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ABSTRACT

This report describes a computer program, SLAM, which uses ship
slamming-impact forces and structural parameters of the hull to calculate
the vertical hull-girder vibratory response in terms of displacements, accel-
erat ions, bending moments, shear forces, and stresses. The normal mode
method is used so that the user can calculate only the modes of interest
and can eliminate the rigid body and higher modes. Modal responses are
calculated with a time-marching technique. The program uses a finite-
element model of a beam which is suitable for conventional monohulls.
Modifications to accommodate other model configurations can be made.

Test problems show good agreement with exact solutions for a
uniform Euler beam. Sample calculations are made on a MARINER-
Class hull using 3 modes and again using 10 modes.

ADMINISTRATIVE INFORMATION

The work described in this report was authorized and funded by the Naval Sea Systems
Command (S EA 03412) under Project S-F354 21 , Task Area S-F354 21 007 , Program Element
62512N, Work Units 1- 1506-006 and 1-1568- 102.

INTRODUCTION

BACKGROUND

The Naval Ship Research and Development Center (the Center) has developed a com-
puter program for eva luating the impact loads and the main hull girder response associated
with slamming of a ship at sea so that a more rational design of high-speed naval ships can be
achieved. The program will calculate impact forces as a function of the configuration of the
ship bottom, speed , draft , trim, and state of sea. Impact forces and structural parameters
will then be used to obtain the hull girder response in terms of relative displacements, accel-
erations , bending moments , shear forces, and stresses. At present t he computer program is in
two parts; one ca lculates the forces and the other the response. They could easily be corn-
bined. Results from the overall study are presented in Reference I.

This report presents details of the program dealing with the hull response . Hull struc-
t ural characteristics and impact forces are the input to the program.

A review of experimental data about slamming shows that the hull response is most
significant in t he lower modes of vibration. Also, it has been observed that although the

‘Ochi, M. K. and L. t~. Molter , “Prediction of Slamming Characterist ics and Hull Response s for Ship Design,” Society of
Naval Atchitecls and Marine Engineers Transacflons (1973). A complete listing of references is given on page 41.

- ~~~~~~~~~~~~~~~~~~~~~ - - - - --- --- ~~~~--.. --- -~~~~~~~ - . .



forces are dependent on rigid body motion, the rigid body motion itself is affected very little
by slamming.

To determine whether the inclusion of shear rigidity and rotary inertia would increase
the accuracy of the program significantly, Center reports about calculated natural frequencies’
of ship hulls were reviewed. Three were found that contained useful comparisons.2 ~ A sum-
mary of these results and some unpublished data are given in Table I.

Rotary inertia is not now normally included in vibration calculations at the Center , and
the example of the T-AGM-l9 indicates that the practice is justified . Shear rigidity is nor-
mally included because the calculations usually involve at least the f~ t five modes of vibrat ion,
and in the higher modes shear rigidity significantly influences the modal frequencies. Another
trend which is reflected in the table, and which is to be expected , is that the shear rigidity has
less influence on long slender ships than on short deep ships. Slamming is more of a problem
on long slender hulls. To make the program as general as possible, however , shear rigidity
was included.

It is recognized that the accuracy of natural frequency calculations is only one factor in
the accuracy of hull response calculations, but It is one of the few indicators available.

Many of the requirements of this program are similar to those for the author ’s thesis 5

at Catholic University, and many of the same techniques are used.

APPROACH

Calculation of steady-state hull vibration at the Center has normally involved lumping
the hull parameters. However , the advantages of a finite-element model are enough to war-
rant a different breakdown of parameters. A finite-element beam model is used.

The normal mode method seems particularly suited to the problem of ship slamming and
is used in the program. It enables the user to ca lculate only the modes that deserve consid-
eration and to eliminate t he higher modes and rigid body motion. An alternative method
would involve representing the buoyancy of the ship so as to restrain rigid body pitch and
heave.

To use the normal mode approach it is necessa ry to calculate all of the natural fre-
quencies and mode shapes of interest. The next major step is to transform the coordinates

2 Robinson, D. (‘.. “Calculated Natural F requencics and Normal Modes of the Guided Missile Cruiser USS LONG BEACH
(CG(N).9),” David Taylor Model Basin Report 2100 tian 1966).

3Perki ri c. R. L., “Calculated Natural Frequencies and Nonnal Modes of Vibration on Range Instrumentation Ship
(T-AGM- 19) . ” David Taylor Model liacin Report 199 7 (Jun 1965).

4 McGOISST1Ck. K. 1. and V . 1. Russo , “HuU Vibration investigation on SS GOPHER MARINER.” David Taylor Model
Basin Report 1060 (Jul 1956).

5 Antonides, G. P., “A Computer Program for Normal Mode Solutions in Structural Dynamics.” Master ’s Thesis at
Catholic University. Washington. D. C. (Dec 1970).
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to obtain the uncoupled equations of motion. Each equation then represents a mode of
vibration. The modal equations are solved for the modal displacements in the modes of
interest, and these are transformed back into physical displacements. The accelerations , bend-
ing moments, shear forces, and stresses can t hen be found from the displacements and ship
parameters.

For the solution of modal equations, the program uses a t ime-marching method involv-
ing finite differences with respect to time. The modal displacements at any instant are calcu-
lated as a function of the displacements at earlier times , system parameters, and applied

forces. To minimize the use of computer storage , all of the required quantities are calculated
for one instan t of time and then printed be fore proceeding to the next time increment. Only
the quantities required for the next calculation are stored ,

In the following sections of this report the procedure is developed analytically, the
equations used directly in the computer program are indicated , the program itself is described,
and the program is evaluated with a series of test problems.

MATHEMATICAL MODEL FOR SHIP HULL

STRUCTURAL MODEL

The ship hull is considered as a nonuniform beam divided into 20 or less equal sections
or elements. ~odes or coordinates are used at the ends of cacti section as shown in Figure 1.
The mass m. bending rigidity El/Q . and shear rigidity KAG/Q of the sections are numbered as
shown in Figure I. The deflections. y1. are taken at the nodes at the ends of the sections.
The slamming forces F1 are considered as discrete forces acting vert ically at the nodes. Both
deflections and forces are positive upwards. Damp ing characteristics are discussed later.

UNDAMPED EQUATIONS OF MOTION

The undamped equations of motion in matrix form are:

I M J  {~~} + i K I  { y }  = (F} ( I)

w here IMl is the mass matrix (including added mass due to watcr~
1K 1 is the stiffness matrix
( is the vector of vertical acceli rations
( y} is the vector of vertical def lections
( F} is the vector of applied forces

4 
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The mass and stiffness matrices are based on a f inite-e lement beam model and are taken from
Reference 6. The mass matrix for a single finite element between nodes i and j ,  referred to
the coordinate set { 

~~~~ 
0~ y~, O~ } where 6 is slope, is

156 —22 2 54 132

m2 — 222 4Q 2 — 132 — 3Q 2
IMI = 

420 54 — 13 2 156 222 
(2)

132 — ~2 2 222 4Q 2

where m is the mass of the element, and 2 is the length of the element.

The stiffness matrix for the element , referred to the same coordinate set , is

2 2
R ~- -~~R -~~ R

2 Q 2 El 2 22 El-~- R + - ~- - R

I K ) = (3)
2 2

-R -~~ R R

El 2 Q 2 El
— R — R  — — R  — R i - —--
2 4 2 2 4 2

where

/ 2 Q 3 \
1

• R =  I— + J (4)
\KAG 12 ElI

The mass and stiffness matrices for the entire beam are assembled by superposition of the
element matrices. The resulting matrices for a beam with M elements and M + I nodes will
be of the order N = 2M + 2.

6MacNe al, Richard H., “The NASTRAN Theotetical Manual ( level 15),” National Aeronautics and Space Administration
SP-22 1(01 . Washington, D. C. (Apr J972 ) .

6 
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DAMPING MATRIX

To include damping in the equations of motion , consider a viscous damping matrix id
so that the equa t ions of motion become

IM) {~?} + (CI ~~‘} + [K I ( y } = {F} (5)

The normal mode method requ ires that these equations be uncoupled, and this can only be
done if the damping matrix is proportional to either the mass matrix , or the stiffness matrix ,
or a linear combination; see Reference 7 or section about uncoupling equations of motion.

[C I a [MI + b [K] (6)

This requirement is broad enough to accommodate the types of damping normally used
with hull-vibration damping. Reference 8 considers two types of damping coefficients c,
( I)  Rayleigh damping in which c/M is a constant 

~ R where p = m/Q is the mass per unit length,
and ( 2) frequency dependent damping in which c/po., is a constant CF where w is the circular
frequency. Both of these are mass proportional and can be expressed in terms of I M I .  For
Rayleigh damping

= 
~~
‘R ’2

~ 
IMI, a = 

~~R ’2 ’ h = 0

For frequency dependent damping it is more complicated , since the w varies. In this case.
we use the factor CE!Q but after uncoupling the modes , each modal damping constant is
multiplied by the natural frequency of that mode; see section about uncoupling equations of
mot ion.

Experimental data (vibration generator tests and anchor drops) cited in Reference 8
indicate t hat frequency dependent damping is more appropriate and that the value (‘~ = 0.03
is an average value for several ships tested.

Ph ysically mass proportional damping corresponds to dampers connected between the
nodes and an inertial reference ,

A portion of the tota l hull damping must be due to hysterisis which would be represented
by dampers working against the relative rotational velocities (changes in slope) and shear velo-
cities of adjacent elements. Although this type of damping has not been used in many

7 Huzty , W. C. and St. F. Rubinstein. “Dynamics of Structures ,” Prentice-Hall, Inc., Fnglewood C]ifTs, N. 3. (1964).
8McGoldrick, K. T., “Ship Vibration,” David Taylor Model Basin Report 1451 (Dec 1960).

7



calculations, furt nt’r development may justify its use, and it is included in the program. The
moment and shear transmitted between two sections by the bending rigidity El and shear

rigidity KAG is dependent on the slopes and deflections of adjacent elements. If a damper
also transmits a moment and shear between two elements (but as a function of the time rate
of change of slopes and deflections) then the damping matrix must take the same form as
the stiffness matrix. If, in addition, the values of the coefficients are proportional to the
rigidities, then the damping matrix can be written

(CI = b (K]

NATURAL FREQUENCIES AND MODE SHAPES

MODES OF VIBRATION OF A FREE-FREE BEAM

The first step in solving the equations of motion of the idealized beam is the solutioi~
of the free, undamped vibration problem.

(MI {
~~

} -+ 1K] { y )  = {0} (7)

We seek solutions of the form

{ y } = { X } c
I
~~ n

t (8)

Equation (7) becomes

—
~~~~~~ (MI C X }  + (K) (X }  = U)) ( t )

There are as many solutions for 
~~ 

as there are degrees of freedom. Fad - value of 
~~ 

is an
eigenvalue (natural frequency) of the system , and is dependent only on the masses and stiff-
nesses of the system. For each cigenvalue there is a corresponding vector { X )  which,

~ogether with the eigenvalue, satisf ies Equation (9). The vector (XI is an elgenvector and
repr sents the m ode shape, The mode shapes can be determined only to within a multiplica-
t ive constant. The matrix X I formed by the column vectors {X }  is called the eigenvector

matrix .
If the constraints are such that rigid body motion is possible, 

~~ 
= 0 will be a solution

with a multiplicity corresponding to the number of rigid body modes. A free-free beam con-
sidered in the vertical direction has two rigid body modes, one in translation and one in
rotation.

8
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The two-noded mode will be the first of the remaining modes, the three-noded mode
will be the second, etc.

DETERMINANT METHOD OF SOLUTION

To solve Equation (9), we can combine the mass and stiffness properties into one
operator matrix.

([K] ~~2 [Mi) { X I = { 0} (10 )

This represents a set of N homogeneous algebraic equations in X. For { X I to have non-
zero solutions, the determinant of the operator matrix must be zero.

IL K] — w1~ IM] I =0  (II)

Trial values of are substituted into Equation (II), and, by interpolation, the values of w~
that cause t he determinant to be zero are found; they are the natural circular frequencies of
the system.

To obtain the eigenvectors, the c
~
,
n are substituted back into Equation (10). and t he

vector ~ X I is found for each eo
n . If we let

( DI = ( ( K I  -•- 

~~ 
[M J )

then Equation (10) can be written

[Dj (X I  = { 0 }

which when expanded takes the form

D11 X 1 + D12 X 2 + + DI N  X N = 0

D21 X 1 + D22 X 2 + + D2N XN = 0

(12)

DN I X I + D N 2 X,+ + D N N X N = O

9 
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Since mode shapes can only be determined within multiplicative constants we can specify any
one X1 in each mode. We find it convenient to let XN = I in all modes. Then the first
N — I equations are written

D11 X1 + D12 X2 + + D1 , N - X~ - = —D I N

D21 X1 + D22 X2 + + D2 N - X~ - I = —D2N

DN _ I , I X 1 + D N _ j , 2 X 2 + + D N _ l , N _ I XN I
=_ D N _ l , N

( 1 3)

These are solved as a set of nonhomogeneous algebraic equations, and, after the vectors (X }
are found, eac h can be substituted into the Nth equation to check

DN L X I + D N 2 X 2 + + D N N I XN _ l +D N N = O

This “determinant method” has several advantages over other commonly used methods

for finding eigenvalues and eigenvectors. Possibly the greatest advantage is that it is not
necessary to reduce the order of the dynamic matrix by the number of rigid body modes,
thereby obtaining the equations of motion in generalized coordinates. While this may not be
difficult for the beam, if the program is later adapted to other transient problems, each type
of constraint must be treated separately.

Other advantages are that it is more accurate for high modes than some other methods
and that only the modes desired need be calculated .

CALCULATION OF RESPONSE

ORTHOGONALITY

In this section we will show that the eigenvectors are orthogonal with respect to the
matrices ( MI and I K I .

If we write Equation (9) for the i th mode, we have

~~2 (MI ( X~ } = [K] ( X(° J (14)

10

~
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where {x°~) is the mode shape (elgenvector) for the it/i mode. Premultiplying this by

{ X~ 1
T 

the transposed eigenvector for a different mode, we get

~~ 
{X ~~J

T (M) { Xt° } = {XU) )T (K] (X ~~) ( 15 )

Next , take the transpose of both sides of Equation (15) and apply the rule which states that
the transpose of a matrix product is equal to the product of the transposed matrices in
reverse order .

2 (X ’~ 1 
T 

1M) (X~ } = 
~ x~ 1

T 
(K I { X”~} ( I 6)

We have used the fact that (M I and [K) are symmetric and therefore equal to their trans-
poses. Now we write an equation identical to Equation (I 5) except interchanging indices.

c
~~ 

{X w }
T 

(MI {X ~~} = {X ~)} T [K) { X01) ( 17 )

Subtract Equation ( l7)  from Equation (16)

(~ ,, 2 ~~2 ) {X ~~I [MI {X ~~} = (O}  (18)

For

(X ~)} T 
(MI {X W } = (0)  (19)

Also, from Equation (17) we have

( K ]  { X W } = (0) (20)

Equations (19) and (20) reflect the definition of orthogonality with respect to a weighting
matrix , in this case [MI or (K) .  Note that if two natural frequencies are the same , their
mode shapes are not necessarily orthogonal.

II 
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NORMALIZATION

We mentioned before that an eigenvector repreaents a characteristic pattern of relative -

displacements associated with a particular mode of vibration. This means that we can multi-
ply all the components of an eigenvector by any constant , and it will still represent the same
mode shape. We are able to use this fact to simplify our analysis.

Premultiplying Equation (14) by { Xt° }
T 

the transposed eigenvector for the ith mode,
we obtain

~~2 {X ”~}T 
[MI (X t1

~} = {X (I ) ) T 
[K ]  {X~

1
~) (2 1)

First we will consider the triple matrix product on the left side. It can be shown that the
product will be some constant , say m1

{X tn) T 
(MI {X ~~} = m1 (22)

We wish to normalize the vector { Xt’~ } and its transpose by multiplying it by a constant n1
so that m1 becomes unity

n~ { X(o }
T 

[ MI { X ( t ) }  = 1 (23)

Wr itten in subscript notation

~ ~ 
m~ X,~ Xkl = I (24 )

j k

where mJk 
is an element of [MI. and X,~ is the j t/m component of { Xt1~). Solving for n1

n. 
1 

(25)
I 

mJk X~ Xk I

Let the normalized eigenvector he denoted by (X ~ ’~ 1, so that

{ X,~’~} = n1 { Xt1’ } (26)

12
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If we write Equation (21) using our normalized elgenvectors, we get

~~~2 {,ç W } T 
[MI {X~W} = {X ~°~)T [K] {X~W } (27)

We have shown that

(MI {X~°1} = 1 (28)

w hich means

(X~w 1
T 

(K) { x~
t1
~ } = (A)~ 

(29)

If we assemble the normalized eigenvector matrix [X~J , we can show by use of Equations

(19), (20), (28), and (29) that

(X~]
T [Mi (X e] = (I] (30)

[X~1T (K] (X~ I = 1w 2) (31)

w here 1w 2 ) is a diagonal matrix of the squares of w1. The last two equations are useful in
our normal mode analysis.

The eigenvector matrix for the free-free beam is obtained by assembling the (N — 2)

and the rigid body mode shapes into an (N x N) matrix.

UNCOUPLING THE EQUATIONS OF MOTION

Our next task is to uncouple the equations of motion so that we have a series of equa-

tions (one for each mode) resembling that of a simple oscillator. We start with Equation (5)

[M] (~? } +  [C I { y }  + (K ] { y }  = {F)  ( 5)

where {y ) and its derivatives and (F)  are functions of time. The displacement response
may be expressed as a superposition of normal modes

{y( t ) ) = (Xe ] {q(t)} (32)

13



where {q } is a vector of time-dependent generalized coordinates, They are called normal
coordinates since they are associated with the normalized modal matrix (X~ J . Substitution
gives

IM ) LX~I {cj} + (C) LX~) ( 4 } +  (K] (X 11) (q) = {F} (33)

Premultiply this equation by (X~] T

~~i(~~) T (M] 1X~I ( q ) +  pçj T [C I [X~,J { ?~ } + { X~
}T (1(1 (X~J {q} = [X~J T (F )

(34)

Applying Equations (30), (31), and (6) yields

(1] {~j }  + a [II {4 } + b (w 2 ] {
~ 

) + (w~ ] {q } = (~çj T {F} (35)

If we let

(P u ) )  = (X~I
T {F(t) } (36)

( U )  = a Ill + b 1w 2 ] (37)

Equation (35)  becomes

{ q } + ( U I  {q}  + (w 2 1 { q )  = {P (t ))  (38)

The matrices (G] and [w 2 J are diagonal so that Equation (38) can be written as a system of
uncoupled equations

~j 1(t ) + G141(t)  + w 2 q1(t) P1(t), i = 1 , 2, . . . N (39)

where

G1 a + b w 1
2 (40)

Equations (39) have the form of the equations of motion of damped simple oscillators,
and each equation represents a particular mode of vibration. The solution of Equations (39)

14 
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is well known, and there are several methods that could be used. Our computer program
uses a time-marching method.

TIME-MARCHING METHOD

There are several time-maching methods which approximate the differential equations of
motion with finite-difference equations so that the displacement at a particular time t~~1 is

an algebraic function of the displacement at time t,~, the parameters of the system , and the
applied force. These methods appear simpler than transform methods which involve a large
amount of numerical integration.

The particulcr time-marching method used herein is one developed by Chan, Cox , and

Benfield.9 In this method we consider time to be divided into many small , equal time
increments , h. where h = t~~ , t~ = t~ - _ 

~~~~ The modal displacements q
~+1 at the time

~~~ are calculated, then transformed back to physical coordinates.
The equations are derived in Reference 9; only the results are stated here . The main

recurrence formula for the solution of Equation (39) is

Zq~÷1 = Aq~ — Wq~~1 +~3h2 P0~1 + ( l  - 2 ~3) h 2 P~ + L3h2P~_ 1 , n> 0 (41)

where

Z = I + (h/2)(; + ~3h 2 w 2

A = 2 (I 2~3) h2 w 2 (4 2)

W = 1 (h/:K; + ~~ 2 w 2

Equation (4 1)  must he applied to each of the modal displacements; however , modal subscripts
have been omitted to avoid confusion with the time subscripts. The quantity 13 can be assigned
any value between 0 and 1/4. Different values of 13 correspond to different approximating
assumptions about the acce leration between time steps (such as a constant acceleration within
each increment or a linear function). The effect of 13 on accuracy is discussed in the
Evaluation.

Equations (4 1) and (42) are not valid for the first time increment. The following

equation , which includes initial conditions must be used.

9Chan. S. ci a l .  “Transient ArIaly%ls of Forced Vibrations of Complex Structural-Mechanical Systems .” Journal of the
Royal Aeronautical Society. Vol. 66 . No. 457 (Jul 1962).

15
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= Qq0 + Rq0 + SP0 + ~h
2P1 (43)

where

Q = I + hG/2 — ( 1/2 — 1 3 )  h2 w 2 — (1/4 — j3 ) h3 Gw 2

R = h — ( 1/4 - (3) h3 U2 (44)

S = ( 1/ 2 — (3) h2 + (1/4 —(3) h3G

q0 = initial modal displacement

= initial modal velocity

After modal displacements at a particular time have been determined by the time-

marching equations, the nodal displacements are obtained for Equation (32).

y = [ X0 1 q (32)

From the nodal displacements , we can obtain the velocities and accelerations. The velocity

is found as a second order approximat ion of the slope of the displacement , and the acce lera-

tion is calculated from the slope of the velocity or curvature of displacement

Xn+l = (X 0 1  -_ 4X0 + 3X0~1 ) (
~~

)

X~~1 = (X~~1 - 2X~ + X 0~1 )

The moment in the element between nodes i and j is approximated by

El.
M11 = —n -- O~) (47 )

The stress Sb due to bending in t he element between nodes i and j is given by
Ii

Sb = 
~~ c/ l~1 (48)

16 

~~— —~~~~~~ -- --- - - _ ~~~~~~~ ,- --



V

where c is the vertical distance from the neutral axis to t he point where the stress is being
calculated.

The shear force at t he j t/z node is

M1. -vJ = 
~ 2 (49 )

The shear stress at any station near t he neutral bending axis is

VI
S~ = ( 50)

where KA is the effective area at the station. ( In our model the effective areas are given by
elements , so the KA of either adjacent element could be used.)

DESCRIPTION OF PROGRAM

SUMMARY OF APPLICABLE EQUATIONS

Before discussing the details of the program, this section lists the equations used in the
progr.imi~ from the preceding analysis and indicates briefly what steps are necessary.

First t h e  mass and stiffness matrices are obtained from the superposition of the individual
eleme nt matrices , Equations (2 ) and (3) .

156 —2 22 54 132
mQ — 222 4Q 2 

— 132 — 3Q 2
= —

420 54 —1 3 2 156 222 -

132 — 3Q 2 222 42 2
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2 2R — -~- R  R -~~R

2 2 2 El 2 22 El— R+ - - - -  — R  — R  —2 4 2 4 2(K ]  (3)
2— R -~~R R — R

ii El— R  — R — — R  — R + —4 2 2 4 2

/ ~ ~ l

R =  1— + I 4)\ KAC l~ E L I

Then solutions ar c  ohtained for natural t reqtze n~- ies w~ using Eq nation ( 11 
—

~~ (M l) = 0 il l

T’he cigenvector s can then be tound using 1-qu it ion ( I 0

( ( K  I w 2 (\1 I)  { X } 0 ( t O )

where X N = I.

Then the e lge nvecto r matr ix must he normalized Nv means of the fol lowing two
equations

( 25)I 

~~~~~~~~~~~ 
�..~ ~~jk ~‘~i ~

“ki

{ \ (l i  } = ii~ { X~ ’} ( 2 6)

18



The nodal exciting forces must be transformed into modal exciting forces

{P }  = (X ~ J T ( F )  (36)

The modal damping is calculated from

U1 = a + bw~
2 (40)

At this point we have all we need to start our time-marching procedure. First we note
that the starting Equation (43) and the main recurrence Equation (41 ) require the calculation
of (he tollowing parameters

Z I + (h/2)G + 13h2 w 2

A 2 — ( I — 2/3) h2 w 2 (4 2)

W I (h/2 )G + 13h2 w 2

Q = I + hU’ 2 — ( I  ~2 — 13) h~ w 2 - ( I  ,!4 - _  (3) h3 w 2G

R = h — ( l / 4 ~ 3 ) h 3 G2 (44)

S = ( 1/2 — ( 3 )  h2 + (1/4 — (3) h3G

Although we have omitted modal subscripts , these parameters must he ca lculated for each
mode.

Next we start a series of calculations which must he performed at each time increment.
The first step is either the starting equation

Zq1 = Qq0 + R~0 + SP0 + (3h 2 P1 (43)

or the main recurrence formula

= Aq~ — Wq~~ 1 +/ 3 h2 P04 1 1.1 I 2j3) h2 P~ + h2 P~ (41)

_ — - “ _ - . -— 
I _ __ __ _ 
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After t lie m odal d isp lacemnen ts .mt t line (
~ + have been calcul ated , we ca lcul ate the ptiysica I

or nodal d usplacenien ts for tim e 
~~ 

using

{ y }  = IX ~ J { q }  132 t

lhie tioda I veloc ity and acceleration are ca lc ulated I ro in

= 
211 

4X~ + 3X~,~ )

= ( l / h 1 ~~) (X ~ 2X 0 + X 1141 )

ru e hend iii~ ‘ ioi c i  s ire calculated from

(0 O t  (4 ThIt t, I

The heriding stresses are calculated (torn

S1, M~ c ’l 1 (4~
)

Thc ‘hear forc e is c d t  ulated from E quat ion (49 ) and the shear stress from 1-quation 150 u

M13 - MIkV = — —--— 
i4°

S = —i-- i5O~S 1 KA

After these calculation s the output (or each desired station for each time increment is

printed , and the program begins the loop again for t h e  next time increment.

MA IN PROGRAM

Appendix A is a flow chart of the progra m SLAM and indicates how the equations of
the previous section are incorporated into the program. S LAM is designed to calculate the
ve rt ical transient response of a beam-type structure wi th up to 2(1 elements. Vertical forces

20



can be applied to the first 10 stations. At each of the stations the force can be specified by
as many as tOO points with respect to time. The response is calculated for every hundredth
of a second which is adequate to descr ibe motions with frequencies at least up to 10 hertz.
Output for every increment , or for every NPRINT increments, can be printed as desired. The
user specifies the number of modes to be included in the response calculation and can opt to
have the natural frequencies and mode shapes printed out. At each station for which output
is requested, the displacement , acce leration , bending moment , shear force , and bending and
shear stresses are printed out. Since the output is printed by stations and the bending moment .
bending stress , and shear stress are associated with t he elements , t hose quantities are given for
the element just forward and just aft of the station named. SLAM will account for any of
three types of damping:

I . Mass proportional
2. Stiffness proportional
3. Mass and frequency proportional

For the input , any consistent set of units can be used, except that the value of E used can
be a different set of units. The stresses calculated will be in that set of units.

SUBROUTINES

FOR(’ES — This subroutine takes the forces as plotted for the program input , inter-
polates where nece ssary, and calculates the modal forces which are used in the main program.

MATINS This subroutine is in the Center library of subroutines and can either find the
determinant of a square matrix (A l  or indicate if it is singular and eit her find the inverse of
the matrix EA I or solve a set of simultaneous linear equations of the form (A]  { X } = 18 1.
In SLAM it is used first to find determinants in the natural frequency part of the program.
Then it is used to solve simultaneous equations in obtaining the mode shapes.

INPUT/OUTPUT

Sample input for SLAM is given in Figure 2. The necessary format and description of
the input is given in Table 2.

Sample output for SLAM is given in Figure 3.

EVALUATION

ANALYTI CAL APPROACH

The analytics used in SLAM were selected specifically for the ship-slamming applica-
tion: t herefore , t hey should provide maximum flexibility and utility.

21
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to 63 01 I i  $1  0* 71 0 7  I ’. 0?
26.2* 0.0  6. 0  6 . 03  3 . 00  36.05.0* 11.53 .0*
7.1115.00 6 . . I 0 ( 6 0 5  3 .3663.10  21.3
1.2 3 03 .01  3 .6113609 , .zo~~~.ue 2 6 .3
2 .6006 .61  ? .s301’s9 6 . 1605654 20.5
1.6416•S1  3 . 7 3 0 3 6 6 5  6.4113110 2 0 . 3
2 .2 , 0 3 . 0 2  1 . 0 . 0 6 6 1 6  4 . 1 4 0 5 6 1 0  2 0 .3
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.17 162.. ,., ‘,;c ?0’.’5
.13 17~..’. . ‘ O . 3 5  3 6 5 . 9 5
.I~ 34 . ‘9 3 . 1  409. 1
. 0 5  .2 . ’ 5 *3 . 7 5  ‘73 •3 5
. 14 14 . 1 5  5 0 9 . ’5 52 3 .6 7 30 . 0 ’
.17 4.40 4 5 4 , 3 0  558. 0 5 1 0 . 1 5
. 1 8  . 5 . 1 3  ‘53.2’ 586 . 1  13...95
.01 .4 ’  4 1 5 . 6 7  411 . .S  1 9 + . 4 S
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. 51  0.  ‘14 . 0 5  666 .3 3  31.6 . 5
‘‘5 0. 262.15 594. 05 4 3 2 . 2
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..3 ~. ‘. 9. 0. 12.5  161. 1 5 0 . 5
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.-~3 3 . 3. 5. 0. 4 . 0 7  6 7 . 4 5  4 7 , 4 2

3.  3, 2 . 1 8  3 2 . 3 3  3 0 . 16
. . 0  0 .  ‘. ‘. 0 .  .66 2 0 . 3 0  0 3 .72
.-,. -i. 1. 3 .  0 .  .32  12 . 8 3  1 2 . 5

3 . 1. 0.  0 .  3. 7.7 .. 7.7..
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.-.P u. 0. 0 .  0 .  0 .  2 . 1 5  2 . 1 0
.,i 3 . 0.  0.  0. 0 .  .66 .66

3.  C. 0 .  3.  . 3  0 . 3
~ . 1 5  0 .  3 .  0. 0 .  0 .  5. 7 .

05 07 10 15

Figure 2 — Sample Input for SLAM ( See Table 2)
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TABLE 2 EXPLANATION OF SLAM INPUT

Line -Format DescriptionNumber

(12 ,20(1X ,1 2) N — Number of sections (20) ’
NMODE Number of modes to be calculated (10) ’.
IOP T( i )  — For input
OPT)?) - For natural frequencies
OPT)3 ) For mode shape s
IOPT(4) For transi en t response

(I OPT ( l)  indicates what output is desired—i if desired . ~ if
not I

NPTS Numbe r of points .n the force ver sus time plot including
0( 100 ) ’.

NFOR Number ~ Wc t ’o ns to which force is applied . (10) ’
NOUT Number of sections for which output is desired . (20) ’.
NPR ( NT Numbe r of calculations for each printout.

2 (SE 10 3) DEL X i~~~~ of hull sect ions
DAMPM Mass proportional damping constant
DAMPK St ’ f f ne s s - proport iona( damping constant
DAMPE Mass and frequency proportional damping constant
T STOP Time if last desi red response
£ Modulus of e la s t ic i ty
S Shear modulus

3 22 (BE 10 3) EMA ~~, I ~~~~~ hull elemen ts
EE 1111 E l  o ’ h elements
F K A t  - - 1< A G (It hull elem€n ts
D~’ I Distance f r o m  neutral bend ‘ 1  d~ is to desired stress

(((.82 1 ) 1 1

i Co ns is ts  øf N lint ’’. st a r t inq at 1)0W.)

23- -93 (8E 10 3i TPT ( I )  Time of each force versus time point
F PT( I .J( Force on the NF OR sections

( Consists of NPTS lines , each one gives the time and
NFOR to ’ ct’s applied at that time . Includes 1 0 at
which 7-mi’ all force s must equal zero , also , must give
for ces tip to t TSTOP .

94 (l2 ,20 ( 1X .12) LOUT II )  Statio n numbers for which output is desired
( Consists i’~ NOUT station numbers. Do not include 0
nil N ( shim -h printout automatically.)

lnc l ic ,ites makimum nun-rh., aliow~d
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Figure 3 — Sample Output for SLAM
S 44071 i m I l  O0~~l’4 •ISPI D4 .0 1 0 0 0 ~~ 1 6 1.0604?
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4 1 ‘ . . .‘:o~~. o *  I . 0 . 0~~’ l 0  o. ’$ o r . 0 4  7 . 6 5 0 1 . 0 0
1 8 5 . .‘ S t F  . 91  0 .‘.‘8 * 1 0  i . S~~3~~.O 4  7 .  0’,01 ‘0 0
• 4 6.1901 ‘00 i . . R ? 8  . 0 0  .‘ .~~4 7 ’ * 0 6  5.0531.91
9 00  . I ‘‘I • 0 0  I . ’ .  0*~~* I 9  0 . 4 0 ’ , • 0 I ~ 7 . 6 5 0 1  • 0 0

IS  11 ‘ 9 0  t . . 9 9 i * 1 0  ‘ . 4 8 3 f •~~4 ? . * S 0 ( ’ I l
I I  I ?  ‘. % 8 2 . . 0 1  1 . 4 7 4 0  * 1 0  O . 6 J 0 0 . * 6  2 . I SI ( . o i
( 3 ( 3  4 .” P C i  • 00  I . .  7 6 1 . 0 0  0 . 8 7 7 , .  01, 0 .05 0 7  • I t
Ii 8 •. . ~‘0, ‘ 01  I.067€.l 0 8 . 1 1 3 1  ‘05 3.0601.01
04 03  ~ ‘ 1 2 ’ • II 0.  ‘64 ,  ‘I 7 . .4.5 .‘0I~ 2 .  0’I’ ‘ 0 0
05 06 5 3 7  0 . 1 1 0 0 ’ 1 0  * . 6 0 3 4 * 5 4  2 . ’’l , .00
11. I l  3 . O ’ O ’ 0 l  9.S.I’ .’Il 5. 0 3 7 ’ .94  2 . 8 5 9 0 . 1 1
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09 20 ‘.‘. l r’ 7 6  .. 5b 5’~~C 0  Z . 1 ? 0 * . 0 6  7 . 1 6 0 1  ‘0 0

IeP40,3*3 5~~~. ‘. 3 0 0 T 1 0 4 5
1 0 _ I  , 1 7 0 4 5

6 . 0 0  0 .  ‘. ‘. ‘.
.00 0 . 0 0  l. . 0 1  1 . 1 5 3 1 . 0 1  ‘. ‘.
. 9? s . o . sr . o ,  5 . 0 6 3 1 ’ 0 1  ‘. ‘.
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Figure 3 (Continued )
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‘Ilie niathemat lea? iiiotk l selected is a finite- e lem ent representation of a beam Wit  ii hot Ii
bending and shear rigidities . which should give very accurate res ults. A matrix approach is

used so that more complicated hull t’ornis (such as catamara ns or surt ’acc~,l’t ’ec ts ships will
require only reprograming the matrix as.sembly portion to reflect the more complex structural
model. Once the mass and stit ’fness matrices are formed most ~~~~I the rest o the program can
be used unchanged .

T ue determinant method I or eigenvalue extract ion has been selected because it is accu-
rate for higher •is well .is lower mode s and becau se with this method the rigid body Inu(les
of the beam do not necessitate preliminary manipuiatioii .i’~ some methods do .

Ilie norma? mode nit’ I hod allows the user to ,iit’ula Ic only t he modes of vibration oil
i n t e r est  - Rigid hod~ m otion is . i u tommia t  ica ll~ e liminated - If desired , t he response in each
mode can be printed out se par;iteI~ wit h a iliIiior 1177 ( 1 114 . it i() ii,

l’he time—marching method makes it possible to conveni ent l~ input a detailed description
ot the slamming to rces with respect to time and length along the ship. l’he parameter ~3 can

be ~ aried to ni inirn ize errors in the ma x imu in a In p i t  not e or I i i  t lie period - 1 able 3 dese loped
from Reference 10) indicates t h e  tradeot i that this to he made . SI A ’~l uses = I - I.thk 4
also fr om Ret ’1’r4 ’n~-e 10) indicates the highest t requencv fo r  a stable .iiiol converging solution -

In the ship slamming problem the part icipat ion uo l  the Ii igtier m odes has riian~ (liii er-
i~iin ties , i s 5 u O i iated ~ tb i t .  F: irst the calculated sla m m ing t u o r ~ ~‘s art ’ normall~ derived from
s t , i t  1st ical .ipproaeh - l’hi is meaiis that ,  alt bough .i pressure is e~’nevall~ triangular with respell
to t ime .iiiol is represented as sut - hi , a part icu l.ir slain iia~ he close r t oo a h a l t  sine , or ma~ he
sk ew Col to 1114 ’ let I or right . oi ma have si nile oIlier sh ape - I his ~ hi . o i~ es considera bly the
e sci t a t ion at the ii iglier treq uen~’ies , hot 11 Iii magili h ide and iii phase - I he ma s im urn response
of the slii p will depend on how t lie higher modes respond re lat ive to the larger fundamental

response . l’or c sample, it both modal responses pt-ak togeth er , the ma ximum response would
he signil’icantl~ higher than if the modal responses subtracted From eat -h other . Anot h er

complication is t hat ,  at least in v i I ~rat noii generator tes ts  .111 h igh er niodes (St ships . t he rnc ,i~-

tired mode shapes are sometimes s ignit icant l~ d it terent tro m n t he calculated normal m ode
s liapt ’s . Additional measured d ,i t a  - t ’oni parcoh W i t  hi t’al c i ilat ions , should he lp  to describe t h e
effect of the higher modes .

TEST PROBLEM S

To test the accuracy ot SL.A~1 ant i to oler iio iistrate i ts list’ and t- l ia racter is t ics . a seri es ot
tes t problems W is  so lsed .

7 77  irk - 5 . %1 I , .77 3~1u( 07 , ‘ t ~~~
, ,  I 1)’, ~~~~~ SlI l lu  iiio,l i R1cpion ’~..i 111 ii~t ’ K In?u ’ \pp t l5 .1~ illfl I.’ I ,113710, ’ “6 IT3 P7’I’.IU~~ On

l-j rth,1uak~ ~oiiI ilLisi I I fu ’8 i ’ . ‘‘71 S i r I l s  7 7 7 0 7 6 , I I l l su ’ 1 6 7 i 6  i’ i I jii f i’r n io .ii t o ’ s  -5flj ’t’ Iu’s I i ’ ic i ’ i.
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TABLE 3 - EFFECT’ OF FREQUENCY ON ERRORS DUE
TO NUMERI CAL PROCED URE IN SLAM

Hz 1 ~~ o 0 = 1 / 1 2  Ø = l ’ 8  ~3 = 1 - 6  0 - 1/4
— 

RELATIVE ERRORS IN MAXIMUM RESPONSE
TO AN INITIAL VE LOCITY

5 0.012 0.008 0 006 0 004 0
10 0.052 0.034 0.025 0.017 0

20 0.209 0.166 0.116 0.073 0
25 0.614 0.306 0.202 0.122 0

RELATIVE ERRORS IN PERIOD

5 -0.004 -0.000 1 0.002 0.004 0.008
10 —0 .017 -0.0003 0.008 0.017 0033
20 —0 .076 —0.006 0.028 0.059 0.121
25 —0.130 --0015 0.038 0.087 0.179

TABLE 4 -~ STABILITY ANt) CONVERGENCE LIMITS FOR
~3 METHOD IN SLAM

0 = 0  0 = 1 / 1 2  0 = 1 / 8  0 = 1 / 6  0 = 1 / 4

[Stability Limit in hertz 31 ,8 J 38.9 45 .0 55,1

~Conver~ence Limit in hertz 55. 1 45,0 38.9 31 ,8
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The first series of problems involved a 600-foot uniform steel beam weighing 1000 tons
with a bending rigidity, El, of 1010 ton-ft 2 . The shear rigidity was assumed to be 102 1

(very large p. The end of the beam was excited laterally by a hO ,000-ton step function , and

the undamped transient response for the first two modes was calculated. The exact solution
for displacement and acceleration of the end of the continuous beam, obtained from Refer-

ence 7 . is given by the solid lines of Figure 4. The beam was then divided into 20 sections,

and solutions were obtained from SLAM which are given by the circles in Figure 4.
In addition to the uniform beam, a MA RINER-Class hull was used for some test prob-

lems. Figures 5 through 8 show the response of the MARINER hull to slamming forces

calculated using SLA M t’or a slightly more severe than State ( sea. Frequency and mass

dependent damping was used, causing the higher mode components to decay before the
fundamenta l component as shown from experimental results. Figures 5 and 6 show the

response, considering only the first three modes. Figures 7 and 8 show the response . con-

sidering the first tO modes. The displacement and accelerations were plotted for the bow and

Station 7. The bending moment and shear forces were plotted at Station 7 and amidships,

CONCLUSIONS

Normally a ship hull will he divided into 20 sections for slamming calculations for two
reasons: the parameters are likely to he listed at 20 stations for other design studies , and 20

stations is an appropriate number for describ ing the forces applied to the hull. The accuracy

of the solution of the uniform beam (Figure 4) indicates that numerical procedures , using a

20-element representation , are sufficiently accurate for any projected use in connection with
conventional ship slamming involving the lower modes. A 1 0-element model would probably
do almost as well in the first three modes: however , the force brea kdown may be too coarse,

The user should study Figures 5 through 8 to determine the et ’fect of including higher

modes, The d isplacement and bending moment do not reflect the higher modes as much as
the acceleration and shear force. The number of modes requested should he determined by

which parameters arc important for that particular application and by the accuracy needed,

Not much is gained , however, by requesting more modes than half tile number of elements.

The flexibility of the analytics used in SLAM allows the user to study intermediate

steps in the structu ral solution: natural frequencies. mode shapes , and individual modal
responses. SLAM is flexible also in that it can he easily adapted to handle structural con-
figurations other than a beam.
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APPEND IX A

FLOW CHART OF SLAM

R E A D  I N P U T  DATA

Is
IOPT( 1) = 1 NO

YES

PRINT INPUT DATA

A S S E M B L E  MASS A N D
STIFFNESS MATRICES

w = 0
DETM = 1.0

I = 1

= 
~~~ 1

C A L C U L A T E
[ K ]  -- w 2 E M]

I CALL MATINS
TO FIND DET 

— -.--
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() a

IS
DET = 0

? 
YES

NO

IS NO
IDETI > IDETMI

7

YES

DETM~ = DET:

NO HAS
DET CHANGED

S I G N ?

YES

I N T E R P O L A T E  TO F I N D
NEW VALUE OF w

CALCULATE [DYN] =

E K E - 
~~~~~ (MI

C A L L  M A T I N S
TO FIND DET

IS YES
DET = 0

7

NO

NO 
DET/DETM~ 

—
~ 10 ~

YES

d
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0 P
EVAL(I) = w

1 = 1 + 1

YES IS
I ~ NMODE

7

NO
1 = 1

CALCULATE [DYNI =

(KI — w 2 (MJ FOR
Ith NATURAL FREQUENCY

LET (DYNRI BE ABOVE
MATRIX WITHOUT Nth

ROW AND COLUMN

LET —  IB) BE Nth
COLUMN OF [DY N]

4,
CALL MATINS TO FIND

= [DYNRI 1 
{ B }



-- - --— _ - —. - ~~~~~~ _ -~~~~- - - - -~~~~~~~~~~ - -

e

IS NO
IOPT(2) = 1

YES

PRINT NATURAL
FREQUENCIES

IS NO
IOPT(3) = 1

7

YES

PRINT MODE SHAPES

IS NO
IOPT(4) = 1

7

YES

NORMALIZE EIGEN-
VECTOR MATRIX

r CALCULATE TIME-
MARCHING CONSTANTS

T = H  ]
4,

CALL FORCES

4,

[~ CA LCULATE INIT IAL
LMODAL DISPLACEMENT

(0
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CALCULATE PHYSICAL 
_______

DISPLACEMENT FOR T IME T = H

[ CALL FORCES ]

CALCULATE MODAL
DISPLACEMENT FOR TIME = T

4,

CALCULA TE PHYSICA L
DISPLACEMENT FOR TIME = T

CALCULATE ACCELERATION , VE LOCITY ,
BENDING MOMENT . SHEAR FORCE ,

STRESSES FOR TIME = T — H

PRINT OUTPUT FOR
TIME = T — H

ADVANCE DISPLACEMENTS
USED IN CALCULATIONS

BY ONE TIM E INCR EMENT

T — T +  H

YES IS
T ~ TSTOP

7

NO

END
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SUBROUTINE FORCES

IS YES

LESS 
T = TPT(IPT)

GREATER

IPT — IPT + 1

INTERPOLAT E TO FIND FORCES , IC )

SET FORCE S EQUAL TO

~ C = FPT(IPT)

—===
~~~~~~~~~~~~~~~~

ADVA NCE FORC ES BY ONE
TIME INCREMENT

CALCULATE NEW MODAL
FORCES = [EVEC I ~C

C~~RETUR~~D
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