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ABSTRACT

This report describes a computer program, SLAM, which uses ship
slamming-impact forces and structural parameters of the hull to calculate
the vertical hull-girder vibratory response in terms of displacements, accel-
erations, bending moments, shear forces, and stresses. The normal mode
method is used so that the user can calculate only the modes of interest
and can eliminate the rigid body and higher modes. Modal responses are
calculated with a time-marching technique. The program uses a finite-
element model of a beam which is suitable for conventional monohulls.
Modifications to accommodate other model configurations can be made.

Test problems show good agreement with exact solutions for a
uniform Euler beam. Sample calculations are made on a MARINER-
Class hull using 3 modes and again using 10 modes.

ADMINISTRATIVE INFORMATION

The work described in this report was authorized and funded by the Naval Sea Systems

Command (SEA 03412) under Project S-F354 21, Task Area S-F354 21 007, Program Element
62512N, Work Units 1-1506-006 and 1-1568-102.

INTRODUCTION
BACKGROUND

The Naval Ship Research and Development Center (the Center) has developed a com-
puter program for evaluating the impact loads and the main hull girder response associated
with slamming of a ship at sea so that a more rational design of high-speed naval ships can be
achieved. The program will calculate impact forces as a function of the configuration of the
ship bottom, speed, draft, trim, and state of sea. Impact forces and structural parameters
will then be used to obtain the hull girder response in terms of relative displacements, accel-
erations, bending moments, shear forces, and stresses. At present the computer program is in
two parts; one calculates the forces and the other the response. They could easily be com-
bined. Rqsults from the overall study are presented in Reference 1.

This report presents details of the program dealing with the hull response. Hull struc-
tural characteristics and impact forces are the input to the program.

A review of experimental data about slamming shows that the hull response is most
significant in the lower modes of vibration. Also, it has been observed that although the

IOr,hi. M. K. and L. E. Motter, “Prediction of Slamming Characteristics and Hull Responses for Ship Design,” Society of
Naval Architects and Marine Engineers Transactions (1973). A complete listing of references is given on page 41,




forces are dependent on rigid body motion, the rigid body motion itself is affected very little
by slamming.

To determine whether the inclusion of shear rigidity and rotary inertia would increase
the accuracy of the program significantly, Center reports about calculated natural frequencies:
of ship hulls were reviewed. Three were found that contained useful comparisons.2~* A sum-
mary of these results and some unpublished data are given in Table 1.

Rotary inertia is not now normally included in vibration calculations at the Center, and
the example of the T-AGM-19 indicates that the practice is justified. Shear rigidity is nor-
mally included because the calculations usually involve at least the first five modes of vibration,
and in the higher modes shear rigidity significantly influences the modal frequencies. Another
trend which is reflected in the table, and which is to be expected, is that the shear rigidity has
less influence on long slender ships than on short deep ships. Slamming is more of a problem
on long slender hulls. To make the program as general as possible, however, shear rigidity
was included.

It is recognized that the accuracy of natural frequency calculations is only one factor in
the accuracy of hull response calculations, but it is one of the few indicators available.

Many of the requirements of this program are similar to those for the author’s thesis’
at Catholic University, and many of the same techniques are used.

APPROACH

Calculation of steady-state hull vibration at the Center has normally involved lumping
the hull parameters. However, the advantages of a finite-element model are enough to war-
rant a different breakdown of parameters. A finite-element beam model is used.

The normal mode method seems particularly suited to the problem of ship slamming and
is used in the program. It enables the user to calculate only the modes that deserve consid-
eration and to eliminate the higher modes and rigid body motion. An alternative method
would involve representing the buoyancy of the ship so as to restrain rigid body pitch and
heave.

To use the normal mode approach it is necessary to calculate all of the natural fre-
quencies and mode shapes of interest. The next major step is to transform the coordinates

2 Robinson, D. C., “Calculated Natural Frequencies and Normal Modes of the Guided Missile Cruiser USS LONG BEACH
(CG(N)9),"” David Taylor Model Basin Report 2100 (Jan 1966).

3Pcn'kins. R. L., “Calculated Natural Frequencies and Normal Modes of Vibration on Range Instrumentation Ship
(T-AGM-19),” David Taylor Model Basin Report 1997 (Jun 1965).

‘Mt(}o\drick. R. T. and V. L. Russo, “Hull Vibration Investigation on SS GOPHER MARINER," David Taylor Model
Basin Report 1060 (Jul 1956).

SAntonides. G. P., "A Computer Program for Normal Mode Solutions in Structural Dynamics,’ Master's Thesis at
Catholic University, Washington, D. C. (Dec 1970).
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to obtain the uncoupled equations of motion. Each equation then represents a mode of
vibration. The modal equations are solved for the modal displacements in the modes of
interest, and these are transformed back into physical displacements. The accelerations, bend-
ing moments, shear forces, and stresses can then be found from the displacements and ship
parameters.

For the solution of modal equations, the program uses a time-marching method involv-
ing finite differences with respect to time. The modal displacements at any instant are calcu-
lated as a function of the displacements at earlier times, system parameters, and applied
forces. To minimize the use of computer storage, all of the required quantities are calculated
for one instant of time and then printed before proceeding to the next time increment. Only
the quantities required for the next calculation are stored.

In the following sections of this report the procedure is developed analytically, the
equations used directly in the computer program are indicated, the program itself is described,

and the program is evaluated with a series of test problems.

MATHEMATICAL MODEL FOR SHIP HULL
STRUCTURAL MODEL

The ship hull is considered as a nonuniform beam divided into 20 or less equal sections
or elements. Nodes or coordinates are used at the ends of each section as shown in Figure 1.
The mass m, bending rigidity EI/€, and shear rigidity KAG/® of the sections are numbered as
shown in Figure 1. The deflections, y,, are taken at the nodes at the ends of the sections.
The slamming forces Fi are considered as discrete forces acting vertically at the nodes. Both

deflections and forces are positive upwards. Damping characteristics are discussed later.

UNDAMPED EQUATIONS OF MOTION

The undamped equations of motion in matrix form are:
(M] {y} +iK] {y} = {F} (1)

where [M] is the mass matrix (including added mass due to water)
[K] is the stiffness matrix
{ vy} is the vector of vertical accelerations
{ v} is the vector of vertical deflections

{ F} is the vector of applied forces
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Figure 1 — Structural Model for Vertical Vibration
of a Ship Hull




The mass and stiffness matrices are based on a finite-element beam model and are taken from
Reference 6. The mass matrix for a single finite element between nodes i and j, referred to
the coordinate set {y, 6, Y 0j } where 6 is slope, is

156 =208 54 132
me | — 22% 4%? — 138 — 322

(M] = — (2)
420 54 ~13¢ 156 22¢0
130 ~ 2 228 492

where m is the mass of the element, and £ is the length of the element.

The stiffness matrix for the element, referred to the same coordinate set, is

B Q 0 7
R o R ~-R £ R
[ % Q2 - El Q % 2 . El
220 4 ¢ 2 e
1K} = 3)
¢ Yy
W = R R = R
Q Q2 E ¢ Q2 El
— R — R gl R — R+ —
| 2 4 Q 2 L
where
R = ( : + .3 ) . 4)
KAG 12 El

The mass and stiffness matrices for the entire beam are assembled by superposition of the
element matrices. The resulting matrices for a beam with M elements and M + 1 nodes will
be of the order N = 2M + 2.

6MacNeal. Richard H., “The NASTRAN Theoretical Manual (Level 15),” National Aeronautics and Space Administration
SP-221(01), Washington, D. C. (Apr 1972).




DAMPING MATRIX

To include damping in the equations of motion, consider a viscous damping matrix [C)
so that the equations of motion become

(M] {y} +I(C] {y} +I[K] {y} = {F} (5)

The normal mode method requires that these equations be uncoupled, and this can only be
done if the damping matrix is proportional to either the mass matrix, or the stiffness matrix,
or a linear combination; see Reference 7 or section about uncoupling equations of motion.

[C] =a [M] +b [K] 6)

This requirement is broad enough to accommodate the types of damping normally used
with hull-vibration damping. Reference 8 considers two types of damping coefficients c,
(1) Rayleigh damping in which c/u is a constant C; where u = m/Q is the mass per unit length,
and (2) frequency dependent damping in which ¢/pw is a constant Cg where w is the circular
frequency. Both of these are mass proportiona! and can be expressed in terms of [M]. For
Rayleigh damping

[C] = (Co/O [M], a=Cg/l, b=0

For frequency dependent damping it is more complicated, since the w varies. In this case,
we use the factor C./€ but after uncoupling the modes, each modal damping constant is
multiplied by the natural frequency of that mode; see section about uncoupling equations of
motion.

Experimental data (vibration generator tests and anchor drops) cited in Reference 8
indicate that frequency dependent damping is more appropriate and that the value C,. = 0.03
is an average value for several ships tested.

Physically mass proportional damping corresponds to dampers connected between the
nodes and an inertial reference.

A portion of the total hull damping must be due to hysterisis which would be represented
by dampers working against the relative rotational velocities (changes in slope) and shear velo-
cities of adjacent elements. Although this type of damping has not been used in many

7Huny, W. C. and M. F. Rubinstein, “‘Dynamics of Structures,” Prentice-Hall, Inc., Englewood Qiffs, N. J. (1964).
8Mc(‘:o\drick. R. T., “Ship Vibration,” David Taylor Model Basin Report 1451 (Dec 1960).




calculations, further development may justify its use, and it is included in the program. The
moment and shear transmitted between two sections by the bending rigidity EI and shear
rigidity KAG is dependent on the slopes and deflections of adjacent elements. If a damper
also transmits a moment and shear between two elements (but as a function of the time rate
of change of slopes and deflections) then the damping matrix must take the same form as
the stiffness matrix. If, in addition, the values of the coefficients are proportional to the
rigidities, then the damping matrix can be written

(C] =b [K]

NATURAL FREQUENCIES AND MODE SHAPES
MODES OF VIBRATION OF A FREE-FREE BEAM

The first step in solving the equations of motion of the idealized beam is the solutior
of the free, undamped vibration problem.

(Ml {y} + (K] {y} = {0} )

We seek solutions of the form

{y} = {X} &' 8)

Equation (7) becomes
~w?! M} {X} +IK] {X} = {0} ©

There are as many solutions for w, as there are degrees of freedom. Each value of w is an
eigenvalue (natural frequency) of the system, and is dependent only on the masses and stiff-
nesses of the system. For each eigenvalue there is a corresponding vector { X} which,
together with the eigenvalue, satisfies Equation (9). The vector {X} is an eigenvector and
represents the mode shape. The mode shapes can be determined only to within a multiplica-
tive constant. The matrix [X] formed by the column vectors {X} is called the eigenvector
matrix.

If the constraints are such that rigid body motion is possible, w, = 0 will be a solution
with a multiplicity corresponding to the number of rigid body modes. A free-free beam con-
sidered in the vertical direction has two rigid body modes, one in translation and one in
rotation.

e e e el e e o i R e e e



The two-noded mode will be the first of the remaining modes, the three-noded mode
will be the second, etc.

DETERMINANT METHOD OF SOLUTION

To solve Equation (9), we can combine the mass and stiffness properties into one
operator matrix.

(K] — w? M) {X} = {0} (10)

This represents a set of N homogeneous algebraic equations in X. For {X)} to have non-
zero solutions, the determinant of the operator matrix must be zero.

K] — w} [M]I =0 (11)
Trial values of w, are substituted into Equation (11), and, by interpolation, the values of w,

that cause the determinant to be zero are found; they are the natural circular frequencies of
the system.

To obtain the eigenvectors, the w, are substituted back into Equation (10), and the
vector { X} is found for each w,. If we let

(D] = ([K] — w? [M])

then Equation (10) can be written
(D] {X} = {0}

which when expanded takes the form

By Xy Dy R 80 D00 B Xy =0
Dy X, +Dyy Xpt . . . . . .. *Dy, Xy =0

a2
D i *Pa X % o v v v o+ By Xg =0




Since mode shapes can only be determined within multiplicative constants we can specify any
one X in each mode. We find it convenient to let Xy = | in all modes. Then the first
N — 1 equations are written

Dy, X, + D, X, o ot i B X =D,y
D,, X, T TREESES NGBl | RURES (OSEPE e o
DN-l'lxl+DN-l,2x2+' ...... +DN~I.N—lxN—-1=_DN-|'N

(13)

These are solved as a set of nonhomogeneous algebraic equations, and, after the vectors {X}
are found, each can be substituted into the Nth equation to check

D X # B B % oo o Dy g 1 Xy g F By =0

This “determinant method” has several advantages over other commonly used methods
for finding eigenvalues and eigenvectors. Possibly the greatest advantage is that it is not
necessary to reduce the order of the dynamic matrix by the number of rigid body modes,
thereby obtaining the equations of motion in generalized coordinates. While this may not be
difficult for the beam, if the program is later adapted to other transient problems, each type
of constraint must be treated separately.

Other advantages are that it is more accurate for high modes than some other methods
and that only the modes desired need be calculated.

CALCULATION OF RESPONSE
ORTHOGONALITY

In this section we will show that the eigenvectors are orthogonal with respect to the
matrices [M] and (K].
If we write Equation (9) for the ith mode, we have

wlz (M] {x(i)} o [K] {x(i)} (14)

10




where {X®)} is the mode shape (eigenvector) for the ith mode. Premultiplying this by
7
{X@} ", the transposed eigenvector for a different mode, we get

w? {X0}" (M} (X9} = (x9)" K] {XO) (15)

Next, take the transpose of both sides of Equation (15) and apply the rule which states that
the transpose of a matrix product is equal to the product of the transposed matrices in
reverse order.

w? (X9} M) (X9} = (XD} [K] (X9 (16)

We have used the fact that {M] and [K] are symmetric and therefore equal to their trans-
poses. Now we write an equation identical to Equation (15) except interchanging indices.

W XD} (M] (X0} = (XD} (K] (X0 an
Subtract Equation (17) from Equation (16)
(w? —w)) {XO} [M] (X9} = {0} (8)
For w; # w,

{(X0}" (M) (X9} = {0} (19)

Also, from Equation (17) we have

(X" (K} (X9} = (0} (20)

Equations (19) and (20) reflect the definition of orthogonality with respect to a weighting
matrix, in this case ([M] or [K]. Note that if two natural frequencies are the same, their
mode shapes are not necessarily orthogonal.




NORMALIZATION

We mentioned before that an eigenvector represents a characteristic pattern of relative
displacements associated with a particular mode of vibration. This means that we can multi-
ply all the components of an eigenvector by any constant, and it will still represent the same
mode shape. We are able to use this fact to simplify our analysis.

T
Premultiplying Equation (14) by { X¥} , the transposed eigenvector for the ith mode,
we obtain

w? (XD} M] (X0} = (X0} (K] {XO) 1)
L 4
First we will consider the triple matrix product on the left side. It can be shown that the
product will be some constant, say m,

(X} (M) {X©} = m, (22)

We wish to normalize the vector { X'V} and its transpose by multiplying it by a constant n,

so that m, becomes unity
" ;
n2 {X@}" [M] {X©V} =1 (23)
Written in subscript notation

2 2 2 i
iy mye Xji Xy = 1 (24)
iR

where my, is an element of [M], and X; is the jth component of {X%}. Solving for n,

1
n = (25)
l’ Z Z my X5 Xy
ik
Let the normalized eigenvector be denoted by {Xn("}. so that
{X, D} =n; (XD} (26)

12




If we write Equation (21) using our normalized eigenvectors, we get

w? (X0} M] (X, 9} = (X, 9} (K] (X, 9} 27
We have shown that
(X} (M) (X0} =1 (28)
which means ¢
(X9} (K} {X,0) = w? (29)

If we assemble the normalized eigenvector matrix [X ], we can show by use of Equations
(19), (20), (28), and (29) that

(X,1T M] [X,]=1(1] (30)

(X, 1T (K] [X,] = [w?] 31

where [w?] is a diagonal matrix of the squares of w;. The last two equations are useful in
our normal mode analysis.
The eigenvector matrix for the free-free beam is obtained by assembling the (N — 2)

and the rigid body mode shapes into an (N x N) matrix.

UNCOUPLING THE EQUATIONS OF MOTION

Our next task is to uncouple the equations of motion so that we have a series of equa-
tions (one for each mode) resembling that of a simple oscillator. We start with Equation (5)

(M] {y}+(C] {y}+ (K] {y}={F} (5)

where {y} and its derivatives and {F } are functions of time. The displacement response
may be expressed as a superposition of normal modes

{y} = [X,] {a®)} (32)




where {q} is a vector of time-dependent generalized coordinates. They are called normal
coordinates since they are associated with the normalized modal matrix [X,]. Substitution
gives

M} IX;) {a} +(C) IX,) {d}+ (K] [X,) {q} = {F} (33)

Premultiply this equation by [X |7

(X, 0T M) (X0 463+ 1X,07 1C) X1 {q )+ {X,}7T (K] [X,) {q} = (X,]T {F}

(34)
Applying Equations (30), (31), and (6) yields
(11 {@} +a(ll {@}+b (w?] {§}+ [w?] {q} =(X,]T {F} (35)
If we let
{(P)} = (X 1T {F)} (36)
[G] =a (1] +b [w?] (37)
Equation (35) becomes
{d}+ 1G] {a} + [w’] {q} = {P()} (38)

The matrices (G] and [w?] are diagonal so that Equation (38) can be written as a system of
uncoupled equations

4t + GG + w? qt) =Pt),i=1,2,...N (39)
where

G, =a+bw! (40)

Equations (39) have the form of the equations of motion of damped simple oscillators,
and each equation represents a particular mode of vibration. The solution of Equations (39)

14




is well known, and there are several methods that could be used. Our computer program
uses a time-marching method.

TIME-MARCHING METHOD

There are several time-maching methods which approximate the differential equations of
motion with finite-difference equations so that the displacement at a particular time | S
an algebraic function of the displacement at time t_, the parameters of the system, and the
applied force. These methods appear simpler than transform methods which involve a large
amount of numerical integration.

The particular time-marching method used herein is one developed by Chan, Cox, and
Benfield.” In this method we consider time to be divided into many small, equal time

increments, h, where h =t —t =t —t The modal displacements q_,, at the time

n-1°
t.+ are calculated, then transformed back to physical coordinates.
The equations are derived in Reference 9; only the results are stated here. The main

recurrence formula for the solution of Equation (39) is

Zq,,, = Aq, — Wq, _, +Bh?P,,, +(1 — 28) h?P, +Bh?P,_,,n>0 (41

where

1 + (h/2)G + fh? w?

N
1l

A=2 — (1 - 28) 0% w° (42)

w

1 - (h/2)G + Bh? w?

Equation (41) must be applied to each of the modal displacements; however, modal subscripts
have been omitted to avoid confusion with the time subscripts. The quantity § can be assigned
any value between O and 1/4. Different values of 8 correspond to different approximating
assumptions about the acceleration between time steps (such as a constant acceleration within
each increment or a linear function). The effect of 8 on accuracy is discussed in the
Evaluation.

Equations (41) and (42) are not valid for the first time increment. The following

equation, which includes initial conditions must be used.

9Chan. S. et al., “Transient Analysis of Forced Vibrations of Complex Structural-Mechanical Systems," Journal of the
Royal Aeronautical Society, Vol. 66, No. 457 (Jul 1962).
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ui = qu + Rf]o + SPO + ﬂhzl’l (43)
where

Q=1+hG/2 - (1/2 - ) h? w? — (1/4 - B) h* Gw?
R=h-(1/4 - p)h® G? (44)

S =(1/2 - B h? + (1/4 - B) WG

q, = initial modal displacement
q, = initial modal velocity

After modal displacements at a particular time have been determined by the time-
marching equations, the nodal displacements are obtained for Equation (32).

y =IX,] q (32)

From the nodal displacements, we can obtain the velocities and accelerations. The velocity
is found as a second order approximation of the slope of the displacement, and the accelera-

tion is calculated from the slope of the velocity or curvature of displacement

: 1

xn*l = 2—h (X"_l — 4Xn + 3Xn,l) (45)
ak 1 %

xn*l : ; (Xn-l "xn i xn#l) (46)

The moment in the element between nodes i and j is approximated by
ij
M.= — (6. -0) (47)
The stress S, due to bending in the element between nodes i and j is given by
ij

Sbij = Mij c/lij (48)
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where ¢ is the vertical distance from the neutral axis to the point where the stress is being

calculated.

The shear force VJ at the jth node is

(49)

(50)

where KA is the effective area at the station. (In our model the effective areas are given by

clements, so the KA of either adjacent element could be used.)

DESCRIPTION OF PROGRAM
SUMMARY OF APPLICABLE EQUATIONS

Before discussing the details of the program, this section lists the equations used in the

program from the preceding analysis and indicates briefly what steps are necessary.

First the mass and stiffness matrices are obtained from the superposition of the individual

element matrices, Equations (2) and (3),

156 ~220 54

(M) = ML [ - 220 e .
420 54 ~13€ 156

13¢ - 32 220

132
- 3¢
22¢
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T

¢ ¢ gy
rR e B R — R
2 2
Q g2 El Q R? El
—— —_— + — _ —_ —_—
2 £ 4 R ¢ 2 . 4 R ¢
(K] = (3)
¢ ¢
-R - R R — R
2 2
¢ Q2 El Q Q2 El
- R — R- — —R — R+ —
2 4 Q 2 4 ¢
R = + (4
KAG = 12 EI .

Then solutions are obtained for natural frequencies w, using Equation (11)

K} - w?{M)i=0 (1)

n
The eigenvectors can then be found using Equation (10)
(K] -wl M){X}=0 (10)

where Xy = I.
Then the eigenvector matrix must be normalized by means of the following two
equations

|
n = (25)

VZ zk; m]k X]l Xkl

{x,"}= n, { X%} (26)
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The nodal exciting forces must be transformed into modal exciting forces
{P}=(X,1T (F} (36)
The modal damping is calculated from
G, =a+bw? (40)

At this point we have all we need to start our time-marching procedure. First we note
that the starting Equation (43) and the main recurrence Equation (41) require the calculation
of the following parameters

N
L]

1 + (h/2)G + ph? w?

>
"

2-(1 =20 h? W2 (42)

W =1 - (h/2)G + Bh? w?

~

1 +hG/2 - (1/2 = P h? w? - (1/4 - B) b3 WG

@)
Il

=
"

h—- (/4 - ) h G2 (44)

S =(1/2 - h:+(1/4 - ) h’G
Although we have omitted modal subscripts, these parameters must be calculated for each

mode.

Next we start a series of calculations which must be performed at each time increment.
The first step is either the starting equation

Zq; = Qq, + Rq, + SP, + Bh’P, (43)
or the main recurrence formula

Zq,,) = Aq, — Wq, | +pBh?P . + (1 - 26) h?P, + h?P, | (41)




After the modal displacements at time thyy have been caleulated, we caleulate the physical

or nodal displacements for time t_,, using

{¥} =IX,] {q} (32)

The nodal velocity and acceleration are calculated from

Xpay = —:l—'— (X, |~ 4X, +3X ) (45)
et = CUBEY X, | — 2% + X ,.) (40)
The bending moments are calculated from
El;
M, = T 0, —6) (47)
The bending stresses are calculated from
S = Ml_| ¢/l (48)

The shear force is calculated from Equation (49) and the shear stress from Equation (50)

M, - M,
V= —— (49)
) (
Vl
S, = — (50)
S KA

After these calculations the output for cach desired station for each time increment is

printed. and the program begins the loop again for the next time increment.

MAIN PROGRAM

Appendix A is a flow chart of the program SLAM and indicates how the eauations of
the previous section are incorporated into the program. SLAM is designed to calculate the

vertical transient response of a beam-type structure with up to 20 elements. Vertical forces
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can be applied to the first 10 stations. At each of the stations the force can be specified by
as many as 100 points with respect to time. The response is calculated for every hundredth
of a second which is adequate to describe motions with frequencies at least up to 10 hertz.
Output for every increment, or for every NPRINT increments, can be printed as desired. The
user specifies the number of modes to be included in the response calculation and can opt to
have the natural frequencies and mode shapes printed out. At each station for which output
is requested, the displacement, acceleration, bending moment, shear force, and bending and
shear stresses are printed out. Since the output is printed by stations and the bending moment,
bending stress, and shear stress are associated with the elements, those quantities are given for
the element just forward and just aft of the station named. SLAM will account for any of
three types of damping:

1. Mass proportional

2. Stiffness proportional

3. Mass and frequency proportional
For the input, any consistent set of units can be used, except that the value of E used can
be a different set of units. The stresses calculated will be in that set of units.

SUBROUTINES

FORCES — This subroutine takes the forces as plotted for the program input, inter-
polates where necessary, and calculates the modal forces which are used in the main program.

MATINS — This subroutine is in the Center library of subroutines and can either find the
determinant of a square matrix [A] or indicate if it is singular and either find the inverse of
the matrix [A] or solve a set of simultaneous linear equations of the form [A] { X} = [B].
In SLAM it is used first to find determinants in the natural frequency part of the program.

Then it is used to solve simultaneous equations in obtaining the mode shapes.

INPUT/QUTPUT

Sample input for SLAM is given in Figure 2. The necessary format and description of
the input is given in Table 2.
Sample output for SLAM is given in Figure 3.

EVALUATION
ANALYTICAL APPROACH

The analytics used in SLAM were selected specifically for the ship-slamming applica-
tion; therefore, they should provide maximum flexibility and utility.




20 03 01 01 01 0t 71

26.2% .0
h.eB0E009
5.800

1.680E201 7.830€%09
1.660E001 8.730E%09
2.200E%01 1.000E*2D
1.203t010
1.360E010
1ew28te 1t
1.82E610
1.500€010
1.498€010
T 1806031 j.e78E%10
6.58DE01 1.426E%10
5 0E*01 1.352Er10
BE*01 1.250E*10
S.eb0E*01 1.130E%10
3.830c¢01 9.840E¢09
2.060E*01 8.100c*09
1.500€+01 €,960E+09

7.000E*00 &.560£¢09
Q. Q.
<01 18.03
02 20.063
«03 88.7

Wk 129.1
5 170.7
.06 195.95
27 206.6
.03 210.95
«33 212.0
o1 213.45
o1 195.235
12 1624
.13 12600
ol 3.
15 w24k
olo 16.15
«17 band

.19 2.13
<13 w7
.2 « 06
$21 0.
22 3.
23 Q.
W26 J.
«25 0.
26 Je
W27 0.
28 J.
29 0.
.3 0.
31 0.
32 0.
33 0.
£ 2 Q.
«35 C.
30 0.
37 Go
38 0.
«33 2.
. Je
ael Oe
e Ce
o3 Je
e Je
5 Je
b Je
e’ Je
e d Ue
e Te
31 0.
«32 Ve
DR Ce
el Ve
55 3o
«5h O
27 Je
«23 Je
«59 0o
5 Je
o1 Je
52 Ve
CER} O
LR Js
95 Je
a0 Je
5’ Ue
53 T
3 Ue
5.15 Je
05 07 10 15

07 06 02
0.0 .03
S.30060006 20.5%
5.200€+006 28.9%
4. 760E006 28.5
G .000E*Q6 208.5
“e160E*06 28.5
3.900E¢06 28.5
3. 730€E006 28.5
3.570E*96 28.5
J.hu0E*06 28.5
J.400E*06 208.5
3.450€+80 28.5
3.630L+06 28.5
3.920E+06 28.5
€ 320€006 28.5
L.6L0ECDE 28.5
4.600E¢06 208.5
3.890E¢08 28.5
3.670E+06 28.5
3.070E*086 20.5
2.320E006 28.5
1%.03
50.65
88."
129.4
170.7
214.98 18.03
257.25 50.65
239,65 L L4
Jetl? 129.1
383.75 170.7
©22.05 227.0
467,15 286,75
“70.35 365,95
“93.1 “09.1
515.75 «78.35
509,75 523.67
“%6.38 558.05
“53.2% 586.1
“15.67 611.05%
375.71 636,
119.85 666. 35
262.15 €94.35
201, Ti%.5
137.85 761.85
73.55 766.05
35.3 739.3
16.35 693.35
7.3 €38.1
2.59 574.03
.52 16,02
0.06 “28. 31
' 362.55
0. 257.55
. 171,
0. 86.25
0. «h.8
0. 19.74
0. 2.65
0. .08
0. 7
[ e
9. 0.
0. 0.
0. 0.
L O
O Qe
J. %.
' 0.
e 0.
' 0.
0. 0.
0. 0.
Oe 0
J. 0.
T C.
[\ Je
Oe 0.
Ne O
Ne 0.
Je Oe
0. e
b N
Ne LI
e 0.
. 0.
LN Ne
[ 0.
0. 0.
0 0.
0s Q.

5.00

“7.96
116,75
191,
272.55
357.2
«h5,.75
573,
679,
?83.5
A87.5
951.55
991.0
1021.95
1067, 6
1069.7
1068.5
1039.6
1015.75
996,05
970.95
892.32
800,084
703.786
603.7
501.93
407,61
321.46
261,01
158.7
78.05
be.54
30.27
19.76
12.5
7.7
“.07
2.18
«66
+32
0.
0.

65.55
152.
265,85
365.4
we7,?
548.5
630.
712.0
794.5
875.5
893.65%
889.05
B874.3
A56.35
835.6
T7e.6
702.9
631,
557.3
w82,
402.06
327.27
263.98
163,
82.5%
“7,49
32.33
20.38
12.83
T4
bo07
24108
«66
o3
LI

Figure 2 — Sample Input for SLAM (See Table 2)
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TABLE 2 EXPLANATION OF SLAM INPUT
Ntrl':;ev Format Description
1 (12,20(1X,12) N — Number of sections (20)*
NMODE Number of modes to be calculated (10)*
IOPT(1) — For input
10PT(2) For natural frequencies
1OPT(3) For mode shapes
10PT(4) For transient response
(IOPT(I) indicates what output is desired—1 if desired, @ if
not )
NPTS Number of points in the force versus time plot including
t=0(100)"°
NFOR Number of sections to which force is applied. (10)°
NOUT - Number of sections for which output is desired. (20)*
NPRINT Number of calculations for each printout.
2 (8E10.3) DELX Length of hull sections
DAMPM Mass-proportional damping constant
DAMPK Stiftness-proportional damping constant
DAMPF Mass and frequency proportional damping constant
TSTOP Time of last desired response
E Modulus of elasticity
S Shear modulus
3-22 (BE10.3) EMASS(1) - Mass ot hull elements
EEI() El of huli elements
EKAG!) KAG of hull elements
DISTII Distance from neutral bending axis to desired stress
location
(Consists of N lines starting at bow.)
23-93 (BE10 .3) TPT(1) - Time of each force versus time point
FPT(1,J) Force on the NFOR sections
(Consists of NPTS lines, each one gives the time and
NFOR forces applied at that time. Includes t = O at
which time all forces must equal zero; also, must give
forces up to t = TSTOP.
94 (12,20(1X%,12) LOUT(I) Station numbers for which output is desired
(Consists ot NOUT station numbers. Do not include 0
and N which printout automatically.)

*Indicates maximum number allowed
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The mathematical model selected is a finitelement representation of a beam with both
bending and shear rigidities, which should give very accurate results. A matrix approach is
used so that more complicated hull forms (such as catamarans or surfacecffects ships) will
require only reprograming the matrix assembly portion to reflect the more complex structural
model. Once the mass and stiffness matrices are formed most of the rest of the program can
be used unchanged.

The determinant method for eigenvalue extraction has been selected because it is accu-
rate for higher as well as lower modes and because with this method the rigid body modes
ot the beam do not necessitate preliminary manipulation as some methods do.

The normal mode method allows the user to calculate only the modes of vibration of
interest. Rigid body motion is automatically chninated. If desired, the response in cach
mode can be printed out separately with a minor modification.,

The time-marching method makes 1t possible to conveniently input a detailed description
of the slamming forces with respect to time and length along the ship. The parameter 8 can
be varied to minimize errors in the maximum amplitude or in the period. Table 3 (developed
from Reference 10) indicates the tradeoft that has to be made. SLAM uses 8= 18, Table 4
(also from Reterence 10) indicates the highest frequency for a stable and converging solution.

In the ship slamming problem the participation of the higher modes has many uncer-
tainties associated with it. First the calculated slamming forces are normally denived from a
statistical approach.  This means that. although a pressure 1s generally trniangular with respect
to time and is represented as such, a particular slam may be closer to a half sine. or may be
skewed to the lett or right. or may have some other shape. This changes considerably the
excitation at the higher frequencies, both in magnitude and in phase. The maximum response
of the ship will depend on how the higher modes respond relative to the larger fundamental
response. For example, it both modal responses peak together. the maximum response would
be significantly higher than if the modal responses subtracted from cach other. Another
complication 1s that. at least in vibration generator tests on higher modes of ships, the meas-
ured mode shapes are sometimes significantly different from the calculated normal mode
shapes.  Additional measured data. compared with calculations, should help to describe the

effect of the higher modes.

TEST PROBLEMS

To test the accuracy of SLAM and to demonstrate its use and characteristics. a series of

test problems was solved.

0y e 2 = @
L Newmark, N. M., “Computation ot Dynamic Stractural Response in the Range Approaching Fahure,” Symposium on
Farthquake and Blast Fffects on Structures, University of Califormia at Los Angeles (1952),
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TABLE 3 - EFFECT OF FREQUENCY ON ERRORS DUE
TO NUMERICAL PROCEDURE IN SLAM

Hz g=0 B=112 | p=18 | =16 | g-1/4
RELATIVE ERRORS IN MAXIMUM RESPONSE
TO AN INITIAL VELOCITY
5 0.012 0.008 0.006 0.004 0
10 0.052 0.034 0.025 0.017 0
20 0.209 0.166 0.116 0.073 0
25 0.614 0.306 0.202 0.122 0
RELATIVE ERRORS IN PERIOD

5 -0.004 -~0.0001 0.002 0.004 0.008
10 -0.017 ~0.0003 0.008 0.017 0.033
20 | -0.076 ~0.006 0.028 0.059 0.121
25 | -0.130 -0.015 0.038 0.087 0.179

TABLE 4 - STABILITY AND CONVERGENCE LIMITS FOR
8 METHOD IN SLAM

—

B=0 B=1/12 B=1/8 g=1/6 g=1/4

Stability Limit in hertz 31.8 389 450 55.1 oo

Convergence Limit in hertz oo 55.1 450 38.9 31.8




The first series of problems involved a 600-foot uniform steel beam weighing 1000 tons
with a bending rigidity, EI, of 10'¢ ton-ft2. The shear rigidity was assumed to be 10%!
(very large). The end of the beam was excited laterally by a 10,000-ton step function, and
the undamped transient response for the first two modes was calculated. The exact solution
for displacement and acceleration of the end of the continuous beam, obtained from Refer-
ence 7, is given by the solid lines of Figure 4. The beam was then divided into 20 sections,
and solutions were obtained from SLAM which are given by the circles in Figure 4.

In addition to the uniform beam, a MARINER<Class hull was used for some test prob-
lems. Figures S through 8 show the response of the MARINER hull to slamming forces
calculated using SLAM for a slightly more severe than State 6 sea. Frequency and mass
dependent damping was used, causing the higher mode components to decay before the
tundamental component as shown from experimental results. Figures S and 6 show the
response, considering only the first three modes. Figures 7 and 8 shcw the response, con-
sidering the first 18 modes. The displacement and accelerations were plotted for the bow and

Station 7. The bending moment and shear forces were plotted at Station 7 and amidships.

CONCLUSIONS

Normally a ship hull will be divided into 20 sections for slamming calculations for two
reasons: the parameters are likely to be listed at 20 stations for other design studies, and 20
stations is an appropriate number for describing the forces applied to the hull. The accuracy
of the solution of the uniform beam (Figure 4) indicates that numerical procedures, using a
20-element representation, are sufficiently accurate for any projected use in connection with
conventional ship slamming involving the lower modes. A 10-element model would probably
do almost as well in the first three modes; however, the force breakdown may be too coarse.

The user should study Figures 5 through 8 to determine the effect of including higher
modes. The displacement and bending moment do not reflect the higher modes as much as
the acceleration and shear force. The number of modes requested should be determined by
which parameters are important for that particular application and by the accuracy needed.
Not much is gained, however, by requesting more modes than half the number of elements.

The flexibility of the analytics used in SLAM allows the user to study intermediate
steps in the structural solution: natural frequencies, mode shapes, and individual modal

responses. SLAM is flexible also in that it can be easily adapted to handle structural con-

figurations other than a beam.
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APPENDIX A

FLOW CHART OF SLAM

READ INPUT DATA

IS
IOPT(1) =1
?

NO

YES v

PRINT INPUT DATA

<

y

ASSEMBLE MASS AND
STIFFNESS MATRICES

A CALCULATE
(K] — w? (M]

Y

CALL MATINS
TO FIND DET

\ PRECEDING PAGE BLANK-NOT FILMED

S i, <w——— o




NO

YES

[DETM| = |DET]|

‘/,/”;is
DET CHANGED

SIGN?

NO

> YES

INTERPOLATE TO FIND
NEW VALUE OF w

!

CALCULATE [DYN] =
(K] = &* [M]

A

CALL MATINS
TO FIND DET

0 4
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? 7

EVAL(l) = w

YES

CALCULATE [DYN] =

(K] — w? [M] FOR
Ith NATURAL FREQUENCY

Y

LET [DYNR] BE ABOVE
MATRIX WITHOUT Nth
ROW AND COLUMN

4

A LET — {B} BE Nth
COLUMN OF [DYN]

y

CALL MATINS TO FIND
{x} =(DYNR] ' {B)

YES
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I0PT(2) =1
?

YES

PRINT NATURAL
FREQUENCIES

ls\NO

IOPT(3) =1

PRINT MODE SHAPES
Te

IS NO

10PT(4) =1
?

NORMALIZE EIGEN-
VECTOR MATRIX

CALCULATE TIME-
MARCHING CONSTANTS

CALL FORCES

\

CALCULATE INITIAL
MODAL DISPLACEMENT

®




?

CALCULATE PHYSICAL
DISPLACEMENT FOR TIME T = H

&

CALL FORCES

CALCULATE MODAL
DISPLACEMENT FOR TIME = T

\

CALCULATE PHYSICAL Y
DISPLACEMENT FOR TIME = T

}

CALCULATE ACCELERATION, VELOCITY,
BENDING MOMENT, SHEAR FORCE,
STRESSES FOR TIME =T — H

4

PRINT OUTPUT FOR
TIME=T - H

ADVANCE DISPLACEMENTS
USED IN CALCULATIONS
BY ONE TIME INCREMENT

v

T-T+H

YES IS

\TSTTSTOP
?
ok o

END
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(" SUBROUTINE FORCES )

IS YES

e T = TPTUPT)
GREATER

IPT — IPT +1

INTERPOLATE TO FIND FORCES, {C}

Y

SET FORCES EQUAL TO
{c} =FPTUPT)

=
P
ADVANCE FORCES BY ONE
TIME INCREMENT

Y

CALCULATE NEW MODAL
FORCES = [EVEC] {C |}

(C RETURN )
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