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Summary

A state delta 1s a form for representing segmenis of computation. A state delta is
a first-order predicate which takes a precondition, a postcondition, a modification list
and an environment list. The semantics of a state delta are "if the machine is in a state
which sausfies the precondition, it will eventually reach a state which satisfies the
postcondition, and it will do so without modifying any locations except (possibly) those
fisted in the modification hst.”

It is intended that state deltas be used in a proof system in which predicates
wlich describe the current state of a machine are cross-referenced according to the
locations containing values used in each predicate. In such a system, reasoning about
the forward progress of a machine may be carried out by successive application of state
dcltas. Application of a state delta is legal if the precondition is true of the current state
and if none of the locations in the environment list has becn changed since the state
delta was entered into the system. After these checks have been made, application
consists of deleting 2! predicates cross-referenced to any of the locations in the
modification hst and adding the predicates in the postcondition to form a new current
State. g

TR oW 1 I AT

1 If some of the locatiors in the machine being modeled hold arrays or lists, the
cross-referencing part of the proof system may provide for predicates to be attached to
components of the locations. If the proof system further allows for names to be given to
: individual components of locations, it is entirely possible for different predicates to
depend upon the same values under different names. Under these circumstances, it is
necessary to keep track of all of the overlap conditions possible among a set of named
locations. In most cases of interest, a graph structure with two types of nodes can be
employed to represent all of the possible overlaps, and this graph can be searched quite
cfficiently whencever the current state is to be modified.

A small proof system has becn built along these lines and has been used to prove
the correctness of a shice of the code in the IMPs in the ARPANET. This code
aliocates a buffer off the free bufferhist and uses indirect addressing and other pointer
techniques to accomplish 1ts task. Representing the allocation of storage and following
the tratl of the vomnters fully illustrates the utility of the graph system for representing
storage relationshaps.




1. Introduction

I have bcen nterested in applymng formal verification techniques to real
programs. What's a "rcal” program? One whose reason for being written is to
accomplish some computational task and not solely to serve as an example for
verification rescarch.

I chosc the code for the IMPs in the ARPANET as a real program to study.* For
the present discussion, it is sufficient to know that the code consists of about 10,000
instructions (including load-time constants), runs on a Honeywell 316, which is a rather
standard minicomputer, and is written in the assembly language for the machine. lts
purpose is to ship messages around the network from source “hosts” to destination hosts.

When 1 began looking into the IMP code, 1 hoped that existing theory and
techniques would be sufficient. My task would be only to extract the relevant details
from the IMP* code and submit them to an existing verification system. 1 was prepared,
of course, to supply all of the assertions that might be required, define the concepts and
terms specific to the IMP code, and write some sort of preprocessor to transform the
machine language {or its asscmbly leve! representation) into some more pleasant form
consumable by existing verification systems.

It didn't take long to find out this approach wouldn't work.

Two classes of problems emerged. First, existing verification systems are stiil in
an carly stage of development. Verifying a program of any size would require both
extension of the exising system to handle primtive operations such as anding and
4 oring of Litstrings and cxtensive interactive direction to drive the system. Were these
E the only problems, the right course would have been to help extend an existing system.

The problems in the second class are more fundamental. 1 could not find a way

T P S

e ARPANET s desenibed by Larry Roberis and Barry Wessler in "Computer
_ Netwarke 10 Aclueve Resonree Shating”, Procccdinps of the AFIPS Spring Joint Computer
4 Conference, Val. 36, Arwenican Federation of Information Processing Socichies, Montvale, New
Jersey, 1970, pp. 513-519. For a description of the NP program, see "T'he Interface Message
Processor for the ARPA Compuier Netwark”, by Frank Heart, et al, pp. 551-567 in the same

vohtme,




RETE

to map the following facts and practices pertaining to the IMP code into the formalisms
accepted by exasting verification systems.

Indirect addressing, computed branches ana program modification are used
extenstvely.

Pointers are used extensively to manage space and climinate expensive
copying of data from one location to another.

All of the code and all of the data share a common residence -- the memory
of the machine. Any proof of correctness of the system necds to include a

proof that data and programs assumcd to be separate from each other are
indeed disjoint and do not clash.

The code consists of a number of routines driven by interrupts and
opcrating concurrently.  Some of the interactions are timing-dependent,
slowing down or speeding up the processing time for some of the routines
could cause the system to fail.

Why are these aspects of the IMP code unacceptable to existing verification
systems?  Current cfforts to build program verilication systems are based or. Floyd's
approach.r' In these systems, a program is represented in a flowchart form and
angmented with assertions which relate current values of the various program variables.
The assertions are then combined with tl > program text to produce a set of lemmas --
called wverification conditions -- to be proven. Simphfication and theorem-proving
programs arc then used to prove cach of the lemmas. When all of the lemmas have
been proven, the program is guaranteed to be consistent with the assertions embedded
in the program; i particular, if one of the assertions 1s attached to an entry arc and one
to an exit arc, then this pair of assertions forms the input-output assertions for the
program. Systems built along these lines have a number of limitations.

Generation of the verification conditions is completely automatic and thus
depends upon a purely syntactic analysis of the program. tor programs

b Phe theary s ontlined 1w "Acsrgning Meangs 10 Proprams,”™ by Roberi W, Floyd,
mnted in Mathemotical Aspeets of Computer Scicnee, Yol XIX, Proaccedings of Symposia in
Apphed Mathematies, Amerrcan Mathemanicai Sociery, Providence, Rhode islanmd, 1967, pp. 19-
30 A dypieal system based on 1his theory has been implementied wiidey the direction of Ralph
London. "An hatevacnive Program Venfication System,” by Donald 1. Good, Ralph f.omlon and
W W, Bledsoe, publiched w1t EE Transactions on Software Eapinecering, Vol SE-1, No. 1,
ppo 59 67, March 1974, decenibes the sysiem,




wilter e rostricted hlsh-lcvcl la"E;Udgl.b, such SyllldLliL ahalySlS Tidy be
pussible. However, for programs written at the assembly level or in rich
languapes which permit program modification and computed branches,
determination of the paths must be combined with the proof process itself.
Another facet of the same problem is that the programmer may want to
analyze his program in terms of cxccution scquences which do not
correspond to successive values of the propram counter. Table-driven or
interpretive systems may look like reasonably simple repetitive loops if only
the apparent flow of control is followed, whereas the actual complexity of
the program may be buried in the "data”.

No distinction is made between the value stored in a program variable and
the name of the program variable itself. Without this distinction it is
unclear how to represent the state of affairs for programs using pointers,
indirect addressing and related practices.

Arrays are usually treated as closcly as possible as simple variables so that
assipnment to a component of an array is considered to have changed the
value of the entire array. As a consequence, every fact known about the
arvay must be rederived after an assignment to any part of it. This is
particularly disastrous for verification of machine language programs; all of
memory is one array!

There are simply no provisions at all for treating timing-dependent code.

In addition to these fundamental limitations, there are also some engineering
considerations that materrally limit the utihty of existing systems.

Termination is one of the most common propertics requiring .crification.
Unfortunately, Floyd's theory treats terrmmation quite separately from
attainment of correct values. A completely separate sct of assertions and a
separate proof are rcquired, approximately doubling the work. This cost
has not yet been passed on to the user, however, because the implementers
of verification systems have not yet butlt the additiona! machinery to
handle termination.

The separation of the verification process nto two distinct  stages,
pencration  of  vertfrcation  conditions and  proof of the verification
conditions, means that much of the structure of the program i inaccessible
durmg the proof process. In my view, this 1s an unnatural secparation
which will tend to make verification unnccessarily difficult in practice.
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Current practices require that the programmer write down all facts retating
to the current state in every assertion. Since an assertion is required for
cvery loop, the programmer wilt frequently need to copy facts which are
irtelevant to the toop but which mwust be brought forward across the loop.
For example, if one section of the program scts the vatue of 00 to be zero,
and the next section uses a loop to clear an array but does not change FOO
in the process, the assertion attached to the toop for clearing the array must
nevertheless inctude a clause stating that the value of FOO is zcvo.

One posstble response 1s to suggest that the IMP code is a poor choice for
verification and that only programs which satisfy a particutar set of constraints shculd
be considered for verification. This point of view 1s usually espoused under the
“structured propramanng” tabel or, more recently, under the "quality software” 1abel.

In gencral, 1 can agree that stracturing techniques should be used whenever
possible and | am a strong proponent of higher-levet languages and strong conventions,
provided the languages and conventions do not inter fere with the accomplishment of the
primary task. In many cases, however, languages for p.rogramming an importan:
apphcation on a particular machine either do not exist or else impose intolerable time or

space limitation. In such cascs, assembly language or other loose forms of code
gencration are essentaal.

Morc to the pomt, perhaps, 1s a strong, feching on my part that the essentials of
program verification need not be tied to any particular language. In my own experience

as a programmer, | find that there 1s onty a httle variation in the analyses of (say) LISP
programs versits machine language programs.

Finatly, from a common sense viewpoint, the IMI code is not very complex. Most
competent proprammers would find 1t possible to learn the code and relate observed
behavior of the IMIP to the structure and content of the code.

As a conscquence, | prefer to take programs like the IMP program as fixed points
on the tandscape and ask whether there are techmiques possible for analyzing them and
proving thewr properties.

T'his hie of mquiry has yietded the following resukts.

A new form for representing a segment of computation has been invented.
The new tornm s a state delia (D). The essentiat components of a SD are
a precondition, a postconcdition and a maodifrcation list. ‘I'he pre- and
postconditions are predicates on the machume’s state vector and the
modification hst is a set of names of componcuts of the state vector. The

—
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semantics of a state delta is "if the machine is in a state which satisfies the
precouchition, it will eventually reach a state which satisfies the
postcondition, and in the course of the intervening computation, only the
places listed in the modification list may be changed.” T he modification list
is the mechanism which rcheves the pre- and postcondition of the burden
of copying static information forward through a proof.

State deltas arc first-order predicates in their own right, and a proof theory
has been developed which provides the logical machinery for using state
dcltas it proofs and proving new state deltas. T'he proof theory is a direct
cxtension of the theory in Kalish and Moitague’s treatment of first-order
predicate calculus with identity and definite dcscription(‘ and contains two
new ituference rules. One of these rules provides the basis for forward
reasoning through the scquential parts of a program. T'he other provides
for combination of state deltas which cover ahernative paths. No new
inference rules are required for loops; the usual forms of mathematical
induction are completely adequate.

Onc of the intended uses for state deltas and the new proof machinery is to
provide rigorous proofs of correctness of code which involves indirect
addressing and hst structures. This requirement led to an understanding of
the role of placcnames, 1.e, names of components of the state vector. In
most theories used e program verification, these names are fixed and
represent disjoint components. Part of the theory developed here provides
machincry for referring to overlapping componcits of the state vector and
for using proof variables as well as constants to refer to parts of the state
vector. In essence, all possible overlap relationships among the placenames
: in usc must be known. A compact form for rcpresenting this information
: aud an extremely efficient method for scarching the representation to find
the most highly intersecting set of places has been developed.

Yasedd on the proof theory developed, a trial verification system has been
developed and tested. The system is a blend between a proofchecker and a
symbahc execution system.  State dehas are used to progress forward
throuph a computation symbohcally and a complete record is kept of the
cffects. One of the desipn goals for this implementation was that the cost of
making a single step should be nearly independent of the size of the state
description at any point. This goal was only partly rcahzed, but the
difficultres became clear and provide direction for future implementations.

6 Dopald Kalh and Richard Montapue, LOGIC: Techniques of Formal Reasoning,

1 Harcourt, Brace and Warld, lne,, New York, 1964,
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As part ol the expenmientation with the vanification system, the operation
of the 316 wa« coded into a set of state dehtas. V'his led to an exploration of
other ferms of description of machine behavior, and an experiment was
carried out tu translate machine descriptions 1 bBell and Newell's ISP
notation anto state deltas. “This translation was successful, but an excessive
number of state deltas were generated. 1 developed an alternative scheme
for transhtmp, ISP deseriptions into far fewer state deltas, but have not
implemented this new schicme. One byproduct of the experimentation with
ISP has been a set of interactions with other researchers using machine
descripuons for simulation, code gencration, hardware design and other
apphcatons. Out ol these interaciions thore e oerging sufficient
experience to desipn a machine descniption lanpuage which is rigorously
defined and suitable for a wide spectrum of apphications.

Finally, the system was uscd to prove the correctness of a uny section of the
IMP coue. 1 his scction ot the IMP code allocates a butier trom a free
storage hst. the pioof of correctness of this scction of the IMP code
required specification of the list structures used in the IMP code and
provides a blueprint for verifying related implementation of other hist
processing code  “I'he proot atsclf 15 quite long and reflects the primitive
naturc of the veritication system. As may be expected, however, the tedium
of preparing a long proof of very small steps has provided substantial
guidance for future improvement of the verification system.

In addition to the hmitations mentioned above, the present work makes essentially
no contribution toward an understanding of concurrency and timing. T'he concept of
keeping track of what maay be changed between two points e secmms 1o be necessary,
but a much stronger formalism will need to be ceated to represent the interactions
among multiplc processors.

These results are elaborated in the succeeding chapters. Chapter two contains the
detatled formulation of state descriptions and state deltas. Chapter three describes the
structure of a small proofchecker which uses and proves state deltas. Chapter four is
devoted to a descripuion of the IMP and and a description and informal proof of
correaness of the bulter alfocauon routing, named GYREE. A complete Tormal proof of
correctness of this same code has been venfied by the verification system and it is
displayed and annoiated 1n chapter five. Chapter six contams reflections on the current
work and directions for the future.

All of the proprams developed during the conrse of this research were written in
Interhsp. “T'hic choice was ntentional, for 1t wac clear at the ouiset that only the
availability of such a powerful system would enable one person to experiment with a
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theory by implementing and re-implementing various ideas. Interlisp not only supported
all of the programming 1 nceded to do, but it also supported the definition of language
for state descriptions and state deltas and provided a powerful pattern matching facility
for use in a command language for the verification system. These uses of Interlisp fall
somewhat outside the design intentions of the Interlisp architects and the fit was not
quite perfect; some of the syntax may seem a litlle awkward  For 2 production version
of the verification system, it is almost certain that all of the interfaces would have to be
redesigned.




2. The ¥ormalism

The pattern for proving facts about a program is to represent each of its sieps as
a state delta and then prove facts about sequences of steps. T'he new facts will also be
represented as SDs and thus may be used in further proofs.

We will come to the precise formulation of SDs shortly, but we know that they
contain a machficatinn hist and two partial state descriptions, viz. the precondition and
the postcondition. Given a set of kriown SDs, we will attempt prove a new SD in the
following manner.

I Write down the precondition for the SD to be proven. This constitutes the initial
“enrrent state”.

2 Sclect a known S1) whose precondition is true for the current state and apply it.
After the SD is applicd, there will be a new current state.

3 If the new current state meets the requircments of the postcondition in the SD
being proven, the proof is finished. If not, step two is repeated until a state is
reached that is satisfactory.

"Application” of a S1) to the current state has two subparts. First, clauses in the
current state that depend upon the contents of one or more places being modified must
Le removed from the current state. After this has been done, the postcondition of the
S being applied is added to the state and the total result is the new current state.

2.1 Descriptions

A computer has a sct of places (somehmes calicd locations) which hold values.
T'he collection of values stored in the places at a gaven time is the state of the machine
at that time.

IMaces are cither simple, structured or invented. Simple places hold nen negative
integers in the range 0 through 2™ 1 where n s the length of the place. Simple places
are used to model single registers or flip-flops.




Structured places hold lists.  Structured places are used te model the memory
array and other places which hold more than one element. As we will see later,
structured places will also be used to model subsections of memory, including non-
contiguous subscctions.

Invented places are used to map control into the state description. Qur only use
of invented places in the present work is to model a fictitious microprogram counter and
a set of places to hold “return addresses” for the microprogram. The values stored in
invented places are just labels with no intrinsic structure. I'hc only operations available
for labels are movement from one place to another and comparison for equality.

I considered formulating simple places as holding bitstrings and defining the
various opcrators accordingly. Sclection of a ficld from a word is a typical operation
performed on values in simple places and has a very simple definition in terms of
bitstrings. T'he major diawback of using bitstrings, however, is that there has to be an
interface to the integers at some point, and it becomes tedious if carried out at the bit
level. For example, after selecting a single bit from a batstring, the value is still a
bitstring (of length 1) and is not officially comparable to an integer 0 or 1. Just the
matter of writing down constants becomes a chore: either a constant is ail integer and
must be cxplicitly “onverted to a bitstring of some length, or 1t is initially a bitstring and
the length must be s, - cified along with its value.

Using intcgers as the values for simple places turned out to be easier than 1 had
first guessed. Selection of ficlds and other "bitstring-oricnted” operations can be
characterized in terms of integer division (remainder and quotient) and the interface
between selection of elements from an array and sclection of "bits” from an integer can
be formulated reladvely cleanly.

Qur concern 1s almost always with a sct of related states instead of just a
particular state. l'o describe just the sct of states of interest, we use a state description.
A state description s just a hst of clauses in the furst-order predicate calculus. The list
is understood to be a con junction. In addition to the logical connectives, quantfiers and
cquality, a number of opcrators and predicates are predefined. The user may also
define his own opcrators and predicates. The predefined operators are introduced
below. For cach of these operators, there is an infix form and an prefix form. The
verification system accepts either form for input and converts all inputs to prefix for
processing. When clauses arc output, they are converted to infix form.
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2.1.1 Contents.of

I use a contents-of operator to refer to the value stored in a place in a given state.
Its external syntax is a unary prefix period and its internal form is D07,

The use of a contents-of operator provides for a distinction between the name of
a place and its contents. We will need this distinction in analyzing indirect addressing
computations and structures involving pointers.

Using the contents-of operator, we can writc an example of a simple state
description:

PC=5 and JA:=D.

This state description refers to any state which has 5 stored in PC and @ in A .
Tle values in all the other places are unconstrained.

?2.1.2 Selection

Many of the places will be consideied te hold arrays or scquences. In order to
refer to a particular clement, a sclection operator is provided. T'he external syntax for
the sclection operator 1s e and its internal form is Stl. MEM=S represents the sixth
element of MEM.T (AN arrays and sequences are indexed from 2cro.)

MEMeS 1s the name of a place. lis contents are MEMeS. This notation is
potentially ambiguous, for it is not clcar whether the selection operator or the contents-of
operator has hipher preccdence. If the contents-of operator has higher precedence, then
LMEMeS mecans (LMEM) o5 This means that the value of the whole array is first
obtained and then element 5 is extracted. This interpretation means that the selection
operator would be operating on a value instead of a place.

In contrast, 1f the sclection operator has higher precedence, .MEMsS will be

1

The chowe of notation 15 heavily influenced by the availability of CLISP which
translates antomabically from iternal to external syntax and back again. ‘Fhie convenience of

this faeihity ha< outwarghed the nuisance of using a non-standard notation. For a producuion

system, | expeet that a different external syntax would he develaped.




interpreted as . (NEMeG), meaning the contents of the place designated as the sixth
component place of ML,

Fither of the these interpretations should lead to the same value, but we will see
that it is desirable to minimize the size of the places that appear under the contents-of
operator. Accordingly, 1 have chosen the latter interpretation for .MEMeS. Of course,
the former interpretation is still available if extra parentheses are supplied.

Sclection is also defined for integers; the result is equal to the corresponding bit in
the binary representation of the integer, i.e, xo8 = 8 1f x is even, etc.

2.1.3 indexof

Given a placcname hke FREE, it is often desirable to find its address in mcmory.
If FREE-MEMei for some i, we'd like a way to refer to i. The indexof operation is
provided for this purpose.. lts external syntax is an infix /; its internal syntax is
indexof. If FREF=MEMei, then i=FREE/MEM. The second name must be a structured
place and the first name must be one of its elements.

2.1.4 Scgthru and Scgfrom

These operators sclect subsequences of structured places, structured values or
integers.  (scqgthru X N) extracts clements 0 through N of X. If X is an integer,

(segthru X N) takes X modulo 2Nl The external syntax for segthruas "3 .

(scafrom X N) extracts elements from N through the end. 1If X is an integer,
(segfrom X N), is the integer quotient of X divided by 2N The external syntax of

segfrom is 7",

Typical use of these operators 1s to extract a bit field from a word. .M;13,19
extracts four bats, bits 10, 11, 12 and 13, from regasters M and rcturns an integer in the
range 0 throuph 15 Reversing the operators provides a way of stating the first element
and the number of elements: . 11;13,18=.M,18;:3. Note that X,8:X. When working
with integers, Xei « X; i, 1. However, for structured places and vatues, X3, i has the
saine number of dimensions as X with the outer dimension equat to 1, while Xei has one
less dimension than X. Consequently, Xei = Xji,i00 - X, i08

—
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Following the policy estabhished for StL, scgfrom and scgthru have lower
precedence than LOT. Whea more than one occurs, they are performed left to right.

2.2 Overlap among places

Usually, each place has a single name and is isolated from all other places.
Changing the value stored in one place doesn't affect the value stored in another place.

Arrays, incdirect addresses and hist structures all require a different point of view.
In one form or another, these mechansims each mvolve dynamically changing
placcnames. As a consequence, we may not know whether two names refer to the same
or different places.

Our gencral plan for following programs is to step through them symbolically.
Wheriever an asuignment is made to a place, its old value will be discarded. Values in
other places remamn undisturbed until assignments are made into those places.

This plan clearly requires that we know which places are disjoint from each other
whenever an assiphment is made. Hloow do we resolve these conflicting requirements?

First, we adopt the conservative rule that unless we know that two places are
disjoint, we mmust assume that they might overlap. Sccond, we provide a fast and
rcasonably flexible mcchanism for recoraing and accessing the overlap relationships.

Since our default rule is that places overlap unless we know dcﬁnitcly that they
do not, we nced some means of saying that two places do not overlap. We could adopt a
predicate, say Disjointp(x y), which asserts that x and u ate disjoint, and then we
could make up axioms for deriving disjointness from other properties. if we tried to do
so, we wotulld encounter a major difficulty in working with a larpe number of places. To
assert that three places are each disjoint from cach other takes three statements, four
places requires six statements, five takes ten statements, etc. In practice we need to assert
that perhaps scveral hundred places are each disjont from each other; several thousand
individual occuriences of Uisjointp would required. T his difficulty could be remedied
by expanding the piedicate to take an indefinite number of arguments. The semantics
would be that cach of the arpuments is pairwise disjoint from cach of the others.

In addition to speafying which places are disjoint from which other places, there
1s fiequent need to specify that one or more places are wholly contained within another
place. Both of these concepts -- disjointness anc. <ubterritory -- are common, and | have




chosen to combme them nto a single predicate, Covering. (Covering <A By By ...
B,,>) states that By through B, are disjoint from each other and that they are all
containcd within A.

It is not sufficient to have these relationships scattered about in the state
description. When a modification is made to one of the places, it is essential to know
what other places may averlap with the mndificd place. To speed up the search among
these relationships, a separate data structure 1s mamntained which duplicates the
information contained in the Covering predicates and provides immediate access to alt
of the interactions among them. T'his data structure is called the place graph and is
explained n detail in the next chapter. The most important point about the place
graph is that every place that is refererced within a proof is expected to be listed in the
place graph. Vlaces hsted in the place graph are said to be registered. Because the
place praph expects to know about all places, it assumes that the Cover ing relationships
it knows about are definitive and that all overtaps which arc not explicitly barred might
actually exist.

Although the default assumption is that two places overlap if it is not known that
they do not, the place graph is organized so that its connections show what does overlap
(or at least nught overlap). As a consequence, the actual searches of the place graph
touch only the nodes corresponding to possible overtapping places. Since most places do
not overtap with most other places, the searches of the place graph tend to be
independent of the size of the place graph. This is an important result and contributes
significantly to the design goal of a symbotic exccution system whose execution time for

a single step is independent of the size of the program.8

The place graph is initially set to hold a single node corresponding to the place
OMEGA. OMEGA represents all of the space in the machine and cverything is considered to
be a subplace of ONEGA. Relationships are added to the place graph by attachment to
cxisting nodes, so the first relatiornship added to the place graph must be {Covering
OMEGA ... ).

8

This formulanion of how 10 handle 1the prablem of overlaryiig names was influenced
by Rod Bursiall’s clepant paper “Sowme ‘T'echmgnes far Proviug Coniecliess of Programs which
Alicr Daa Sthiuctuves,” w Machine intelligence 7, Fadhburgh Twversity Press, Edinburgh,
Scotland, 1972, pp. 23-50. | awn indebied to James H. Marns fr. for pointing out this paper

duving a dhscus<ion an 1he snhjeel of how ta represent hist siruelnres,
" )
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2.3 Coniputation

State descriptions provide a characterization of a machine at a single point in
ttme. ‘I'he next step is to describe the computational process as the machine proceeds
from one siaiv to another. ‘The basic requirement is for some way to state “if the
machine 1s in a state characterized by P, it will eventually reach a state characterized by
Q", where P and Q are staie descriptions. For brevity we can write "P leads to Q".

I'he general plan is represent the hardware as a sct of statements in this form and
then combine these statements together to cover long scquences of computation. Thus, if
we have "P leads to Q" and "Q Icads to R”, we expect to be able to write "I leads to R".
FHowever, this notation by itself suffers from a problem mentioned in the introduction:
everything relevant to later computations needs to be included in each of the state
descriptions between the first time it becomes trie and the last time it is used.

To avord this burden, an exphiait hst of places which are modificd is included in
the description of the the computation. 'I'he semantics of a computation are now “if the
machine is in a state characterized by P, it will eventuatly get to a state characterized by
Q) and it will do so without modi fying the contents of any place except (possibly) those
listed in M. All of this is summarized by (SU{prc: P} (mod: M) (env:) (post: Q)
(vars:)).

the vars clause binds variables tivat appear in P, Q ~nd M. 1t is simply a
convenicnt alternative to using a universal quantifier.

Ve (S (pree: POA) (mod: Mix}) (env:) (post: Q(x}) (vars:))
is icentical to
(SO (s PUx)) (mod: M(x)) (cnve) (post: Q(x)) (vars: x)}.

Statemeuts of this form are called state deltas and form the basis for reasoning
about the computational process. We can stilt combine two state dchas to form a third
Ly extending our pievious notion a bit: 1f 1 leads to Q) modifying only places in M and

Q leads to R, modifying onty places in N, then P leads to R modifying only places in
MuN.

The env clase 15 a hist of places; it 1s used to abbreviate the precondition. 1n
order to characterize the operation of a subrouting, the precondition would need to
inctude a hsting of the code as well as the constraints on the data structure.  Listing the
cade n the precondition is unwieldy and inctficient. 1t the cocde 1s never modified, we
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would like to avoid both the repetition of the code in the precondition and the cost of
rechecking that it hasn’t changed.

Wher the SD) is entered into the proof system, it is connected to the current
machine state by its environment clause. When the SD is used, the values in the
envitonment places must not have been changed since the SD was entered into the
system. If they had been changed, the SD is no longer valid and must be discarded.

2.4 Definition of the 316

‘elow is an abbreviated description of the Honcywell 316 in terms of SDs. Only
six of the instructions usually found on 316s arc included here. This example will be
uscd later as part of the input for the proof of GFREE. The SDs in the dcfinition of
the 316 wiii not have any places disied in their environment clauses, since their validity
does not depend upon some part of the machine state remaining constant. We will see
examples of the usc of the env clause later.

The machine is assumed to have a memory NEM, a program counter PC, an A
register A, and iternal registers M, OF, | arnd UPC to hold an address, operation code,
indirect addressing flag and microprogram locations, respectively. These internal
registers are all considered to be subcomponents of Q, so a change to Q changes (perhaps)
all of the internal registers.

This use of U is merely a convenience; the hst of 11, OP, | and UPC could have
been written exphatly in the mod clauses of the SDs, but it was convenient to
summarizc the set with a covering place.

The following list of SDs is the actual sct used in the proof of GFREE described
later. The place named UPC is an invented place, and it represents a microprogram
counter. For this simple example, its values are represented as top, acddr and action’

(SO (pre: JUPC-top PC-pc MEMe(.FC)- 14008480Q)
{mod: Q PC A)
{cnve)
fpast: JUWPC: top PC-(pcil);13 .A-B)

{vars: pcl)

9

The suffix Q on numbers udhicates the number 1s oc1al. This convenlion was chosen
to couform with the avalable facilinies in luterhsp,
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(SO (pre: JUPC-top PC=pc .M Mo (.PC)-1818480Q)
(mod: Q FC)
(env:)
(post: JUPC: top (if .A:-D
then .PC={pc41)313
else PC=(pc42);13))
(vars: pe))

(S0 (pres JUPC-top MiMe (LPC)313,18~:8)
{mod: )
(env:)
(post: OP-.FEMe(,PC) ;13,18 UPC-addr .1=.MEMo (LPC) =15
(if Mo (,PC)o3-0
then M: MEMe(LPC); 8
clse .M=.MEMe (.PC) ;84 (LOGAND .PC 377@0880)))

(vars:))

(G4 (pre: JUEC=adde . 1-0)
{mod: UPC)I
(enve)
(post: UPC-action)

(vars:))
i (S0 (pre: UPC-addr J1=1 .M-m)
i (mod: UPC 1T M)
(env:)
{(post: .UPC-addr Mo MEMomy 13 L 1= MEMemol5)
; (vars: m))
] (S0 (pre: JUPC:action .OP:1 .H=m)
; (mods O PC)
] (enve)
. (post: .UPC=top FC:m)
} ; {vara: m))
(S (pre: .UPC-action .0OP=4 M=m PC: pc)
{mod: {0 PC MiMem)
(rnve)
(post: JUPC- top PC=(pc41) 313 HEMem=. A)
(vare: m pc))
] 16




(S0 (pre: UPC-action .0P=18 .M=m ,MEMem=v .PC=pc)
{mod: Q@ PC MEMom)
{enve )
(post: UPC=top .MEMom=(v+1)315 (if .MEMeom=08
then (.PC=pc+2):13
¢lse .PC={pc+l1);13})

{vars: m pc v})

(S0 (pre: .UPC-action .0P=11 .PCspc .A:-a .M=m .MEMem=b)
{mocd: @ PC A MEMem)
fenve)
{host: UPC-top PC={pc+1);13 .A=b .MEMom=2a)
{vars: pc m a b))

2.5 Computation of suppori

By support 1 mean the sct of places whose contents are referenced in the
expression. The truth value of a predicate depends upon the contents of the places
referenced remaining the same. 1f any of the contents are changed, then the truth of the
predicate is suspect. Our strategy will be to delete predicates from the list of known-to-
be-valid predicates whenever any place in its sct of support is changed. This strategy is
conservative and can never :cad to an inconsistency. However, it is quite possible for
information to be lost. For cxample, the predicate .X-.X=8 is always true, ro matter
how the contents of X are modified. The algorithms 1 am using to compute support
treat this predicate as if it is supported by X. As a consequence, some care by the user
may be necessary in constructing his predicates.

The basic rule for computing support 1s just to collect the set of places that occur
within a predicatc under the scope of the contents-of opcrator (D0T). T'here are several
exceptions, however. The following is the precise formulation used in the system.

T'wo functions are uscd to compute the support of an expression, Support and
Structurc. Structure analyzes expressions containing names of places which are used
within the scopc of a D0T. Support takes the union of the support of the
subexpressions until it reaches a UOT or another special form. When reaching a 00T,
Suppor t uses the structure o: the referenced place or place-expression.

T'he special cases are the following.
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State deltas have an exphcit representation of their support, dectared when
they are proven. In the state delta this is the environment clause.

Quantifiedt expressicns behave as if the structure of each of the bound
variables is OMNEGA.

T'he support of expressions headed by a usci-defrtied name is dependent
upon the definition of the name. When the name 1s defined, the user is
responsible for dectaring the rule to be used in computing the support of
cxpressions headea by the name. The default rule is to take the union of
the support of each of the arguments to the expression; if the default rule is
correct for a particular name, then no specific rule need be stored and
Support will assume the default rule. If a spectal rule is necessary, it must
be in the form of the union of some subset of (usually all) of the arguments
and a hst of constants.

In alt cascs, when a new name is introduced, the user must prove that the
rule for computing support of expressions headed by that name is correct.
"Correct” means that the rule computes a list of ptacenames which entirely
covers the places holdmg values used in the definition of the predicate. For
predicates which are not defined recursively, this simply means that the list
of places computed by the rule must cover the hst of places computed by
applying Support to the definition of the predicate.

For preciicates defined recursively, the same criterion is used, except that the
preposed rule for computing support is used in the appearances of the new
prechcate i the definition.

The following example 1hustrates computation of support for a new predicate.
{(FacketBufferl istp x y) is defined to be

(Subuct x Dufferspace) and
u-fg and
{y ie lees thon 3777700 and
(if LHENGTIH x) =D
then u ZERO/TREN
cloe (I'acketBufferp x)} and
u xoelell/it It and
(PacketBufferListp x,1 .xe8e8))

I he rute for computing the support for this predicate 1s

{UNTON (Support .x) (Support y))
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This rule is correct if it can be shown to cover the support of the definition. The
support of the definition is

(LINION  (Support (Subset x Bufferspace))
(Support y-B)
(Support (y is less than 37/77Q))
(Support UENCTH x)=8)
{Support y: ZERQ/MEM)
{(Support (PacketBufferp x))
(Support y-xe80/MMEM)
{Suuport (PacketBufferListp x,1 .x08:8)))

The first scven clauses simplify to

(LUINION (Support x) (Support y))

The last clause makes use of the rule being tested and produces

{(LINFON (Support .x,1} (Support .xoBeB))

Altogether, it thus required to show that

(UNTON (Support x)
(Support y)
{(Support .x,1)
(Support .xecBeB))

is a subset of
{(UNTON (Support .x} (Support yl)

1 The rule for computing the support of a “dotted” form is just to take the union of
' the structure of form under the dot with the support of the form under the dot. (This

latter part is tequired because the form may have other dots nested decper.) For the
cases at hand, we have

(Support .x) = (Structure x) U (Support x)
(Support .x,1) : (Structure x,1) U (Support x)
{(Support .xo%eB) = (Structure xoBe0) U (Support x)
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Since (Structure x,1) and (Structure xoBeoB) are both subsets of
(Structure xJ, the proof is complete.

2.6 Maclrinte descriptions revisited

As described above, the plan is represent the basic machine in terms of a set of
SDs and to use these SDs to prove facts about the operation of the IMP code. The
original sct of SDs te represent the machine must be invented by the user and input to
the system.

While it 1s feasible for the user to write his own machine descriptions using SDs,
bell and Neweil have already pioneered the machine description area and invented a
quite reasonabie notation, ISP. More recent work by barbacci, bBarnes, Cattell and
Sicwiorek has evolved the language and provided tools for manipulating descriptions
written in ISPS, the current derivative of 1SP.10

I experimented with ISPS and wrote the following description of the Honeywell
316 in ISPS. Quly a skeleton of the input-output structure is given, but the rest of the
description is intended to be complete.!!

10 e anganal ISP natation s clocmmented wn Computer Structures: Readings and

[ yramples, by €. Govdon Bell and Allen Newell, published by MeGraw-1hll Book Company, New
York, 1971, The most reeent deseriphion of 181S is an anternal Carnegie-Mellon University
veport, "The ISPS Computer Deseniption Language,” by Mane Barbacei, Gary Barnes, Rick
Catiell and Damel Siewiorek, dated Awpust 14, 1977 and available from 1he Computer Seicnee
Department at Carnepic-Mellon University,

TV lhe bk of this deseription comes from the Proprammers Reference Manual: DDP-
516 General Furpose Computer, published by Honeywell Ine, Franmingham, Massachusctts,
1968. However, a mumber of detarls were not clear an tle mannal and 1 asked for assisiance
from the IMP crew a1 BBN. Most of the questions 1 ashed were answerable immediately from
prachical expenience with the hardware, A few gueshions, liowever, reqinred experimentation
with 1he machine o sce how it wonld hehave. These guestions arose st from the atiempt te
prepare a formal descrepion of the maciine. The fact that 1lus exereise foreed these details to
be made exphen sugpesis that formal desenipnion of compuiers may bhe beneheial to
arclatecture deapners aul 1echmeal manwal writers wmdependent of any anlemalic processes
thar may he apphed 10 10 e decenpnions. 1 am indebied 10 entire IMP erew at BBN for 1heir
assistance i prepanng 1his deczription and their panenee and responsiveness s ferreting out

tle details ¢f how 1he maclone pehaves under vanious unhhely sequences of instructions,

20




H316 := (
veve Mp.State v

men{B:4777771<15:8>,
x<15:8> := mem(B)<15:8> !Index register is cell 8

veve Pc.State v

c<>, Icarry bit
a<15:8>, laccunulator -- referred to below as A
y<l4: 8>, linternal register -- holds effective address
ea<l4:8> := y<l4:8>, l'another name for same
m<15: 8>, linternal register -- holds word fetched from mem
op<3: 8>, linternal register -- hangs onto op field
CXXL>, Vinlerna!l register -- hangs cnto index bit
b<15:8>, lextension of accumulator
pc<lé: 8>, 'program counter
sc<h: B>, Ishift counter -- used only for shifts, OTK and INK
Xa<>, lextend mode option:
11 => extended addressing hardware exists,
18 => not
sext f<>, 18 :> disable extended addressing at next JMP
extmde>, 1] => in extended addressing mode, B => not
{ phi<>, Iprevious mode indicator for extended addressing --
é ! sct by interrupt and read by INK
pi<>, 11 :> interrupts are permitted, B8 => not
; spi<>, 1] => enable interrupts after next instruction
é inten<l5:8>, !vector of enable/disable bits for devices
‘ z<> ! a source of zero bits for the shift inetructions

veve External.Pc.State s

intrq<l5:8>, !vector of interrupt requests, set by devices
ssl<>, !scnse sWitch 1
ss2«<>, l!secnse suwitch 2
ss3<>, l!sense suitch 3
ssb<> Isense suiteh 4
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veve Effective.Address.Calculation s
bumppe () ¢ Necode extmd <> (pe<l3:8>cpe4l, peoepe+l)),

dxeal) := (If m<ld> => (eaclea+x)<13:8>) next
If m<15> => (mememleal next yem next Loop dxeal),

exeal) := (Decode m<lS> => (B := (if m<ld> => eacea+x),
1 := (memem{ea) next yem next Loop exeal)),

effaddr() := ( Decode extmd => (dxea(), exea())),

xeffaddr () := ( Decode extmd => | '
B := (If m<lS5> => memewleal next dxeal)),
1 :- (If m<15> => memem'eal next ioop xeffaddr)))

voe Instruction.Execution s

interrupts() = (
v Internal.Registers

i<1%:08>,
imsb<l4:0>,
xmsh<15: 0>

yeor Internal.Procedure st

priority() := (If i and xmsh eql 8 => |
imshe imsh+4]l next
xmshe xmsh<lb: 1> next
loop priorityl)

ver Main.Houtine s

Start.Main() s |

icinten ond intrq next

If pi and (i neq B) => |
(imehe GG xmshe /108008 next priorityl));
{epicB; pieB; pmiecextmd; sextfexa next extmdexa) next
caemem[imsh] next
intrge intrq xor xmsh next
jst)))),
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fetch() := (
me mem [pcl next tFetch instruction
exxen<lds>; opem<l3:108>; y<8:B>em next iSave index bit and opcode
I xtend address with either 8 or high-order bits of pc,
laccording to page bit
Decode m<9> => (y<l4:9>¢8, y<14:9>¢pc<lb:3>) next
bumppc (}),

genericsB() := ([lecode m<9:8> => (

HIINEXA := (sextfexa; extmdexa), IEnter extended addressing mode
N13\DXA :: soxtfeB, il cave extended addressing mode
HA3NINK = (a<lS5>ccy Hnput keys

a<ld>ecundefined();
a<l3>«pmi;
a<l2:5>¢8;
a<q:B>esc),
H2BINIAB := ({aebebea; sceundefined()), !Interchange A and B

HMBINENB := spiel, 'Enable interrupts
M11BBININII 5= (picB; spieB))), Iinhibit interrupts :
|
shift.loop() = i

If sc LOL 8 => (lcave shift.loop) next
Decode m<9:6> =>

B\LRL := acheceaeb, Long right logical
INLRS 1= a<lé:B>eb<l4:B>eceaeb<l4:8>, Long right arithmetic
2\LRR :: acbeceb<B>eaeb, Long right circular
3\5483 := undefined.action(), Non-existent

4\ GR 1= awcea, . 'Logical right

S\ARS  :: a<l4:B>ecea, Arithmetic right
B\ARR  := awcea<B>ea, ICircular right

7\S487 := undefined.action(), 'Non-existent

S\LLL :: ceach« dobez, Long left logical

INLS i (cec or (a<l5> xor a<léd>) next
avli<l4:8>¢ a<lb:0>eb<l4:8>e02), !Long teft arithmetic

18\LLR  :- ceaebeaebeac<l5s, Llong left circular
11\S413 := undefined.action(), Non-existent
12\LGL  := ceacaez, Logical left i
I3V\ALS  := (cec or (a<lS5> xor a<lé>) next i
aca<lb:B>ez), tArithmetic levt i
- 14\ALR := c¢wacara<lb>, Circular left
: 16\S417 :« undefined.action()) next INon-existent

scesc+l next loop shift. loop),

+ oyt AVNUBLE COPY




generics ()

skipl) := (I

(m<BG> an
(m<h> un
(m<2> an

(m<B> an

gener icsl4pi
#1BALBNCRA :-

f m<¥> eqv ((m<8> and a<l5>) or
d a<f>) or (m<h> and (a NLQ B)) or VSLN/SLZ & SNZ/SZE

d oal) or (n<3> and ss2) or
d ss3) or (m<l> and ss4) or
d ¢)) > (bumppc())),

() :: {lecozz m<9:8> => |
acg,

#1216\ACA :: ceaca+c,
#170G\ADA :: ceaca+l,
#14B/\NTCA = ac-a,

HOIZ?B\CSA
#HOB24\CHS @

{cca<lb> next a<lb>«B),
a<lb>«Not a<lbh»,

HO4BINCMA := a¢Not a,
#BLPBNSSH - a<lSoel,
H#BIBO\SSP 1= a<lb> 0,
11828O\RCB := ¢ 0,
HAGBBNSCE :: cel,
LBLB\CAL :: a<15H:8> 8,
HIBGANCAR &2 a<7/:8>¢0,

HIZ4GBNICA
HI1T4ANICL

111 248\1CR

p .- gener
} oo {ocem

aca</:BreaclBHi 8>,
s aca<lh: 8>,
t= a</:0>ea<lb:8>ea</:08>)),

:- (llecode melS5:14> = |

icsl(),

15517511 & S52/5R72
15G3/5R3 & SS4/CR4
155C/5RC

IClear A

'Add carry to A

IAdd onc to A

1110’ s complement of A

ICopy sign

IChange sign

Compicment A

ISet sign minus

IS¢t sign plus

IRecet carry bit

IS¢t carry bit

IClcar lcft part of A

ICtcar right part of A
!Interchange characters in A
'Interchange and clear left
IInterchange and clear right

: c+B next shift, loop(}), !shifts

2 1 skinl),

3 := grnericsia@dd)l),
jmp ()

extmds sextf and xal,

fda(} = (acmemieal),
anal() {acmemleal and al,
stal() := (memlealead,
eral) {(acmemlea) xor al,
add() :+ (cracatmen(eal),

lekips

{{Decode extmd = > (pccl3:@>¢ea, pceeal) next

! Jump

Load A

lAnd to A

1Store A

Wxctusive or to A

TAdd

i
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sub() := (ceaca-memlecal), ISubtract
jst() = ( VJump and store

decode extmd => (B := (memlea)<13:@>¢pc next pc<i3:@>«ea+l),
1 := (memleal<l4:8>-pc next pceea+ll)),

cas() := | !Compare A and storage
memem [eal next
Decode a tst m => (B\LSS := (bumppc() next bumppc()}),
JNEQL := bumppc(),
2\CGTR := pcepc)),

irs() := | 'Increment and skip on zero
mcmem[eal4]l next
mem [eal em next
I+ m EQL. 8 => bumppcili,

imal) := ( !Interchange memory and A
me mem [eal next
mem lea) «a next
acm),

ocp(} := (Decode m<3:8> e> ( 10utput contro! pulse
4 := ocphf),
118181 :- cer,
#8184 :- cec,
HBBAINTASK := intrq<B>el)),

sks{) :+ (Decode m<9:8> => { ISkip if ready line set
4 = bumppci),
#8184 :: bumppcl),
#1777\dummy := undcfined.action{(})},

inal) := (If me9> => (a@ next !lInput to A
Decode m<8:8> > |
4 1= (inad () next bumppc()),
#H777\dummy := undefined.action(}}),
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oial) 1= (Uecode m<9:0> => | 10utput from A
4 3= (otan (} next bumppe()),
HBYZ20\GIK :- intenea,
HgzeNork :- |
ceacdhs; wextfen<d3>; scea<d:l> next

oxtmde oxtmd or sextf))),

i.ol) += (Uecode melbilas> => |
A\OCP :: ocpl),
INGKS - sksi),
Z2\NINA = inal),

3\GTA = otal) ISMK and 01K are special case 0TAs)),

ldx.stx{) :: (Decode exx => |

memical «x, Load index register
xememleal)) IStore index register

vwv: Instruction.interpretation v

Start.Main() :: |
interrupts () next
piespi next
feteh () next
Decode op => (B :: qenerics(),
1 :: (cffaddr{) Next jmp(}),
? - (effaddr () Next ldaQ)),
3 = (cffaddr () Next anal)),
4 (cffaddr () Next stal)),
5 ¢ (effaddr () Next eral)},
6 oo (effaddr () Next add(}),
7 1= {eftaddr ) Next sub ()},
18 - (cffaddr () Next jsti}},
1 o (effaddr () Next cas()),
M2z - (cffaddr () Next irc(}),
M3 i (efrfaddr() Next ima()),
g - i.ol),

Y 1= (xeffaddr (} Next ldx.stx()),

116 - undefined.action(),
#17 :+ undefincd.action(}) next
{oop Start.MHain))

'reserved for MPY
lreserved for DIV
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One of the tools provided by the CMU group 1s a parser which accepts an ISPS
description and outputs a parse tree, fully parenthesized in prefix format and available
in an ASCIl file. Using the facilitics of the ARPANET, we have found it very
convenient to generate ISPS descriptions at IS| in Los Angeles, ship them over the
ARPANET to Carnegie-Mellon University in Pittsburgh, parse the description at
CMU, and bring the parse output back to ISI. The whole process takes 10 to 15
minutes.

Charlie Hayden has written a program which accepts the parse tree as input and
generates state deltas.t2 The current translation of the full description of the 316 results
in 310 state deitas. This is a farge number of state deltas, and they were put aside for
possible later use. The primary reason for the large number is that a separate state
delta is generated for each invocation of a function within an expression. Moreover,
distinct values are invented for the fictitious microprogram counter, resulting in a very
large number of unreadable, generated symbols.

To a certain extent, this expansion of text as ISPS descriptions are translated into
SDs is unavaidable because Sl)s provide no implicit control struciures and all "control”
has to be encoded as a set of changes to the state description. Perhaps the most
troublesome aspect of this large number of SDs is that it is difficult to design an
efficient, automatic strategy for selecting which SD to use for advancing to the next
state. With respect to this particular issue, an ‘dea has recently emerged for an alternate
representation of the internal state of the machine in terms of what state deltas are
apphicable instead of giving an explicit label to each internal state. This idea is detailed
in chapter six.

12 During any hirst experiments with I1SPS, 1 wrote a translator from ISPS parse trees
imlo cxccutable Interhsp code. With the help of the CMY group on 1SPS ilctails aml some
hamtholding from Marty Yonke on luterhsp details, 1 was able to pul together a rudimentary
translator i about three weeks.  Charhic’s propram is much cleaner aml oulpuls both
cexcculable code i Bhiss aml slale deltas. The orgamzanion of the program permits casy
athinon of other madules 1o ontput code in other lanpuages. Reeemly, Bill Overman hac
exereised this poscaibihity by writing a tnial version of a PLJL cade gencrator. The cost of cach
of these efforis has been quite moidest aml srobably wonhi not have bheen undertaken if the

parger were nol avalable.
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2.7 Formal basis

One of the classical formal views of computing looks at a computer as a transition
function F:5-5, where S is the set of possible state vectors and F is the rule for
advancing the computation one step. Components of a state vector are accessed by
using the name of the component as an index, e.g.. soA refers to the A component of the
state vector and se {t1e5) refers to word 5 of the MEM component of the state vector.
(In prefix form, these are (SEL s A) and (SEL s (SEL MEM 5)), respectively. By
treating StL as an associative operator, the latter expression is equivalent to (SEL (SEL
s MCM) S), which corresponds to (seMEM) e5).

2.7.1 State de..as

One way to look at statc deltas is as a shorthand for a specialized class of
formulas involving statc vectors and transition functions. I'he first specialization is the
suppressicn of any explcit representation of state vectors. 1The "." operator takes a
name and treats 1t as an indcx into the current state vector. Within the proof system,
only one state vector is “current”, and every occurrence of a “." outside of a SD is
understood to represent access into this state vector.

The sccond speciahization is the suppression of any explicit representation of the
transition function. In place of statcments about F, state deltas represent statements
about the closure of k. The closure of F is defined by

Fé(e) = ' () : 1201,
that is,

E*Ge) = (s, FUs), BF2day, BS0a), F9%s1, oo .

(5]

If P* and G' are the pre- and postcondition of a SD with the “.™s replaced by indexed
accesses of s, the S1) states that

(V) (eeS A P/ (s) » (As’) (" d ¥ (s) A Q' (s')),

In common sense terms, this means that state deltas say that the postcondition will be
true sometime 1n the future, but nothing is said about exactly how many steps are
needed to reach such a state. Wile we normally 2:sume that the $Ds that we use as an
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axiomatic description of the hardware are somehow fundamental or atomic, nothing in
our theory or proof system can know whether a particular SD represents an atomic step
or a long sequence of steps. This limitation simplifies the theory by providing uniform
treatment of all computational statements, but it fails to provide a basis for certain
classes of arguments in which it is important to know all of the possible states that the

machine might be n.

The third specialization concerns the machinery to relate s° to s. The
modification hst, M, shows which components of s’ may have salues which are different '
from the same components of s. By implication, components of the state vector which
haven’t changed must be the same. The statement above thus requires amendment to
show that s and s’ are the same except for the components listed in the modification
list. Because component names are permitted to overlap, the precise relationship
between s and s’ has to be stated in terms of disjoint indices. 1f we use o to stand for
dis joint, the statement that s’ is the same as s except possibly at places listed in M is

written

VitVj(jeM = iej) » s'oi=s8i).

Thus,

(S0 (pre: P} (mod: M) {env:) (post: O} {vars:))

is an abbreviation for

Vs(scS A P (s) » 35’ (s’ ef(s) A Q' (s') A
VidVj(jeM = ieji = s'ei=geill)).

2.7.2 The proof system

The proof system detatled in the next chapter provides the machinery for
deriving new state deltas as theorems using a given set of state deltas as axioms. From
the point of view of a state deica as an abbreviation of a formula involving state vectors

i and transition functions, the basic design of the proof system is simply the following.

When a proof is begun, the SD to be proven 1s given. The precondition of the
SD, P’ (s), is assumed to be true, and the goal is to prove
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A" (s") A VilVjilieM » iej) 9 s'oi=s0i)),

The proof steps that are used in the course of the proof fall into two basic
categories. One category is normal derivation in which formulas are combined using
the normal inference rules to derive additional formulas. The second kind of step is
one which advances the computation. In terms of state vectors, this means that a SD is
used to derive a fact about a future state vector s’. In order to keep the bookkecping
quite simple, a rule is imposed that all of the formulas in the proof must refer to the
same, “current”, state vector. 1hus, when a SD is uscd to derive a fact about a later
state vector, all of the formulas in the proof must be checked for consistency with the
new state vector. T'his checking consists of nothing more than an examination of the
support of the formula to sce if substitution of s’ for s would be valid. If so, the
formula is retaincd. If not, the formula is deleted. Dcletion of facts from the proof
system may result in difficulty in proving a true theorem, but it cannot result in
inconsistency.

T'he fornutlas that are valid when s’ is substituted for s are not actually
manipulated because they do not actually contain occurrences of s. Wherever s would
be expected to occur, "." occurs instead. Thus, "." scrves as a kind of pronoun for the
current state vector, and all forriulas that remain valid when the state is updated from s
to s’ are simply left intact. ‘I'he interpretation of the "."s in the formulas simply
chanjres.

For straiphthine code, all that is required is that a sufficiecnt number of SDs be
apphed to derive the postcondition in the SD being proven. For loops, induction is
required. Normally, this induction will be carried out using the natural numbers, but
any well-founded set may be used. The usual form of a SD) that covers a loop is

Vi>B) (SO (pre: P(i)) (mod: 1) (post: O)).

The postcondition of this SD speafies what the situation is when the loop is
finished, independent of the number of times the loop was executed. The precondition,
however, specifies the situation at the top of the loop in terms of the number of
iterations yet to po. T'he method for dertving this SD is to derive two simpler SDs and
then use standard mathematical induction rules to derive the form above. The simpler
SDs are

(0 (pres £1(B)) (moo. 1 “t: ) and
(Vi (50 (pre: PGi41)) (mod: thh {(post: PLi))).
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The first SI) describes the behavior of the system when no more iterations are left
and serves as the irtial step in the induction. T'he second SD describes the behavior of
the system as it makes one step through the loop and serves as the increment step in the
induction.

2.8 Comparison with «ther formulations

State deltas aie refated to a number of earlicr attempts to formalize the effects of a
computational process, particularly McCarthy's “fluents”, Fikes and Nilsson’ operators in
STRIPS, Foare's axiom system, lgarashi, London and Luckham's "frame axiom”, and
Manna and Waldinger's "intermittent asscrtions”.

2.8.1 Fluents

John McCarthy considered the problem of how to represent chains of reasoning
involving cause and cffect relationships. In his memo entitled "Situations, Actions and
Causal Laws"!'% he introduced the idea of a predicatc which takes a "situation” as an
extra argument. The situation argument plays essentially the same role that the state
vector s plays in the preceding sccticn. McCarthy also introduced @n abbreviation
using a similar device of facioring out the situation argument. Predicates which
implicitly depended upon a situation were called “fluents”.

In McCarthy's formulation, fluents were connccted in sentences either by ordinary
sentential connectives or by a special operator, “cause”. The cause operator is quite close
to the idca of a state delta, but McCarthy ncver made clcar how to keep track of which
fluents referred to which situations. An additional difficulty is no machinery was
provided for removing facts which ceased to be truc.

B3 e memo s reprinted in Semantic Informaton Processing, cdited by Marvin

Minsky, MI'I' Pre<s, Cambridge, Massachusetis, 1968, pp. 410-417. A later paper with P. J.
Hayes titled "Some Philosoplical Problems from the Standpoimi of Arnifieial Iniclhigenee,” in
Machine Intelligence 4, edited by B. Mcltzer and 1). Miclne, American Elsevier Publishing Co.,
Inc., New York, 1969, pp. 463-502.
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28.2 STRIPS

In the context of building a robot which can solve problems such as moving
ob jects from one room to another, Richard Fikes and Nils Nilsson designed the STRIPS
problem-solving sysmm.M In the STRIPS system, actions are represented by operators
which are composed of a precondition, an add list and a delete list. They serve
essentially the same role as our precondition, postcondition and modification list, but the
delete list seems to be structured differently. Elements on the delete list usually specify
which predicates to delete, compared with our formulation of specifying which places no

longer hold the same values and thus searching for all predicates dependent upon the
old information.

That difference aside, the STRIPS operators and the state deltas developed here
are quite similar. I'he biggest difference comes in the application. In the STRIPS
system, the primary focus is how to build a system which will invent programs composed
of the STRIPS operators. In contrast, the work here focuses only on how to represent a
sequence of actions. The invention process is assumed to be a scparate problem.

2.8.3 Hoare’s axiom system

Turning our attention to formulations specifically oriented toward program
verification, we sce that state deltas bear some resemblance to Hoare's systems of
axioms.1" In loare's system, actions are represented as P{S1Q, where P is the
precondition, Q is the postcondition, and S is a segment of program code. Although this
notation is similar to ours and each lends itself to reasoning about sequential code by

simply matching up the postcondition of one predicate with the precondition of the
next, there are several differences.

1. With state deltas, termination is included. There is no possibility that

M Qee "STRIPS: A New Approach to the Application of Theorem Proving to Problem
Solving™, in Artificiol Intclligence, Vol. 2, Nos. 3 and 4, North-Hollawd Publishing Co,,
Amsterdam, 1971, pp. 189-208, and a larer paper by Fikes, Peter Hart and Nilsson, “Learning
and Exceuting Generahized Robot Plans,” in Artificial Intcllepence, Vol. 3, 1972, pp. 251-288.

¢ AR Hoare, “Au Aviomatic Basis for Computer Programming,” Communications
of the ACM, Vol. 12, No. 2, pp. 576-583.



the system will fail to reach state Q. In Hoare's notation, all that is
implied is that if the system finishes the stated computation, then Q
will be truc.

2. With state deltas, the scgment oi propgram exccuted is implicit in the
precondition and is not explicitly listed. No distinction is made
between control and data. In Hoare's notation, the segment of the
program that is executed is hsted explicitly. The flexibility provided
by my notation pecrmits the user to move the boundary between
"control” and "data” whenever he chooses. Morcover, induction over
camputation scquences requires no special rules; normal mathematical
induction may be applied in all circumstances.

w0

With state dcltas, the effects of the computation are bounded by the
list of places modified.

28.4 The frame axiom

In their axiom system for characterizing program behavior, Igarashi, London and
Luckham extend Floare's rules to a variety of syntactic forms found in programming
languages.'® For procedures, a "frame axiom” is introduced. T'he content of their frame
axiom is simply if P is a precdicate which is true before procedure Proc is entered, and if
P and Proc have ro variabl:zs in common, then P will continue to be true when Proc is
exited. T'his axiom provides some leverage for reasoning separately about the part of
the state that has changed during a scgment of computation and the part that has not.
However, the axiom is restricted to procedure calls and is not applicable to bodies of
loops or alternative paths in a conditional statement. At present, 1 don't believe that
any program verification system based on the Floyd-Hoare system makes use of the
frame axiom or anything similar to avoid processing the entire state vector at every
juncture.

16 Shiperu  Iparashy, Ralph Landon and  David  Luckham, "Auiomatic Program
Verification 1: A logical Basis and lis Implementanon,” Acta Informatica, Vol 4, No. 2,
pp. 145-182.
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2.8.5 Intermittent assertions

More recently, Manna and Waldinger have taken an idea presented by Burstall
and constructed the notion of intermittent assertions.!? Intermittent assertions are very
close in spirit to state deltas. For higher level language programs in which the code is
pure and effectively dizjoint from the data, intermittent assertions correspond to state
deltas in which the environment clause points to just the code and the modification list
points to all of the data. Intcrmittent assertions provide the same power to prove
termination as state deltas, but provide no difference in representation of state
information from the usual inductive assertion technique introduced by Floyd.

T'he term “intermittent” refers to a shghtly different point of view about execution
histories. In their treatment of intermittent assertions, the pre- and postconditions are
divided into two parts. One part is a special predicate At which specifies (effectively)
the value of the program counter. The other component is a general predicate that
specifies all of the other relationships that have to hold. Under this dichotomy, Manna
and Waldinger take the point of view that the general predicate holds sometimes when
the program counter has the right value. Accordingly, they say "if at sometime when
the program is at L P is true, then sometime the program will be at Lo and Q will be
true.” This is fully equivalent with our formulation. For most applications, the general
predicate associated with a particular place will always be true when control reaches that
point. However, in some apphcations, different predicates will be true at different times
when control reaches the same point in the program. This latter concept is just as easily
expressed in the state delta formulation as it is in intermittent assertions, although the
point is emphasized more clearly with intermittent assertions.

17

Bnr<rall’s paper is "Propvam Proving as Hand Simulation with a Litle Induction,”
published w Information Processing 1974, Proceedings of the IfF IP Congress,North-Holland
Publishing  Ce, Awmsterdamn, pp. 308-312.  Zohar Manna and Richard Waldinger’s paper
trodnees the tevin "miermittent assertions” and will appear wn the Communiecations of the
ACM, with the 1ile "ls "Somenime’ Sometimes Better than *Always’? Intermittent Asscrtions in

"roving Program Correciness”.
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3. The Proof System

We are now ready to look at the complete structure of the proof system. The
purpose of the proof system is to check proofs about the operation of programs or pieces
of programs. Statements about the operation of a program are expressed as state deltas,
and we can assume that all theorems to be proven arc in this form. Since state deltas
degenerate into normal conditionals when the mod and env clauses are empty and all of
the predicates in the pre- and postconditions are support-free, the proof system contains
all the power of a standard proof system for first-order predicate calculus'® and could
be used for that purpose. However, most of the machinery in this system is geared to
the proof of SDs, and we can assume that it is used only to prove SDs.

The general method of proving things is to enter a series of hypotheses into the
proof system which define the machine, list the code and define the initial state, and
then to enter a scries of commands which advance the state of the machine until the
final state is reached. Other actions are required for case analysis and induction
through loops.

The proof system is divided into two main sections, a checker and a proposer.
The checker maintains a symbolic shapshot of the state of the machine, augmented by
various theorems and declarations. The checker is driven entirely by commands it
receives from the proposer. The checker examines each command to see if it is well-
formed and applicable to the current state. If the command is well-formed and
applicable, the checker executes the command by updating its internal state. The only
direct output from the checker is a signal back to the proposer indicating whether or not
the command worked. However, the checker’s lists of known theorems and state
information is accessible to the proposer for examination.

The role of the proposer is to suggest reasonable next preof steps. It may do so
based on heuristics, by asking the user or by reading a prepared proof from a file.
Regardless of where the proof steps originate, the proposer scnds exch step to the
checker to cause the checker to update its internal state.

At the moment, the proposer contains no heuristics. Thus it is simply a small

1841 the precondition is also cmpty, the SD is cquivalent to the conjunction of the

predicates in the posicondition, with whatever quantification is required in the vars clause.
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executive routine for obtaining information from the user and/or pulling in prepared
proofs from files. Possible extensions to the proposer are discussed in chapter six.

The checker is recurstve. During any proof, a new subproof may be started.
When that subproof is complete, the newly proven SD is added to the list of known
thcotems in the original proof.

3.1 Contexts

Within a subproof, the internal state of the checker is called a context. The
primary components of a context are a list of predicates which describe the current state
of the machine, a list of names which are "in use”, either as place names, as variables, or
both, and a map of the overlap relationships among the various places. Two other lists
of places play an important role in connecting lower level contexts to higher level
contexts. They are the hst of places which may be modified and the environment list.

A ncw context is created when a new subproof is begun and is destroyed when
the subproof 15 complcte. Many of the components of the context are initialized to the
current value of the corresponding conponent of the superior subproof. In principle,
the new context’s components are copies of the old context's components, However, one
of the goals in the design of the syste:n is to munimize the copying of constant
information, and with one exception the initial values for the new context are formed
simply by setting up a pointer to the current value in the upper context. The exception
will emerge in the discussion below.

3.1.1 USABLE

The most important component of a context is the list of accessible predicates.
This list is called USABLE. Conceptually, four different kinds of predicates cohabit this
list:

1. state predicates
Fhese predicates constrain the values stored in the places. Since the machine state

must satuisfy all of these predicates, their conjunction is the current state
description.
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2. state deltas

These predicates describe what changes to the state may take place by forward
execution of the machine. The precondition of the SD determines when the SD is
applicable, so the mere appearance of the SD on USABLE does not guarantee that
the SD will ever be useful.

3 place relationships

These predicates relate sets of places to each other. The key relationships of
interest are that two or more places are disjoint from each other and that a set of
places is a dccomposition of another place. These two relationships are
summarized in the predicate

(Covering Pg <Py ... Py>)

which states that Py ... P, are pairwise disjoint and that each is contained in
Pg. Place relationships are also stored in the place graph, described below.

4. general facts

Definitions of basic terms and various lemmas are often needed in the course of a
proof. These predicates are not specific to the state of the machine, or even to the
notion of computation. For example, the definition of factorial or the definition
of ordered fall into this catcgory.

Since any two predicates on this list may be combined to form a con junction, these
categories are not rigorous. klowever, the proof system does not try to classify the
predicates according to these categories. Each command executed by the checker has its
own criterion for applicability.

All predicates on USABLE are cross-referenced according: to the places they depend
upon. The purpose of the cross-referencing is to be able to find and delete any
predicate which depends upon a place which has been modified (or is assumed to have
been modified.)

The mechanism for cross-referencing the predicates is the following. Whenever a
predicate is added to the USABLE, it is analyzed syntactically to determine the list of
places which support it. The intent is that a predicate should be left on the list until
the value stored in a supporting place is changed. For example .A=8 is supported by A
and .A+.B: @ is supported by A and B. The precise rule for computing support for a
predicate was discussed in chapter two.
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After computing the support of a predicate which 15 to be added to USABLE, the
predicate is added to USABLE and it is also added to the predicate list of every one of

the places in its support. ‘T'he predicate hsts are part of the graph structure maintained
for places.

USABLE is implemented as a list of predicate records.!? Each predicate record has
a flag, exp, env and placelist component. The exp component is the actual
predicate. placelist is the list of supporting places. flag and env are explained
below. The initial value of USABLE is a sclecced subset of the predicates on the copy of
USABLE in the superior context, augmented by the precondition of the SD to be proven.
The details of the selection process are riscussed below.

3.1.2 FREE

FREE is the set of variable names which appear free in formulas in the proof.20
When a new subproof is started, any variables in the vars clause of the SD to be proven
are added to FREE. (T'hey must not appcear there beforehand, of course) Similarly,

when a new variable name is assigned to a value through the InstantiateContents
command, that name is adaed to FREE.

3.1.3 Places

Onc of the goals of this system is to provide an efficient mecthod for treating
ahasing and overlap among places. In contrast to most verification systems, we do not
assume that diffcrent place names refer to diiferent piaces. However, most place names
do, in fact, refer to different places, so we nced a way of determining the clash (or
potential clash) among place names reasonably efficiently.

19 “Record™ is a data siructurc n Inmterhsp.  Records have a f{ixed number of

componcnls, accessthle hy fickl names. Fach componcnt may be accessed andfor modified
scparately.

9 " "
AL PRFTI chapter, "FREE” refers only to a component of the context of a subproof and
1< completely unrelated to the IMP code. 1 apologize for the confusion.
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The place system maintains a database of relations among the various place
names and is consulted whenever the checker necds to know all possible overlaps among
a set of names. I'he place system is also consulted whenever it is necessary to check that
a sct of place names refers to completely dis joint places.

The key data structure in the place system is the place graph. The place graph
contains two types of nodes, place nodes and family nodes. Place nodes are connected
only to family nodes and family nodes are connected only to place nodes. The arcs are
directed and the graph is acyclic, so the notions of "up” and "down” are well defined.
Each family node contains exactly one arc going up to a place node, but may contain
any number (but at least one) of arcs geing down to a place node. Place nodes may
have any number of arcs going in either direction, including none.2!

The place graph encodes relationships of the form
(Covering Pg <Py ... Fy>)

A relationship of this kind is a family and is encoded as a single family node in the
place graph. Pp is called the mother of the family and cach of the P are daughters.

Fach place node is implemented as a record with the following components:

names The names of the places associated with this place
node. Multiple names are synonyms.

fiag A space for marking whether this node has been seen
during a traversal. In between calls to the plaze
system, the flag is NIL.

motherfamilies A hst of family nodes in which tnis place node is a
daughter.

daughterfamilies A hst of family nodes in which this place node is the
mother.

21 Phe wea of using twa 1ypes of noldes in 1he place graph s due to Dave Wile. Prior

to his sugpestion, | had been sirupghng with a graph siructure with only place nodes and
connections among the nodes n the fonn of hsis of hsts. Afier switching to explicit
representation of the families, the traversing algorinhms became elear. Sinee the traversing
alporithms make use of the family nodes as mare 1than smple hsis of hsts, exphiant

representation of the farmly nades was a ennical step in formulaning the wleas.
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predlist The list of predicates (in all contexts) which are
supported by this place.

Each family node is implemented as a record with the following components:

ftag A space for marking whether this node has been seen
during a traversal. In between calls to the place
system, the flag is NIL.

motherplace The place node for the mother of this family.

daughterplaces A list of the place nodes for the daughters in the
family.

3.1.4 MOL and SUFPPRESS

When a subproof is begun, one of the parameters supplied is a list of places
which may te modified during the course of the proof. This list is accessible during the
proof as Ml Commands which attemp. to modify the contents of a place first check
MO0O. Wher tae subproof is complete, MOD becomes the mod clause in the proven SD.

When a subpioof 1s started, the predicates that are accessible in the new context
miclude a sibiet of the predicates from the higher context. If these predicates are
constant for th: hfe of the subproof, no copying is required and they may be accessed
directly. Hov cver, predicates which are attached to places that may be modified must
be moved ou’ oi' the way and restored when the subproof is complete; this applies to all
predicates attached to modifiable places irrespective of whethier these predicates will be
used at the lowr level

The prohcacs are moved out of the way by adding them to a list cailed
SUFPPRESS. Wh n the subpioof is complete, the predicates on SUPPRESS are put back
onto USABLE. In the current implemsentation, predicates are not physically removed from
USABLE during this process; a flag attached to the predicate is sct to mark it as
unavailable. W\ enr the subproof is finished, tiie flag is reset. 1'his mechanism was
adopted to permy' he proposer to kecp pomters into the hst of accessible predicates;
when the “supprosted” flag is sct, routines in the proposcr would know that that
predicate 1s not a tually available, although 1t will be available later when the prior
context is restorcd i he proposer does not yet take advantage of this capaiility.
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3 1B ENV

In addition to the hst of places which may be modificd, another list of places is
also supplied when a subproof is begun and maintained during the proof as ENV. ENV
is a list of places whose values arc brought down from the immediately superior context
and made available in thc ncw context. Since values are represented only by the
predicates on USABLE which reference them, "bringing down the values” translates into
bringing down the predicates whose support is entirely contained within ENV. Predicates
whose support is partly but not wholly within ENV are not brought down. Note that
predicates which do not depend upon any place are always brought down, even when
ENY is nuil.

If ENV and MOD are disjoint, predicates on USABLE in the superior tontext whose
support is entircly contained within th~ places on ENY are not actually copied to the new
context. Whenever iney arc referenced, the place system is called to see that the higher
level predicates are legally visible in the lower context.

If ENV and MOD intersect, predicates whose support is entirely contained within ENV
and whose support is at Icast partially within M0D are actually copied to the new context
and the flag component of the original copy of the predicate is set to T to mark the
predicate as inaccessible. When the subproof is complete, the flag is reset to NIL, and
the predicate becomes accessible ir its owiv coniext again.

Further details of the algo ithms which bring down predicates according to ENV
are given below.

When complete, the ENY becomes the env clause of the returned SD.

3.1.6 Ancillary components

Two additional components complete the implementation of a context. SOGOAL
holds a cop:y of thic entire SD to be proven and GUAL holds a copy of the postcondition
of the SD to be proven. SUGOAL is not referenced during the course of the subproof.
When the subproof is complcte, the SD that is added to the superior context comes from
SNGOAL.

GOAL is used only thghtly during a subproof. When the Close command is
cxecuted, USABLE is examin~d to sce if the postenndition stored in GOAL is currently true.
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At some future point, it is contemplated that the proposcr may be able to make use of
GOAL to determine which command to send to the checker.

3.2 The checker

Commands from the proposer fall into five main classes: opening or closing
subproofs, advancing the computation, adding new place relationships, combining
aspects of the current state, adding definitions of new terms.

The checker is divided into three subcomponents, the kernel. the place system and
the simplificr. The kernel receives the commands from the proposer, checks each one
for applicability and makes the appropriate changes to the context. Whenever one of
these actions requires knowledge of the relationships among the places, the place system
is consulted. Whenever a new predicate is added to the state description or whenever
the kernel neceds to know if a predicate is true, the simplificr tries to reduce the
predicate.

The remainder of this section describes the commands currently implemented.
For each command, there is a scries o conditions which are checked before any action is
taken. If the command is not recognized or if onc of the checks fails, no action is taken
and the kernel returns NIL. If the check: succeed, the context is modified (or created or
destroyed) according to the rules given below. The kernel then returns with a non-NIL
response.

3.2.1 Opening and closing subproofs

A new subproof is initiated by the (Open pre mod env post vars) command,
where pre, mod, env, post, and vars are the components of the new SD to be proven.

The variables in the vars clause must not be in use, i, none of them may be
members of FHEE. The places in mod must all be registered in the place system. If
cither of these checks fails, no action is taken and NIL is returned.

After these checks are passed, a new context is created.

The old value of FHEF is saved and then FREF is augmented with the variables in

vars.
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The old value ef M0D is saved and then MOD is set to mod.

The old values of SUPPRESS and USABLE arc saved and then SUPPRESS is set to
NIL.

ENV is augmented by env and this new valuc is put at the top of ESTACK.
(OMEGA) is ther. pushed onto ESTACK.

All predicates which are supported by any of the places listed in mod or by places
which ovearlap with mod are added to SUPPRESS and marked as suppressed.

Predicates on SUPPRESS whose support is entirely contained within the
environment are added to USABLE.

Predicates in pre are also added to USABLE.

A copy of the pre mod env post and vars clauses is kept in SDGOAL.

Finally, PushP laceSys is called to prepare the place system for new declarations.
A subproof is terminated by the (Close) command. The only check is whether

| the predicates in the pre clause in the corresponding Open command are all on USABLE.
f If they are, the old context is restored and the new SD is added to it.

3.2.2 Advancing the computation

Only one rule is implemented for advancing the computation, (AppliylnstSO patt
varlisti. ApplylnstSD instantiates a SD on USABLE and applies it to the current state.
patt is an Interhsp pattern which is matched against USABLE to find a SD to apply. See
chapter five for examples of patterns.

varlist is a list of variables and terms in property list format. The terms are to be
i substituted for the variables.

Several checks are made before taking any action.
patt must match a SD on USABLE.

varlist must match the vars component of the SD.
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All of the substitutions must be proper.

The mod component of the SD must be entirely contained within M0D.

All of the predicates in the precondition must be on USABLE.

If alt of these checks succeed, predicates supported by places which overlap with
the mod list of the SD are deleted from USABLE and then the predicates in the
postcondition are added.

3.2.3 Entering new placenames

Three commands are available for adding new names to the place system.
(Ncullecomposi tion (Covering ...)) adds a family to the place graph when the
mother place is alrcady repistered and the daughter places are not. Each of the
daughters is added to the hst of all registered places and a family node and a set of
place nodes are added to the place graph. The whole relationship is also added to
another list to keep track of what additions to the place graph have taken place during
this subproof. When the subproof is complete and has been closed, these relationships
are deleted and the place syster is restored to its previous state.

(NenComposition (Covering ...)) also adds a family to the place graph. In
this case, however, the daughtcrs must all be registered and the mother must not be.
While the Neullecomposition command requires that the Covering relationship be
accessible  within the current context, the requirements for the NewComposition
command arec somewhat suffer. All of the daughters histed in the covering relationship
must be known to be disjornt within the place system. The place system is very
conservative about disjointness, and it can happen that a set of places can be proven to
be disjoint by manipulation of the {Covering ...} predicates within the proof system,
while the algorithms of the place system declare that overlap is possible. For example, if
(Covering A <00 C>) and (Covering A <0 E>) are two relationships that have been
entered into the place system using the Newlecomposition rule, the place system will
assume that B and C cach overlap with D and E. At a later time, it may be discovered
that B and U are equal and that C and E are equal, thus climinating two of the four
possible overlaps. ‘I'lic place system, however, cannot accept this information and is
committed to believing that all of the overlaps are possible. The reason for this
restriction hes 1n the representation used in the place graph. The place graph consists
of a set of connections among the places. The alporithms which search the graph are
based on the idea that if another place is reached at any time during a scarch, then that
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place may overlap with the original place. Adding new links to the graph could only
have the effect of showing that places not previously thought to overlap actually do
overlap.  Since this particular kind of change implies that predicates which were
retained during a computation should have becn deleted, even this change is ruled out.
Iu summary, once the place system registers a place, the relationships of that place with
all other currently registered places is fixed. NewComposition, therefore, must check
that all of the daughters are known by the place system to be disjoint.

The last command to enter new place namcs is (EnterSynonym Py P5). Py must
already be repistered and Po must be new. The name P is simply added to the list of
names in Py’s node. In an carhier implementation, this facility was not provided. As a
consequence, equality relationships were represented in terms of one place covering the
other. At certain points in the proof, it became necessary to show that one of the points
covered the other, while at other times it was necessary to show the reverse. The
structure of the place graph forced an ordering between the places and prevented
demonstration that each covered the other.

3.2.4 Normal derivations

The commands in tius scction derive consequences from the predicates in the
current context. The computation is not advanced and the place graph is not affected.
Except in the case of the Substitute command, predicates added to the current context
are simphfied according to the following rules in the next section:

(CombincCases patty patt,) takes two SDs and combines them into a single SD.
The pre- and postconditions of the new SI) are the disjunctions of the pre- and
postconditions, respectively, of the two existing SDs. The modification and
environment lists are the unions of the modification and environment lists,
respectively of the two existing SDs. T'he vars hist of the existing SDs must be
cempty.

(InstantiatcContents placename variable) adds . placename=variable to the
current context provided variable is new.

(ForSome varslist pred substlist) adds (FS varstist pred) to the current context
provided there is a predicate already in the current context which is equal to the
result of substituting the terms in substlist for the variables in varslist. All of the
substitutions must be proper. substlist is in property hist format.




(Substitute ncw old patt) locates both a predicate which matches patt and the
predicate new=old. ‘I'he term new 1s then substituted for old in the predicate
matching part and the result added to the current context without simplification.
The old predicate is not deleted.

(Simpletval patt) forces the predicate located by patt back through the
simplification routines. The most common use for this command is reprocess an
if-then-else expression after the “if* part has been specified.

{SwapDOTSEL exp patt) substitutes an expression of the form (SEL (DOT a) b)
for an expression of the form (U0OT (SEL a b)) and then simplifies. exp
must be an expression of the form (00T (SCL a b)) appearing in a predicate in
the current context located by part. The substitution of (SEL (00T a) b) usually
makes it possible to evaluate the term completely.

{Swapl0Teccathru exp part) is similar to SuapDOTSEL except that exp must be an
expression of the form (00T (segthru a b)) and it is replaced by (segthru
(007 a) b).

{Overlimit exp patt) examines exp to sce if it can be shown to be zero. If so,
all occurrences of exp 1n the predicate located by patt are replaced by zero. exp
must be of the form (SEL expl n), where n is an integer and the current context
has knowledge that expl is less than 2"

{Underlimit exp patt) expects exp to be of the form (segthru expl n), where
n is an intcger. If the current context contains knowledge that expl is less than
2", then expl is substituted for exp in the predicate located by part.

{(Makeindexof exp patt) looks for (EQ ¢ (SEL a exf)) or (EQ (SEL a exp) c¢)
in the current context. If cither form is found, (inde>of ¢ a) is substituted for
exp in the predicate tocated by patt.

{Derive exp) simphfies exp and adds it to the current context. This command
directly violates the integrity of the proofchecker, since no checking is performed
to make sure that exp 15 derivable from the other predicates in the current
context. This command is used as a temporary expedient to skip over derivations
that are not yet supported by the proof system but appear (to the user) to be
sound. Naturally, proofs containing Uerive commands are not considered
complete.
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3.2.5 Simplification

As noted above, except in the case of the Substitute command, before a
predicate is added to the current context, it is simplified. The simplification rules
currently in use are the following.

If a form is atomic, no further simplification is attempted.

If a form is not atomic, its arguments are simplified before an attempt is made to
simplify the form itself.

If the form is headed by an arithmetic operator and the (simplified) arguments
are numbers instead of symbolic expressions, the indicated arithmetic is
performed.

If the form is headed by SEL, segthru or segfrom and if the arguments are
numbers, the indicated operation is performed. If the first argument is of the
form ([OT x), the DOT is moved to the outside and the form is returned; pushing
the DOT to the outside minimizes the support.

In some cases involving application of two selection operators, it is apparent that
one of them is redundant. The cases that are implemented are

(SEL (scgthru x y) 2} => (SEL x 2}, if z<y;

{scgthru (scgthru x y) z) «> (segthru x u), whereuw = minl(y,z).

If the form is headed by DOT, an attempt is made to evaluate it by looking in the
current context. If this fails, but the argument is headed by SEL, segthru or
scgfrom, this operator and the DOT are commuted and the current context is
again consulted. This process is designed to evaluate forms such as (00T (SEL
GFREE 15)) when the current context is holding a value for all of GFREE but not
explicitly for GFREE=15. When the process of pushing the 00T in and looking up
a value has completed, the resulting form, whether or not an evaluation has been
successful, is resimplified in accordance with the above rules for SEL, segthru
3 and secqgfrom. For forms which were not evaluated, and thus were left with an
: embedded DOT, resimphfication results in the DOT being moved back out. For
forms which were evaluated, resimplfication selects out the component of interest.

"1{" statements are simplfied if the antecedent can be simplified to either T or
NIL.
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Arrayex/Array is simplified to just <. Similarly, Arraye(Place/Array) is
simplified to just Place. Note that in the first case, x is a selector into the list
Array, while in the second case, Place is a placename.

3.2.6 Definition of new terms

The last sct of commands provide a way of introducing new predicates to the
proofchecker. Two commands are provided, one for introducing the syntax of the new
predicate and onc for introducing the definition. 1f the predicate has only a prefix
form and no syntactic extension is required, no command is required for the syntax.

The command for introducing new syntax has the following format.

(DefineSuntax newpred (NEWISWORD ’ (full English singular form)
" (partial English plural form)
"Uprefix form)

"(variables)))

NEMISWORD is a CLISP function and the body of this command is simply
executed. The details on the executicn of NEWISWORD are contained in the Interlisp
manual. Examples of how this command is used are contained in chapter five.

The command for definiug the semantics of a new predicate is

(OefincOperator newpred definition support-rule).

The support-rule is a pattern used for computing support of forms involving the
new predicate. In principle, the support-rule should be checked in accordance with the

discussion in chapter two. At present, however, this requirement is not implemented.
Fxamples of the use of this command are also contained in chapter five.

3.3 The place system

The place system is a more or less self-contained set of routines which are called
from the kernel at various points in the execution of a command.




391 FindPlaceNode

£ ndPlaceNode is the function which translates a place name into a place node.
If a simple place name is not registered, NIL is returned. If FindP!aceNode is given «
subscripted place name, a pointer to the node corresponding to the smallest registered
component is returned. 1f the base name is not registered, NIL is returned.

Place names are added to the hash table by the kernel commands
NewComposi tion, NewDecomposi tion and EnterSynonum. A record is kept of each of
the actions which causes names to be added to the place list and nodes to be added to
the place graph, and all of the actions carried out during the course of a subproof are
undone when the subproof is closed. This is a mechanism for permitting names and
their overlap relationships to exist just within the scope of a subproof (and its
subproofs). PushPlaceSys is the routine called by the kernel when a subproof is begun;
PosP 1 aceSys is called when the subproof i complete.

3,82 Traversing algorithms

(FindAffectedPlaces placelist) returns a list of all of the place nodes which
are not guaranteed to be disjoint from the places listed (by name) in placelist.
FindAffectedPlaces is called during execution of the ApplylnstSD.

(MarkP p fprime), (MarkFM f) and (MarkFD f) are the basic graph
traversing functions.

In a call to MarkP, p is a pointer to place node and fprime is a pointer to the
family node, if any, from which p is being reached. MarkP checks flag in the place
node. If fiag is not NIL, this place node has been visited already and no further
action is taken except to set CONFLICTFLAG to T. (CONFLICTFLAG is checked by
Al1Disjointp; sce below.)

If f1ag is NIL, it is set to T, the place node is added to MARKEDPLACES, MarkFM is
called for each of the families listed in mother fami | ies and MarkFD is called for each
of the families listed in daughterfamilies, except that the family fprime is exempted
from exploration.

MarkFM is called from MarkP with a pointer to a family which contains the place
node as a daughter. MarkFM checks flag in the family node. If the flag is already set,
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no further processimg takes place. 1f flag 1s not aheady set, it is now set and (MarkP
f:motherpiace f) is called to explore the mother of the family and her relatives. The
inclusion of f in the caling sequence to MarkP prevents MarkP from attempting to re-
explore the graph through this family. f is also added to the MARKEDFAMLIES list for
use by UnMark in erasing all of the flags.

MarkFD is called from MarkP with a pointer to a family which contains the place
node as a muther Harkbl checks €lag in the family node and terminates if it s
already set. If flag is not alrcady set, it 1s set now and f is added to MARKEDPLACES.
MarkP is called for each of the places listed in the daughterplaces component of the
fanmily. MarkP is prevented from re-exploring this family by including f in the czll to
MarkP.

(Al IDisjointp placelist) is used by NenComposition to check if all of the
places listed (by name) in placelist are known to be disjoint.22 AlIDisjointp is
implemented by sctting CONFLICTFLAG to NIL, calling MarkP for cach of the place nodes
corresponding to a place listed in placelist, and returning the value of
CONFLICTFLAG. UnMark is called after the graph is traversed to erase all of the flags
that had been set.

{EntirelyContainedinp subplacenodes superplacenodes) checks to see if
each of the places histed in subplacesnodes is a subplace of at least one of the places
listed in superplacenames. EntirelyContainedinp operates by sctting flag in each
place node corresponding to a place named in superplacenames and then calling
Containedinp for each of the nodes listed in subplacenodes. Containedinp explores
every upward path either until 1t encounters a marked place node or until all paths
have been exhausted. 1f a marked place is cncountered, Containedinp returns T;
otherwise it returns NIL. EntireluContainedinp returns T if cach of its calls to
Containedp returned T; otherwise it returns NIL.

EntirelyContainedinp is called to determine if the support for a particular
piredicate is cntirely within the set of places which form the environment for the
subproof which is immediately subordinate to the proof in which the predicate was
created.  If so, the predicate is considered "visible” and is available for use in all
subordinate subproofs.

9 : . . . . .
22 Afrer 1 fiva coded Alihisjoinip, | re-examined NewComposition and revised it to

reqainre anly a Covening predicate similar 10 NewDecomposition.  Later, 1 discovered
Mihisjointp was not used anywhere. | let the matter se1 for a while. Rod Burstall caine by and
examined the gpraph structure. As the result of that discussion, 1 re-cxamined the algorithms
in 1he place system, and 1 discovered that 1 had erred in the implementation of the

NewComposition and that Alldisjoimip was required as described earher.
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4. A Slice of thec IMP Code

While the whole of the IMP ccde was considered in formulating the theory and
building the system, only 2 small slice of the code was examined in detail. This code is
central to the operation of the IMP and posed a large number of theoretical problems.
Solving these problems took us much further than I anticipated. While 1 have not
pushed any other sections of the code through the system, I believe that the existing
theory and system are sufficient to support proof of much of the rest of the code.

This chapter covers just the slice of code, including a description of the hardware
and an overview of the ARPANET. In chapter five, we will return to this code and
show its complete proof through the system.

4.1 The ARPANET

The ARPANET is a communication system which connects a number of "host”
computers. These host computers send messages to each other through the ARPANET.
The ARPANET is implemented as a connected set of IMPs and telephone lines. The
IMPs are small computers, predominantly Honeywell 316s, located next to the various
hosts. Each host is connected to a single IMP, but one IMP may be connected to more
than one host. The IMPs are connected to each other through leased, non-switched
telephone lines, usually capable of carrying 50 kilobits per second.

Hosts send messages to other hosts by transmitting each message to its local IMP.
Messages are limited to about 8000 bits and begin with a leader which includes the
address of the destination host.

The sole role of the IMPs is to move messages between hosts. To accomplish this,
messages are broken into smaller units, called packets, and the packets are sent from
IMP to IMP until reaching the IMP connected to the destination host. Packets are no
longer than about 1000 bits. Messages are subdivided into packets solely for efficiency
reasons which are not relevant to the present discussion.

The program within the IMP consists of scveral interrupt-driven processes.
When a packet arrives from another IMP or a message arrives from a host, the modem-
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to-IMP process or the Host-to-IMP process is started to read the packet or message.
Messages are broken into packets as they are read in, so we may view the input from
the host as just a sequence of numbered packets.

Space for packets is allocated dynamically as needed. There is a fixed number of
packet buffers, cach capable of holding exactly one packet. Packet buffers are attached
to various queues using standard list processing techniques. A packet remains in the
packet buffer it was read into until it is transmitted out to another IMP or a host;
packets are never copied from one place in core to another.

There is a fixed number of queues in the program: one for each output port, one
for packets waiting for routing, the free packetbuffer queue. Every packetbuffer is on
just one of these queues or is serving as an input buffer for one of the input ports.
Collectively, the queues and the input buffers always account for all of the buffers in
the system. T'he complete set of buffers is determined at assembly time.

4.2 The 316

The Honeywell 316 is a onc address, 16-bit minicomputer. In the standard
configuration, the memory may have 16K words of 16 bits, thus requiring 14 bits to
address each word.

The CPU has a single general purpose register (A) and a program counter (PC).
Word 2¢ro of memory acts as the index register.

All instructions are one word long, and have one of two formats. Instructions
which reference memory have the following format (bit 0 is the least significant bit):

Bit 15 lndirect addressing flag

it 14 Indexing flag

Bits 13-18 Oneration code (not equal to zero)
Bit 9 Page flag

Bits 8-08 Address field

Because only nine bits are provided in the address field, an instruction cannot
address all of memory directly. If the page flag is zero, the addvzss field holds an
absolute address and thus refers to a cell in the first 512 words of memory.

If the page flag is one, the address field holds a local address and thus refers to a
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cell in the same 512 word page as the instruction, i.e, the high-order 5 bits are the same
as the location of the instruction. '

If the index flag is set, the contents of cell zero is added to the direct address
calculated above.

If the indirect flag is set, the address is used as the location of another address.
In the new address word, bit 15 is again the indirect flag, bit 14 is the index flag and
bits 13-0 are a full 14 bit direct address. Indirect addressing continues until an address
word is encountered with the indirect flag sat to zero. Indexing is applied at every step
if the index flag is on.

Instructions which do not reference memory are no-address instructions. Bits 13-
10 of these instructions are zero and the other bits form an extended operation code.

T'he specific instructions of concern are the following:

4.2.1 No-address instructions

Clear A register (CHA): 14808480
The effect of this instruction is to set all sixteen bits of the A register to zero.

Skip Not Zero (SNZ); 1818400

This instruction tests the A register. 1f any of the bits are 1, the next instruction is

T T e T

skipped. If the A register holds zero, the next instruction is executed.
E
- 4.2.2 Memory referencing instructions
3
Jump (JMP)}; opcode « 1
4 T his instruction transfers control to the effective address.

Store A register (STA); opcode = 4

The contents of the A register are copied into the referenced memory location.
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Increment and <kip (iRS): opcode = 18Q

i'he value in the roferenced memory location is increased by 1 (modulo ‘2'6). If
the result is zero, the next instruction is skipped.

Interchange ftlemory an< A register (IMA); opcode = 110

This instruction exchanges the contents of the A register with contents of the cell
referenced in memoty.

43 GFREE

: We now come to a specific section of code, GFREE. GFREE is called by an input
] process to allocate a buffer from the free packet buffer queue. Two returns are possible,
F one indicating success and the other indicating that no frec buffers existed.
Location Contents  Label Source Code Comments
818511 GFREET: B5S 1 /LAST BUFFER USED |
elesl2  eoneos GFREE: ] /GET A FREE BUFFER
818513 140840 CRA
eresia 126277 IMA FREE 1 /CLEAR CHAIN PTR
81a51S 101848 SNZ
g18L16 183512 JIP GFREE ] /NO BUFFERS, NO SKIP :
8ieL17 08’4500 IRS NFS /KEEP COUNT
e1e528  ar’R277 IMA FREF /UPDATE FREE LIST
818,21  Bl11511 STA GFREET /LEAVE A CLUE
818L22 8295612 IRS GHREE /SK1P=SUCCESS
218523 103512 JHP GFREE 1
E

Futry 18 via a subroutine call instruction which leaves its return address in GFREE
and transfers control to the cell after GFREF, 185130. If no buffers are available, the
tcturn does not skip. If successful, the return skips one instruction and the A register
contains a pornter to the allocated buffer.

m—

The free hist consists of packetbuffers whose first words are strung together in a
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pointer chain. T'he last packet buffer header points to a word which contains 0. (This
is not the same as having the last element point to 0.) FREE points tc the first packet
buffer if there is one, or to the dummy packet buffer if the list is empty. No packet
buffer begins at word 0.

NEA and NFS contain counters. NFA is incremented whenever a packet is put onto
the free hist, and NtS is incremented whenever a packet is taken off. The difference
between the coitents of NFA and NFS gives the actual number of packets on the free list
at any time, except in the middle of routines which change them.

As a convenience to one of the callers of GFREE, GFREET also contains a pointer
to the allocated buffer if successful.

It is intended that NFS never be incremented up to 0 (thus causing the second 1MA
to be skipped). The mechanism for preventing this is a background program which
periodically stores the difference between the contents of NFA and NFS in NFA, and sets
NFS to 0. This routine inhibiis interrupts when it does this. Correct operation of this
routine is thus timing-dependent. We will avoid this problem by explicitly assuming
that the contents of Nf S be less than 1777770 when GFREE is entered.

The places which can be modified are PC, A, GFREE, GFREET, NFS, FREE,
ZERO and the first word of the first packetbuffer. There are also internal registers
which are modified. If we let QO stand for the internal registers and X stand for the
whole packetbuffer list which begins at FREE, we can say that nothing outside of the list
Q, PC, A, GIREF, GFREET, FREE, ZERO and X is modified.

The final IRS mwust not skip. It could only skip if the caling location were
177776Q, so that 1777770 would be stored into GFREE upon entry. Addresses in this
range would require a 64IC address space - far more than the machine has.
Conscquently, the final IRS cannot skip if GFREE actually holds a legal address.

4.4 Specification of GFREE

Lefore we can contemplate proving the correctness of GFREE, we need a clear
statement of the intcnded effect of GFREE. One straightforward way to write down the
intended effect is to compare the state of the machine before GFREE 1s entered with the
statc after it has been executed.

The conditions that are assumed to hold before GFREE i1s entered are the
following:
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Bi.

B2.

B3

B1.

The program counter holds 185130,

GFREE holds a rcturn address ra, and ra is strictly less than 37777Q;

The code listed above has not be 1 modified,;

The frec packetbuffer list is well-formed, a concept we will expand below,
NFS holds a value nfs which is strictly less than 177770

Tle condittions that are assined to hold after GFREE has been executed

depending upon whether there were any packetbuffers available on the free
packetbuffer list. If there were not, the following conditions are expected:

AZ1.

A72.

AZ3.

A7A.

ANI.

AN?.

AN3

AN4.

AN

ANG.

The program counter holds ra,
The code listed above has not been modified;
The frec packetbuffer list is still well-formed but empty,

NFS still holds nfs,

. Only the places listed in item 7 above may have becn modified. This restriction

is onc-sided. It means places not listed have not been modified. It does rot
g arantec that listed places were modified.

If there was a packetbuffer available, we expect the following conditions to hold:
The program counter holds ra+1;
The code listed above has not becn modified;

The free packetbuffer list is still well-formed and accounts for all but one of the
packctbuffers in the original hist,

The A repister and GFREET hold a pointer to the other packetbuffer,
NFS holds nfs41.
Only places listed in item 7 may have been modified.

Packetbuffers are packetlength words long and the entire set of possible
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packetbuffers is determined at assembly time. Bufferspace is the name of that set.
None of the packetbuffers begin at word zcro in memory. Bufferspace is separate
from the code, NFS, GFREE, GFREET, NFS, FREE and ZERQ.

A packetbuf fer list is a finite scquence of packetbuffers with the first word of all
but the last packetbuffer holding the address of the first word of the next packetbuffer
and the last packetbuffer holding a pointer to a word which contains 0. By convention,
this word is the ccll ZERO.

A slightly more precise way to characterize packetbuffer lists is the following: X is
a packetbuffer list beginning at y if X is a zero-length sequence and y is the address of
ZERO or X is a sequence whose length is not zero, the first element of X is a packetbuffer,
y is the address of the first word of that packetbuffer and the rest of X is a packetbuffer
list beginning at the address contained in the first word in the first packet buffer in X.
The list of free packetbuffers is the packctbuffer list beginning at the address contained
in FREE.

4.5 Iuformal proof of the correctuess of GFREE

We are now ready to look at the reasons why we beheve GFREE performs correctly.
Our goal is to show that if the initial conditions Bl through B5 are true at some time,
then execution of GFREE lcads to either AZ1 through AZb5 or ANI1 through ANG6. Our
technique for achieving this goal is to display the state of the machine, and then step
through the program updating the display. This technique is generally called symbolic
execution.

We clearly nced to display current values for the program counter (PC), A,
GFREE, GFREET, NFS, FREE and the frec packetbuffer list. The free packetbuffer list
presents a problem because we don’t know exactly what words in memory are involved.
However, we can divide the analysis into two cascs, one for an empty list and one for a
non-empty list. In both cases the iist is represented symbolically by X.

One other detail nceds attention. For a careful symbolic execution, we need to
assure ourseives that the indirect addressing computed at 185140, 18516Q and 185230
all refer to cells containing numbers strictly less then 1000000, ie, that the indirect

23 Sce, for example, "Symbolic kxccution and Vesting,” by James King, IBM Rescarch
report, RC 5082,




addressing terminates in just one subcycle. To follow this detail, we'lt make use of a
fictitious microprogram counter (UPC) and an internal memory address register (M).
T'he UPC holds cither top, addr or action. When UPC holds top, the contents of PC is
the address of the next instruction. If the instruction is a memory referencing
instruction, UFC is set to addr and address fetches take place until a word is accessed
with the indirect bit off. At that point, the UPC is sct to action and the instruction is
exccuted.

For no-address instructions, cxecution takes place immediately and the UPC retains
the value top.

Here is the display for the initiat state. T'he numbers above the symbols are the
memory address. In the case of the frec packetbufier hist, p is the address of the first
word of the first buffer.

Memory cell 58 105120 185110 2770 p
Name urc PC M A NF'S GFREE  GFREET FREE X
Value top 185130 ? ? nfs ra ? p

We now begin execution. The instruction at 185130 is CRA, so only PC and A are

changed.

Memory cel ! L.8ea 185120 105110 2770 p
Name urc PC M A NFS GFREF  GFREET FREE X
Value top 185140 72 g nfs ra ? p

The PC now points to an IMA instruction. Before procceding. we need to know
whether the frec packetbuffer hst is empty. We consider the empty case first.
Accordingly, the state we are considering is thus:

Memory cel ! 5geaq 185120 18511Q 2770 p
Name urc PC M A NFS GFREE  GFREET FREE  ZERO
Value top 1905140 7 1%} nfs ra ? u 8

The IMA instruction is now partially decoded and discovered to be a memory
reference instruction, lcading to

Memory cel ! t,e0Q 185120 1@511Q 2770 p
Name Ur'C PC M A NFS GFREE  GFREFT FREE ZERO
Value  addr 184,140 2770 0 nfs ra ? p 4]

277Q is the indirect address. An indirect addressing cycle is taken, leading to
Memory cel ! 5800 185120 185611Q 2770 p
Name urc PC M A NF'S GHREE  GFREET FREE  ZERO
Value action 185140 p %} nfs ra ? P (%]




T'he operation code is now examined and seen to be 11Q indicating an 1MA
instruction. 1°he contents of cell 277Q is p, and the contents of A is 0.

By convention, p is the address of ZERD, a cell holding 0. After execution of the
IMA instruction, the state is:

Memory cell 50ea 185120 185110 2770 p
Name urc PC y A NFS GFREE  GFREET FREE  ZERO
Value top 185150 ? B nfs ra ? p 5]

Interpretation of the instruction at 185150 now takes place. This is a SNZ
instruction, which does not skip. The new state is:

Memory cel |l 5000 185120 18511Q 2770 p
Name urc PC M A NFS GFREE  GFREET FREE  ZERO
Value top 185160 ? a nfs ra ? p 8

The instruction at 18516Q is an indirect jump. After the fetch of the indirect
address, the state is:

Memory cell 58eQ 18512Q 185110 2770 p
Name urc PC M A NFS GFREE  GFREET FREE  ZERO
Value  addr 185170 ra B nfs ra ? p b

Since ra is an address, the high-order bit of M is off and no further indirect
addressing takes place. After the jump, the state becomes:

Mcmory cell 5080 185120 18511Q 2770 p
Name urC PC M A NFS GFREE  GFREET FREE  ZERO
Value top ra ? 8 nfs ra ? p %]

This is a final state.

Alternatively, the free list might not have been empty. We return to the state just
prior to execution of the IMA instruction and the state we are considering is: 24

Memory cel Leeq 18512Q 185110 2770 p
Name upc PC M A NFS GFREF  GFREET FREE X
Value top leslaQ ? (4 nfs ra ? p P1

Again we complete the indirect address and the state just prior to the actual
exchange is:
Memory cell 5800 185120 185110 2770 p
Name urcC PC M A NFS GFREE  GFREET FREE X

24 o the displays which follow, X refers to just the first word of the first
packethuffer instead of the whole packetbuffer list.
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Value action 185150 p 0 nfs ra ? P Py

Note that we needed to know that the high-order bit in FREE was zero in order to
terminate the indirect addressing cycle. After execution of the exchange, the new state
s

Memory cell 5000 185120 185110 2770 p
Name upPC PC M A NFS GFREE  GFREET FREE X
Value top 105150 ? P nfs ra ? p 5]

The A register ncw holds py. p; cannot be zero, so the SNZ instruction at
18515Q will skip. After its execution, we have:

Memory cell 5000 185120 185110 2770 p
Name upPC PC M A NFS GFREE  CFREET FREE X
Value top 185170 ? py nfs ra ? p %]

The IRS instruction at 18517Q is now executed. nfs is small enough to prevent
overflow, so we arrive at:

Memory cell 5000 185120 185110 2770 p
Name urc PC M A NFS GFREE  GFREET FREE X
Value top 185200 ? P nfs+l ra ? p %]

The instruction at 105200 is the second IMA instruction. It just causes the
contents of A and FREE to be interchanged.

Memory cell 5000 185120 1@511Q 2770 p
Name uprC PC M A NFS GFREE  GFREET FREE X
Value top 185210 ? p nfs+l ra ? P] 4]

The next three instructions are quite straightforward. p is put into GFREET, the
return address is incremented by | and the routine is exited. The fact that ra is a less
than 3777/Q is nceded three times, once to show that the IRS doesn't skip, once to show
that the indirect addressing cycle for the jump terminates, and once to show that ra+l
fits inty the low-order i4 bits of PC. The final state is:

Memory cell 5eeq 195120 185110 2770 p
Name urC PC M A NFS GFREE  GFREET FREE X
Value top rail ? ) nfs+l ral p p1 9

In the state displays above, each column is dedicated to a specific memory cell or
register, and it naturally assumed that ecach of these cells or registers is completely
disjoint from all of the others. As we updated onec column in the display, we made the
strong assumption that each of the other columns remained valid.

For the registers and fixed memory locations, the independence of each place from
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all other places is easy to see and doesn’t change during execution. For variable places
like the free packet buffer list, however, we need some assurance that X is disjoint from
all of the other places.

The general situation can be quite complcated. Indirect addressing and list-
structured data provide many possibilities for implicit sharing of structures. 'n order to
update the state description correctly, all possible dependencies among the places must
be known.

In practice, sharing of places is carefully controlled by the programmer arid the
number of possible intersections is small. In the IMP code, memory is divided into
dis joint regions containing code, fixed data areas and variable data areas. The primary
use of the variable data area is for packet buffers. I'hese regions are determined at
assembly time and remain fixed for the life of the (particular version of the) IMP code.
The variable data area is further divided into packet buffer space and other allocatable
storage. The packet buffer space in turn is further structured into individual packet
buffers. While we didn't say exactly what cell in memory was named ZERO, we need to
know that ZERO is within the fixed data area and hence is not within the variable data
area. Moreover, ZERO is disjoint from NFS, FREE, GFREE, GFREET, etc. Similarly, we
need to know that p is the address of the first word of a packet buffer, and hence
cannot be the address of any cell in the fixed data region or the code region. pj is also
constrained: it may be either an address of the first word of a packet buffer or it may be
the address of ZERD, but nothing else.

The assurance that these variable addresses are disjoint from particular other
addresses allows us to represent the state of the machine as a set of independent places,
each holding its own value, and to update the contents of each place independently of
the others. When this assurance is lacking and the contents of a place are modified, the
contents of all other places which are not known to be disjoint may have been changed.
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5. Proof of GFREE

In this chapter we examine a trace of the proofchecker processing the proof of
GI'REE. The input to the proofchecker is a scries of commands; all of these are
included in the trace output. At various points, the trace also includes a list of the
predicates added to or deleted from the current context or, in the case of an Open
command, the predicates copied into the new context from a superior context. The
listing of these predicates is controlled by switches and the points at which these
switches are turned on and off is noted in the text. Each command which is ingut to
the system is noted by a preceding bullet (o).

Most of the commands require a reference to an existing predicate within the
current context, and 1 have chosen to use the Interlisp pattern-matching capability to
implement this requirement. When a command contains a pattern, the pattern is
matched against each of the predicates accessible in the current context until a match is
found. Predicates are searched in LIFO order: the most recently created predicate is
checked first. If no predicate is found which matches the pattern, the command fails.

Internally, predicates are stored in prefix  format.  If the predicate
.MEMe (L PC) ~14BB4A0 is entered into the system, it is stored as

(£Q (GOT (SCL MEM (DOT PC))) 1488480)

For the convenience of the user, patterns may be written a: if they were to match the
external syntax of the predicates. Before the matching process takes place, a pattern is
also transformied to an internal prefix format. For example, the pattern 8=-148048Q may
be used to select the predicate above because this pattern will be transiormed into (EQ &
1488480) before the match is attempted. ("8" mecans "match any single element of a
list™) For full details on the pattern matching capability, see section 23 of the Interlisp
manual.?® T'he use of the pattern matcher was a convenient, short-term expediency, and
is lkely to be changed in future implementations. Some of the problems encountered in
using this scheme are discussed in the next chapter.

.
2% Warren Teitelman, Interlisp Reference Manual, Xcrox Palo Alto Research Center,

Palo Alte, Califormia, 1975.
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5.1 Proof plan

The basic proof of GFREE consists of four sections. The first section steps the
machine through the first instruction, CRA. The second section steps the machine
through the next two instructions under the assumption that the free buffer list is
empty. The third section steps the machine through the second, fourth and following
instructions under the assumption that the free list is not empty. The final section
combines the results of previous two sections to re-execute the body of GFREE and
reach an exit condition. This plan is summarized in the following outline.

Begin proof of GFREE

section 1: execution of first instruction

Begin proof of GFREE assuming list is empty
section 2: execution of Z2nd and 3rd instructions
end of proof of empty case

Begin proof of GFREE assuming list is not empty
section 3: execution of other instructions
end of proof of non-cmpty case

section 4: single step execution of SU resulting from combination

of S0ls generated by prior subproofs
end of proof of GFREE

Before starting the proof of GFREE, it is necessary to enter into the system a listing of
the code for GFREE, a list of notations used in the description of GFREE, a description
of the 316 itsclf, and a few facts about the world that the proof system does not have
built in. These add several steps to the outline of the proof. To enter all of the
tequired information, we pretend that we are starting a proof and enter the required
information as preconditions. No postconditions will be supplied and the proofs will
never be closed. The specification and proof of GFREE therefore take place within
several hypotheses and are usable only under the same hypotheses.

Begin "proof" introducing general facts about the world
Begin "proof" introducing description of the 316
Begin "proof" intreducing listing of the code for GFREE
Begin "proof" introducing notation used in
specification of GFREE
Begin real proof of GFREE
section 1
Begin proof of empty case
scction 2
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'nd of proof of empty case
Begi.y proof of nonempty case

sc*tion 3

en¢ of proof of nonempty case
section 4
end of p-oof of GFREE

The above outline is complete except for one detail. GFREE is specified in terms of a
SD that has another SD in \'s postcondition! In other words, the state delta that
describes the operation of GFRE 7. has the tollowing form.

(S0 (pre: ...)

{mod: ...)

{env: ... )

{post: ... (SD (pre: ...)
{mod: ...)
{env: ...)
(post: ...)
{vars: ...))

(vars: ...))

The reasons for specifying GFREE in this foriy are discussed below. As a consequence,
however, an additional level of proof has to be included in our outline. The following
is the total outline

Begin "proof" introducing gcnecral facts abaut the world
Begin "proof" introducing description ot the 316
Begin "proof" introducing listing of \he code for GFREZ
Begin "proof" introducing notation tsed in
specification of GFREE
Begin real proof of GFREE -- outer fayer
Begin proof of inne~ fayer of GF tE
section 1 3
Begin proof of empty,case
scction 2 .
cnd of proof of empty case
Begin proof of nonempty case
scction 3 i)
cnd of proof of nonempty case
section 4
end of proof of inner layer of GFREE
end of proof of outer layer of GFREE
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5.2 General facts

The first command establishes the top level context by postulating some general :
thcorems that arc not built into the simphfication routines but are necessary at a later
point in the proof. In a mature system, there would be a large number of these general

facts that would be available and the proof system would be started wi'h these already ]
present. Although these are written as SDs, the pre- and postconditions maks no !
reference to a machine state and the environment and modification lists are empty. 3
Under these conditions, a SD is exactly equivalent to a (universally quantified) 1
conditional statement. Correspondingly, instantiation and application of these SDs is ;

equivalent to instantiating the equivalent quantified conditional statement and then
using the modus ponens inference rule. Since the machinery to manipulate SDs already
existed, we did not bother to build the machinery to handie simple conditional

statements.

The five general facts which are supplied state that a list is equal to the concatenation
of its first element with the rest of it, that this same concatenation yields a permutation
of the original list (because it is in fact identical’), that a number is either zero or not
zero, that adding | to both sides of an inequality preserves the inequality, and that
positive numbers are not zero. e is the infix operator for concatenation, its prefix form
is catenate. The prefix form for is a permutation of is Permutationp. Although
the syntax for these operators is predefined, no semantics are built into the system at all.

e S e A s 1 0 A N1

e (Open (pre: (SD (pre:)
{mod:)

wrs

enve)
{post: x-<xeB>ex,1)

S SEV T

{vars: x))

! (S0 (pre: x=<xoB>ex,l) i
3 (mod: ) i
{env:) {
{post: (x is a permutation of <xoB>ex,1)) §
{vars: x)) g
(S0 (pre:)
{modz)
{env:) J
(post: (a=0 or a=B)) |
(vars: a)) 13
(SD (pre: (x is less than y)) i
(mod: ) B
(env:) i

{post: (x4l is less than y+l))
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fvars: x yl)
(S0 (pre: (@ is less than x))
{mod: )
(env:)
(post: x~P)
{vars: x)})
{mod:)
{env:)
(post:)
(vars:))

5.3 Definition of the 316

T'he following Open command establishes a subordinate context in which a small subset
of the Honeywell 316 hardware is defined. The SDs that are introduced are identical to
the set displayed in chapter two. After the SDs come two declarations about places in
the machine. The first declaration introduces the microprogram counter UPC, the
program counter PC, memory MEM, internal registers M, 1, OF and C, and the
accumulator A. These are completely disjoint from each other and partition OMEGA.
OMEGA represents all of the space in the n.achine, so the effect of this declaration is these
places are the only places in the machine. The second declaration subdivides memory.
In principle, each of the 16,384 cells in memory should be listed separately, but only the
cells of interest are exphcitly named here. ZERO is a specific cell in memory that is
disjoint from all of the other cells listed. In a more complete treatment, it would be
introduced as an alternate name for a specifically enumerated cell; this is how the other
symbols in the code for GFREE are treated later. Introducing ZERO without disclosing
its address illustrates the power of the place graph.

In a similar way, Bufferplace refers to all of the cells in memory that can be used to
form buffers. The declaration is again silent about which cells these are, but they are
known to be disjoint from ZERO and the other listed cells,

Following the Upen command are three commands to build up the place graph. The
first two just copy the information provided by the declarations just discussed. The
third declaration introduces the name Q as a covering of the internal registers of the
machine and adds the covering to the place graph. In the SDs that aescribe the 316, Q
is used in the modification hst when it is desired to specify that all of the internal state
of the CPU may have changed. Q used in this context is completely separate from the Q
used on the end of constants to indicate octal representation.
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e (Open (pre: (SD (pre: .UPC=top .PC=pc .MEMo (.PC)=1400420Q)
{mod: Q PC A)
(envs:)
(post: .UPC=top PC=(pc~1);13 .A=0)
{vars: pcl)
(S0 (pre: .UPC=top .PC=pc .MEMo (,PC) =181348Q)
imod: Q PC)
(env:)
(post: UPC=top (if .A-0
then .PC=(pc+1};13
else .PC=(pc+2}313))
(vars: pc))
(50 (pre: .UPCetop .MEM=(.PC);13,108-0)
(mod: Q)

(env:)
(post: .0P=.MEMo (,PC) 313,108 .UPC=addr . =.MEMe (. PC) 015
(if .MEMo(.PC)9=0
then .M=.MEMo(.PC);8
else .M=.MEMe(.PC);8+(LOGAND .PC 377000Q0)))
(vars:))
(S0 (pre: .UPC=addr .1=0)
(mcd: UPC)
(env:)
(post: .UPC=action)
(vars:))
(SD (pre: .UPC=addr .l=1 M=m)
(mod: UPC T M)
(env:)
(post: .UPC=addr .M=.MEMom:13 .1=.MEMeme15)
(vars: m})
(S0 (pre: .UPCeaction .0P=11 .PC=pc .A=a .M=m .MEMem=Db)
(mod: Q PC A MEMem)

% {env:)
] (post: .UPC=top PC=(pci1);13 .A=b .MEMom=a)
3 (vars: pc m a b))
1 (S0 (pre: .UPC=action .0P=1 .M=m)
4 {(mod: Q PC)
(env:)

(post: .UPC=top .PC=m)

(vars: m})

3 (SD (pre: .UPC=action .0P<4 .M=m .PC=pc)
{(mod: Q PC MEMem)

.
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{env:)
{post: UPC-top .PC-(pc41);13 .MEMom=.A)
{vars: m pc))
(S0 (pre: .UPC-action .0P=18 .M=m .MEMem=v .PC=pc)
{mod: Q PC MEMom)
{env:)
{post: .UPC=top .MEMom=(v41);15 (if .MEMom=0
then .PC=(pc+2);13
else .PC=(pc+1};13))
{vars: m pc v})
{Covering OMEGA <UPC PC MEM M I A C OP>)
{Covering MEM
<MEMe277Q MEM=588Q MEMe18511Q MEM18512Q
MEMo185130 MEMe18514Q MEMe18515Q MEMe18516Q
MEMa185170 MEM10520Q MEM-185210 MEM-10522Q
MEM=105230 BufferSpace ZERD>))
{mod: OMEGA)
{env:)
{post:)
{vars: UPC PC MEM M 1 A C OP Q BufferSpace ZERD))
o (NewDecomposition (Covering OMEGA <UPC PC MEM M | A C OP>})
e (NeuwDecomposition (Covering MEM )
<MEMa2770 MEMSB8G MEMo10511Q MEM.10512Q 1
MEMe185130 MEM105140Q MEM185150 :
MCMe185160 MEMe18517Q MEM.185280
MLMe185210 MEMe18522Q MEMe185230
Buf ferSpace ZERO>))
o (NeuComposition {(Covering Q <UPC M | OF>))

5.4 Listing of GFREE

The following Open command establishes a further subordinate context in which the
instructions which comprise GFREE are entered. In addition, the symbols FREE,
GHREE, GFREET and NFS are equated to specific locations in memory. Altogether, this
information corresponds to the output from an assembler.

After the Open command comes a set of commands to enter the symbol definitions into
the place graph. PureCode is introduced as a name to cover all of the locations
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containing code which does not change during the operation of GFREE. PureCode will
be used in the environment list of the SD which specifies how GFREE operates.

e (Open (pre: .MLM01@5130-1408480 .MEMe185140-126277Q
.MiMe185150-1818400Q .MEMe185160-=183512Q .MEM1085170=245080Q
.MEM0185280=26277Q .MEM18521Q=11511Q .MEM=185220:-255120Q
.MEM185230=183512Q .ZERO-B FREE=MEM=277Q GFREE=MEM=18512Q
GHREET=MEM=18511G NFS=MEM-580Q)
{mod: OMEGA)
{env:)
(post:)
{vars: FREE GFREE GFREET NFS PureCode))
{(EnterSynonym FREE=MEM277Q)
(EnterSynonym NFS=MEM-5006Q)
{EnterSynonym GFREET=MEM-108511Q)
{(EnterSynonym GFREE=MEM=185120)
{NewComposition {Covering PureCode
<MEM01@513Q MEM1085140 MEM-18515Q MEM-18516Q

MEMe1@85170 MEMe18528Q MEM18521Q MEM-18522Q
MEM=185230>))

5.5 Additional notation

At this point, definitions for "x is pointing to y", "x is a packet buffer”, and "x is
bufferlist beginning at y" are introduced. The definitions involve extension to the
external syntax as well as postulation of the semantic content of the new terms. These
definitions are different from the theorems contained in the top level Open because they
are applicable only to the IMP code. T'he format used here to introduce the syntactic
extension is taken directly from CLISP.2% The semantic definition consists of a name, a
ptedicate which defines the meaning of the name, and rule for computing the support
of forms containing the name. If the rule for computing the support is simply the union
of the sunports of the arguments, the rule need not be specified. In principle, this rule
must be justified by an analysis of the definition to show that the list of places
computed by the rule at least covers the set of places containing values used in the
predicate. This requirement is not implemented, however, and the proofchecker
contains a logical flaw until the support rule is forcefully checked.

7

40 See chapter 23 of the Interlisp manual.
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e (DefineSyntax Fointerp (NEWISWORD ' (x is pointing to y)
‘{are pointing to y)
"{Pointerp x y)

e T

“{x y))
e (DefineOperator Pointerp ((SD (pre: (x is pointing to y))
E {mod:)
é {env:)

i (post: .x=y/MEM)
E {vars: x y))
and (S0 (pre: .x=y/MEM)
{mod:)
{env:)
(post: (x is pointing to y))
(vars: x yl))

NIL)
e (DefineSuntax PacketBufferp (NEWISWORD ' (x is a packet buffer)
'{are packet buffers)
"(PacketBufferp x)
"(x}))
e (DefineOperator PacketBufferp
[(SD (pre: (x is a packet buffer))
(mod:)
{env:)
{(post: (FS (i) x=NEM, i; (packetiength-1}))
{(vars: x})
and (SD (pre: (FS (i) x=MEM, i; (packetliength-1)))
{mod:)
{env:)
(post: (x is a packet buffer)
(vars: x]
NIL)
e (DefineSyntax PacketBufferListp
(Nt UISWORD ' (x is a bufferlist beginning at y!
'NIL ' (PacketBufferlListp » y)
"Ix ylh
o (DefineOperator PacketBufferListp
((SD (pre: (x is a butferlist beginning at y))
{mod:)
(env:)
{post: (Subsetp x BufferSpace)
y=9
{y is less than 37777Q)

70




(if (LENGIH x)-0
then y=Zt£R0O/MEN
else xoB is a packet buffer and
y=xe@e8/MEM
and x,1 is a bufferlist beginning
at .xoBeB))
{vars: x yl)
and (SD (pre: (Subsetp x BufferSpace)
y=0
(y is less than 37777Q)
(if (LENGTH x)=B
then y=ZERO/MEM
else xo8 is a packet buffer
and y=xo°PoB/MENM
and x,1 is a bufferlist
beginning at .x:BeB))
(mod:)
{env:)
(post: (x is a bufferlist beginning at y))
{vars: x y)))
<. #l H2>5)

5.6 Specification of GFREE

The next Open command introduces the forma! specification of GFREE. The
specification is written as a compound SD; the postcondition of the top SD contains
another SD. The reason for this circumlocution is the need to refer to a variable place
which represents the list of free buffers. Whenever a new subproof is begun, the list of
places that might be modified needs to be known. All predicates in superior contexts
which depend upon any of these places are detached from the database and stored
safely away. (T'hose which are also supported entirely within the environment list are
then duplicated and added to the new context.) Since the relationship of the free buffer
list to the rest of memory is one of the facts that is listed in the precondition for
GFREE, it is necessary to delay using the name of the free buffer list until it can be
entered into the place graph. In the precondition of the outer SD, x is introduced as the
list of free buffers. When the system tries to compute the support for
(FacketBufferListp x .FREE), it finds that x is unregistered and defaults the
support to OMEGA.




Prior to beginning the subproof corresponding to the innier SD, x is entered into the
place graph. As part of the process of entering a new name into the place graph, the
system checks wheiher any predicates in the current context are supported by OMEGA. 1f
s0, the support_fo: these predicates are recomputed. If the recomputed support does not
contain OMEGA, the predicate is removed from CMEGA's list and attached to the correct
places.

The inner S contains the meat of the specification. Its modification list contains x
along with all the other places that are modified. Since the operation of GFREE
depends strongly upon whether or not the the free buffer list was empty when GFREE
was entered, the postcondition reflects this difference by appearing as a conditional
statement. Notice that final values are specified for ZERD and NFS, even in the cases
where these places are not actually modified. These clauses are required because ZERO
and NFS are contained in the modification list and are assumed by the proof system to
be modified in every execution of GFREE. Were it desired to eliminate the listing of
. ZERD-8@ from the non-empty case and the listing of .NFS=nfs from the empty case, two
separate SDs could be written. Note that . ZERO=8 is required in the empty case because
ZEROD actually is modified. Restoration of the its value back to its original state is not
precisely the same as riot changing it all. This point is discussed further in the next
chapter. ’

The environment for the SDs includes PureCode. This provides a terse way to tie the
specification of GFREE to the existence of the executable instructions that comprise
GFREE in their correct locations. Thc environment for the inner SD further requires
that the values for x, FREE and ZERO not have changed since the inner SD was added to
the context. Since ZERO and FRIF are also contained on the modification list of the
inner SD, it is evident that application of the inner SD will cause its own demise!
There is no harm done, however, fcr the inner SD is added to a context by application
of the outer SI) and is intended for use exactly cnce. Reapplication of the outer SD
generates a new version of the inner 8D, tied to a different instantiation of the free
buffer list. Note that the outer SD is not eliminated from a context when the inner SD
is applied.

e (Open (pre: {x is a bufferlist beginning at .FREE and .ZERO=8))
(mod:)
{env: PureCode)
(post: (SD (pre: .UPC-top .PC-GFREF/MEM+1 .GFREE=ra
{(ra is less than 37777Q)
(B is less than rasl)
(ZERO/MEM is less than 37777Q)
ZVRO/MEM~0
(B is less than nfs+l)
NFS:=nfs

12




{nfs is less than 177777Q))
{mod: Q PC A GFREE GFREET FREE x ZERO NFS)
{env: PureCode x FREE ZERD)
[post: .UPC=top

g {if (LENGTH x)=0
b then .PC=ra
and x is a bufferiist beginning at
.FREE

and .ZERO=0 and .NFS=nfs
else .PC=ra+l and NFS=nfs+l
and (FS (y 2)

(x is a permutation of <y>ez
and y is a packet buffer
and z is a bufferlist

beginning at .FREE
and .ZERO=8
and A is pointing to y°B
and GFREET is pointing to
yoBl
{vars: ra nfs)))
(vars: x))

The follouing preds were added:
pred: {.ZERD-0)
support: ((ZERD))

pred: (x is a bufferlist beginning at .FREE)
suppor t: ((OMEGA))

The next two commands take care of the requirement that x be registered in the place
system before the proof of the inner SD can be started. The Derive command is a
pure, premeditated cheat; it simply adds its argument to the current context without any
checking. In principle, the definition of “x is bufferlist beginning at .FREE"
provides logical grounds for deriving (Cover ing Buf ferspace <x>), but none of the
a<ioms necessary to carry out this derivation have been added to the system. 1 de act
expect that there will be any difficulty in adding the necessary axioms and in carrying
out the necessary derivation.

e (Derive (Covering Buf ferSpace <x>))

The follouing preds uere added:
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pred: (Covering BufferSpace <o)
support: NIL

¢ (NewlDlecomposition (Covering BufferSpace <x>})

The foliouwing preds wer® deleted:
pred: (x is a bufferlist beginning at .FREE)
support: ((OMEGA))

The following preds uere added:
pred: (x is a bufferlist beginning at .[FREE)
support: ((FREE MEMe277Q)} (x))

This Open command begins the subproof of the inner SD. At this point, predicates that
are added to the context are no longer shown, but predicates that are copied from a
higher context to the new context because of an intersection between the modification
list and the environment list are shown.

e (Open (pre: .UPCe=top .PC=GFREE/MEM+1 .GFREE=ra
{ra is less than 37777Q)
(B is less than ra+l)
(ZERO/MEM is less ttan 37777Q)
ZERO/MEM=B
(B is less than nfs+l)
NFS=nfs
{nfs is less than 177777Q))
{mod: Q PC A GFREE GFREET FREE x ZERO NFS)
{env: PureCode x FREE ZERQ)
{post: .UPC=top
{(if (LENGTH x)=B
then .PC=ra and x is a bufferlist beginning at .FREE
and .ZERD=B and .NFS=nfs
else .PC=ra+]l and .NFS=nfs+l
and (FS (y z’
{x is a permutation of <u>®2z
and y is a packet bLuifer
and 2 is a bufferlist beginning at
.FREE
and .ZER0=B and A is pointing to y»8
and GFREET is pointing to yeoB8)
(vars: ra nfs))
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The following preds were copied to the new context:
pred: {(x is a bufferlist beginning a2t .FREE)
support: ((FREE MEMe277Q) (x))

pred: (.ZER0=0)
suppor t: ((ZERQO))

5.7 Execuiion of the first instruction

The following cominands begin the execution of GFREE. The first command
substitutes the address of GFREE into the predicate expressing the current value of the
program counter. The simplification rules are bypassed for substitution because they’
have a tendency to simplify in the wrong direction. In this case, for example,
MEMe18512Q is substituted for GFREE in .PC=GFREE/MEM+1. The substitution results in
.PC=MEMe10512Q/MEM+1. If the simplification rules were invoked, the simplifier would
try to “evaluate” .PC and retrieve the value GFREE/MEM+1; the result would be
GFREE/MEM+1=185130. While this is a true statement, it does not have the desired effect
of changing the representation of the current value of the program counter.
1 Consequently, the unsimplified value is stored away. In the next command, the
L" precondition for the SD includes the condition that .PC=185130Q. This condition is
1 checked by invoking the simplifier and asking if the expression simplifies to T. At this
point the evaluation of .PC works in the right direction. Before the two sides of the
equality are compared, the value for .PC is retrieved and automatically reduced to
lowest terms. When the equality check takes finally takes place, 18513Q is just
compared against 185130 a,.d the match succeeds.

All of the switches are turned on at this point. In addition to seeing what predicates are
added and removed from the current context, we also see what predicates are found by
the patterri matcher.

e (Substitute MEMe185120 GFREE .FC-=%)
The pattern ma‘cher returned:

pred: (.PC=GFREE/MEM+1)

suppor t: ((PC))

The following preds were added:




pred: (.PC-MEMo18512Q/MEM+1)
support: ((PC))

e (ApplylnstSD (SD (-- .MEM=(.PC)=1400480 8) $)
(pc 1065,130))

4 4 The pattern matcher returned:
K - pred: (SO (pre: .UPC=top .PC=pc .MEM=(.PC)=1408480)
' {mod: Q PC A)
(env:)
(post: .UPC=top .PC=(pc+1);13 .A-8)
(vars: pc))
support: NIL

The follouing preds were deleted:
pred: (LUPC=top)
support: ((UPC))

pred: (.PC=GFREE/MEM+1)
/ support: ((PC))

pred: (,PC=MEM0185120Q/MEM+1)
suppert: ((PC))

T The following preds uwere added:
[ ! pred: (.A-0)
iy : support: ((A))

pred: (.PC-18514Q)
support: ((FC))

pred: (.UPC-top)
support: ((UPC))

e (AppliylnstSD (SO (-- (x is a bufferlist beginning at y) 8) §)
(x x y .FREE))

1 The pattern mat her retu ned:
pred: (SU (pre: (x is a bufferlist beginning at y))
{mod:)
{env:)
{post: (Subsetp x BufferSpace)
y-8
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{y is less than 37777Q)
(if (LENGTH x)=0
then y=ZERO/MEM
else xo@ is a packet buffer and y=xo8.0/MEM
and x,1 is a bufferlist beginning at .xcB¢8))
(vars: x y))
support: NIL

The following preds were added:
pred: (if (LENGTH x)=0
then .FREE=ZERQO/MEM
else xoB is a packet buffer and .FREE=x=@08/MEN
and x,1 is a bufferlist beginning at .xo@08)
support: ((x) (FREE MEM-277Q})

pred: (.FREE is less than 377770}
suppor t: {({(FREE MEMe27701))

pred: (,FREE=B)
support: ((FREE MEM0277Q})

pred: (Subsetp x BufferSpace)
support: NIL

5.8 Cousideration of an empty free bufferlist

The next Open command begins the consideration of the case in which the free buffer
list is empty when GFREE is entered. From this point 0, only the predicates copied to
lower contexts during an Open command and predicates ‘ound by the pattern matcher
are shown.

o (Open (pre: (LENGTH x)-=0)
{mod: x FREE GFREET GFREE A PC QO ZERO)
{env: OMEGA)
{post: .UPCetop (LENGTH x)=B .PC=ra
{x is a bufferlist beginning at ,FREE)
.ZERO=0 .NFS=nfsy)
{vars:))
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The follouwing preds uere copied to the new context:
pred: (if (LENGTH x)=8
then .FREE=ZERO/MEM
else «oB is a packet buffer and .FREE=xcB=B/MEM
and x,1 is a bufferlist beginring at .xeBe8)
support: ((x)} (FREE MEM0277Q))

pred: (x is a bufferlist beginning at .FREE)
support: ((FREE MEMe277Q) (x))

pred: (.ZER0=3)
support: ((ZERD))

pred: (.UPC=top)
support: ((UPC})

pred: (.PC=105140)
support: ((PC))

pred: (.A=0)
support: ((A))

pred: (.GFREE=ra)
support: {((GFREE MEMe185120))

pred: (.FREF is less than 37777Q)
support: ((FREF MEM~277Q))

pred: (.FREF~8)
support: ((FREE MEMe2770))

o (Simpletval (if (LENGTH x)=8
then 8
elsz 8))

The pattern matcher returned:
pred: (if (L1ENGTIH x}=8
then FREE-ZERG/N=H
clse xo@ is a packet buffer and .FREE=xcB<B/MEM
and x,1 is a tufieriist beginning at .xc@ecB)
support: (ix) (FREF MEMe277Q))
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The prior command made use of the hypothesis in the Open command. The following
ten commands execute the [MA instruction. Four of these ten apply SDs to advance the
state. The other six simplify the state to derive the exact precondition required by the
SDs. In the future, I expect the proposer to generate these steps automatically.

e (ApplylnstSD (SD ($ .MEM=(.PC);13,18«8 8) 3))

The pattern matcher returned:
pred: (SD (pre: .UPC=top .MEMs(.PC);13,18~8)
{(mod: Q)
{env:)
(post: .0P=.MEM=(.PC);13,18 .UPC=adcr .1=.MEMa(,PC) 15
(if .MEMo(.PC)9=8
then .M=.MEM=(.PC);8
else .M=.MEMo(.PC);:8+ (LOGAND .PC 3778880Q)))
(vars:)})
support: NIL

o (ApplylnstSO (SO (-- .1=1 8) §)
{m 277Q))

The pattern matcher returned:
pred: (S0 (pre: .UPC=addr .l=1 .M=m)
{mod: UFC | M)
{env:)
(post: .UPCeaddr M=.MEMom;13 .[1=.MEMeme]lS)
{vars: m})
support: NIL

e (Substitute FREE MEMo277Q .1<8)
The pattern matcher returned:
pred: (.1<.MEMo2770515)

suppor t: ((FREE MEM9277Q1 (1))

o (SuwapDOTSEL .FREE=1S ,1<8)

The pattern matcher returned:
pred: (.l<,FREE=]5)
suppor t: ((FREE MEMe2770Q) (1))
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o (Overlimit (.FREE)e15 ,1-8)

The pattern matcher returned:
pred: (.I~(.FREE)i5)
support: ((FREE MEMe277Q) (1))

o (ApplylnstSD (SD (-- .1-0 8) $))

The pattern matcher returned:
pred: (S50 (pre: .UPC-=addr .1=8)
{(mod: UPC)

{enve)
{post: .UPC=action)
(vars:))

support: NIL

o (Substitute FREE MEMe2770Q .M=8)

The pattern matcher returned:
pred: (.M-.MEMe2770;13)
suppor t: ((FREE MEMe2770Q) (M)

o (SuapDOTscgthru .FRFE;13 .M-8)
The pattern matcher returned:
pred: (.M-.FREF;13)

support: ('HEE MEMe2770Q) (M))
e (Undertimit (.FREE};13 .M=8)
The pattern matcher returned:

pred: (.M~ (.FREF}:13)
support: ((FREE MEMe277Q) (M))

; o (ApplylnstSD (SO (-- .OP-11 §) 8)
(pc 185140 m ZERO/MEM a 8 b @)

! The pattern matcher returned:

4 pred: (SD (pre: .UPC=action .0P=11 .PC=pc .A=a .M=m .MiMem=b)
{mod: O PC A MEMom)

{env: )

{post: .UPC=top .PC=(pc+1);13 .A=b .MEMem=a)

(vars: pc m a b))




i

support: NIL

The program counter i1s now pointing to the SNZ instruction. The next coinmand causes .Z
it to be executed. Because the contents of A are known to be 8, the postcondition is |
completely simplified to just .PC=185160. Following the ENZ instruction is the JMP
instruction which exits from GFREE. Eight commands are required, four of which
advance the computation and four which derive consequences between computation
steps.

o (ApplylnstSOD (SD (-- .MEMe(.PC)=1818480 8) §)
{pc 18515Q))

AR s i

The pattern matcher returned:
pred: (SD (pre: .UPC=top .PC=pc .MEMo(.PC)=18]8480Q)
{mod: Q PO)

e R o) e a dar i

(env:)
(post: .UPC=top (if .A=0
] then .PC=(pc+1);13 ]
j else .PC=(pc+2):;13)) :
4 (vars: pci) !
] support: NIL 3
o (AppliylnstSO (SD (-- .,MEMe(,PC);13,108-08) 8)) !

The pattern matcher returned:
pred: (S0 (pre: .UPC=top .MEM=(.PC);13,18=8) ]
{mod: Q) q

{env:)
{poct: .0P=.MEMo(,PC);13,18 .UPC=addr ,1=.MEMe(.PC)el5

(if .MEMe(.PC)=9-8
then .M=.MEM-(.PC);8

clse .M=.MEMe(.PC) ;84 (LOGAND .PC 3778880Q))) 1
(vars:)) {
support: NIL ;

E o (ApplylnstSD (SD (-- .1=1 .M=m) $) i

' (m 185120)) ;i
The pattern matcher returned: 1
pred: (SO (pre: .UPC=addr .l=1 .M=m)




{mod: UPC 1 M)

{enve ) 5

(post: JUPC=addr .M=.MEMem;13 .1=.MEMomelS)

(vars: m}) 5
support: NIL g

o (Substitute GFREE MEM=18512Q .1=%)
The pattern matcher returned:

pred: (.1=.MtM2185120015)

suppor t: ((GFREE MEM»18512Q} (1))

o (SuapDOTSEL .GFREE=1S .1=8)

The pattern matcher returned:
pred: (,1=.GFREE.15)

support: ((GFREE MEM=18512Q) (I)) "
;
4
o (Substitute ra .GFREE .1=8)} ¥

The pattern matcher returned: i
pred: (.1=(.GFREE)=15) i
suppor t: ((GFREE MEM=18512Q) (i))

o (Overlimit raols ,1=8)
The pattern inatcheir returned: :

pred: (.l=rasl§)
support: ((1)) g

o {ApplylnstSD (SO (-- .1=8 8} $})

The pattern matcher returned:
pred: (SD (pre: .UPC=addr .1=0)
(mod: UPC)

(enve)
4 (post: .UPC=action)
(vars: )}
! suppor t: NIL

o (ApplylnstSD (SD (-- .0P=1 $) 8)
(m .MEM01@8512Q:13))
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The pattern matcher returned:
pred: (SD (pre: .UPC=action .0P=1 .M=m)
{mod: Q PC)
{env:)
{post: .UPC=top .PC=m)
{vars: m))
support: NIL

At this point, GFREE has been exited. All that remains is to show that the present
state matches the postcondition stated iin the Open command. The first command
reconstructs the fact that x is a bufferlist beginning at ZERO/MEM. The nex. four
transform .PC=.MEM=185120;13 into .PC=ra+l. Finally, .FREE is substituted for
ZERD/MEM and the proof is closed.

o (ApplylnstSD (SD 8 (-- (x is a bufferlist beginning at y)) &)
{(x x y ZERO/MEM))

The pattern matcher returned:
pred: (S0 (pre: (Subsetp x BufferSpace)
y-0
{y is less than 37777Q)
(if (LENGTH x)=0
then y=ZERO/MEM
else xoB is a packet buffer and y=xeBeB/MEM
and x,! is a bufferlist beginning at .xoB08))
{mod: )
(env:)
{post: (x is a bufferlist beginning at y))
{vars: x y))
support: NIL

e (Substitute GFREE MEM-18512Q .PC=8$)
The pattern matcher returned:

pred: (.PC=.MEM=105120Q;13)

support: ((GFREE MEM»=18512Q) (PC))

o (SuapD0Tsegthru .GFREE:13 .PC=%)

The pattern matcher returned:
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pred: (.PC=.GFREE;13)
support: ((GFREE MEM218512Q) (PC))

e (Substitute ra .GFREE .PC=$)

The pattern matcher returned:
pred: (.PC=(.GFREE);13)
suppor t: ((GFREE MEMe18512Q) (PC))

e (Underlimit ra;13 .PC=8)

The pattern matcher returned:
pred: (.PC=ra;13)
suppor t: {((PC})

o (Substitute .FREE ZEROD/MEM (x is a bufferlist beginning at 8))

The pattern matcher returned:
pred: (x is a bufferlist beginning at ZERO/MEM)
support: ((x))

o (Close)

5.9 Consideration of a nonempty free bufferlist

The next Op.n command begins a subproof in parallel with the previous subproof.
The modification list for this subproof is the same as before, with the exception of the
addition of NFS. All of the clauses copied in the prior subproof are also copied here,
along with .Nt S=nfs and the SD proven in the prior subproof.

After the proof is opened, the assumption that the list is norempty is exploited. This
will add "xe@ is a packet buffer”, “.FREE=,xo@:B/MEM", and
"x,1 is a bufferlist beginning at .xoB¢8" to the context. The support for the
last clause will be computed as (x,] xB8e81. Because no subdivisions of x are listed in
the place griph, this last predicate will be attached to the node for x and will therefore
be sub ject tu deletion if any part of x is modified. Since the next instruction modifies
the first word of the first buffer on x, we are in danger of losing all knowledge about
the rest of x unless we can subdivide x and break our knowledge :bout the unmodified
part of x into terms that are independent of the modified part.




The next three commands prov::- the required scaffolding. The result of the Derive
command is the subdivision of x we need. The NewDecomposition command enters
xsB and x,1 into the place graph and the InstantiateContents command gives a
name to the current value of .x=808. All that remains is to separate the knowledge

about x into components pertaining to x+@ and »,1. This Is carried out just prior to
the actual exchange.

o (Open (pre: (LENGTH x)»8)

{mod: x FREE GFREET GFREE A PC Q ZERO NFS)

(env: OMEGA)

{post: .UPC=top (LENGTH x)»8 .PCera+l .NFS=nfs+l

(FS (y 2)
(x is a permutation of <y>ez

and y is a packet buffer
and z is a bufferlist beginning at .FREE
and .ZERO=3 and A is pointing to ye-B
and GFREET is pointing to yo8}})

{vars:))

The follouwing preds uere copied to the new context:
pred: (.NFS=nfs)
support: ((NFS MEMo588Q0))

pred: {if (LENGTH =)=
then .FREE=ZERO/MEM
else xoB is a packet buffer and .FREE=xo8:0/MEM
and x,1 is a bufferlist beginning at .x=808)
support: ((x) (FREE MEM2277Q))

pred: (x is a bufferlist beginning at .FREE)
suppor t: ((FREE MEMe277Q) (x})

pred: (.ZERO=8)
support: ((ZERO))

pred: (.UPC=top)
support: ((UPC))

pred: (.PC=185140Q)
support: ((PC))

pred: (.A=0)
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support: ((A})

pred: (,GFREE=ra)
support: ((GFREE MEM=10512Q))

pred: (.FREE is less than 37777Q)
support: ((FREE ('EM2770))

pred: (.FREF=8)
suppor t: ((FREE MEMe2770))

pred: (SD (pre: (LENGTH x)=8)
{(mod: x FREE GFREET GFREE A PC Q ZERO)
(env: OMEGA)
(post: .UPC=top (LENGTH x)=8 .PC=ra
{(x is a bufferlist beginning at .FREE)
.ZERD=0 .NFS=nfs)
(vars:))
suppor t: ({(OMEGA})

o (SimpleEval (if (LENGTH x)=0
then 8
else $))

The pattern matcher returned:
pred: (if (LENGTH x)-8
then .FREE=ZEROQ/MEM
else xoB is a packet buffer and .FREE=xB8/MEM
and x,1 is a bufferlist beginning at .x<08)
support: ((x) (FREE MEMe277Q))

o (Applylns:SD (S0 $ (-- x=<xeB>ax,1)} &)
{x x))

The pattern matcher returned:
pred: (SD (pre:)
{mcd:)
{env:)
(post: x=<xs@>@x,])
(vars: x})
cuppor t: NIL

e (Derive (Covering x <x=@ x,1>))

..........




o (NewDecomposition (Covering x <xe8 x,1>))
e (InstantiateContents xecBeB p)

The IMA instruction is now ready for execution. As before, several commands are
required to wade through the details of the indirect addressing cycle. Just before the
actual exchange is carried out, the definition of "is a buffer|ist" is applied to reduce
"x,1 is a bufferlist beginning at .xeBeB8" to more primitive terms. In the
course of the application, all occurrences of .xeBe8 are replaced by p because p s
known to be the current value of .x=Be8. The result is that none of the new clauses are
supported by either x or x«8; only x,1 is needed. Now the exchange instruction may be
executed without causing information to be lost.

e T———

o (ApplylnstSD (SD (-- .MEMe(.PC);13,18~8 §) 8))

The pattern matcher returned:
pred: (S0 (pre: .UPC=top .MEMe(.PC);13,18x8)

{mod: Q)

(env:)

(post: .OP«.,MEMe(.PC);13,18 .UPCeaddr .I=.MEMe(.PC)el5

(if .MEM=(,PC)«9=8
then .M=.MEMe(.PC);8
else .M=.1EMe (.PC);8+ (LOGAND .PC 377888Q))) ]

(vars:)) ;

suppor t: NIL

e (ApplylnstSD (SO (-- .I=1 8) (--m §))
(m 277Q))

The pattern matcher returned: o

pred: (SD (pre: .UPC=addr .=l .M=m) : |
(mod: UPC I M) é
{env:)
(post: .UPCeaddr .M=.MEMem;13 .l=,MEMemel5)
(vars: m))

support: NIL

o (Substitute FREE MEMe2770 .1=8)

The pattern matcher returned:
pred: (.1=,MEMe277Q.15)
suppor t: ((FREE MEMe277Q) (1))
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e (SwapDOTSEL .FREEe1S .1=8)

The pattern matcher returned:
suppor t: ((FREE MEMe2770Q) (1))

o (Overlimit (.FREE)ol5 .1=8)

The pattern matcher returned:
pred: (.l=(.FREE)15)
suppor t: ((FREE MEM=277Q) (1))

e (ApplyinstSD (SD (-- .1=D 8) $))

The pattern matcher returned:
pred: (S0 (pre: .UPC=addr .1=8)
{mod: UPC)

{env:)
{post: .UPC=action)
{vars:))

suppor t: NIL

e {Substitute FREE MEM=2770 .M=8)
The pattern matcher returncd:
pred: (.M=.MEM2277Q;13)

suppor t: ({(FREE MEM0277Q) (M))
o (SuapDOTscgthru .FREE;13 .M-3)
The pattern matcher returned:
pred: (.M-.FREE:13)

suppor t: ((FREE MEMe277Q) (M))

e (Underlimit (.FREF);13 .M-%)
The pattern matcher returned:
pred: (.M=-(.FREE);13)

suppor t: ((FREE MEM277Q) (M))

o (ApplylnstSD (SO (-- (x is a bufferlist beginning at y} 8) §)
{x x,1 y .x08:08))
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The pattern matcher returned:
pred:s (SD (pre: (x is a bufferlist beginning at y))
{(mod:)
{env:)
{post: (Subsetp x BufferSpace)
y=8
(y is less than 377770Q)
(if (LENGTH %)=8
then y=ZERO/MEM
else xo8 is a packet buffer and y=xoBo8/MEM
and x,1 is a bufferlist beginning at .x=8008})
{(vars: x y))
support: NIL

e (ApplylnstSD (SO (-- .0P=11 8) 8 (-~ pc m a b))
{pc 185140 m x°B:8/MEM a B b p))

The pattern matcher returned:
pred: (SD (pre: .UPC-action .0P=11 .PC=pc .A=a .M=m .MEMom=b)
{mod: Q@ PC A MEMem)
(env:)
{(post: UPC=top .PC=(pc+l1);12 .A=b .MEMom=a)
(vars: pc m a b))
suppor t: NIL

The program counter is now pointing to the SNZ instruction. This time, A contains p,
and p is known to b= different from 8. As a consequence, the postcondition of the SD
simplifies completely and .PC=185170Q.

The four following commands execute the IRS instruction. The only derivation
required is to transform .M=5060 into . M=NFS/HEN.

o (ApplylnstSD (SO (-- &-101848Q) 8 (-- pc))
{(pc 1065150))

The pattern matcher returned:
pred: (SD (pre: .UPC=top .PC=pc .MEMe(.PC}=1010848Q)
{mod: Q PC)

(env:)
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{post: .UPC=top (if .A=B
then .PC=(pc+1);13
else .PCe(pc+2);13))
{vars: pc))
support: NIL

o (AppliylnstSD (SD (-- .MEM=(.PC);13,108-8 8) §8))

The pattern matcher returned:
pred: (SD (pre: .UPC=top .MEMe(.PC):13,18x8)
{mod: Q)
{env:)
(post: .0P=,MEMo(.PC);13,108 .UPC=addr .l=.MEMe(.PC) 15
(if .MEMo(.PC)09-0
then .M=.MEMo(.PC);8
else M=.MEM=(,PC);8+(LOGAND .PC 3778880)))
{vars:))
support: NIL

o (ApplylnstSD (SD (-~ .1-0 8) 8))

The pattern matcher returned:
pred: (SD (pre: .UPC=addr .[=8)
{mod: UPC)

(env:)
{post: .UPC=action)
(vars:))

suppert: NIL

e (Makeindexof 5080 .M=8)

The pattern matcher returned:
pred: (.M-5080Q)
support: ((M))

e (ApplylnstSD (SD (-- .0P<18 8) 8 (-- m pc v))
{m NFS/MEM pc 185170 v nfs))

The pattern matcher returned:

pred: (SD (pre: .UPC=action .0P=18 .M=m .MEMem=v .PC=pc)
(mod: Q PC MEMem)
{env:)
(post: .UPC=top .MEMem={(v+1}:15 (it .MEMem=0
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then (.PC=pc+2):13
else PC=(pc+1);13))

{vars: m pc v))
support: NIL

Because the IRS instruciion can skip if the result is equal to zero, it is necessary to show
that nfs+! cannot be zero. The next six commands derive the fact that NFSfi0 and

.PC=1@528q.

o (ApplylnstSD (SO (-- (x is less than y)) $)
{x nfs y 1777770))

The pattern matcher returned:

pred: (SD (pre: (x is less than y))
{mod:)
{env:)
(post: (x+1 is Iess than y+l1))
(vars: x y))

suppor t: NIL

® (Underfiimit (nfs+1);15 .NFS=8$)

The pattern matcher returned:
pred: (.NFS=(nfs+1);15)
suppor t: ((NFS MEM.5880))

o (AppiylnstSD (SD (-- (B is less than x)) §)
{x nfs+l))

The pattern matcher retu-ned:
pred: (SD (pre: (B is less than x))
{mod:)
{env:)
{post: x»B)
(vars: x))
suppor t: NIL

¢ (Substitute .NFS nfs+]l nfs+1#8)

The pattern matcher returned:
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pred: (nfs+1+08)
support: NIL

o (Substitute (nfs+1);15 .NFS ,NFS»8)

The pattern matcher returned:
pred: (.NFS=@)
support: ((NFS MEM-S88Q))

o (LimpleEval (if (nfs+1);15-8
then $
clse 8))

The pattern matcher returned: :
pred: (if (nfs+1);1%-0
then (.PC=18521Q):13
else .PC=18520Q)
sunport: ((PC))

The second exchange instruction is now ready for execution. By this time, very little
work is required. The key facts are that .A=p and .FREE=x28:8/MEM.

o (ApplylnstSD (SD (-- .MEM-(.PC);13,18-0 8) $))

The pattern matcher returned:
pred: (SD (pre: .UPC=top .MEMo(.PC);13,18~0)

(mcd: Q)

(cnv:)
1 (post: .0P=.MEMe(,PC};13,18 .UPC=addr .l=.MEMa(,PC}el5
i (if .MEMo(.PC) 3-8

then .M=.MEMo(.PC);8
else M=.MEMe(,PC);8+(LOGAND .PC 377880Q)))

(vars:})

support: NIL

.
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o (ApplylnstSD (SD (-- .18 8) $))

The pattern matcher returned:
pred: (SD (pre: .UPC-addr .1=08)
(mod: UPC)
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{env:)
(post: .UPC=action)
{vars:})

support: NIL

e (Makeindexof 2770 .M=8)

The pattern matcher returned:
pred: (.M=277Q)
support: ((M})

e (ApplylnstSD (SD (-- .0P=11 8) 8 (-- pc m 2 b))
(pc 185280 m FREE/MEM & p b x=B<8/MEM))

The pattern matcher returned:
pred: (SO (pre: .UPCeaction .0P=11 .PCepc .A=a .M=m .MEMem=b)
{(mod: Q PC A MEMem)
(env:)
(post: .UPC=top .PC=(pc+1);13 .A=b .MEMem=a)
(vars: pc m a b))
support: NIL

The STA instruction is now executed.

e (ApplylnstSD (SD (-- .MEM«(.PC};13,18-0 8) 8))

The pattern matcher returned:
pred: (SD (pre: .UPC=top .MEMe(.PC);13,18+8)
{mod: Q)

{env:)
(post: .0OP=.MEMe(.PC);13,18 .UPC=addr .l=.MEMe(.PC) =15

(if .MEMe(.PC)«9-8
then .M=.MEM=(.PC);:8
else .M=.MEMe(.PC):84+(LOGAND .PC 3778880Q)))

(vars:))
support: NIL

e (ApplylnstSO (SD (-- .1=0 8) 8))

The pattern matcher returned:
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pred: (SD (pre: .UPC=addr .1=8)
(mod: UPC)
(env:)
{post: .UPC=action)
{vars:))

suppoert: NIL

o (Makeindexof 185110 .M=8)

The pattern matcher returned:
pred: (,M=10511Q)
support: ((M))

o (ApplylnstSD (SD (-- .0P=4 8) §)
(m GFREET/MEM pc 18521Q))

The pattern matcher returned:

pred: (SD (pre: .UPC=action .0P=4 .M=m .PC=pc)
{mod: Q PC MEMem)
{env:)
{(post: .UPC=top .PC=(pc+1}3;13 .MEMem=.A)
{vars: m pc))

support: NIL

The IRS instruction to increase the return address by 1 is now executed.

o (ApplylnstSO (SD (-- .MEMe(.PC);13,108-8 $) $))

The pattern matcher returned:
pred: (SD (pre: .UPC=top .MEMs(.PC);13,10~0)
{(mod: Q)
(env:)
(post: .0P=.MEMe(.PC);13,18 .UPC=addr .l=.,MEMs(.PC) 15
(if .MEMo(,PC) »3:0
then .M=.MEMs(,PC):8
else .M=.MEMe(.PC);8+(LOGAND .PC 377008Q)))
(vars:))
support: NIL

o (ApplylnstSD (SD (-- .1=0 8) 8))
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The pattern matcher returned:

pred: (SO (pre: .UPCeaddr .1=0)
{mod: UPC) ;
(env:)
(pusts .UPC=action)
(vars:))

support: NIL

o (Makeindexof 185120 .M=8)
The pattern matcher returned:

pred: (.M=18512Q)
support: ((M))

e (ApplylnstSO (SO (-- .0P=18 8) 8 (-- m pc v))
(m GFREE/MEM pc 108522Q v ra))

The pattern matcher returned:

E pred: (SO (pre: .UPCeaction .0P=18 .M=m .MEMem=v ,PC=pc)
] {mod: Q0 PC MEMom)
; (env:)
- (post: .UPC=top .MEMem=(v+1):15 (if .MEMem=0@
? then (.PC=pc+2):13
else .PC=(pc+l1);13)) !%

(vars: m pc v))
support: NIL

As with the incrementing of NFS, it is necessary to show that the result of incrementing
GFREE is not zero. The next six commands establish that .PC=185230 and that
.GFREE=ra+l.

e (ApplylnstSD (SD (-- (x is less than y}) §)
(x ra y 37777Q))

-

The pattern matcher returned:

pred: (SO (pre: (x is less than y))
(mod:)
(env:)
(post: (x+] is less than y+l1))
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(vars: x y))
suppor t: NIL

e (Underlimit (ra+1);15 .GFREE=$)

The pattern matcher returned:
pred: (,GFREE=(ra+1);15)
suppor t: ((GFREE MEMe10512Q))

o (ApplylnstSD (SD (~- (B is less than x)) $)
{(x ra+l))

The pattern matcher returned:
pred: (SD (pre: (B is less than x))
{(mods)
(env:)
(post: x»B)
(vars: x))
support: NIL

9 (Substitute .GFREE ra+l ra+l=8)

‘he pattern matcher returned:
pred: (ra+l=8)
support: NIL

o (Substitute (ra+l);15 .GFREEF .GFREE~B)
The pattern ratcher returned:

pred: (.GFREE~B)
suppor t: ((GFREE MEMe18512Q0))

o (SimpleEval (if (ra+1);15-0
then 8
clsc §))

The patiern matcher returned:
pred: (if (ra+l);15-8

i then (.PC=18524Q);13
E else .PC=185230)
support: ((PC))

i




wpR —

The JMP to exit GFREE is now ready for execution. Because the jump is indirect
through GFREE, bit 15 of the value in GFREE, ie. ra+1, must be shown to be zero.

e (ApplylnstSD (SD (-- .MEMe(.PC);13,18-0 8) 8))

The pattern matcher returned:
pred: (S0 (pre: .UPC=top .MEMo(.PC);13,10~0)
(mod: Q)
(env:)
(post: .OP=.MEMo(.PC);13,18 .UPC=addr .. .(EMe(.PC)e15
(if .MEMo(.PC)=9=0
then .M=.MEMo(,PC);8
else .M=.MEMe(.PC);8+(LDGAND .PC 377868Q)))
(vars:))
support: NIL

o (Makeindexof 185120 .M-=8)

The pattern matcher returned:
pred: (.M=18512Q)
support: ((M))

e (ApplylnstSD (SO (-- .I=1 .M=m) §)
(m GFREE/MEM))

The pattern matcher returned:
pred: (SD (pre: .UPC=addr .l=1 .M=m)
fmod: UPC 1 M)
(env:)
(post: .UPCeaddr .M=,MEMem;13 .l=,MEMemelS5)
3 (vars: m))
support: NIL

e (ApplylnstSD (SD (-- (x is less than y)) §)
i (x ra y 37777Q))

i The pattern matcher returned:
k pred: (SD (pre: (x is less than y))
: (mod:)
E (env:)
] (post: (x+] is less than y+l))

(vars: x y))




support: NIL
e (Dverlimit (ra+11el5 ,1=8)

The pattern matcher returned:
pred: (.1=(ra+])el5)
support: ((]))

o (ApplylnstSD (SD (-- .1-0 8) §))

The pattern matcher returned:
pred: (S0 (pre: .UPC=addr .1-8)
{mod: UPC)

(env:)
(post: .UPC=actlon)
(vars:))

support: NIL

o (Underlimit (ra+l);13 .M=8)
The pattern matcher returned:

pred: (.M={ra+1);13)
support: ((M))

e (ApplylnstSD (SD (-- .0P=1 8) 8§ (-- m))
(m ra+l))

The patterr matcher returned:
pred: (SD (pre: .UPC=action .0P=1 .M=m)
{mod: Q PC)
{env:)
{post: .UPC=top .PC=m)
(vars: m))
support: NIL

Execution is complete at this point. Before the subproof can be closed, however, each of
the clauses in the postcondition of the goal must be derived. These are straightforward.
The ForSome command produces the existential generalization of the specific case
proven by the system. This exactly matches the form required in the postcondition of
the goal and subproof is closed.
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o (ApplylnstSD (SD 8 (-- (x is pointing to y)} &)
(x A y xo8:8))

The pattern matcher returned:
pred: (SD (pre: .x=y/MEM)
(mod:)
(env:)
(post: (x is pointing to y))
(vars: x y)) .
support: NIL Q

e

o (ApplylnstSD (SD 8 (-- (x is pointing to y)} &)
(x GFREET y x+@e8)) k

The pattern matcher returned:
pred: (SO (pre: .x=y/MEM)

L e ey <o

{mod:) i
(env:) i
(post: (x is pointing to y)) i
i (vars: x y}) ;?
E suppor t: NIL 5
o (ApplylnstSD (SD 8 (-- (x is a permutation of <xoB>ex,1)) &) f;
(x x)) %
The pattern matcher returned: 7
pred: (S0 (pre: x=<xsB>ex,l)
(mod:)
(env:) J;
{(post: (x is a permutation of <x*@>e@x,1)) :
(vars: x)) ¢
support: NIL
o (ApplylnstSD (SD 8 (-- (x is a bufferlist beginning at y)) &)
{x x,1 y p))
4 The pattern matcher returned:
' pred: (SD (pre: (Subsetp x BufferSpace)
y»@
i (y is less than 37777Q)
; (if (LENGTH x)<0
1 then y=ZERO/MEM
; 99
1
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else xo@ is a packet buffer and y=xo@s0/MEM
and x,1 is a bufferlist beginning at .xo8¢8))
{mod:)
(env:)
(post: (x is a bufferlist beginning at y))
(vars: x y))
support: NIL

¢ (Substitute .FREE p (x,1 is a bufferlist beginning at p})

The pattern matcher returned:
pred: (x,1 is a bufferlist beginning at p)
support: ((x,1))

o (ForSome (y 2z)
(x is a permutation of <y>ez and y is a packet buffer
and z is a bufferlist beginning at .FREE and .ZERDO=8
and A is pointing to ye@ and GFREET is pointing to ye8)
(y %8 z x,1))

o (Close)

At this point, the superior context is restored and the program counter and other parts
of the state description are reset to just after the first instruction. The only changes to
the current context are the addition of two SDs, one which states how execution would
proceed if the free buffer list were empty and one which states how execution would
procecd if the free buffer list were not empty.

These two SDs are now combined into a single SD using the CombineCases command.
The precondition of the resulting SD is just

(LENGTH x) =8 or (LENGTH x)«0

This is a specific instance of a tautology, and that specific instance is then derived for
use in applying this SD.

o (CombineCases (SD (-- (LENGTH x)<0 8) §8)
(SD (-- (LENGTH x)=B 8) $))

The pattern matcher returned:
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pred: (SO (pre: (LENGTH x)»8) ;
{mod: x FREE GFREET GFREE A PC Q ZERO NFS) w
{env: OMEGA) |
{(post: .UPC=top (LENGTH x)»B .PC=ra+l .NFSenfs+i %
(FS (y 2) 1

(x is a permutation of <ysez {

and y is a packet buffer :

and z is a bufferlist beginning at .FREE 1

and .ZERO=8 and A is pointing to ye-8 !

and GFREET is pointing to yo8)))
{vars:))
support: ((OMEGA))

preds (SO (pre: (LENGTH x)<=8)
(mod: x FREE GFREET GFREE A PC Q ZERO)
{env: OMEGA)
(posi: .UPC=top (LENGTH x)=8 .PCera
{x is a bufferlist beginning at .FREE)
.ZERD=B .NFS=nfs)
{vars:))
support: ({(OMEGA))

ISR

o (ApplylnstSD (SO 8 (-- (a=B or ax=B)) 8)
{a (LENGTH x)))

The pattern matcher returned:
pred: (S0 (pre:)
{mod:) !
{env:)
{post: (a=B or a=B))
{vars: a))
support: NIL

o {ApplylnstSD (SD $))

The pattern matcher returned:
pred: (SD (pre: ({LENGTH x)=B or (LENGTH x)=8))
{mod: x FREE GFREEY GFREE A PC O ZERO NFS)
{env: OMEGA)
{post: (.UPC=top and (LENGTH x)=8 and .PC=ra
and x is a bufferlist beginning at .FREE
and .ZERO<B and .NFSenfs or .UPCe=top
and (LENGTH x) D

101




and .PCera+l and .NFS=nfs+l y
and (FS (y 2) ;
(x is a permutation of <y>ez ]
and y is a packet buffer
and z is a bufferlist beginning at
.FREE
and .ZERD=B and A is pointing to y-8
and GFREET is pointing to yo8)
(vars:))
support: ((OMEGA))

Execution of GFREE is now complete and the proofs corresponding to both the inner
and outer SDs in the specification of GFREE can now be closed without further work.

o (Close)
o (Close)




6. Conclusions and Future Directions

Beyond the particular formulations presented here, there are number of concepts that
have emerged in my mind as basic perceptions about program verification.

The first perception is that the way to specify the behavior of a (sequential) program is
in terms of transitions between pairs of siates. Using transitions to specify behavior
provides a uniform mechanism for treating both known facts and desired intentions.
The action of the individual instructions can be characterized in terms of state
transitions, and these specifications can serve the role of axioms for a proof. The
intended action of the whole program can also be formulated as a (set of) transition(s) to
be proven. State deltas, of course, serve just this purpose.

Perception two is proofs should be structured. By a "structured” proof, 1 mean the
following fdea. A proof of correctness of a program consists of taking the SDs for the
individual instructions and combining them into SDs which cover execution of
sequences of instructions. This composition process is continued until the SDs which
describe the intended behavior of the whole system are proven. These proofs should
fall into three basic patterns, sequential proofs, proofs by cases, and inductive proofs.

In a sequential proof, there are two SDs. The postcondition of the first
leaves the machine in a state that satisfies the precondition of the second.
These two SDs yield a new SD formed from the precondition of the first
and the postcondition of the second. This pattern of reasoning applies
directly to straightline code.

In a proof by cases, the code under consideration contains conditional
execution sequences or case statements. The preconditions of the given SDs
represent aiternative possibilities.27 The SDs are combined by taking the

2T These preconditions will usually be disjpint from cach other, but this is not a
rcquirement. The most common case for the preconditions of two SDs to overlap is for one of
them to specify a short scgment of computation and the other to specifly a longer scgment.
Fach SD)s that was derived in the last chapter has a precordition that is strictly stronger than
one of the input Ss. "Strictly stronger” mcans that it logically implics the precondition of the

¢ input SD. The fact that an interpretation alrcady cxists for scts of SDs which have
' overlapping preconditions means that any altempt to cxtend the use of SDs to model
concurrent systems will nced to use some mechanism other than sets of SDs which apply to the

same statcs.
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disjunction of the preconditions as the new precondition and the
disjunction of the postconditions as the new pcstcondition.

In an inductive proof, the goal is to prove that the operation of a loop is
correct. One SD covers the operation of the body of the loop, and the other
covers the test which determines whether the loop is to be repeated or
exited. The resulting SD covers the complete operation of the loop and
(usually) is written in terms of some parameter that governs the number of
times the loop is traversed. The induction proof has two parts. The first
part proves that the operation of the loop is correct for the minimal value
of the parameter. The second part assumes that the operation of the loop is
correct for alt values of the parameter below the value being considered and
shows that the operation of the loop changes the state into a similar one
with a smaller value of the parameter. The parameter must be chosen from
a well-ordered set to give substance to the notions of "minimal” and
"smaller” and to make use of the properties of mathematical induction.

Perception three is that the form of the proof and the form of the program need not
bear strong resemblance. Efficient use of space or time frequently demands that the
syntactic structure of the program be quite different from the conceptual structure.
Some writers advocate that the structure of the program should exactly reflect the
structure of the proof. When faced wih the limitations in programming languages
which lead programmers to perturb the organization of a program to achieve desired
performance goals, these writers argue that the programming language is deficient and
should be changed. My own position is that better programming languages are, of
course, desirable, but no compiler can be smart enough to generate optimal code from
the most readable statement of the algorithm. As a consequence, 1 believe proofs should
not be bound intimately with the structure of the programming language.

Perception four is that it is reasonable to ask the programmer to supply the proof along
with the program. Programming is a constructive process, and the person most
knowledgeable about the interaction of the parts of the program is the person who put
it together in the first place. It is sometimes argued that proving a program correct is
much harder than writing and debugging the program to make it correct in the first
place. This seems like pure nonsense to me. In order for the programmer to write and
debug the program in the first place, he must have had an understanding of why the
program would accomplish its goals. To be sure, his understanding is informal and not
written out in terms acceptable to a program verification system. Consequently, there is
some distance to be covered when we ask that formal proofs be carried out when a
program is written. FHowever, this distance is primarily one of building a language for
the programmer to communicate his understanding of what he must already know.
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Perception five is that it is at least as important to prove that a program actually
progresses to an expected point as it is to prove that the result is correct when it gets
there. This concept is usually labeled termination, but 1 think it is more appropriate to
think in terms of progress. Many programs, eg. operating systems, don’t really
terminate. They do, however, progress from cne known state to the next, and the proof
that each of these states Is actually reached is of great concern. The idea of a set of
“interesting” states instead of just an initial state and a final state was implied in the
first perception by the use of a set of transitions instead of just a single transition.
Proving that programs progress as intended comes for free in the proof patterns
outlined in perception two. This is in marked contrast to the usual separation of proofs
of correctness from proofs of termination when Floyd's method is used.

Perception six relates to the content of the state descriptions that make up the pre- ard
postconditions of a SD. These should be as general as possible. Facts which may be
true in both the pre- and postcondition but which are not necessary to the correct
operation of the code covered by the SD should not be inclided. For example, if an
initial value is stored into a cell early in a program and the value is not used until much
later, the SDs that cover the loops, subroutines and sequential segments in between these
points should not have to mention the variable at all, much less retain its value.

Perception seven is that no state information should be hidden. Quite a bit of trouble
is caused by prete "ding that machines have “"automatic" mechanisms for invoking
subroutines, iterating through loops, or remembering where the next data item is
located. 1 have never found any way to represent these activities without keeping in
mind that there was some part of the machine devoted to keeping track of the state.

Perception eight is that there must be a separate way to refer to the name of a place ana
to the current contents of that place. Arguments about indirect addressing, list
processing, program modification and other matters depend upon this distinction very
sirongly.

} Beyond these perceptions there are also a number of concrete ideas which point the way
: for improvement {n both the theory and the implementation.
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6.1 Theoretical issues

The most significant hole in the present theory is the absence of any mechanism to
handle concurrent processes. The present formulation of state deltas is strongly
dependent on the assumption that only one active ageni is modifying the state of the
system, and that it is sufficient to know what changes that agent is making to know all
the changes that can possibly be made. At any given point in time, only a single
“future” is possible. If more than one state delta happens to be applicable, it is
understood that one of them carries the computation farther than the other.

To extend the present theory to handle concurrent systems, several modeling questions
have to be answered. Are the concurrent systems to be composed of a small or large
number of processors? If the number is small, we can imagine that each of the
processors can have its own set of state deltas. On the other hand, if the system consists
of a large number of identical or near identical processors, then some scheme is
necessary to parameterize the SDs and perhaps parameterize the information in the
contexts in the proof system. In either case, synchronization of the concurrent systems
must be designed properly.

How do the processors connect to each other and what form is their communication? If
the communication is restricted to signaliing with semaphores and highly disciplined use
of shared places, then some of the more modern formalisms mmay be applicable. Brinch-
Hansen, Dijkstra, Estrin, Hoare and many others advocate that systems should be built
with very restrictive rules governing the form of interprocess communication that is
provided. For example, Estrin and his coworkers advocate separate explicit mechanisms
governing control and associated data flow between modular subsystems. Existing
systems, and many, many systems yet to be built, however, use simple shared places with
no built-in restrictions on the access to these shared places by the processors. Usually
these systems do adhcre to a set of rules governing the communication, but the rules are
not inherent in the structure. One of the more important facts to prove about these
kinds of systems is that they compute the same result no matter how fast the processors
run. If the processors do have a discipline which guarantees this fact, then the pioof of
uniqueness of the result will make use of the conventions followed by the several
processors.

Considering the case of a small number of processors which are interconnected by
shared places, we can see some of the changes in the present theory that will be
necessary. State deltas now contain two lists of places, one which shows what set of
places may be modified during the computation and one which shows which set must
not have changed since the SD was proven. For concurrent systems with shared places,
it scems necessary to add a similar list to show which places are referenced during the
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computation. If two processors are operating and one of them is modifying a place ti.>t
the other is either modifying or reading, the result may be unpredictable. If the only
concurrent use of shared places is that more than one process may be reading from the
same location, then no conflict arises and the two operations may proceed in any order.

When more than one result is possible because of the order of execution, some scheme is
necessary to examine all possible outcomes. The usual problem with this approach is
that the number of cases grows exponentially and becomes intractable. The only hope
for success is to lump the cases into large classes that behave similarly. Showing that all
cases lumped into the same class do have the same effect would need to be proven, as
well as proving that each of the classes behaves appropriately. Two ideas seem essential
for this approach to succeed. First, some notion of "indivisible action” needs to be
included in the formalism. As presently formulated, state deltas have no "grain size".
Some set of SDs is introduced into the proof system from the description of the machine,
but nothing prohibits the introduction of other SDs which cover smaller units of
computation. In order to know what all the possible orders are among a set of
competing processors, some notion of “grain size" is crucial.

Induction is the idea that secms necessary here. Each lumping of a set of possible
execution sequences into a single class is probably based on an argument that the fonger
execution sequences reduce to a previously considered case after the first one or two
steps have been taken. As we saw with sequential operation, the ability to apply normal
induction rules to state celtas is extremely powerful and 1 would hope that a similar
mechanism would emerge in the extension of the theory for concurrent operation.

The present formulation of the modification list raises an issue. At present, the
semantics of a state delta say that values stored in locations not mentioned in the
modification list are not changed during the course of the computation. This is
considerably stronger than saying that the values of unmentioned places are the same
after the computation as they are at the beginning. For sequential operation, the results
are the same, but for concurrent operation these two formulations would have very
different consequences. The present formulation was intended to lay the foundation for
the concurrent case, so the stronger statement is necessary. There are instances, however,
where the actual implementation of a program irvolves modification of a large number
of places, but the values are restored when the computation terminates Garbage
collection algorithms and operating system paging routines are two such examples. In
our present formulation, we would have to include all of the places that are modified in
the modification list, even though the values are restored. More tmportantly, we would
no longer benefit from the implicit preservation of the state information. All predicates
related to any of the modified places would have to be stated and reproven to hold.
This requirement is completely contrary to our philosophy of representing just what the

program knows and leaving the representation of the state information to the next
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higher level. Moreover, the mechanisms we have designed are strongly dependent on
the fact that values are not touched. To extend the formalism to permit values to be
changed but restored would also require a substantial change in the proof mechanisms.

It is not completely clear to me how all of these issues should be resolved, but it may be
necessary to provide both kinds of state preservation. Perhaps a "restoration list" will
have to be added to SDs, with the understanding that places listed on the restoration list
may have had their values changed but that their values are restored at the end of the
computation represented by the SD. Some experimentation is necessary.28

6.2 Engineering issues

No matter how the theory is extended to hand'e concurrency and multiple processois,
any system will have most of its activity modeied as a sequential process. The present
proof system is extremely clumsy and substantial work is needed to bring even the
present theory into active use.

One of the inore important weaknesses in the present proof system is the lack of
mechanisms to represent arrays. Some nieans is needed te enter an array name into the
place system and declare that it has, say, 16,384 elements. As the system stands now, this
would have to be entered as a family in the place system with 16,384 daughters. Since
each place node requires about 8 Interlisp cells, the overhead for this representation gets
out of hand. Not all of this overhead can be avoided, however. Some of the cells in
the memory array, for example, need to be represented explicitly because predicates are
supported by the contents o those cells and not others. Most of the cells in memory,
however, either contain pure code or are part of Bufferspace. Individual
representation of these places within the place graph is unnecessary.

28 Simmlation is another arca where the distinction between restoration and non-

modification can be imporiant. If an abstract machinc is represented as having a et of
disjoint locations and a sct of high-level $Ds that define its behavior, then it is not possible to
implement this ahstract machine with a low level machine that modifics but restores the values
of the simulaled disjont places. As a consequence, some rcasonable implementatiors of
ahstract machines arc prohibited. Therce is one payoff: If machine C is proven to be a legal
miplementation of machine A, then an oseilloscopic probe may bhe place on the impiementation
of an ahsiract place and the probe will be active only when the abstract Si)s prediet change is
possible. 1f we intend to marry the notions of simul~tion and interconnection of processors, we
will want our formalism to guarantce that the subst: ution of a concrete implementation in
place of an ahstract defimition will not change the operat »n of the total system.

i
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Most of the predicates relfated to the tate of the machine are of the form .X=v, where X
is a place and v is a symbolic value that is not dependent upon the current state. Under
these circumstances, it secms reasonable to streamline the representation of these
predicates by allocating a dedicated cell for each place to hold its current value. Such a
scheme comes much closer to the classical symbolic execution model and should have
significant impact on the efficiency of the system.

A third area for improvement in representation is the SDs. The Honeywell 316 was
modeled as having a microprogram counter. The role of the microprogram counter is to
provide a method for distinguishing the substates within the execution of an instruction.
In the simple model used in the main example, three substates are needed. In the
translation of the full 316 description from ISPS, a few hundred substates are needed!
Similarly, the number of distinct SDs necded for a machine description is fairly large: 9
for the simple machine and 310 for the full machine. In the specification of GFREE,
the notion of a compound SD was introduced. The postcondition of a SD contains
another SD. This idea can also be used in the description of the hardware. Instead of
inventing a name for the intermediate values of the microprogram counter, it is possible
to tie the SDs to its value and leave the value unspecified. Thus the only facts that
need be known about the value of the microprogram counter are which SDs are valid.
The following compound SDs could have been used to represent the simple version of
the 316.

(Open (pre: (SD fpre: 31Gpre)

{mod:)

{env:)

(post: (SD (pre: .PC=pc .MEMo(,PC)-14080848Q)
{(mod: Q PC A)
(env: UPC)
(post: 316pre .PC=(pc+l)313 .A=7)
(vars: pcl))

(SD (pre: .PC=pc .MEMe(.PC)=101848Q)
{mod: Q PC)
{env: UPC)
(post: 316pre (if .A=0
then .PC=(pc+1):13
else .PC=(pc+2)313))
{vars: pc))
(SD (pre: .MEMe(.PC);13,1828)
{mod: Q addrctrl)
{env: UPC)
(post: addrpre (SD (pre: addrpost)
{mod: UPC)
{env: UPC addrctri)
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ot Lo

(SD

(SD

{post: 316pre)
{vars:))
LOP=,NEMe(,PC) 313,18 .M;8=.MEMe (.PC)
+8 (if .MEMo(,PC)o9=8
then .M;13,9-8
else .M;13,9=.PC;13,9)
= MEMe (.PC) 015)
{vars:)))
{vare:))
{pre: addrpre)
{mod:)
{env:)
{post: (SD (pre: .1:8)
{mod: UPC actionctrl)
{env: UPC)
{post: actionpre (S0 (pre: actionpost)
{mod: UPC)
{env: UPC actionctrl)
{post: addrpost)
{vars:)))
{vars:))
(SD (pre: addrpre .I=1 .M=m)
{mod: UPC I M)
{env: UPC)
{(post: addrpre .M=.MEMom;s3 .l=,MEMomol5)
{vars: m)})
{vars:))
{pre: actionprel
{mod:)
{env: UPC)
{post: (SD (pre: .0P=1 .M=m)
{mod: Q PC)
{env: UPC)
{post: actionpast .PC=m)
{vars: m))
(50 (pre: .0P=4 .M-m ,PC=pc)
{mou: Q PC MEMem)
{env: UFC)
{post: actionpost .PC={(pc+1};13 .MEMom=.A)
{vars: m pc))
(SD (pre: .0P=18 .M=m .MEMom=v .PC=pc)
{mod: Q PC MEMom)
{env: UPC)

10
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(SD

(vars:))

(Covering OMEGA

(post: actionpost .MEMom=(v+1);15
(if .MEMom=0
then (.PC=pc+2):13
else .PC={pc+1);13))
(vars: m pc v))
(pre: .0P=11 ,PC=pc .A=a .M=m .MEMom=b)
{(mod: Q PC A MEMem)
(env: UPC)
(post: actionpost .PC=(pc+1);13 .A=b
MEMem=2a)
(vars: pc m a b)))

<addrctrl actionctr! UPC PC MEM M 1 A C OP>)

(Cover ing MEM

<MEMe2770 MEM-588Q MEM=18511Q MEM-18512Q
MEMe185130 MEM-185140 MEM-18515Q MEM=18516Q
iiErMe18517Q MMEM18528Q MEMe185210 riEMe]185220
MEM=185230 BufferSpace ZERD>))

{mod: OMEGA)
(env:)
(post:)
(vars:))

{(NewDecomposition (Covering OMEGA

)

<addrctrl actionctr|l UPC PC MEM M 1 A C 0OP>)

(NewDecomposition (Covering MEM

<MEM©2770 MEMo588Q MEM-18511Q MEM<10512Q
hEM=18513Q MEM=185140Q MEM-18515Q
MEM18516Q MEM=185170 MEM.18528Q
MEM=18521Q MEM-185220 MEM=185230Q
Buf ferSpace ZERD>))

(NeuComposition (Covering Q <UPC M 1 OP>))

Only three SDs exist at the top level. These stay in existence permanently. When one
of them is activated, it may bring one or more others into existence.
application of any of these new SD's causes all of the new SDs to be deleted from the
current context, although others may be added as the result of the application. The
number of compound SDs that need to be available permanently seems to be based on
the number of loops in the machine description. for the fuli 316, three loops exist -- the
top level, the shift cycle and the indirect addressing cycle -- so the 310 SDs could be

reduced to 3 permanent SDs and a small handful of active SDs at each step.

1

However,
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Reduction of the number of SDs makes it possible to build a reasonable proposer to
select which SD to apply next. Brute force testing of all of the preconditions is not even
ruled out, but more souhisticated schemes may be possible. Any improvement in the
proposer will have a first-order effect on the size of the proof.

The use of the pattern matcher to select predicates is extraordinarily expensive. The
pattern matcher we are using compiles its patterns when they are first encountered
because it expects to use them repetitively. We use our patterns exactly once. A large
portion of the execution time in the present system is spent converting these patterns to
executable code. The space consumed by the translations is freed up after it is used,
and a large number of garbage collections are needed during the course of the proof to
recover this space. Finally, the patterns are used to search the whole list of predicates
accessible in the current context. As contexts become larger and larger, this strategy
becomes infeasible. Some means to refer to predicates needs to be found which does not
involve searching the whole context and which does not consume and discard a lot of
space. Predicates are already cross-referenced according to their support, and this
provides at least one useful way of reaching predicates quickly. Many predicates have
no support, however, and perhaps an additional cross-referencing scheme based on free
variables will be useful. SDs may need to be cross-referenced according to the
components of their preconditions. 1f we view the SDs as a set of productions, cross-

referencing them according to their preconditions provides the basis for a powerful -

control mechanism for selecting and applying the right SD with little cost.29

6.3 Prognosis

If we look forward to a time when verification is an accepted practice and the
programmer submits his program to a verifier with the same regularity that he now
submits it to a compiler or assembler, three perceptions emerge. First, the verification
must be completely automatic and deterministic. Second, the verifier must process
between ten and one hundred statements per second30 Third, the proof may not be
much longer than the program but need not be much shorter.

29 Randall Davis and Jonathan King, "An Overview of Production Systems,” Computer

Science Deparimeni, Stanford University, Cahfornia, STAN-CS-75-524, October 1975.

30 1 am indebied to Mac McKinley for posing the question of how long it would take to
do a full verification.
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Requiring the wverifier to operate automatically s quite distinet from the issue of
development of the proof interactively. I believe that development of the proof is very
likely to be an interactive process and be comparable in style to the use of an editor.
Cnce complete, however, the program and its proof will be assembled or compiled 1o
executable code and at the same time verified for correctnuss. Programmers generally
expect compilation errors only if they mistype. Compilers which are very poorly
documented, in a state of transition or syntactically arcane provide the alternate surprise
that the program may look correct even upon close inspection but may fail to compile
because the compiler doesn't work as expected. Such compilers are held in low esteem
and in practice do not survive long. I expect verification systems to live within the
same constraints, and thus programmers will expect to be able to write correct proofs
with a high degree of confidence and have these proofs be accepted with the same
success that source code passes the syntax checker. Wegbreit's recent work looks very
promising along this line.3!

Given that we accept the need for the verifier to be automatic, we can further look at
the effect of how the speed of the verification system will affect its use. In our present
environment asseinbly of a large program (e.g. the TENEX operating system) requires
approximateiy an hour to assemble a quarter million instructions. Full assemblies are
done infrequently but probably as often as once a day as a new version of the system
nears completion or is assembled with local parameters for particularization to a site.
Smaller programs, s:y ten thousand instructions, require a couple of minutes and a user
will reassemble at alihost every convenient juncture. If we intend that verification of a
program fit into this mold and thus bring a milieu in which programs are checked for
consistency with theit specifications as naturally as they are checked for correct syntax,
r then the verificatior tystem will have to perform at comparable speeds, siy close to 100
instructions per second. Performance in the range of 10 instructions pe; second means
that a user will reverify a 10,000 instruction program using an overnight batch service
and will tolerate more frequent verification only for programs up to 1000 words. These
numbers are comparable to the performance levels of poor compilers in the 1960's or
earlier and may wels lie within the tolerable range for consistent use. However, the
increased cost and delay will need to be offset by demonstrated payoff in the location of
bugs or by managemen:t edict.

R D e

L Performance in the :ange of one statement per second is likely to inhibit wholesale
- adoption of verification as a production tool and restrict its use to experimental
programming groups and selected critical system development efforts.

3 Ben Wegbreit, "Constructive Methods in Program Verification,” [EEE Transactions
on Software Engineering, Yol. SK-3, No. 3, May 1977, pp. 193-209.
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I have not begun to perform detailed measurements, nor is it entirely meaningful to do
so at this time. At present the proofs are so laborious that even an infinitely fast
verifier would not be attractive enough to overcome the excessive labor required to
prepare the proof. These caveats aside, I believe the current system verifies between
one-tenth and one statement per second and is thus acceptable as an experimentat
vehicle but unacceptable as a production tool.

With respect to the size of the proof, we can use the same kind of "impedance match”
argument that the proof must not be too much longer than the program. Long proofs
require more labor by the programmer and will be avoided. Proofs that do not
materially change the coding time are thus required for regular use. Again Wegbreit’s
recent work suggests this goal is attainable without substantial difficulty. Our present
system is well short of the mark. Our first proof was nine pages long for a nine
instruction program and is further embarrassed by the presence of unchecked user-
suppiied ellisions in the reasoning chain. A ratio of 50 to one is laughably
unacceptable, but {s not much cause for worry; tdeas for automating the proof system
and compressing the proof are flowing so rapidly that the only role of the present
statistic is to set the stage for spectacular claims of improvement in the future.
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