state of the machine, and then step
through the program updating the display. This technique is generally called symbolic
execution 2.1

We clearly need to display current values for the program counter (PC), A,
GFREE, GFREET, NFS, FREE and the free packetbuffer list. The free packetbuffer list
presents a problem because we don't know exactly what words in memory are involved.
However, we can divide the analysis into two cases, one for an empty list and one for a
non-empty list. In both cases the iist is represented symbolically by X.

One other detail needs attention. For a careful symbolic execution, we need to
assure ourselves that the indirect addressing computed at 10S14Q, 1051GQ and 10S23Q
all refer to cells containing numbers strictly less thi.n 1B0000Q, i.e., that the indirect

*■ Srr, for example, "Symbolic Kxcculion and Tcsling," by James Kinp, IBM Research

i. porl, RC S0«2.

57

addressing terminates in just one subcyde. To follow this detail, we'll make use of a

fictitious microprogram counter (UPC) and an internal memory address register (M).

The UPC holds cither top, addr or action. When UPC holds top, the contents of PC is
the address of the next instruction. If the instruction is a memory referencing
instruction, UPC is set to addr and address fetches take place until a word is accessed
with the indirect bit off. At that point, the UPC is set to action and the instruction is

executed.

lor no-address instructions, execution takes place immediately and the UPC retains

the value top.

Here is the display for the initial state. The numbers above the symbols are the
memory address. In the case of the free packetbuffer list, p is the address of the first
word of the first buffer.
Memory cell 5000 105120 10511Q 277Q p
Name UPC PC M A NFS GFREE GFREET FREF X

Value top 10513Q ? ? nfs ra ? p

We now begin execution. The instruction at 10513Q is CRA, so only PC and A are

changed.
Memory cell L88Q 105120 10511Q 277Q p
Name UPC PC M h NFS GFREF GFREET FREE X
Value top 10514a ? 0 nfs ra ? p

The PC now points to an IMA instruction. I'.efore proceeding, we need to know
whether the free packetbuffer list is empty.
Accordingly, the state we are considering is thus:
Memory eel I 500Q
Name UPC PC M A NFS
Value top 10514Q ? 0 nfs

We consider the empty case first.

105120 10511Q 277Q p
GFREE GFREET FREE ZERO
ra ? y 0

The IMA instruction is now partially decoded and discovered to be a memory

reference instruction, leading to
Memory cell 5000 10512Q 10511Q 2770 p
Name " UPC PC M A NFS GFREF GFREET FREE ZERO

Value addr 10514Q 2770 0 nfs ra ? p 0

277Q is the indirect address. An indirect addressing cycle is taken, leading to
Memory cell 500Q 10512Q 10511Q 2V7Q p
Name " UPC PC MA NFS GFREE GFREET FREE ZERO

Value action 10514Q p 0 nfs ra ? p 0

58

The operation code is now examined and seen to be 11Q indicating an IMA

instruction. The contents of cell 277Q is p, and the contents of A is 0.

liy convention, p is the address of ZERO, a cell holding 0. After execution of the

IMA instruction, the state is:

Memory cell 500Q 10S12Q 105110. 277Q p

Name UPC PC MA NFS GFREE GFREET FREE ZERO

Value top 10515Q ? 0 nfs ra ? p B

Interpretation of the instruction at 10515Q now takes place. This is a SNZ

instruction, which docs not skip. The new state is:

Memory cell 500Q 10512Q 10511Q 277Q p

Name UPC PC MA NFS GFREE GFREET FREE ZERO

Value top 101)160 ? 0 nfs ra ? p 8

The instruction at 10516Q is an indirect jump. After the fetch of the indirect

address, the state is:

Memory cell 500Q 10512Q 10511Q 2770 p

Name UPC PC M A NFS GFREE GFREET FREE ZERO

Value addr 185170 ra 0 nfs ra ? p fci

Since ra is an address, the high-order bit of M is off and no further indirect

addressing takes place. After the jump, the state becomes:

Memory cell 500Q 10512Q 10511Q 277Q p

Name UPC PC M A NFS GFREE GFREET FREE ZERO

Value top ra ? 0 nfs ra ? p 0

This is a final state.

Alternatively, the free list might not have been empty. We return to the state just

prior to execution of the IMA instruction and the state we are considering is: ^

Memory cell 500Q 10512Q 10511Q 277Q p

Name UPC PC MA NFS GFREE GFREET FREE X

Value top 105140 0 nfs ra Pi

Again we complete the indirect address and the state just prior to the actual

exchange is:

Memory eel I 500Q

Name UPC PC M A NFS

10512Q 10511Q

GFREE GFREET

277Q

FREE
P
X

24 In the displays winch follow, X refers to just the first word of the first

p;irkctbuffer instead of the whole packetbuffcr list.

59

Value action 18S15Q 0 nf s ra P Pi

Note that we needed to know that the high-order bit in FREE was zero in order to
terminate the indirect addressing cycle. After execution of the exchange, the new state
is:

Memory cell S00Q 101.120 10511Q 277Q p
Name UPC PC MA NFS GFREE GFREET FREE X
Value top 10S15Q ? pj nfs ra ? p 0

The A register now holds p]. p^ cannot be zero, so the SNZ instruction at
10515Q will skip. After its execution, we have:
Memory cell 5000 10512G 10511Q 2770 p
Name UPC PC MA NFS GFREE GFREET FREE X
Value top 10517Q ? pj nfs ra ? p 0

The IRS instruction at 10517Q is now executed, nfs is small enough to prevent
overflow, so we arrive at:
Memory cell 500Q 18512Q 10511Q 2770 p
Name UPC PC MA NFS GFREE GFREET FREE X
Value top 10S20Q ? p1 nfs+1 ra ? p 0

The instruction at 10520Q is the second IMA instruction. It just causes the
contents of A and FREE to be interchanged.
Memory eel 1 5000 105120 18511Q 277Q P
Name UPC PC M A NFS GFREE GFREET FREE X
Va 1 ue top 10521Q ? P nfs+1 ra ? Pi 0

The next three instructions are quite straightforward, p is put into GFREET, the
return address is incremented by I and the routine is exited. The fact that ra is a less
than 3777/Q is needed three times, once to show that the IRS doesn't skip, once to show
that the indirect addressing cycle for the jump terminates, and once to show that ra+1
fits into the low-order 14 bits of PC. The final state is:
Memory cell &00Q 105120 10511Q 277Q p
Name UPC PC MA NFS GFREE GFREET FREE X
Value top rail ? p nfs+1 r34l p pj 0

In the state displays above, each column is dedicated to a specific memory cell or
register, and it naturally assumed that each of these cells or registers is completely
disjoint from all of the others. As we updated one column in the display, we made the
strong assumption that each of the other columns remained valid.

For the registers and fixed memory locations, the independence of each place from

60

all other places is easy to see and doesn't change during execution. For variable places
like the free packet buffer list, however, we need some assurance that X is disjoint from
all of the other places.

The general situation can be quite complicated. Indirect addressing and list-
structured data provide many possibilities for implicit sharing of structures. !n order to
update the state description correctly, all possible dependencies among the places must
be known.

In practice, sharing of places is carefully controlled by the programmer and the
number of possible intersections is small. In the IMP code, memory is divided into
disjoint regions containing code, fixed data areas and variable data areas. The primary
use of the variable data area is for packet buffers. These regions are determined at
assembly time and remain fixed for the life of the (particular version of the) IMP code.
The variable data area is further divided into packet buffer space and other allocatable
storage. The packet buffer space in turn is further structured into individual packet
buffers. While we didn't say exactly what cell in memory was named ZERO, we need to
know that ZERO is within the fixed data area and hence is not within the variable data
area. Moreover, ZERO is disjoint from NFS, FREE, GFREE, GFREET, etc. Similarly, we
need to know that p is the address of the first word of a packet buffer, and hence
cannot be the address of any cell in the fixed data region or the code region, pj is also
constrained: «t may be either an address of the first word of a packet buffer or it may be
the address of ZERO, but nothing else.

The assurance that these variable addresses are disjoint from particular other
addresses allows us to represent the state of the machine as a set of independent places,
each holding its own value, and to update the contents of each place independently of
the others. When this assurance is lacking and the contents of a place are modified, the
contents of all other places which are not known to be disjoint may have been changed.

61

5. Proof of GFKEE

In this chapter we examine a trace of the proofchecker processing the proof of
GFRFE. The input to the proofchecker is a series of commands; all of these are
included in the trace output. At various points, the trace also includes a list of the
predicates added to or deleted from the current context or, in the case of an Open
command, the predicates copied into the new context from a superior context. The
listing of these predicates is controlled by switches and the points at which these
switches are turned on and off is noted in the text. Each command which is input to
the system is noted by a preceding bullet (•).

Most of the commands require a reference to an existing predicate within the
current context, and 1 have chosen to use the Interlisp pattern-matching capability to
implement this requirement. When a command contains a pattern, the pattern is
matched against each of the predicates accessible in the current context until a match is
found. Predicates are searched in LIFO order: the most recently created predicate is
checked first. If no predicate is found which matches the pattern, the command fails.

Internally, predicates are stored in prefix format.
ME Nn(.PC)-~140040Q is entered into the system, it is stored as

If the predicate

(LQ (DOT (SLL MEM (DOT PC))) 1400400.)

For the convenience of the user, patterns may be written as if they were to match the
external syntax of the predicates. Before the matching process takes place, a pattern is
also transformed to an internal prefix format. For example, the pattern &=140040Q may
be used to select the predicate above because this pattern will be transformed into (EQ &
1400'i0Q) before the match is attempted. {"&" means "match any single element of a
list".) For full details on the pattern matching capability, see section 23 of the Interlisp

manual. The use of the pattern matcher was a convenient, short-term expediency, and
is likely to be changed in future implementations. Some of the problems encountered in
using this scheme are discussed in the next chapter.

Warren Tcildman, Interlisp Reference Manual, Xerox Palo Alto Research Center,

Palo Alto, California, 1975.

62

5.1 Proof plan

The basic proof of GFREE consists of four sections. Tlie first section steps the

machine through the first instruction, CRA. The second section steps the machine
through the next two instructions under the assumption that the free buffer list is
empty. The third section steps the machine through the second, fourth and following
instructions under the assumption that the free list is not empty. The final section
combines the results of previous two sections to re-execute the body of GFREE and
reach an exit condition. This plan is summarized in the following outline.

Begin proof of GFREE
section 1: execution of first instruction
Begin proof of GFREE assuming list is empty

section 2: execution of 2nd and 3rd instructions
end of proof of empty case

Begin proof of GFREE assuming list is not empty
section 3: execution of other instructions
end of proof of non-empty case

section 4: single step execution of SU resulting from combination
of Süs generated by prior subproofs

end of proof of GFREE

Before starting the proof of GFREE, it is necessary to enter into the system a listing of
the code for GFREE, a list of notations used in the description of GFREE, a description
of the 316 itself, and a few facts about the world that the proof system does not have
built in. These add several steps to the outline of the proof. To enter all of the
required information, we pretend that we are starting a proof and enter the required
information as preconditions. No postconditions will be supplied and the proofs will
never be closed. The specification and proof of GFREE therefore take place within
several hypotheses and are usable only under the same hypotheses.

Begin "proof" introducing general facts about the world
Begin "proof" introducing description of the 31G

Begin "proof" introducing listing of the code for GFREE
Begin "proof" introducing notation used in

specification of GFREE

Begin real proof of GFREE
section 1
Begin proof of empty case

section 2

63

.***.

-nd of proof of empty case

Begi,\ proof of nonempty case

sc t ion 3

cnO of proof of nonempty case

section i\

end of p-oof of GFREE

The above outline is complete except for one detail. GFREE is specified in terms of a

SD that has another SD in vs postcondition! In other words, the state delta that

describes the operation of GFRL ". has the following form.

(SD (pre: ...)

(mod: ...)

(env: ...)

(post: ... (SD (pre: ..)

(mod: ..)

(env: ..)

(post: . .)

(vars: . .))

(vars:))

The reasons for specifying GFREE in this fort 1 are discussed below. As a consequence,

however, an additional level of proof has to be included in our outline. The following

is the total outline.

Begin "proof" introducing general facts at-iut the world

Begin "proof" introducing description ol the 316

Begin "proof" introducing listing of \he code for GFREc

Begin "proof" introducing notation used in

specification of GFREE

Begin real proof of GFREE -- outer 'ayer

Begin proof of inner layer of GFt'EE

section 1 ;

Begin proof of empty.case

sect ion 2

end of proof of emp^.y case

Begin proof of nonempty case

sect ion 3

end of proof of nonempty case

sect ion 4

cm\ of proof of inner layer of GFREE

end of proof of outer layer of GFREE

64

fc^"*1**.

5.2 General facts

The first command establishes the top level context by postulating some general

theorems that arc not built into the simplification routines but are necessary at a later
point in the proof. In a mature system, there would be a large number of these general
facts that would be available and the proof system would be started wi'h these already
present. Although these are written as SDs, the pre- and postconditions maks no
reference to a machine state and the environment and modification lists are empty.
Under these conditions, a SD is exactly equivalent to a (universally quantified)
conditional statement. Correspondingly, instantiation and application of these SDs is
equivalent to instantiating the equivalent quantified conditional statement and then
using the modus ponens inference rule. Since the machinery to manipulate SDs already
existed, we did not bother to build the machinery to handle simple conditional
statements.

The five general facts which are supplied state that a list is equal to the concatenation
of its first element with the rest of it, that this same concatenation yields a permutation
of the original list (because it is in fact identical!), that a number is either zero or not
zero, that adding 1 to both sides of an inequality preserves the inequality, and that
positive numbers are not zero, e is the infix operator for concatenation; its prefix form
is catenate. The prefix form for is a permutation of is Permutat ionp. Although
the syntax for these operators is predefined, no semantics are built into the system at all.

• (Open (pre: (SO (pre:)
(mod:)
!onv:)
(post: X^<X°0>QX,1)

(vars: x))
(SO (pre: x-<x°8>@x,l)

(mod:1
(env:)
(post: (x is a permutation of <x°0>@x,l))

(vars: x))

(SO (pre:)

(mod:)

(env:)

(post: (a=0 or a*0))

(vars: a))

(SO (pre: (x is less than y))

(mod:)

(env:)

(post: (x-il is less than u+D)

65

(vars: x y))

(SO (pre: (0 is less than x))

(mod:)

(env:)

(post: x/0)

(vars: x)))

(mod:)

(env:)

(post:)

(vars:))

5.3 Definition of the 316

The following Open command establishes a subordinate context in which a small subset
of the Honeywell 316 hardware is defined. The SDs that are introduced are identical to
the set displayed in chapter two. After the SDs come two declarations about places in
the machine. The first declaration introduces the microprogram counter UPC, the
program counter PC, memory MEN, internal registers M, 1, OP and C, and the
accumulator A. These are completely disjoint from each other and partition OMEGA.
OMEGA represents all of the space in the n achine, so the effect of this declaration is these
places are the only places in the machine. The second declaration subdivides memory.
In principle, each of the 16,384 cells in memory should be listed separately, but only the
cells of interest are explicitly named here. ZERO is a specific cell in memory that is
disjoint from all of the other cells listed. In a more complete treatment, it would be
introduced as an alternate name for a specifically enumerated cell; this is how the other
symbols in the code for GFREE are treated later. Introducing ZERO without disclosing
its address illustrates the power of the place graph.

In a similar way, Buffer-place refers to all of the cells in memory that can be used to
form buffers. The declaration is again silent about which cells these are, but they are
known to be disjoint from ZERO and the other listed cells.

Following the Open command are three commands to build up the place graph. The
first two just copy the information provided by the declarations just discussed. The
third declaration introduces the name 0 as a covering of the internal registers of the
machine and adds the covering to the place graph. In the SDs that describe the 316, Q
is used in the modification list when it is desired to specify that all of the internal state
of the CPU may have changed. Q used in this context is completely separate from the Q
used on the end of constants to indicate octal representation.

66

. - -*'•. I ■

< ■:

• (Open (pre: (SD (pre: .UPC«top .PC*pc .MEN» (.PC) =1480480.)

(moclr Q PC A)

(env:)

(post: .UPC*top .PC=(pc^l);13 .A=8)

(vars: pc))
(SD (pre: .UPC-top .PC=pc .MEN»(.PC)=1813480)

{mod: Q PC)

(env:)
(post: .UPC=top (if .A--8

then .PC=(pc+l);13

else .PC=(pc+2);13))

(vars: pc))
(SO (pre: .UPC-top .MEM»(.PC);13,18*8)

(mod: Q)

(env:)
(post: .0P-.rei»(.PC);13,lB .UPOaddr .I=.MEM»(.PC) »15

(if .MEM»(.PC)"9=8
then .n=.riErio(.PC);8

else .M=.l1Eno(.PC);8+(L0GAND .PC 377888Q)))

(vars:))

(SO (pre: .UPC=addr .1=8)

(mcd: UPC)

(env:)

(post: ,UPC=action)

(vars:))

(SD (pre: .UPC=addr .1=1 .M=m)

(mod: UPC I M)

(env:)
(post: .UPC-addr .fr=.MEf1-m;13 . U.MEM°m"15)

(vars: m))
(SO (pre: .UPC-action .0P=11 .PC-pc .A=a .M=tn .MEI1»m«b)

(mod: Q PC A MEN-m)

(env:)
(post: .UPC=top .PC=(pc-il):13 .A=b .nEMom=a)

(vars: pc m a b))

(SO (pre: .UPC=action .0P=1 .I1=m)

(mod: Q PC)

(env:)

(post: .UPC=top .PC=m)

(vars: m))
(SD (pre: .UPC=action .0P=4 .M=m .PC=pc)

(mod: Q PC MEM-m)

67

t-.isjM^ »'»V.tf jfc-.,jg.*-

(env:)

(post: .UPC*top ,.PC-(pc-4l);13 .MEM«»«.Al

(vars: m pc))

(SP (pre: .UPC-action .OP-IB .M=m .MEM»m=v .PC=pc)

(mod: Q PC MEM»m)

(env:)

(post: .UPC-top .MEM«m-=(v+l);15 (if .MEM°m=0

then .PC-(pc+2);13

else .PC=(pc+l);13))

(vars: m pc v))

(Covering OMEGA <UPC PC MEM M I A C 0P>)

(Covering MEM

<MEt1o277Q MEM°580Q MEM°10511O MEM°10512Q

nEMolB513Q MEM°10S14Q MEM«10S15a nEM»10E>16Ci

HE:ri»18517Q MEMol0520Q MEM<>10S21Q MEM-10S22Q

MEM-10523Q Buff erSpace ZER0>))

(mod: OMEGA)

(env:)

(post:)

(vars: UPC PC MEM M I A C OP Q BuffcrSpace ZERO))

• (NeuDecomposition (Covering OMEGA <UPC PC MEM M I A C 0P>))

• (NeuDecomposition (Covering MEM

<MtM»277Q MEMn500Q MEM"10511Q MEM-10512Q
HLt1»18S13Q MEMO10S1AQ MEM°10S15Q
MrM-105160 MEM-18517Q MEM°1B520Q
MLMol0521Q MEM-185220. MEM »105230.

BufferSpace ZER0>))
• (NewComposition (Covering Q <UPC M I 0P>))

5.4 Listing of CEREE

The following Open command establishes a further subordinate context in which the
instructions which comprise GFREE are entered. In addition, the symbols FREE,
GFREE, GFREET and NFS are equated to specific locations in memory. Altogether, this
information corresponds to the output from an assembler.

After the Open command comes a set of commands to enter the symbol definitions into
the place graph. PureCode is introduced as a name to cover all of the location*

68
? I

containing code which docs not change during the operation of GFREE. PureCode will
be used in the environment list of the SD which specifies how GFREE operates.

• (Open (pre: .MLr1nl0S13a=140040Q .MEMolBB14G=126277Q

.rOMBSlSQ=101B4Ba .MEt1»lB51BQ=183512Q .MEM..10517a=24S00Q

.r1tf1nl0b20Q=2B277Q .MErMB52ia=llSllQ .MEr1ol0S22Q-25512Q

.nLn"10323Q=103512Q .ZERO-0 FREE=MEri°277Q GFREE«r1Er1»lB512Q
GhnEET=MEr1ol0SllG NFS=MEMo500Q)

(mod: OMEGA)
(env:)

(post:)
(vans: FREE GFREE GFREET NFS PureCode))

• (EnterSynonym FREE^MEM°277Q)

• (EnterSynonym NFS*MEM"500Q)

• (EnterSynonym GFREET=MEM»1B511Q)

• (EnterSynonym GFREE-r1EMol0S12Q)

• (NewComposition (Covering PureCode

<r1Er1°10513G: MEM-1B&14Q MEM« 105150. MEMolB516Q
MErlDl0S17Q MEM»1B52BQ MEM-18S21Q MEM-1BS22Q
r1En°lBS23Q>))

5.5 Additional notation

At this point, definitions for "x is pointing to y", "x is a packet buffer", and "x is
buffcrlist beginning at y" are introduced. The definitions involve extension to the
external syntax as well as postulation of the semantic content of the new terms. These
definitions are different from the theorems contained in the top level Open because they
are applicable only to the IMP code. The format used here to introduce the syntactic

extension is taken directly from CLISP.26 The semantic definition consists of a name, a
predicate which defines the meaning of the name, and rule for computing the support
of forms containing the name. If the rule for computing the support is simply the union
of the supports of the arguments, the rule need not be specified. In principle, this rule
must be Justified by an analysis of the definition to show that the list of places
computed by the rule at least covers the set of places containing values used in the
predicate. This requirement is not implemented, however, and the proofchecker
contains a logical flaw until the support rule is forcefully checked.

Sec chapter 23 of the lntcrlisp manual.

69

• (DefineSyntax Fointerp (NEUISUORD ' (x is pointing to y)

' (are point ing to y)

'(Pointerp x y)

'(x y}))

• (DefineOperator Pointerp ((SO (pre: (x is pointing to y))

(mod:)

(cnv:)

(post: .x=y/MEM)

(vars: x y))

and (SD (pre: .x=y/HEriJ

(mod:)

(env:)

(post: (x is pointing to y))

(vans: x y)))

NIL)

• (DefineSyntax PacketBufferp (NEUISUORD ' (x is a packet buffer)

'(are packet buffers)

'(PacketBufferp x)

'(x)))

• (DefineOperator PacketBufferp

[(SD (p.*e: (x is a packet buffer))

(mod:)

(env:)

(post: (FS (i) X-HEM, i; (packet Iength-1)))

(vars: x))

and (SO (pre: (FS (i) x=t1EM, i; (packet I ength-1)))

(mod:)

(cnv:)

(post: (x is a packet buffer)

(vars: x]

NIL)

• (DefineSyntax PacketBufferListp

U,iUISUORD ' (x is a buffer! ist beginning at y>

'NIL ' (PacketBufferListp x y)

' (x y))i

• (DcfineOperator PacketBufferListp

((SO (pre: (x is a butferlist beginning at y))

(mod:)

(env:)

(post: (Subsetp x BuffcrSpace)

y*B

(y is less than 37777Q)

70

(if (LENGTH x)-0
then y-ZERO/MEtl

else xo0 is a packet buffer and
y=x»0oe/MEn

and x.l is a buffer list beginning
at .x»0°0))

(vars: x y))
and (SD (pre: (Subsetp x BufferSpace)

(y is less than 37777Q)
(if (LENGTH x)=0

then y=ZER0/nEf1
else x°0 is a packet buffer

and y=x"0o0/MEM
and x,l is a buffer I ist

beginning at .x°0o0))

(mod:)
(env:)
(post: (x is a bufferlist beginning at y))
(vars: x y)))

K.ttl U2>)

5.6 Specification of CFREE

The next Open command introduces the forma! specification of GFREE. The
specification is written as a compound SD; the postcondition of the top SD contains
another SD. The reason for this circumlocution is the need to refer to a variable place
which represents the list of free buffers. Whenever a new subproof is begun, the list of
places that might be modified needs to be known. All predicates in superior contexts
which depend upon any of these places are detached from the database and stored
safely away. (Those which are also supported entirely within the environment list are
then duplicated and added to the new context.) Since the relationship of the free buffer
list to the rest of memory is one of the facts that is listed in the precondition for
GFREE, it is necessary to delay using the name of the free buffer list until it can be
entered into the place graph. In the precondition of the outer SD, x is introduced as the
list of free buffers. When the system tries to compute the support for
(PacketBufferListp x .FREE), it finds that x is unregistered and defaults the
support to OMEGA.

71

Prior to beginning the subproof corresponding to the inner SD, x is entered into the
place graph. As part of the process of entering a new name into the place graph, the
system checks whether any predicates in the current context are supported by OMEGA. If
so, the support^fo: these predicates are recomputed. If the recomputed support cjoes not

contain ClMt GA, the predicate is removed from OMLGA's list and attached to the correct

places.

The inner SD contains the meat of the specification. Its modification list contains x
along with a!l the other places that are modified. Since the operation of GFREE
depends strongly upon whether or not the the free buffer list was empty when GFREE
was entered, the postcondition reflects this difference by appearing as a conditional
statement. Notice that final values are specified for ZERO and NFS, even in the cases
where these places are not actually modified. These clauses are required because ZERO
and NFS are contained in the modification list and are assumed by the proof system to
be modified in every execution of GFREE. Were it desired to eliminate the listing of
.ZERO=0 from the non-empty case and the listing of .NFS=nfs from the empty case, two
separate SDs could be written. Note that .ZER0=8 is required in the empty case because
ZtRO actually is modified. Restoration of the its value back to its original state is not
piecisely the same as not changing it all. This point is discussed further in the next
chapter.

The environment for the SDs includes PureCode. This provides a terse way to tie the
specification of GFREE* to the existence of the executable instructions that comprise
GFREE in their correct locations. The environment for the inner SD further requires
that the values for x, FREE and ZtRO not have changed since the inner SD was added to
the context. Since ZtRO and FREE are also contained on the modification list of the
inner SD, it is evident that application of the inner SD will cause its own demise!
There is no harm done, however, fcr the inner SD is added to a context by application
of the outer SD and is intended for use exactly once. Reapplication of the outer SD
generates a new version of the inner SD, tied to a different instantiation of the free
buffer list. Note that the outer SD is not eliminated from a context when the inner SD
is applied.

• (Open (pre: (x is a buHerlist beginning at .FREE and .ZER0=B))
(mod:)
(env: PJurcCode)
(post: (SD (pre: .UPC*top .PCNGr-REE/MEM+l .GFREE-ra

(ra is less than 37777Q)
(H i c less than rail)
(ZtRO/CIErl is less than 37777Q)

ZERO/HE rV8
(0 i s less than nfS4l)
.NfSmfs

1?

(nfs is less than 177777Q))

(mod: Q PC A GFREE GFREET FREE x ZERO NFS)

(erw: PureCode x FREE ZERO)

[post: .UPOtop
(if (LENGTH x)=0

then .PC=ra
and x is a bufferI ist beginning at

.FREE
and .ZERO=0 and .NFS=nfs

else .PC=ra+l and .NFS=nfs+l

and (FS (y z)
(x is a permutation of <y>ez

and y is a packet buffer

and z is a buffer I ist

beginning at .FREE

and .ZERO=0
and A is pointing to y°8

and GFREET '19 pointing to

U»0]

(vars: ra nfs)))

(vars: x))

The following preds were added:

pred: (.ZERO-0)
support: ((ZERO))

pred: (x is a bufferlist beginning at .FREE)

support: ((OMEGA))

The next two commands take care of the requirement that x be registered in the place

system before the proof of the inner SD can be started. The Derive command is a
pure, premeditated cheat; it simply adds its argument to the current context without any
checking. In principle, the definition of "x is bufferlist beginning at .FREE"
provides logical grounds for deriving (Covering Bufferspace <x>», but none of the
axioms necessary to carry out this derivation have been added to the system. 1 do <ict
expect that there will be any difficulty in adding the necessary axioms and in carrying

out the necessary derivation.

• (Derive (Covering BufferSpace <x>))

The following preds were added:

73

^^iMMttillMt^.^^li — - 4

pred: (Covering üufferSpace <x>)

support: NIL

• (NewDecomposition (Covering BufferSpace <x>))

The following preds wer? deleted:

pred: (x is a bufferlist beginning at .FREE)

support: ((OMEGA))

The following preds were added:
pred: (x is a bufferlist beginning at .FREE)
support: ((FREE MEM°277Q) (x))

This Open command begins the subproof of the inner SD. At this point, predicates that
are added to the context are no longer shown, but predicates that are copied from a
higher context to the new context because of an intersection between the modification
list and the environment list are shown.

• (Open (pre: .UPC-top .PC=GFREE/MEM+1 .GFREE-ra
(ra is less than 17777Q)
(0 is less than ra+1)
(ZERO/MEM is less than 37777Q)
ZERO/MEM/0
(0 is less than nfs+1)

.NFS-nfs
(nfs is less than 177777Q))

(mod: Q PC A GFREE GFREET FREE x ZERO NFS)
(env: PureCode x FREE ZERO)
[post: .UPC=top

(if (LENGTH x)=0
then .PC=ra and x is a bufferlist beginning at .FREE

and .ZER0=B and .NFS=nfs

else .PC-ra+l and .NFS=nfs+l

and (FS (y z"

(x is a permutation of <y>ez

and y is a packet buffer

and z is a bufferlist beginning at

.FREE

and .ZERO=0 and A is pointing to y»8

and GFREET is pointing to y»0]

(vars: ra nfs))

74

.yif*j...S..,3g^-j,;. L. .

—
altetel^ ***££• 4 JW

■■- »■ . -■ -——^ ■^"""—""""firmr i A

The following precis were copied to the neu context:

pred: (x is a buffer list beginning at .FREE)
support: ((FREE MEr1<>277Q) (x))

pred: (.ZERO=0)

support: ((ZERO))

5.7 Execution of the first instruction

The following commands begin the execution of GFREE. The first command
substitutes the address of GFREE into the predicate expressing the current value of the
program counter. The simplification rules are bypassed for substitution because they
have a tendency to simplify in the wrong direction. In this case, for example,
MEM<>1B512Q is substituted for GFREE in .POGFREE/nEfl+1. The substitution results in
.PC=MEt1°10512Q7MEr1+l. If the simplification rules were invoked, the simplifier would
try to "evaluate" .PC and retrieve the value GFREE/MEM+1; the result would be
GFREE/MEM+1«=10513Q. While this is a true statement, it does not have the desired effect
of changing the representation of the current value of the program counter.
Consequently, the unsimplified value is stored away. In the next command, the
precondition for the SD includes the condition that .PO10513Q. This condition is
checked by invoking the simplifier and asking if the expression simplifies to T. At this
point the evaluation of .PC works in the right direction. Before the two sides of the
equality are compared, the value for .PC is retrieved and automatically reduced to
lowest terms. When the equality check takes finally takes place, 18513Q is Just
compared against 10513Q a. d the match succeeds.

All of {he switches are turned on at this point. In addition to seeing what predicates ?»•*»
added and removed from the current context, we also see what predicates are found by
the pattern matcher.

• (Substitute HEM«185120 GFREE .PC=«)

The pattern matcher returned:
pred: (.PC=GFREE/r1EM+l)
support: ((PC))

The following preds i-;ere added:

75

" imiiiiii in jtm^at^^m —=*—. j

pred: (.PC-MEM»l0512Q/MEM+1)

support: UPC))

• (ApplylnstSO (SD (-- .MEM»(.PC)=1400400 8) 8)

(pc 10bl3Q))

The pattern matcher returned:

pred: (SD (pre: .UPC=top .POpc .MEMo(.PC)=1400400)

(mod: Q PC A)

(env:)

(post: .UPC=top .PC=(pc+l);13 .A=0)

(vars: pc))

support: NIL

The following preds were deleted:

pred: (.UPC=top)

support: ((UPC))

pred: (.PC=GFREE/f1EM4l)

support: ((PC))

pred: (.PC=MEn.>10E>12Q/MEri+l)

support: ((PC))

The following preds were added:

pred: (.A-0)

support: ((A))

pred: (.PC-10514Q)

support: ((PC))

pred: (.UPC-top)

support: ((UPC))

• (ApplylnstSU (SD (-- (x is a buffer I ist beginning at y) 8) 8)

(x x y .FREE))

The pattern mat her returned:

pred: (SD (pre: (x is a buffer list beginning at y))

(mod:)

(env:)

(post: (Subsetp x BufferSpace)

y*0

76

(y is less than 37777Q)

(if (LENGTH x)=0

then y=ZERO/MEM

else x°0 is a packet buffer and y=xoB»0/MEH

and x,l is a buffer!ist beginning at .x°0o0))

(vars: x y))

support: NIL

The following preds were added:

pred: (if (LENGTH x)=B

then .FREE-ZERO/MEM

else x»0 is a packet buffer and .FREE=xo0o0/f1EM

and x,l is a buffer-list beginning at ,x«>0«>0)

support: ((x) (FREE MEM=277Qn

pred: (.FREE is less than 37777Q»

support: ((FREE MEMo277U))

pred: (.FREEZE)
supfiort: ((FREE MEMo277Q))

preds (Subsetp x BufferSpace)
support: NIL

5.8 Consideration of an empty free bufferlist

The next Open command begins the consideration of tre case in which the free buffer
list is empty when GFREE is entered From this point on, only the predicates copied to
lower contexts during an Open command and predicates ."ound by the pattern matcher
are shown.

• (Open (pre: (LENGTH x)=0)

(mod: x FREE GFREET GFREE A PC Q ZERO)

(env: OMEGA)

(post: .UPC-top (LENGTH x)*0 .PC=ra

(x is a bufferlist beginning at .FREE)

.ZERO=0 .NFS=nfs)

(vars:))

77

- :-. - - i*=

The following preds were copied to the new context:

pred: (if UFNGTH x)-0

then .FREE-ZERO/MEM

else x°0 is a packet buffer and . FREE^xoBoB/MEII

and x,l is a bufferlist beginning at .x«>B°B)

support: ((x) (FRFE MEM<>277Q))

pred: (x is a bufferlist beginning at .FREE)

support: ((FREE MEM°277Q) (x))

pred: (.ZERO=0)

support: ((ZERO))

pred: (.UPC-top)

support: ((UPC))

pred: (.PO10'514Q)

support: ((PC))

pred: (.A^B)

support: ((A))

pred: (.GFREE-ra)

support: ((GFREE MEfM 86120))

pred: (.FREE is less than 37777Q)

support: ((FRFE MEM"277Q))

pred: (.FREF*0)

support: ((FREE MEM-277Q))

• (SimpleEval (if (LENGTH x)=0

then t

else 8))

The pattern matcher returned:

pred: (if (LENGTH x)=B

then .FHFE«ZERO/h~M

else x°0 is a packet buffer and .FREE*x«>0»B/MEM

and x,l is a bufferlist beginning at .xo0o0)

supports |(x) (FREE MEM-277Q))

78

rtriiiimirnii i r i iiHiitilgtt'iiViiii'iniiii — nr«i■ iii i in in i

'•?

The prior command made use of the hypothesis in the Open command. The following
ten commands execute the IMA instruction. Four of these ten apply SDs to advance the
state. The other six simplify the state to derive the exact precondition required by the
SDs. In the future, I expect the proposer to generate these steps automatically.

• (ApplylnstSD (SD (8 .MEM«(.PC);13,18*0 8) 8))

The pattern matcher returned:

pred: (SD (pre: .UPOtop .MEM» (.PC); 13.10*0)

(mod: Q)

(env:)

(post: .0P«.MEM»(.PC);13,ie .UPC=addr . I = .f1EM° (.PC) »15

(if .rei-.(.pc)»9=0
then .M=.MEr1<.(.PC);8

else .N=.MEMo(.PC);8+(L0GAND .PC 37700BQ)))

(vars:))

support: NIL

• (ApplylnstSD (SD (-- ,1=1 8) 8)

(m 277Q))

The pattern matcher returned:

pred: (SD (pre: .UPC=acldr .1=1 .M=m)

(mod: UPC I MJ

(env:)

(post: .UPC=addr .H=.MEM°m; 13 . l = .f1Er1»m»lS)

(vars: m))

support: MIL

• (Substitute FREE MEn»277Q . U8)

The pattern matcher returned:

pred: (.I=.MEM.277Qol5)

support: ((FREE MEM.277Q1 (I))

• (SwapDOTSEL .FREE»15 .1-1)

The pattern matcher returned:

pred: (.U.FREE.IS)

support: ((FREE HEM.277Q) (I))

79

IMtnhmit !■«!

• (Over limit (.FREE)»15 .1=8)

The pattern matcher returned:

pred: (.U (.FREE)°i5)

support: ((FREE MEn»277Q) (I))

• (ApplylnstSD (SD (-- .1=0 8) 8))

The pattern matcher returned:

pred: (SD (pre: .UPOaddr .1=0)

(mod: UPC)

(onv:)

(post: .UPC=action)

(vars:))

support: NIL

• (Substitute FREE MEM..277Q .M=8)

The pattern matcher returned:

pred: (.M-.MEM«2770;13)

support: ((FREE MEM"277Q) (h))

• (SuapOOTscgthru .FRFE;13 .M-8)

The pattern matcher returned:

pred: (.f1=.FREF;13)

support: ("riEE MEM-277Q) (H))

• (Under I in it (.FREE);13 .(1=8)

The pattern matcher returned:

pred: (.M*- (.FREE) ;13)

support: ((FREE HEn»277Q) (M))

• (ApplylnstSG (SO (-- .CP-11 8) 8)

(pc laSi'iQ m ZERO/METI a 0 b 0))

The pattern matcher returned:

pred: (SD (pre: .UPC=action .0P=11 .PC=pc .A=a .M-m .MfM«-m=b)

(mod: Q PC A MEM-m)

(cnv:)

(post: .UPC-top .PC=(pc4l);13 .A=b .r01»m=a)

(vars: pc m a b))

80

■MklMKfe

support: NIL

The program counter is now pointing to the SNZ instruction. The next command causes
it to be executed. Because the contents of A are known to be 0, the postcondition is
completely simplified to Just .PO10516Q. Following the SNZ instruction is the JMP
instruction which exits from GFREE. Eight commands are required, four of which
advance the computation and four which derive consequences between computation
steps.

• (ApplylnstSÜ (SO (-- .MEn-(.PCMB184BQ «) t)

(pc 10S15Q))

The pattern matcher returned:

pred: (SD (pre: .UPC=top .PC=pc .MEM»(.PC)=10)0400.)

(mod: Q PC)

(env:)

(post: .UPC-top (if .A=0

then .PC=(pc+l);13

else .PC=(pc+2);13))

(vars: pc))

support: NIL

• (ApplylnstSÜ (SD (-- .MEM•(.PC);13,10*0) I))

The pattern matcher returned:

pred: (SD (pre: .UPC=top .MEM»(.PC);13,10*0)

(mod: Q)

(env:)

(poet: .OP-.MEMo(.PC);13,10 .UPC=addr . I=.MEM»(.PC)«15

(if .MEM"(.PC)»9=0

then .M=.MEMo(.PC);8

else .M=.MEM.(.PC);8+(L0GAND .PC 377000Q)))

(vars:))

support: NIL

• (ApplylnstSÜ (SD (-- .1=1 .M=m) t)

(m 10512Q))

The pattern matcher returned:

pred: (SD (pre: .UPC=addr .1-1 .M=m)

81

iKj^^Äi^^j^^j^ft ^J^j^^ii^gL •'

(mod: UPC I M)

(inv:)

(post: .UPC-addr .n=.MEH»m;13

(vars: m))

support: NIL

= .nEM»niol5)

• (Substitute GFREE nEH-lBB12Q .1=8)

The pattern matcher returned:

pred: {. U.ttf1»lB512Q«15)

support: ((GFREE MEM°10512Q) (I))

• (SuapDOTSEL .GFREE»15 .1=8)

The pattern matcher returned:

pred: (.1..GFREE-lSl

support: ((GFREE MEM-105120.) (!))

• (Substitute ra .GFREE .1=8)

The pattern matcher returned:

pred: (.I = (.GFREE)»15)

support: ((GFREE MEn-10512Q) ID)

• (Overlimi t ra°l& .1=8)

The pattern matcher returned:

pred: (.I=ra°lb)

support: ((D)

• (ApplylnstSU (SO (-- .1=0 8) 8))

The pattern matcher returned:

pred: (SD (pre: .UPC=addr .1=0)

(mod: UPC)

(rnv:)

(post: .UPC=action)

(vars:))

support: NIL

• (ApplylnstSU (SO (-- .OP-1 8) 8)

(ft .MEriol0S12Q:13))

82

 ■ _=

The pattern matcher returned:
pred: (SD (pre: .UPOactiort .OP-1 .M-m)

(mod: Q PC)
(env:)
(post: .UPOtop .PC=m)
(vars: m))

support: NIL

At this point, GFREE has been exited. All that remains is to show that the present
state matches the postcondition stated in the Open command. The first command
reconstructs the fact that x is a bufferlist beginning at ZERO/MEM. The next four
transform .PC=.MEM=18S12Q;13 into .PC=ra+l. Finally, .FREE is substituted for
ZERO/MEM and the proof is closed.

• (ApplylnstSD (SD 8 (-- (x is a bufferlist beginning at y)) &)
(x x y ZERO/MEM))

The pattern matcher returned:

pred: (SD (pre: (Subsetp x BufferSpace)

y*B

(y is less than 37777Q)

(if (LENGTH xNB

then y=ZER0/MEM

eist. x°0 is a packet buffer and y-x«B»B/MEI1

and x,l is a bufferlist beginning at .x»0o8))

(mod:)

(env:)

(post: (x is a bufferlist beginning at y))

(vars: x y))

support: NIL

• (Substitute GFHEE MEM-10512Q .PO!)

The pattern matcher returned:

pred: (.PC=.MEM<.1BS12Q; 13)

support: ((GFREE nEMolB512Q) (PC))

• (SMapOOTsegthru .Gf-REE;13 .PC-1)

The pattern matcher returned:

83

l^j^^a^^tL^,,,.,.^. *. .^_ ^

-■ :v.7-;^"--.-f-■:-■■ iv.T.::'m';"i.--.

l

pred: (.PC=.GFREE;13)
support: ((GFREE MErU10S12Q) (PC))

• (Substitute ra .GFREE .PC=8)

The pattern matcher returned:
pred: (.PC=(.GFREE);13)
support: ((GFREE MEMol0512Q) (PC))

• (Under Iim it ra;13 .PC-S)

The pattern matcher returned:

pred: (.PC=ra;13)

support: ((PC))

• (Substitute .FREE ZERO/MEM (x is a buffer list beginning at t))

The pattern matcher returned:

pred: (x is a buffer list beginning at ZERO/MEM)

support: Mx))

• (Close)

5.9 Consideration of a nonempty free bufferlist

The next Op'.n command begins a subproof in parallel with the previous subproof.
The modification list for this subproof is the same as before, with the exception of the
addition of NFS. All of the clauses copied in the prior subproof are also copied here,
along with .WS=nfs and the SU proven in the prior subproof.

After the proof is opened, the assumption that the list is nonempty is exploited. This
will add "x°B is a packet buffer", ",FHEE = . xo0o0/r1EfT, and
"x,l i s a buf f cr I ist beginning at .x°8°0" to the context. The support for the
last clause will be computed as Ix.l x°0»0|. Because no subdivisions of x are listed in
the place grcph, this last predicate will be attached to the node for x and will therefore
be subject to deletion if any part of x is modified. Since the next instruction modifies
the first word of the first buffer on x, we are in danger of losing all knowledge about
the rest of x unless we can subdivide x and break our knowledge about the unmodified
part of x into terms that arc independent of the modified part.

81

The next three commands prov'"!" the required scaffolding. The result of the Derive
command is the subdivision of x we need. The NeuDecomposition command enters
x°B and x,l into the place graph and the InstantiateContents command gives a
name to the current value of .x«B°8. All that remains is to separate the knowledge
about x into components pertaining to x°0 and x,l. This is carried out just prior to
the actual exchange.

• (Open (pre: (LENGTH x)*B)

(mod: x FREE GFREET GFREE A PC Q ZERO NFS)

(env: OMEGA)

(post: .UPC-top (LENGTH x)*B .PC=ra+l .NFS-nfs+1

(FS (y z)

(x is a permutation of <y>ez

and y is a packet buffer

and z is a buffer I ist beginning at .FREE

and .ZERO-3 and A is pointing to y«>0

and GFREET is pointing to yoB)))

(vars:))

The following preds were copied to the new context:

pred: (,NFS=nfs)

support: ((NFS r1Erio50BQ))

pred: (if (LENGTH xNB

then .FREE-ZERO/rlEM

else x"0 is a packet buffer and .FREE«=x»B»B/t1EH

and x,l is a bufferlist beginning at .xoß»0)

support: Ux) (FREE MEM«>277Q))

pred: (x is a bufferlist beginning at .FREE)

support: ((FREE MEM.277Q) (x))

pred: (.ZER0=8)

support: ((ZERO))

pred: (.UPC-top)

support: ((UPC))

pred: (.PC-18514Q)

support: ((PC))

pred: (.A=B)

85

m _J

W$p^*JMfl^r*^:WW!^^.WM^^ mmmmmmm.
' IWMnM«NaWHM*

support: ((A))

pred: (.GFREE=ra)

support: ((GFREE MEM-10512Q))

pred: (.FREE is less than 377770)

support: ((FREE r<EMo277Q))

pred: (.FREF-0)

support: ((FREE MEM..277Q))

pred: (SO (pre: (LENGTH x)=0)

(mod: x FREE GFREET GFREE A PC Q ZERO)

(env: ONEGA)

(post: .UPC=top (LENGTH x)=9 .PC=ra

(x is a bufferlist beginning at .FREE)

.ZERO=0 .NFS=nfs)

(vars:))

support: ((OMEGA))

• (SimpleEval (if (LENGTH x)=0

then 8

else 8))

The pattern matcher returned:

pred: (if (LENGTH x)-0

then .FREE=ZER0/MEM

else x»0 is a packet buffer and .FREE«=x»0o0/MEf1

and x,l is a bufferlist beginning at .x»0o0)

support: ((x) (FREE MEh>277Q))

• (Applylns'SD (SO 8 (-- x=<x«0>9x,l) &)

(x x))

The pattern matcher returned:

pred: (SO (pre:)

(med:)

(env:)

(post: x=<x»8>ex,l)

(vars: x))

support: NIL

• (Derive (Covering x <x»0 x,l>))

86

•
- -

»ia^»f.«j^MTOl»py»w^i^^ *B*riZ!iwv*>*r**a mm

• (NewDecomposition (Covering K <X»8 x,l>))
• (In9tantiateContent9 xo8»B p)

The IMA instruction is now ready for execution. As before, several commands are
required to wade through the details of the indirect addressing cycle. Just before the
actual exchange is carried out, the definition of "is a buffer I i st" is applied to reduce
"x,l is a bufferlist beginning at .x«8>>8" to more primitive terms. In the
course of the application, ail occurrences of .x»8«8 are replaced by p because p is
known to be the current value of .x°B<>8. The result is that none of the new clauses are
supported by either x or x»B; only x,l is needed. Now the exchange instruction may be
executed without causing information to be lost.

• (ApplylnstSO (SD (— .MErM.PC) ;13,1BKB 8) t))

The pattern matcher returned:
pred: (SD (pre: .UPC-top .MEM«(.PC); 13,18*8)

(mod: Q)
(env:)
(post: .0P«.MErio(.PC):13,lB .UPC^addr . I-. MEM« (.PC) »15

(if .MEM"(.PC)»9=8
then .rKMEM»(.PC);8

else .M=.f1EMo(.PC):8+(L0GAND .PC 37788BQ)))

(vars:))

support: NIL

• (ApplylnstSO (SD (-- .1=1 t) (— m D)

(m 277Q))

The pattern matcher returned:

pred: (SD (pre: .UPC-addr .1-1 .r1=m)

(mod: UPC 1 11)

(env:)

(post: .UPC«addr .M«.r1Er1»m;13 .1-.MEM-m-15)

(vars: m))

support: NIL

• (Substitute FREE MEMo277Q .1-8)

The pattern matcher returned:
pred: (. N.f1ErU277a»15)
support: ((FREE r1Er1-277Q) (I))

87

'- ■■-- - -

■'■r--^*-^ ma&mm --— _^^_^_^ J

'- ■■■ ■-■»:■ . '■■- ' - '■:' ■'■: ■■■■ .».»™:»-.-«'-)r-m^

• (SuapDOTSEL .FREE-15 .1=1)

The pattern matcher returned:

pred: (.l=.FREE»15)

support: ((FREE riEM->277Q) (I))

• (Overlimit (.FHEEi-15 .1=8)

The pattern matcher returned:

pred: (.1 = (.FREE)«15)

support: ((FREE MEM°277Q) (I))

• (ApplyinstSD (SO (— .1=8 1) !))

The pattern matcher returned:

pred: (SD (pre: .UPC-addr .1=0)

(mod: UPC)

(env:)

(post: .UPC=action)

(vars:))

support: NIL

• 'Substitute FREE MEMo277Q .0=1)

The pattern matcher returned:

pred: (.M-.nEM»277Q;13)

support: ((FREE MEf1»277Q) (M))

• (SuapDOTscgthru .FREE;13 .M=l)

The pattern matcher returned:

pred: (.rk.FREE;13)

support: ((FREE r1En-277Q) (M))

• (Underlimit (.FREE);13 .M=t)

The pattern matcher returned:

pred: (.M=(.FREE)$13)

support: ((FREE MEM.277Q) (M))

• (ApplyinstSD (SO (-- (x is a buffcrl'i9t beginning at y) 1) 1)

(x x,l y .XO0O0))

88

^■^■^■■^■^..^■■L ifcjtliaaatrfl>n-Mii nM-"i- «■■«■

.-.^Ä^ii^Äi
 «■■"»■■Mi»" mmiu ,I;H«IW.JI«.

The pattern matcher returned:

pred: (SD (pre: (x is a buffer I ist beginning at y))

(mod:)

(env:)

(post: (Subsetp x BufferSpace)

y*B
(y is less than 37777Q)

(if «LENGTH x)=0

then y=ZER0/MEM

else x»0 is a packet buffer and y=x«>B"8/MEt1

and x,l is a bufferI ist beginning at .x«>0"B))

(vars: x y))

support: NIL

• (ApplylnstSD (50 (— .0P=11 ft) ft (— pc m a b))

(pc 10514Q m x.0o0/MEri a 0 b p))

The pattern matcher returned:

pred: (SO (pre: .UPOaction .0P-11 .PC=pc .A=a .f1=m .HEr1om«b)

(mod: Q PC A MEN-m)

(env:5

(post: .UPC=top .PC=(pc+l);13 .A=b .MEflom^a)

(vars: pc m a b))
support: NIL

The program counter is now pointing to the SNZ instruction. This time, A contains p,
and p is known to be different from 0. As a consequence, the postcondition of the SD
simplifies completely and .PO10517Q.

The four following commands execute the IRS instruction. The only derivation
required is to transform .M=500Q into .M=NFS/MEn.

• (ApplylnstSD (SO (~ &-101B4BQ) ft (-- pc))

(pc 10S1SQ))

The pattern matcher returned:
pred: (SD (pre: .UPOtop .POpc .riEfl» (.PC) =1010400)

(mod: Q PC)
(env:)

89

—■- i ■-■ - ■- - -if i

^^„^v,-,^^^"-

(post: ,UPC=top (if .A=B

then .PC=(pc+l);13

else .PC*(pc+2);13))

(vars: pc))

support: NIL

• 'ApplylnstSÜ (SD (— .MEM«(.PC);13,18*8 «) *))

The pattern matcher returned:

pred: (SD (pre: .UPOtop .MEM» (.PC); 13,10*8)

(mod: Q)

(env:)

(post: .0P-.MEM»(.PC);13,1B .UPC=addr . N.MEM-LPC) »15

(if .MEM»(.PC)»9=8

then .M=.MEM»(.PC);8

else .M=.MEM»(.PC);8+(L0GAND .PC 377B8BQ)))

(vars:))

support: NIL

• (ApplylnstSD (SD (-- .1=0 8) S))

The pattern matcher returned:

pred: (SD (pre: .UPC=addr .1=0)

(mod: UPC)

(env:)

(post: .UPC=action)

(vars:))

support: NIL

• (Makeindcxof S00Q .M=S)

The pattern matcher returned:

pred: (.M^500Q)

support: ((M))

• (ApplylnstSD (SD (-- .OP=10 I) t (-- m pc v))

(m NFS/MEM pc 10517Q v nfs))

The pattern matcher returned:

pred: (SD (pre: .UPC=action .0P=1B .M=m .MEM»m=v .PC=pc)

(mod: Q PC MEM»m)

(env:)

(post: .UPC-top .HEM«m-(v4l);15 (it .MEM-m-B

90

mmm
.„, n--rjr,i-- - — — — —-——

then (.PC=pc+2);13
else .PO(pc+l);13))

(vars: m pc v))
support: NIL

Because the IRS irotrucUon can skip If the result is equal to zero, it is necessary to show
that nfs+1 cannot be zero. The next six commands derive the fact that .NFSffiO and
.PO10520Q.

• (ApplylnstSO (SO (-- (x is less than y)) *)
(x nfs y 177777Q))

The pattern matcher returned:

pred: (SO (pre: (x is Ies9 than y))

(mod:)

(env:)

(post: (x+1 is less than y+D)

(vars: x y))

support: NIL

• (Underlimit (nfs+1);15 .NFS*»)

The pattern matcher returned:

pred: (.NFS-= (nfs+1); 15)

support: ((NFS MEr1«»500Q))

• (ApplylnstSO (SO (-- (0 is less than x)) t)

(x nfs+D)

The pattern matcher retu-ned:

pred: (SD (pre: (0 is less than x))

(mod:)

(env:)

(post: xx0)

(vars: x))

support: NIL

• (Substitute .NFS nfs+1 nfs+NB)

The pattern matcher returned:

91

MiÜMMw ■um ^

pred: (nfs+l*B)

support: NIL

• (Substitute (nfs+l)jlB .NFS .NFS*B)

The pattern matcher returned:

pred: (.NFS*8)

support: ((NFS MEf1<.S88Q))

• (SimpleEval (if (nfs+l);15=8

then *

else 8))

The pattern matcher returned:

pred: (if (nfs+l);l&*0

then (.PC=18S21Q);13

else .PC=18528Q)

support: ((PO)

The second exchange instruction is now ready for execution. By this time, very little
work is required. The key facts are that .A=p and .FREE=x"B«>B/f1EM.

• (ApplylnstSD (SO (— .MEMo(.PC);13,10*B $) I))

The pattern matcher returned:
pred: (SD (pre: .UPC=top .MEM»(.PC);13,18*8)

(mod: Q)
(cnv:)
(post: .0P=.MErl»(.PC):13.1B .UPC=addr . N.MEM» (.PC) »15

(if .MEM.(.PC)»9-8
then .M-.MEMo(.PC);8

else .n=.MEri«.(.PC);8+(L0GAND .PC 377B08Q)))

(vars:))

support: NIL

• (ApplylnstSD (SD (-- . NB I) I))

The pattern matcher returned:

pred: (SO (pre: .UPC-addr . UB)

(mod: UPC)

92

—

(env:)

(post: .UPOaction)

(vars:))

support: NIL

• (Makeindexof 277Q .11=8)

The pattern matcher returned:

pred: (.M=277Q)

support: ((fl))

• (ApplylnstSO (SO (— .OP-11 t) 8 (— pc m a b))

(pc 10528Q m FREE/MEM ?pb xo0.B/r1Er1))

The pattern matcher returned:

pred: (SD (pre: .UPOaction .0P*11 .PC=pc .A-a .M=m .MEMnm-b)

(mod: Q PC A MEM«m)

(env:)

(post: .UPCMop .PC=(pc+l);13 .A=b .r1En»m*a)

(vars: pc ii a bl)
support: NIL

The STA instruction is now executed.

• (ApplylnstSO (SO (-- .MEM.(.PC);13,10"0 •) •))

The pattern matcher returned:
pred: (SD (pre: .UPC-top .rlEtl.(.PC); 13,18*8)

(mod: Q)
(env:)
(post: .0P-.MEr1.(.PC);13.1B .UPC-addr . I«.MEM. (.PC) «15

(if .MEM»(.PC)-9=8
then .n=.MErM.PC);8

else .M=.MEM.(.PC);8-»(L0GAN0 .PC 3778880)))

(vars:))

support: NIL

• (ApplylnstSO (SO (— . UB t) •))

The pattern matcher returned:

93

—

pred: (SD (pre: .UPC=addr . U0)
(mod: UPC)
(env:)
(post: .UPC=action)

(var9:))
support: NIL

• (Makeindexof 1B511Q .M=S)

The pattern matcher returned:
pred: (.rM8511Q)
support: ((H))

• (ApplylnstSD (SD (-- .0P=4 t) t)

(m GFREET/HEfl pc 10521Q))

The pattern matcher returned:
pred: (SD (pre: .UPOaction .OP-4 .M=m ,PC=pc)

(mod: Q PC MEM»m)
(env:)

(post: .UPC-top .PC=(pc4l);13 .MEMTn-.A)
(vars: m pc))

support: NIL

The IRS instruction to increase the return address by 1 is now executed.

• (ApplylnstSD (SD (-- .MEM.(.PC);13.10*8 t) t))

The pattern matcher returned:
pred: (SD (pre: .UPC-top .MEfl- (.PC) ;13,10*0)

(mod: Q)
(env:)

(post: .OP-.MEr1.(.PC);13,10 .UPC-addr . I-.MEn-(.PC) -15
(if .MEr1.(.PC).9«0

then .M=.r1En.(.PC);8
else .H=.MEr1.(.PC);8+(L0GAN0 .PC 3778BBQ)))

(vars:))

support: NIL

• (ApplylnstSD (SD (-- .1-0 t) t))

91

lv%™w**iv*m!fm*m%tt$?y&*m

The pattern matcher returned:

pred: (SD (pre: .UPC=addr .1-0)

(mod: UPC)

(env;)

(pust: .UPOaction)

(vars:))

support: NIL

• (Makeindexof 10512Q .f1=«)

The pattern matcher returned:

pred: (.M-10512Q)
support: Utl))

• (ApplylnstSO (SO (-- .OP-10 t) 8 (— m pc v))
(m GFREE/MEM pc 10522Q v ra))

The pattern matcher returned:
pred: (SD (pre: .UPOaction .OP=10 .M=m .MEM»m=v .PC-pc)

(mod: Q PC MEM»m)
(env:)
(post: .UPC=top .MEf1.m=(v+l);lS (if .MEM»m=0

then (.PC=pc+2);13
else .PC=(pc+l);13))

(vars: m pc v))
support: NIL

As with the incrementing of NFS, it is necessary to show that the result of incrementing
GFREE is not zero. The next six commands establish that .PC-10523Q and that

.GFREE-ra+1.

• (ApplylnstSO (SD (-- (< is less than y)) %)
(x ra y 37777Q))

The pattern matcher returned:
pred: (SO (pre: (x is less than y))

(mod:)
(env:)
(post: (x+1 is less than y+D)

<J5

-1.Ü, ^-. .*■..._

..-^ -■■_^_ ..,__-

^avsMSSVSOT^KS ~—~—-—~wtm ;;.--■■-■' ■:;■;:■ ,;y---; ■ ^>>^!»^Tlrvs-rwir!w-.».i»i'iil' .Jijpwi"i»>»w» »»»■ 11 Hi Hi. um 1IIWW.WHIIWII i mini! " Wm^^^fl& """1"' lll'lin

(varss x y))

support: NIL

• (Under limit (ra+l);15 .GFREE«t)

The pattern matcher returned:

pred: (.GFREE=(ra+l);1S)

support: ((GFREE MEM»1B512Q))

• (ApplylnstSD <SD (-- (B is less than x)) t)
(x ra+1))

The pattern matcher returned*

pred: (SD (pre: (0 is less than x))

(mod:)

(cnv:)

(post: x/8)

(vars: x))

support: NIL

» (Substitute .GFREE ra+1 ra+l*8)

the pattern matcher returned:

pred: (ra+l*B)

support: NIL

• (Substitute (ra+1);IS .GFREE .GFREE*B)

The pattern r.atcher returned:

pred: (.GFREE*8)

support: ((GFREE MEn«>lB512Q))

• (SimpleEval (if (ra+l);15=B

then t

else t))

The pattern matcher returned:

pred: (if (ra+l);15«B

then (.PC=18S24Q)jl3

else .PC=1BS23Q)

support: ((PC))

96

|gg JiMHaitfiü ^«Jtj.'^«ig«..>.>. —

m$em^*mm**2***&™&mmmB!MmKimm ■" " r ' '"•"^"•'"'"'"'^~'r"'r ^fTTrwrwiBH - ——_____ _

The JMP to exit GFREE is now ready for execution. Because the jump is indirect
through GFREE, bit 15 of the value in GFREE, i.e. ra+1, must be shown to be rero.

• (ApplylnstSD (SD (— .MErM.PC) ;13,13*8 S) S>)

The pattern matcher returned:

pred: (SO (pre: .UPC=top .MEM»(.PC):13,18*8)

(mod: Q)

(env:)

(post: .0P=.MEM»{.PC); 13,18 .UPC-addr .. .rtErW.PC) »15

(if .MEM«(.PC)»9=8

then .M=.MEM«(.PC);8

else .rW.MEt1»(.PC);8+(L0GAND .PC 377B8BQ)))

(vars:))

support: NIL

■

:

• (Makeindexof 18512Q .M=t)

The pattern matcher returned:

pred: (.M=1B512Q)

support: ((H))

• (ApplylnstSD (SO (— .1=1 .M=m) t)

(m GFREE/MEfl))

The pattern matcher returned:

pred: (SD (pre: .UPC=addr . LI .M=m)

(mod: UPC 1 M)

(env:)

(post: .UPC-addr .n=.rlEt1.H);13 .1-.MEtl-m-lB)

(vars: m))

support: NIL

• (ApplylnstSD (SD (-- (x is less than y)) I)

(x ra y 37777Q))

The pattern matcher returned:

pred: (SO (pre: (x is less than y))

(mod:)

(env:)

(post: (x+1 is less than y+D)

(vars: x y))

97

— -

pTC^p»'#!tyy'<i!^»«;»9»^^ »wip»wMi!«j*«wwijiwyMI»''W*.»iwyi> ji^#«ffMiw. >-<l»WHWP»WW»<W»g-W^^^

support: NIL

• (Overlimit (ra+l»°15 .1=8)

The pattern matcher returned:

pred: (. U(ra+1) »15)

support: ((D)

• (ApplylnstSD (SD (— .1-0 t) 8))

The pattern matcher returned:

pred: (SD (pre: .UPOaddr .1-8)

(mod: UPC)

(env:)

(post: .UPOactIon)

(vars:))

support: NIL

• (Underlimit (ra+l);13 .M=8)

The pattern matcher returned:

pred: (.M=(ra+1);13)

support: ((H))

• (ApplylnstSÜ (SD (— .0P*1 8) 8 (— m))

(m ra-»l))

The pattern matcher returned:
pred: (SD (pre: .UPOaction .0P*i .M»m)

(mod: Q PC)
(env:)
(post: .UPCMop .PC=m)
(vars: m))

support: NIL

Execution is complete at this point. Before the subproof can be closed, however, each of
the clauses in the postcondition of the goal must be derived. These are straightforward.
The ForSome command produces the existential generalization of the specific case
proven by the system. This exactly matches the form required in the postcondition of
the goal and subproof is closed.

98

■-. - ^^tffitfj ff:.—--- A.-..?....,.-..:.-.--^ .-^...■„
«■■■a ,-:;.: --^-^.w „a.-,

.^,w,^,,,,.^^l^^

• (ApplylnstSD (SD S (— (x is pointing to y)) &)

(x A y x°0»B))

The pattern matcher returned:

pred: (SD (pre: .x=y/MEM)

(mod:)

(env:)

(post: (x is pointing to y))

(vars: x y))

support: NIL

• (ApplylnstSD (SD 8 (-- (x is pointing to y)) &)

(x GFREET y x»0"8))

The pattern matcher returned:

pred: (SD (pre: .x=y/MEt1)

(mod:)

(env:)

(post: (x is pointing to y))

(vars: x y))

support: NIL

• (ApplylnstSD (SD S (-- (x is a permutation of <xo0>8x,D) &)

(x x))

The pattern matcher returned:

pred: (SO (pre: x«=<x»8>ex,l)

(mod:)

(env:)

(post: (x is a permutation of <x«8>®x,l))

(vars: x))

support: NIL

• (ApplylnstSD (SD t (-- (x is a bufferI ist beginning at y)) &)

(x x,l y p))

The pattern matcher returned:

pred: (SO (pre: (Subsetp x BufferSpace)

y*8

(y is ICSJ than 37777Q)

(if (LENGTH x)=B

then y-ZERO/HEn

99

.**■

- "■■'■•"-^vw*^— ' - •^■---~--~—■■ at°^:"-^" "-—" -*--■*■ ■■■■*■ —■-•*— -■ -■-"

■inwlWBIgTWBIPWWIIWMWMWH^

else x»B is a packet buffer and y«x»BnB/MEt1

and x,l is a bufferI ist beginning at .x°B°0))

(mod:)

(env:)

(post: (x is a bufferlist beginning at y))

(vars: x y))

support: NIL

• (Substitute .FREE p (x,l is a bufferlist beginning at p))

The pattern matcher returned:

pred: (x,l is a bufferlist beginning at p)

support: ((x,D)

• (ForSome (y z)

(x is a permutation of <y>ez and y is a packet buffer

and z is a bufferlist beginning at .FREE and .ZER0=B

and A is pointing to y°0 and GFREET is pointing to y»8)

(y x»0 z x,D)

• (Close)

At this point, the superior context is restored and the program counter and other parts
of the state description are reset to just after the first instruction. The only changes to
the current context are the addition of two SDs, one which states how execution would
proceed if the free buffer list were empty and one which states how execution would
proceed if the free buffer list were not empty.

These two SDs are now combined into a single SD using the CombineCases command.
The precondition of the resulting SD is Just

(LENGTH x)=B or (LENGTH x)*B

This is a specific instance of a tautology, and that specific instance is then derived for
use in applying this SD.

• (CombineCases (SD (-- (LENGTH x)«8 t) I)

(SD (- (LENGTH x)*8 I) I))

The pattern matcher returned:

100

.'•• ■*■ V, .». -. .■.**-* A<a>jEÄ!;^.^.-JfjL- mmm
: **" . -

MSäacAt*^ ■ —■■ HI

_ ^.^^^...^.^w,. ^.»^»—y^^w.iJiwii..jmmmmmt mi n mil» I.JMUHIIIMU I IllUlimHII^W^^^^HI

pred: (SO (pre: (LENGTH x)*0)

(mod: x FREE GFREET GFREE A PC Q ZERO NFS)

(env: OMEGA)

(post: .UPC=top (LENGTH x)*8 .PC-ra+1 .NFS=nfs+l

(FS (y z)

(x io a permutation of <y>az

and y is a packet buffer

snd z is a bufferlist beginning at .FREE

and .ZERO=0 and A is pointing to y<>0

and GFREET is pointing to y»0)))

(vars:))

support: ((OMEGA))

pred: (SD (pre: (LENGTH x)=0)

(mod: x FREE GFREET GFREE A PC Q ZERO)

(env: OMEGA)

(post: .UPC-top (LENGTH xKB .PC=ra

(x is a bufferlist beginning at .FREE)

.ZERO=0 .NFS=nfs)

(vars:))

support: ((OMEGA))

• (ApplylnstSD (SD S (— (a=8 or a*0)) &)
(a (LENGTH x)))

The pattern matcher returned:

pred: (SD (pre:)

(mod:)

(env:)

(post: (a=0 or a*0))

(vars: a))

support: NIL

• (ApplylnstSD (SD «))

The pattern matcher returned:

pred: (SD (pre: ((LENGTH x)«B or (LENGTH x)*8))

(mod: x FREE GFREET GFREE A PC Q ZERO NFS)

(env: OMEGA)

(post: (.UPC«top and (LENGTH x)«0 and .PC-=ra

and x is a bufferlist beginning at .FREE

and .ZERO-8 and .NFS-nfs or .UPC-top

and (LENGTH x)*0

101

- - --- ---'

^^^^giwajTOniwg*w»i^^

and .PC*ra+l and .NFS«=nf9+l
and (FS (y z)

U is a permutation of <y>az
and y is a packet buffer
and z is a bufferlist beginning at

.FREE
and .ZERO0 and A is pointing to y»B
and GFREET is pointing to y»0]

(vars:))
support: ((OMEGA))

Execution of CFREE is now complete and the proofs corresponding to both the inner
and outer SDs in the specification of GFREE can now be closed without further work.

• (Close)
• (Close)

102

•.^^^^■vvm^pp!«<pm<f<^ .muHt+HimimjMju.-mwyimwmm'™ ■■■ "■''""■""■WIWIBPl ,M.,,,!.i.w,,,i1.,i»l,JWI,,,,l,,,,B,,,w^pisBB1pi|

6. Conclusions and Future Directions

Beyond the particular formulations presented here, there are number of concepts that
have emerged in my mind as basic perceptions about program verification.

The first perception is that the way to specify the behavior of a (sequential) program is
in terms of transitions between pairs of states. Using transitions to specify behavior
provides a uniform mechanism for treating both known facts and desired intentions.
The action of the individual instructions can be characterized in terms of state
transitions, and these specifications can serve the role of axioms for a proof. The
intended action of the whole program can also be formulated as a (set of) transition(s) to
be proven. State deltas, of course, serve just this purpose.

Perception two is proofs should be structured. By a "structured" proof, I mean the
following idea. A proof of correctness of a program consists of taking the SDs for the
individual instructions and combining them into SDs which cover execution of
sequences of instructions. This composition process is continued until the SDs which
describe the intended behavior of the whole system are proven. These proofs should
fall into three basic patterns, sequential proofs, proofs by cases, and inductive proofs.

In a sequential proof, there are two SDs. The postcondition of the first
leaves the machine in a state that satisfies the precondition of the second.
These two SDs yield a new SD formed from the precondition of the first
and the postcondition of the second. This pattern of reasoning applies
directly to straightline code.

In a proof by cases, the code under consideration contains conditional
execution sequences or case statements. The preconditions of the given SDs
represent alternative possibilities.21 The SDs are combined by taking the

These preconditions will usually be disjoint from each other, but this is not a
requirement. The most common case for the preconditions of two SDs to overlap is for one of
them to specify a short segment of computation and the other to specify a longer segment.
Kaeh SDs that was derived in the last chapter has a precondition that is strictly stronger than
one of the input SDs. "Strictly stronger" means that it logically implies the precondition of the
input SI). The fact that an interpretation already exists for sets of SDs which have
overlapping preconditions means that any attempt to extend the use of SDs to model

concurrent systems will need to use some mechanism other than sets of SDs which apply to the
same states.

103

f*j£j^£.2i ' '"'■ ■■" "
...

w» v <mmmm pppwawpipiw m i pn ■w*w

disjunction of the preconditions as the new precondition and the

disjunction of the postconditions as the new postcondition.

In an inductive proof, the goal is to prove that the operation of a loop is
correct. One SD covers the operation of the body of the loop, and the other
covers the test which determines whether the loop is to be repeated or
exited. The resulting SD covers the complete operation of the loop and
(usually) is written in terms of some parameter that governs the number of
times the loop is traversed. The induction proof has two parts. The first
part proves that the operation of the loop is correct for the minimal value
of the parameter. The second part assumes that the oper?.tion of the loop is
correct for all values of the parameter below the value being considered and
shows that the operation of the loop changes the state into a similar one
with a smaller value of the parameter. The parameter must be chosen from
a well-ordered set to give substance to the notions of "minimal" and
"smaller" and to make use of the properties of mathematical induction.

Perception three is that the form of the proof and the form of the program need not
bear strong resemblance. Efficient use of space or time frequently demands that the
syntactic structure of the program be quite different from the conceptual structure.
Some writers advocate that the structure of the program should exactly reflect the
structure of the proof. When faced with the limitations in programming languages
which lead programmers to perturb the organization of a program to achieve desired
performance goals, these writers argue that the programming language is deficient and
should be changed. My own position is that better programming languages are, of
course, desirable, but no compiler can be smart enough to generate optimal code from
the most readable statement of the algorithm. As a consequence, I believe proofs should
not be bound intimately with the structure of the programming language.

Perception four is that it is reasonable to ask the programmer to supply the proof along
with the program. Programming is a constructive process, and the person most
knowledgeable about the interaction of the parts of the program is the person who put
it together in the first place. It is sometimes argued that proving a program correct is
much harder than writing and debugging the program to make it correct in the first
place. This seems like pure nonsense to me. In order for the programmer to write and
debug the program in the first place, he must have had an understanding of why the
program would accomplish its goals. To be sure, his understanding is informal and not
written out in terms acceptable to a program verification system. Consequently, there is
some distance to be covered when we ask that formal proofs be carried out when a
program is written. However, this distance is primarily one of building a language for
the programmer to communicate his understanding of what he mus' already know.

104

l r.W^Li. -T a--fcj? J

fi. gÜ iWi t^üfuuiBti

-sw*»T.mr7w-n,
■■^«mm.

Perception five is that it is at least as important to prove that a program actually
progresses to an expected point as it is to prove that the result is correct when it gels
there. This concept is usually labeled termination, but I think it is more appropriate to
think in terms of progress. Many programs, e.g. operating systems, don't really
terminate. They do, however, progress from one known state to the next, and the proof
that each of these states is actually reached is of great concern. The idea of a set of
"interesting" states instead of just an initial state and a final state was implied in the
first perception by the use of a set of transitions instead of just a single transition.
Proving that programs progress as intended comes for free in the proof patterns
outlined in perception two. This is in marked contrast to the usual separation of proofs
of correctness from proofs of termination when Floyd's method is used.

Perception six relates to the content of the state descriptions that make up the pre- and
postconditions of a SD. These should be as general as possible. Facts which may be
true in both the pre- and postcondition but which are not necessary to the correct
operation of the code covered by the SD should not be included. For example, if an
initial value is stored into a cell early in a program and the value is not used until much
later, the SDs that cover the loops, subroutines and sequential segments in between these
points should not have to mention the variable at all, much less retain its value.

Perception seven is that no state information should be hidden. Ouite a bit of trouble
is caused by prett ^ding that machines have "automatic" mechanisms for invoking
subroutines, iterating through loops, or remembering where the next data item is
located. 1 have never found any way to represent these activities without keeping in
mind that there was some part of the machine devoted to keeping track of the state.

Perception eight is that there must be a separate way to refer to the name of a place and
to the current contents of that place. Arguments about Indirect addressing, list
processing, program modification and other matters depend upon this distinction very
sirongly.

Beyond these perceptions there are also a number of concrete ideas which point the way
for improvement in both the theory and the implementation.

105

«pwnjapppi wWiWWBi>w!w|ipaw*WJ||tiJ»i ■Ü KW „rnmmmim» **s> mamwm niu

6.1 Theoretical issues

The most significant hole in the present theory is the absence of any mechanism to

handle concurrent processes. The present formulation of state deltas is strongly
dependent on the assumption that only one active agem is modifying the state of the
system, and that it is sufficient to know what changes that agent is making to know all
the changes that can possibly be made. At any given point in time, only a single
"future" is possible. If more than one state delta happens to be applicable, it is
understood that one of them carries the computation farther than the other.

To extend the present theory to handle concurrent systems, several modeling questions
have to be answered. Are the concurrent systems to be composed of a small or large
number of processors? If the number is small, we can imagine that each of the
processors can have its own set of state deltas. On the other hand, if the system consists
of a large number of identical or near identical processors, then some scheme is
necessary to parameterize the SDs and perhaps parameterize the information in the
contexts in the proof system. In either case, synchronization of the concurrent systems
must be designed properly.

How do the processors connect to each other and what form is their communication? If
the communication is restricted to signal!.ng with semaphores and highly disciplined use
of shared places, then some of the more modern formalisms may be applicable. Brinch-
Hanscn, Dijkstra, Estrin, Hoare and many others advocate that systems should be built
with very restrictive rules governing the form of interprocess communication that is
provided. For example, Estrin and his coworkers advocate separate explicit mechanisms
governing control and associated data flow between modular subsystems. Existing
systems, and many, many systems yet to be built, however, use simple shared places with
no built-in restrictions on the access to these shared places by the processors. Usually
these systems do adhere to a set of rules governing the communication, but the rules are
not inherent in the structure. One of the more important facts to prove about these
kinds of systems is that they compute the same result no matter how fast the processors
run. If the processors do have a discipline which guarantees this fact, then the p.oof of
uniqueness of the result will make use of the conventions followed by the several
processors.

Considering the cast of a small number of processors which are interconnected by
shared places, we can see some of the changes in the present theory that will be
necessary. State deltas now contain two lists of places, one which shows what set of
places may be modified during the computation and one which shows which set must
not have changed since the SD was proven. For concurrent systems with shared places,
it seems necessary to add a similar list to show which places are referenced during the

106

t^-^w.-^.^-rL. ZJZTJ *^__^

■ ■...HJ. ii ' .'I ■—■" "■— ■— ■^■■■■■■•■1" ü-lü H !.■■■! .»^pg^W^B^^W^^^W^^»^^^^»^^^^^—^^^^^W^^

computation. If two processors are operating and one of them is modifying a place th*t
the other is either modifying or reading, the result may be unpredictable. If the only
concurrent use of shared places is that more than one process may be reading from the
same location, then no conflict arises and the two operations may proceed in any order.

When more than one result is possible because of the order of execution, some scheme is
necessary to examine all possible outcomes. The usual problem with this approach is
that the number of cases grows exponentially and becomes intractable. The only hope
for success is to lump the cases into large classes that behave similarly. Showing that all
cases lumped into the same class do have the same effect would need to be proven, as
well as proving that each of the classes behaves appropriately. Two ideas seem essential
for this approach to succeed. First, some notion of "indivisible action" needs to be
included in the formalism. As presently formulated, state deltas have no "grain size".
Some set of SDs is introduced into the proof system from the description of the machine,
but nothing prohibits the introduction of other SDs which cover smaller units of
computation. In order to know what all the possible orders are among a set of
competing processors, some notion of "grain size" is crucial.

Induction is the idea that seems necessary here. Each lumping of a set of possible
execution sequences into a single class is probably based on an argument that the longer
execution sequences reduce to a previously considered case after the first one or two
steps have been taken. As we saw with sequential operation, the ability to apply normal
induction rules to state deltas is extremely powerful and I would hope that a similar
mechanism would emerge in the extension of the theory for concurrent operation.

The present formulation of the modification list raises an issue. At present, the
semantics of a state delta say that values stored in locations not mentioned in the
modification list are not changed during the course of the computation. This is
considerably stronger than saying that the values of unmentioned places are the same
after the computation as they are at the beginning. For sequential operation, the results
are the same, but for concurrent operation these two formulations would have very
different consequences. The present formulation was intended to lay the foundation for
the concurrent case, so the stronger statement is necessary. There are instances, however,
where the actual implementation of a program involves modification of a large number
of places, but the values are restored when the computation terminates. Garbage
collection algorithms and operating system paging routines are two such examples. In
our present formulation, we would have to include all of the places that are modified in
the modification list, even though the values are restored. More importantly, we would
no longer benefit from the implicit preservation of the state information. All predicates
related to any of the modified places would have to be stated and reproven to hold.
This requirement is completely contrary to our philosophy of representing just what the
program knows and leaving the representation of the state information to the next

107

g^M^^H^UM^^g^^^^^^^BMlMMaiMM, MM

■'" W^iyil^n "BWWPWBBPPWWIHWWBi

higher level. Moreover, the mechanisms we have designed are strongly dependent on
the fact that values are not touched. To extend the formalism to permit values to be
changed but restored would also require a substantial change in the proof mechanisms.

It is not completely clear to me how all of these issues should be resolved, but It may be
necessary to provide both kinds of state preservation. Perhaps a "restoration list" will
have to be added to SDs, with the understanding that places listed on the restoration list
may have had their values changed but that their values are restored at the end of the
computation represented by the SD. Some experimentation is necessary.'"'

6.2 Engineering issues

No matter how the theory is extended to handV concurrency and multiple processor,
any system will have most of its activity modeled as a sequential process. The present
proof system is extremely clumsy and substantial work is needed to bring even the
present theory into active use.

One of the more important weaknesses in the present proof system is the lack of
mechanisms to represent arrays. Some means is needed to enter an array name into the
place system and declare that it has, say, 16,384 elements. As the system stands now, this
would have to be entered as a family in the place system with 16,384 daughters. Since
each place node requires about 8 Interlisp cells, the overhead for this representation gets
out of hand. Not all of this overhead can be -»voided, however. Some of the cells in
the memory array, for example, need to be represented explicitly because predicates are
supported by the contents o." those cells and not others. Most of the cells in memory,
however, either contain pure code or are part of Bufferspace. Individual
representation of these places within the place graph is unnecessary.

*" Simulation is another area where the distinction between restoration and non-
rnoilificalion can be important. If an abstract machine is represented as having a Act of
disjoint locations and a set of high-level SDs that define its behavior, then it is not possible to
implement this abstract machine with a low level machine that modifies but restores the values
of the simulated disjoint places. As a consequence, some reasonable implementations of
abstract machines arc prohibited. There is one payoff: If machine C is proven to be a legal
implementation of machine A, then an oscilloscopic probe may be place on the implementation
of an abstract place and the probe will be active only when the abstract SDs predict change is
possible. If we intend to marry the notions of simulation and interconnection of processors, we
will want our formalism to guarantee that the subst ution of a concrete implementation in
place of an abstract definition will not change the opcrat » of the total system.

108

mam -.;.. .*..-•

■-"--tm

IPS ispwpppi

Most of the predicates related to the :tate of the machine are of the form .X«=v, where X
is a place and v is a symbolic value that is not dependent upon the current state. Under
these circumstances, it seems reasonable to streamline the representation of these
predicates by allocating a dedicated cell for each place to hold its current value. Such a
scheme comes much closer to the classical symbolic execution model and should have
significant impact on the efficiency of the system.

A third area for improvement in representation is the SDs. The Honeywell 316 was
modeled as having a microprogram counter. The role of the microprogram counter Is to
provide a method for distinguishing the substates within the execution of an Instruction.
In the simple model used in the main example, three substates are needed. In the
translation of the full 316 description from ISPS, a few hundred substates are needed!
Similarly, the number of distinct SDs needed for a machine description is fairly large: 9
for the simple machine and 310 for the full machine. In the specification of GFREE,
the notion of a compound SD was introduced. The postcondition of a SD contains
another SD. This idea can also be used in the description of the hardware. Instead of
inventing a name for the intermediate values of the microprogram counter, it is possible
to tie the SDs to its value and leave the value unspecified. Thus the only facts that
need be known about the value of the microprogram counter are which SDs are valid.
The following compound SDs could have been used to represent the simple version of
the 316.

(Open (pre; (SD (pre: 316pre)
(mod:)
(env:)

(post: (SD (pre:
(mod:

.PC-pc .MEM«.(.PC) =1480400)
Q PC A)

(env: UPC)
(post: 316pre .PC* (pc+1) ;13 .A=(!)
(vars: pc))

(SD (pre: .PC=pc .MEM»(.PC)=1010400)
(mod: Q PC)
(env: UPC)
(post: 31Gpre (if .A=0

then .PC=(pc+l);13
else .PCv-(pc+2);13U

(vars: pc))
(SD (pre: .MEM.(.PC);13,18x0)

(mod: Q addrctrI)
(env: UPC)
(post: addrpre (SD (pre: addrpost)

(mod: UPC)
(env: UPC addrctr I)

109

■*-—■'■■■ ^^^y« ;

■s^-•■■»'--iJOTi-rriWl

(post: 316pre)
(vars:))

.0P=.NEMo(.PC);13,18 .H;8=.MEM» (.PC)
;8 (if .Htn»(.PC)«9=B

then .M;13.9=0
else .M;13,9=.PC;13,9)

.I=.MEM°(.PC)°1S)
(vars:)))

(vars:))

(SD (pre: acldrpre)

(mod:)

(env:)

(post: (SD (pre: .1=0)

(mod: UPC actionctrl)

(env: UPC)

(post: actionpre (SO (pre: actionpost)

(mod: UPC)

(env: UPC actionctrl)

(post: addrpost)

(vars:)))

(vars:))

(SD (pre: acldrpre .1=1 ,M=m)

(mod: UPC I M)

(env: UPC)

(post: acldrpre .11=.MEM»m;i3 . I = .MEM»mol5)

(vars: m)))

(vars:))

(SD (pre: actionpre»

(mod:)

(env: UPC)

(post: (SD (pre: .0P=1 .M=m)

(mod: 0 PC)

(env: UPC)

(post: actionpost .PC=m)

(vars: m))

(SD (pre: .0P=4 .M-m .PC=pc)

(mou; Q PC MEM-m)

(env: UPC)

(post: actionpost .PC*(pc+1): 13 .MEM»m-.A)

(•ars: m pc))

(SO (pre: .OP=10 .M=m .MEM»ni=v .PC-pc)

(mod: Q PC MEM-m)

(env: UPC)

10

BW- --!--,-'- k«,uii|«iMpnHNH||ipii|i| rmmmmmmm mmmmmmmmmmmmm

(post: actionpost .MEMom=(v+l) ;15
(if .MEM»m=0

then (.PC*pc+2);13
eise ,PC=(pc+l);13))

(vars: m pc v))
(SD (pre: .OP-11 .PC=pc .A=a .M=m .MEMom-b)

(mod: Q PC A MEM<>m)
(env: UPC)
(post: actionpost .PC=(pc+l);13 .A=b

.MEM°m=a)
(vars: pc m a b)))

(vars:))
(Covering OMEGA

oddrctrl actionctrl UPC PC MEM M 1 A C 0P>)
(Cover ing MEM

<MEM«277Q MEMo500Q MEMolB511Q MEM-1B512Q
MEM°10513O MEH-10514Q MEM-105150. MEM-1051BQ
MEMei05i7Q nEM»i8520u nEMoi052iQ MEM«>1B522Q

MEM»10523Q BufferSpace ZER0>))
(mod: OMEGA)
(env:)
(post:)
(vars:))

(NewDecomposition (Covering OMEGA
oddrctrl actionctrl UPC PC MEM M I A C 0P>)

)
(NeuiDecomposI t ion (Covering MEM

<MEh«277Q MEM-S00Q MEMol0511Q MEM<»10512Q
MEM»10513Q MEM-10S14Q MEMol0515Q
MEM.10S1BQ MEM»18517Q MEM-10520Q
MEM-10521Q MEMol0522Q MEM.10523Q
BufferSpace ZER0>))

(NeuComposition (Covering Q <UPC M I 0P>))

Only three SDs exist at the top level. These stay in existence permanently. When one
of them is activated, it may bring one or more others into existence. However,
application of any of these new SDs causes all of the new SDs to be deleted from the
current context, although others may be added as the result of the application. The
number of compound SDs that need to be available permanently seems to be based on
the number of loops in the machine description, for the full 316, three loops exist -- the
top level, the shift cycle and the indirect addressing cycle - so the 310 SDs could be
reduced to 3 permanent SDs and a small handful of active SDs at each step.

Ill

*mm***-*M*ma**^to± ... mmmmmm

■■~v:' ■'■-■-:
DgpjjmpiBi

■ngngl

Reduction of the number of SDs makes it possible to build a reasonable proposer to
select which SD to apply next. Brute force testing of all of the preconditions is not even
ruled out, but more sophisticated schemes may be possible. Any improvement in the
proposer will have a first-order effect on the size of the proof.

The use of the pattern matcher to select predicates is extraordinarily expensive. The
pattern matcher we are using compiles its patterns when they are first encountered
because it expects to use them repetitively. We use our patterns exactly once. A large
portion of the execution time in the present system is spent converting these patterns to
executable code. The space consumed by the translations is freed up after it is used,
and a large number of garbage collections are needed during the course of the proof to
recover this space. Finally, the patterns are used to search the whole list of predicates
accessible in the current context. As contexts become larger and larger, this strategy
becomes infeasible. Some means to refer to predicates needs to be found which does not
involve searching the whole context and which docs not consume and discard a lot of
space. Predicates are already cross-referenced according to their support, and this
provides at least one useful way of reaching predicates quickly. Many predicates have
no support, however, and perhaps an additional cross-referencing scheme based on free
variables will be useful. SDs may need to be cross-referenced according to the
components of their preconditions. If we view the SDs as a set of productions, cross-
referencing them according to their preconditions provides the basis for a powerful

control mechanism for selecting and applying the right SD with little cost.2^

6.3 Prognosis

If we look forward to a time when verification is an accepted practice and the
programmer submits his program to a verifier with the same regularity that he now
submits it to a compiler or assembler, three perceptions emerge. First, the verification
must be completely automatic and deterministic. Second, the verifier must process

between ten and one hundred statements per second. Third, the proof may not be
much longer than the program but need not be much shorter.

*9 Randall Davis and Jonathan Kinp, "An Overview of Production Systems," Computer

Science Department, Stanford University, California, STAN-CS-75-524, October 1975.

' I am indebted to Mac McKinley for posing the question of how long it would take to

do a full verification.

112

- ■."''. "....:* 1 '■

M»1CT<WI»,Wg^W»W!TW:W«^»C^W^™,"M.l*'l»''W^^^

Requiring the verifier to operate automatically is quite distinct from the issue of
development of the proof interactively. I believe that development of the proof is very
likely to be an interactive process and be comparable in style to the use of an editor.
Once complete, however, the program and its proof will be assembled or compiled to
executable code and at the same time verified for correctness. Programmers generally
expect compilation errors only if they mistype. Compilers which are very poorly
documented, in a state of transition or syntactically arcane provide the alternate surprise
that the program may look correct even upon close inspection but may fail to compile
because the compiler doesn't work as expected. Such compilers are held in low esteem
and in practice do not survive long. I expect verification systems to live within the

same constraints, and thus programmers will expect to be able to write correct proofs
with a high degree of confidence and have these proofs be accepted with the same
success that source code passes the syntax checker. Wegbreit's recent work looks very

promising along this line.31

Given that we accept the need for the verifier to be automatic, ve can further look at
the effect of how the speed of the verification system will affect its use. In our present
environment assembiy of a large program (e.g. the TENEX operating system) requires
approximately an hour to assemble a quarter million instructions. Full assemblies are
done infrequently but probably as often as once a day as a new version of the system
nears completion or is assembled with local parameters for particularization to a site.
Smaller programs, say ten thousand instructions, require a couple of minutes and a user

will reassemble at almost every convenient Juncture. If we intend that verification of a
program fit into this mold and thus bring a milieu in which programs are checked for
consistency with their specifications as naturally as they are checked for correct syntax,
then the verification system will have to perform at comparable speeds, sty close to 100
instructions per second. Performance in the range of 10 instructions pe.- second means
that a user will reverify a 10,000 instruction program using an overnight batch service
and will tolerate more frequent verification only for programs up to 1000 words. These
numbers are comparable to the performance levels of poor compilers in the 1960's or
earlier and may well lie within the tolerable range for consistent use. However, the
increased cost and del?y will need to be offset by demonstrated payoff in the location of
bugs or by management edict.

Performance in the ,3nge of one statement per second is likely to inhibit wholesale
adoption of verification as a production tool and restrict its use to experimental
programming groups and selected critical system development efforts.

Ben Weghrcit, "Constructive Methods in Program Verification," IEEE Transactions

on Software Engineering, Vol. SK-3, No. 3, May 1977, pp. 193-209.

113

mmmm turn
"""- Ti mill iiiBTiii-' i ii»a«iB^iili ffi --■-■---- ■-■■-

I have not begun to perform detailed measurements, nor is it entirely meaningful to do
so at this time. At present the proofs are so laborious that even an infinitely fast
verifier would not be attractive enough to overcome the excessive labor required to
prepare the proof. These caveats aside, I believe the current system verifies between
one-tenth and one statement per second and is thus acceptable as an experimental
vehicle but unacceptable as a production tool.

With respect to the size of the proof, we can use the same kind of "impedance match"
argument that the proof must not be too much longer than the program. Long proofs
require more labor by the programmer and will be avoided. Proofs that do not
materially change the coding time are thus required for regular use. Again Wegbreit's
recent work suggests this goal is attainable without substantial difficulty. Our present
system is well short of the mark. Our first proof was nine pages long for a nine
instruction program and is further embarrassed by the presence of unchecked user-
supplied elusions in the reasoning chain. A ratio of 50 to one is laughably
unacceptable, but is not much cause for worry; ideas for automating the proof system
and compressing the proof are flowing so rapidly that the only rote of the present
statistic is to set the stage for spectacular claims of improvement in the future.

114

mmtm

^H^^^V^n-WT^TF' ^^pWWf-?TW.vrr^

Bibliography

Barbacci, Mario R., Gary E. Barnes, Roderic G. Cattell and Daniel P. Siewiorek, "The
Symbolic Manipulation of Computer Descriptions: ISPS Primer," Departments of
Computer Science and Electrical Engineering, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, August 14, 1977.

Bell, C. Gordon and Allen Newell, Computer Structures: Readings and Examples,
McGraw-Hill Book Company, New York, 1971.

Birman, A. and W. H. Joyner Jr., "A Problem-Reduction Approach to Proving
Simulation Between Programs," IEEE Transactions on Software Engineering, Vol. SE-2,
No. 2, pp. 87-96, June 1976.

Burstall, R. M., "Program Proving as Hand Simulation with a Little Induction,"
Information Processing 1974, Proceedings of the IFIP Congress, North-Holland
Publishing Company, Amsterdam, pp. 308-312.

Burstall, R. M., "Some Techniques for Proving Correctness of Programs which Alter
Data Structures," Machine Intelligence 7, Edinburgh University Press, Edinburgh,
Scotland, 1972, pp. 23-50.

Chirlca, L. M., "Contributions to Compiler Correctness," Computer Science Department,
School of Engineering and Applied Science, University of California, Los Angeles,
UCLA-ENG-7697, October 1976.

Davis, Randall and Jonathan King, "An Oveview of Production Systems," Computer
Science Department, Stanford University, California, STAN-CS-75-524, October 1975.

Fikes, R. E. and N. J. Nilsson, "STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving," Artificial Intelligence, Vol. 2, Nos. 3 and 4,
pp. 189-208. 1971.

Fikes, R. E., P. E. Hart and N. J. Nilsson, "Learning and Executing Generalized Robot
Plans," Artificial Intelligence, Vol. 3, pp. 251-288, 1972

Floyd, R. W., "Assigning Meanings to Programs," Mathematical Aspects of Computer
Science, Vol. XIX, Proceedings of Symposia in Applied Mathematics, American
Mathematical Society, Providence, Rhode Island, 1967, pp. 19-12.

115

l.«f/5>'..l...... ^^^Ä^^^^jd^^t
Ü

" - -- ■-

•r^^^mvß^^m^m^^'^'^-''

Cood, Donald I., Ralph L. London, and W. W. Bledsoe, "An Interactive Program
Verification System," IEEE Transactions on Software Engineering, Vol. SE-I, No. 1,
pp. 59-67, March 1975.

Heart, F.E., et al., "The Interface Message Processor for the ARPA Computer Network,"
Proceedings of the AFIPS Spring Joint Computer Conference, Vol. 36, American
Federation of Information Processing Societies, Montvale, New Jersey, 1970, pp. 551-567.

Hoare, C.A.R., "An Axiomatic Basis for Computer Programming," Communications of
the ACM, Vol. 12, No. 2, pp. 576-583, October 1969.

Hoare, C.A.R. and P.E. Lauer, "Consistent and Complementary Formal Theories of the
Semantics of Programming Languages," Computing Laboratory, Claremont Tower,
University of Newcastle upon Tyne, England, Technical Report 44, April 1973.

Hoare, C.A.k., "Parallel Programming: An Axiomatic Approach," Computer Languages,
Voi. i, No. 2, pp. 151-160, June 1975.

Hoare, CAR., "Towards a Theory of Parallel Programming," Operating Systems
Techniques, edited by C.A.R. Hoare, Academic Press, pp. 61-71, 1972.

Honeywell, Inc., Programmers Reference Manual: DDP-516 General Purpose Computer,
Framingham, Massachusetts, August 1968.

igarashi, Shigeru, Ralph L. London, and David C. Luckham, "Automatic Program
Verification 1: A Logical Basis and Its Implementation," Ada Informatica, Vol. 4, No. 2,
pp. 145-182, 1975.

Kalish, Donald and Richard Montague, LOGIC: Techniques of Formal Reasoning,
Harcourt, Brace and World, Inc., New York, 1964.

King, James C. "Symbolic Execution and Program Testing," IBM Research, RC 5082,
October 18, 1974.

London. Ralph L... "Perspectives on Program Verification," Current Trends in
Programming Methodology, R. T. Yeh (ed.), Vol II, Prentice-Hall Book Company, Inc.,
1977. (To appear.)

Luckham, David C. ?.nd Norihisa Suzuki, Automatic Program Verification IV: Proof of
Termination within a Weak Logic of Programs, Computer Science Department, Stanford
University, California ! TAN-CS-75-522, October 1975

116

■

^^^^^g^mtmmmmmmmmmmi

,:-,r« ■rr^-,:,,.,-.-r!,- :.,.,.,,-..,,,,,,... ^^,;,,-r.;:---;-r-.-fv^™:----.^™v,'v-~:-- -*|

Manna, Zohar and Richard Waldinger, "Is 'Sometime' Sometimes Better than 'Always*?
Intermittent Assertions in Proving Program Correctness," Communications of the ACM,
(to appear).

McCarthy, John, "Situations, Actions and Causal Laws," Semantic Information
Processing, edited by Marvin Minsky, MIT Press, Cambridge, Massachusetts, 1968,
pp. 410-417.

McCarthy, John, and P.J. Hayes, "Some Philosophical Problems from the Standpoint of
Artificial Intelligence," Machine Intelligence 4, edited by B. Meltzer and D. Michie,
American Elsevier Publishing Co., Inc., New York, 1969, pp. 463-502.

McDermott, J., et al., "The Efficiency of Certain Production System Implementations,"
Department of Computer Science, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, September 1976.

McDermott, J. and C. Forgy, "Production System Conflict Resolution Stategies,"
Department of Computer Science, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, December 1976.

Patterson, D., "Verification of Microprograms," Computer Science Department, School of
Engineering and Applied Science, University of California, Los Angeles, UCLA-ENG-
7707, January 1977.

Poupon, Jacques and Ben Wegbreit, "Covering Functions," Center for Research in
Computing Technology, Harvard University, Cambridge, Massachusetts, September
1972.

A Research Program in Computer Technology: Annual Technical Report, May 1974-June
1975, USC/Information Sciences Institute, ISI/SR-75-3, September 1975.

A Research Program in Computer Technology: Annual Technical Report, July 1975-June
1976, USC/Information Sciences Institute, 1SI/SR-76-6, July 1976.

Roberts, L. C. and B. D. Wessler, "Computer Network Development to Achieve
Resource Sharing," Proceedings of the AFIPS Spring Joint Computer Conference,
Vol. 36, American Federation of Information Processing Societies, Montvale, New
Jersey, 1970, pp. 543-549.

Sites, Richard L., Proving that Computer Programs Terminate Cleanly, Computer Science
Department, Stanford University, California, STAN-CS-74-418, May 1974.

117

^mm ****■? > i *■■£*?■ * *? i fii'• r -*- '- ■'■-—*■ - '-^*

- .■■,^,-.,„.£.v,^,r.,.»ff.>.^.T.-.Tr.,,,:S...» gs^^p^l^PP^^ppi^l

Sites, Richard L., 5om? Thoughts on Proving Clean Termination of Programs, Computer
Science Department, Stanford University, California, STAN-CS-74-417, May 1974.

Suzuki, Norlhisa, Automatic Verification of Programs with Complex Data Structures,
Computer Science Department, Stanford University, California STAN-CS-76-552,
February 1976.

Teitelman, Warren, Interlisp Reference Manual, Xerox Palo Alto Research Center,
Palo Alto, California, 1975.

Wegbreit, B., "Constructive Methods in Program Verification". IEEE Transactions on
Software Engineering, Vol. SE-3, pp. 193-209, No. 3, May 1977.

118

^_,-•■■■*: , :■ .'.*_: v^^-^^^^^^-.^
irtiifiiwrii ***"*"■■

