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/2 ) ~11/ ( Abstract

Let T > 0 be an arbitrary real number and H, H+ real

Flilbert spaces with H~ c H algebraically and topologically

and H~ dense in H. Let H_ be the dual of H~ via the inner

product of H and denote by Ls
(H+~

H ) the space of symmetric

bounded linear operators from H+ into H .  We prove that tha

evolution of the electric displacement field in a simple class

of holohedral isotropic dielectrics can be modeled by an

abstract initial-value problem of the form

I !~~~-t — — ~~1~j 
+ M (t T)u(T)dl 8(t)u~~, 0 < t <

u(0) u , u (0) u (u ,u c H )
LU - -O —t -1 -o -.l +

S

~~~~ ~~~~
where L 

~ 
Ls (H+~ 

H_ ), M (t) € L2([0,T); Ls(H+, H )), 8(t) ~ C’(CO ,T)),

~~~~ ~~~~~and a is an arbitrary (non-zero ) real number . By employing a

logarithmic convexity argument w erive growth estimates for
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solution of the above system wh i ch lie in uniformly bc~umIed

classes of the form

N fu E C
2(1O ,T); H~ ) sup I J u t � N)

[O ,T) +

for some N > 0; our results are derived under a variety of

assumptions concerning a, ~(t), and the initial data (without

making any definiteness assumptions on the operators L or

M(t), 0 � t < T) and are used to obtain growth estimates for

the electric displacement field D(x ,t) in rigid dielectrics

which satisfy constitutive relations of the form

D(x,t) a E(x,t) + f ~ ~(t—t)E(x ,T)dT

H(x ,t) b0B(x ,t) 
+ f ~ ~(t-T)B(x,t)dt .

where E , H, B are the usual electromagnetic field variables ,

(x ,t) E x [0 ,T), ~ c R3 is a bounded region with smooth

boundary ~ 2 , a0 and b0 are positive constants, and ~~, ~$ are

non—negative monotonically decreasing functions of t.
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l. Introduction

In recent work Ii] - 14] this author has derived stability

and growth estimates for specific classes of solutions to

initial-value problems associated with abstract integrodifferential

equations of the form

- Nu + f t K (t—T)u (T)dT ~~~, 0 � t < T, (1.1)

where T > 0 is an arbitrary real number; in this equation

U ~ C
2([O ,T); 1i~) with E C1({o ,T); H~),arid ~~~ 

e C°([0,T);H _ ),

where H~ , H_ are Hu bert spaces which are defined as follows:

Let H be any real Hu bert space with inner-product < ,> and let

H (algebraically and topologically) with H~ dense in H;

denote the inner-product on H.,. by < , >
÷

. Then H_ is the cc’

pletion of H under the norm

J< v ,w > I
I w l  I _ sup J I ;H  (1.2)

v€H~ +

If we let L(J-ç ,H )  denote the space of bounded linear operators

f r om H.,. into H then in (1.1) we only require that

(1) N € L(H~~,H )  is symmetric and

(ii) K(t), K
~
(t) € L

2 ( (~~co ,oo ) ;  L ( H ~~,H ) )

where denotes the strong operator derivative of K; no

definiteness assumptions are placed on N and thus the initial-

value problem obtained by appending to (1.1) the initial data



—2—

u(0) ~~~‘ 
(~~ g; f ,g € (l.3a)

and the prescription of the past history , i . e .,

u (T) IJ(T), — ~ t < 0 (l.3b)

is , in general , non well-posed. If , however , we restrict our

attention to classes of bounded solutions to (1.1) — (1.3) of

the form

N ~v € C 2 ( [0 ,T ) ;  H .,. ) I  sup I Iv (t)I I~ 
< H 2 )

[0,T)

for some arbitrary real number N , then it is possible to

derive both stability and growth estimates for solutions

u € N under the assumption that K(0) satisfies

— <v ,K(0)v’ � ~ J I v I I~~, Vv € H ,. (l.4a)

with

K � yT sup II K t (t ) H L ( H  H ) (l.t~b)
[0,T) + , —

In (l.4b) y represents the embedding constant , i.e., as we

assume that H~ c H topologically, I l v i i  < 
~ l I v I I .,. for some

‘ 0 and all v € H.,.

The technique used in [1] - [3] to derive the aforemeritoned

stability and growth estimates for solutions u c N of the

abstract system (1.1), (l.3a), (l.3b ) is based on a logarithmic

convexity argument first employed by Xnops and Payne [5] for 

~--—~ .~~~~~~~~~~-._ _  
.. . -
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the abstract wave equation obtained from (1.1) by setting

K(t) 0; a different logarithmic convexity argument was

employed by this author in [4] to derive continuous data

dependence theorems for the system (1.1), (l.3a), (1.3b).

The results obtained in [2] - [4] are applied in those papers

to obtain growth , stability , and continuous data dependence

theorems for solutions to initial-value problems associated

with the equations of motion for linear isothermal viscoelastic

materials ; the spaces H , H+, and H ,as well as the operators

N and K(t),are constructed and no definiteness assumrtions are

made on the initial value of the relaxation tensor. In the

case of a one-dimensional homogeneous (isothermal) linear

viscoelastic body , it is shown in [3] that the conditions

(l.4a), (l.4b) are equivalent to the requirement that

g ’(O) � — K  with K > yT SU~ t~~(t)I (1.5)
[0 ,T)

where g(t) is the relaxation function of the material .

More recently we have turned our attention to the way

in which integrodifferential equations arise in the theory

of polarized non—conducting material dielectrics , i.e., in

116] we have considered the following problem : Let E, B, F,

and D denote , respectively , the electric field vector , the

magnetic flux density , the polarization vector , and the electric

displacement in a non-conducting medium ; the polarization

and electric displacement vectors are related via
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D e E + P , c E const. (1.6)
- 0— 0

If (x’,t), I = 1,2 ,3 , denotes a Lorentz reference frame , wi th

the Cx’) rectangular Cartesian coordinates and t the time

parameter , then Maxwell’s equations have the local form

+ curl E 0 , d iv B 0 ( l . 7 a)

curl H - 
~~~~~

- 0, div D = 0 (l~7b)

whenever the density of free current = 0, the magnetization

N 0, and the density of free charge 
~F 

0; in (l.7b) , H

represents the magnetic intensity and is related to the

magnetic flux density via

H ~,— l B (1.8)

where c p  c 2 , c being the speed of light in a vacuum . A

determinate system of equations for the fields appearing in

Maxwell’s equations is obtained by specifying a set of

constitutive relations . For example , in a vacuum F = 0 and

the classical relations

P ~~ ~ B ( 1 .9)

ap~ 1” , while in a rigid , linear , stationary nonconducting

di ~Iectric

D c E , B ~ •H ( 1.10)

- ~~~~~~~~~~~~~~~~~~~~~ 
- - —--- - ‘ —

~~~
- -

~~~~. _=_. .. , _ _____ __ .__ ..____
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where c and i,i are constant second order tensors ; the constitutive

equations (1.10) were given by Maxwell in 1873 [7]. In [61

we considered the set of equations which define the dielectric

as being a Maxwell-Hopkinson material , i.e., (1.10 2
) and

net ) cE(t) + f
t
~~~~t T)E (T)dT (1.11)

where c > 0 and ~~t) is a continuous monotonically decreasing

function for t � 0; following a suggestion of Maxwell , Hopkinson

[8] employed the constitutive equations (1.10 2
), (1.11) in

connection with his studies on the residual charge of the

Leyden jar . It was demonstrated in [6 ]  that  ( 1. 11) , in con- 
-

junction with the local Maxwell equations (l.7a) , (1.7b) ,

implies that the following integrodifferential equations govern

the evolution of the electric field and the electric dis-

placement field , respectively , in a non-conducting material

dielectric of Maxwell-Hopkinson type :

(~ r~ + = (l.l2a)

and
= MD + ~*L~D (l.12b)

where for any vector field V

f~
4,(t_T)V

i
(x ,r)dT (1.13a)

and

MT grad (div V) — curl curl V (l.13b)
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The function ~(t) in (l.12b) is given in terms of the

specified memory function 4(t) by

~(t) n~ 1
(_1)

~~~~
t) (l.l4a)

where the 4~~(t), n � 1, are determined by the recursion

relations

= c 1
4~(t) (l.14b)

= jt (t-T)~~~~~(T)dT , ~ � 2

Together with (l.l2a), (l.12b) we considered initial data of

the form

ECx ,0) = E (x), Et(x ,O) = E1(x) 
(1.15a)

D(x ,0) = D (x),. Dt(x,O) = ?l~~~ 
(l.l5b)

for x € c2 (a bounded region in R
3 with smooth boundary ~c~)

and homogeneous boundary data of the form

E(x ,t) = D(x,t) 0, (x,t) € x (—°‘,T) (1.16)

The functions E0,. - ,  P1 were taken to be continuous on Q.

By introducing suitable filbert spaces H, H~~, H_ and

operators N € L(H~ ,H )  and K(t) c L
2 ((_ c * ,oo); L (H~~,H)) we were

able in [6] to treat the initial-boundary value problem for

D, i.e. (l.12b) , (l.l5b) , (l.16 2
)
~ 

as a special case of the

abstract initial-value problem (1.1), (1.2) (in [6] we assumed
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that net ) = 0,- < T < 0). From the stability and growth

estimates derived for the electric displacement field D ,

corresponding estimates were then derived for the electric

field E by employing the relation

E(t) c ’D(t) + c~~ f ~ ~(t-T)D(T )dT (1.17)

which is obtaining by inverting the Maxwell-Hopkinson relation

(1.1’ ~ the usual technique of successive approximations.

nstitutive relations associated with the Maxwell-

H ~~~~~ .n theory , i.e., (1.10 2
) and (1.11 ), embody three basic

simplifying assumptions : they are linear , they effect an a

priori separation of electric and magnetic effects , and they

do not allow for magnetic memory effects. As early as 1912

Volterra 19] proposed extending the Maxwell-Hopkinscn theory

to treat the case where the dielectric is anisotropic , non-

linear , and magnetized; his constitutive relations were of

the form

t
D(x ,t) c~ E(x ,t) + V (E(x , t)) (]..18a)

-

t
B(x,t) ~~H(x ,t) + 8 (H(x ,-r) (l.l8b)

and it can be shown that (l.18a) reduces to (1.11) if the

functional D is linear and isotropic and the body satisfies

virious restrictions which follow from considerations of

material symmetry . Of course, (a.lBa), (1.lBb) still effect

an a priori separation of electric and magnetic effects and ,

h.~~~ - . ____________________________ ______________________________________________
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as pointed out by Toupin and Rivlin [10], such a separation

is inadequate with respect to predicting such phenomena as

the Faraday effect in dielectrics. Thus , Toupin and Fivlin

p o s t u l a t e  1110] constitutive equations of the form

D ( t )  = a E~~~~ ( t )  + 
~ 

c~ B~~~~(t) (l.l9a)
- \)0 - \ ) 0  - -

+ f t ~1
(-t ,T ) • E ( - r ) d T  + 1_ cx 2

(t ,T) •

H(t) 

~~~ 

d
~~
.E
~~~~

(t ) + B~~~~( t )

+ j t i~1
(-t , -r )  • B ( - r ) d t  + f ~ ~?2 (t

~~~~ 
• E(-r)d-r

where E~~
’
~~(t) d

\)
E ( t ) / d t V and au ,.  - .  , d.~, are constant tensors ;

the kernels 
~~~~~~~ ~2 

are t aken  to be cont inuous tensor

functions of t and t which satisfy growth conditions of the

form

< c/ (t-t)~~~~, q > 0 (1.20)

Toupin and Rivlin [10] also assume that the dielectric does

not exhibit aging and as a consequence it follows that D(t)

and H(t) are periodic functions whenever F(t) and B(t) are ;

this latter result , when combined with the hypothesized growth

estimates on the kernel functions , e.g. (1.20), and early

results of Volterra on the theory of functionals [9], yields

the conclusion that 
~~~~~~~~~~ ±2 depend on t and T only through
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the  d i f f e re n c e  t— t ( thc’ conver~~ of th  i s r ’~: u 1 t al  u I 1’U(~ ) -

Toup in and R i v i i n  [10 1 then prove t h a t  i f  t he  d i e] e c tr ic

e x h i b i t s  holohedra l  isotropy , i . e . ,  if  it admits as its group

of !:aterial symmet ry  t r a n s f o r m a t i o n s  the full orthogonal group ,

then E(t) may be eliminated from (l.l9b) and B(t) may be

e l imina t ed  from ( 1 . l Y a ) ;  fo r  a holohedral  isotropic d i e l ec t r i c

the constitutive equations (l.19a) , (l.l 9b) are , therefore ,

reduc ib le  to the uncoupled  set

D ( t )  
~ 

a
~~
E
~~~~

(t )  + f
t
~~~( t _ T ) E e t ) d T  ( l . 2 l a)

H ( t )  = 
~ 

b~~B~~~~ ( t )  + f
t t _ T ) B e t ) d T  (l .2 1b )

where ~ = 
~~~~

, i~t ~~ and where (due  to the assumpt ion  of

holohederal  isotropy ) 
~~~ 

b~, , ~~ and are a l l  proportional

to the  i d e n t i t y  t enso r  and ~bus appear as sca lars  in ( l . 2 l a) ,

( 1. 2 1b ) .

In this  paper we w i l l  examine  the special  case of ( l . 2 l a) ,

(l.21b) which corresponds to the assumpt ions

(H1) a
~ 

= 0, b
~ 

= 0 , 1

(H 2
) E(-r ) 0, Bet) 0 , — < T < 0,

namely ,

P(t) a E(t) + f ~ ~~(t—T)F( T)dT (l.22a)

H(t) b0
B(t) + f ~ ~p (t— -t-)B(-r)dt (l.22b)

,
~~~~~~, 

,__ ._ - 
—

., .-~—--—~ 
—--~~~~

. —~~~~.-
. -‘—~——~~~ - __ I_n—_-—— —1-s -.

~~ a~ - 
- ~~~~
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This special case of a holohedral isotrop ic non-conductin g

mat erial dielectric still embodies a separation of electric

and magnetic effects in the constitutive theory but generalizes

the Naxwell-Hopkinson theory in that magnetic memory effects

are taken into account through the presence of the kernel

function ~‘(t). In the next section we will formulate an

initial-boundary value problem for the electric displacement

field net ) in a holohedral isotropic dielectric; provided

ib (O) � 0, DCt ) will be shown to satisfy a (non-homogeneous ’)

damped integrodifferential equation . By introducing suitable

Hu bert spaces and operators,the initial-boundary value

problem for 1 1(t )  is easily demonstrated to be equivalent to

an initial value problem for an abstract damped integro-

differential equation and growth estimates for specific

classe s of solutions to this abstract problem are then obtained

by employing a suitable logarithmic convexity argument . When

11(0) ~ 0 the growth estimates obtained depend on hypotheses

concerni ng the relative magnitudes of certain measures of the

size of the initial data (e.g. , the initi& energy) and the

strong operator norm of the kernel of the relevant integral

operator; in each case , ~.iwever , the basic hypothesis employed is a

coerciveness assumption (on the initial value of the kernel of

the integral operator) of the type represented by (l.4a) , (l.4h).

2. An Ini tial-Boundary V a l u e  Problem for Holohedral Isotrop ic

Dielectrics

Let Cx ’,t) be a fixed 1crentz reference frame ; the local

— ~~~~~~~~~
——--.

~~~
- . —— *~~~~~~ v- ---~ - , .-~~~- - .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i 1 —~~~~~~~~’ 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
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forms of Maxwellt s equations are then given by (l.7a), (l.7b ).

Let ~ c F
3 
be a bounded region with boundary 3~ and assume

that  ~~ is sufficiently smooth so that the divergence theorem

may be applied. Finally , assume that ~ is filled with a

holohedral isotropic non-conducting dielectric material which

is non-deformable and which satisfies hypotheses H1 and H2

of ~l; in ci , therefore , the electromagnetic field satisfies

constitutive relations of the form (l.22a) , (l.22b) where we

assume that a0 > 0, b0 > 0 and 4(t), ij(t) are monotonically

de reasing functions which are (at least) twice continuously

differentiable on 1O ,co) with ~~
3’ (t )  a bounded integrable

function on [O ,co). The basic result of this section is the

following:

Theorem 11.1 The evolution of the electric displacement

field D(x ,t) in any holohedral isotropic non-conducting

material dielectric (which conforms to the constitutive

hypotheses  ( l . 2 2 a ) , (l.22b)) is governed by the system of

damped in t e g r o d i f f e r e n t i a l  equat ions

~D . ~
2 D

+ ‘i’(O) — b0 ~
‘( 0 ) [c o~ uj o j.e ~~~~~~ 

— D1] (2 . 1 )

(I)
+ b0 

f ~ ~
‘(t_ -r ) D

~~
( T )  — 4

~o
(t_T)o

ikl5j.~ ~
xj~

xe 
)dT

= b~~,(t)D.(0), i = l ,2,~

whEre C l/ a~~~( 0 )  and ~0
(t )  = ~(t)/a0.

~~~~~~~~~~ ~rr~~~- ~~~T~~1i— -- .1.
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Remark In (2.1) ~(t) is given in terms of the memory

function ~(t) by (l.l14a) and (1.14b) - with c replaced by

a0 
- and ~Y(t) is defined in terms of iL’(t) in an analogous

manner , i.e., by (l.lt4a) and (l.l4b) with 4(t) replaced by

i~(t) and c replaced by b0.

Proof By using successive approximations we may invert the

constitutive relations (l.22a) and (l.22b) to obtain , respectively ,

E(t) = D(t) + 
~~ f~ ~

(t-T)D(T)dt (2.2a)

B(t) ~~~~
- H(t) + 

~~~~
- f~ ~

(-t-T)H (r)dT (2.2b)

with ~(t) and ‘I’(t) defined in terms of 4’(t) and ~p(t), re-

spectively , as indicated in the above remark . Now ,

from (2.2a) and the second Ma :well relation in (l.7b) we have

div E(t) = 0 and , therefore ,

t~E (t) = — cur’l curl E(t) (2.3)

From (2.2b) , however , and the first Maxwell relation in (l.7a)

curl E(t) = - = - 

~~~~~~ 

- 
~~~

— 
~‘(0)H(t) (2.4)

- f~ ~~
(t
~~~~~~~

dT

Therefore ,

— curl curl E(t) j~
- (curl H)

~ 
+ 

~~~~~~ ~I’(O)(curl H(t)) (2.5)

+ f l ( t . . .t ) c u r l  H ( T ) d - r
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B + 
~~~

+ f~ ~t
(t T)PT (T~~~

T

where the second relation in (2.5) follows from the first

Maxwell equation in (l.7b). Combining (2.52
) with (2.3) and

then employing (2.2a) we obtain

+ ‘
~
‘
~~~ P-I + b f~ ~

P
t
(t_r)D

~~
(T)dT (2.6)

b b
= A 1 1(t )  + ~~ f t 

~ ( t — t ) z ~D ( t ) d i
a - -  a 0 --0 0

However ,

f~ ~t
(t
~~~~P1

(T
~~~

T = — f~ ~
‘
1
(t_t)D~~(T)dT (2.7)

= —

+ 
‘0 ~ TT

(t T)P(T)dT

= 4 ’t O ) D ( t )  — + ( t ) D ( 0 )

+ j t ~ (t—T)D (-r)dT
0 TT —

Substituting (2.7 3
) into (2.6) and using the fact that 

.~~~~~- . — - . - . - -  . - -4
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= 
~ t t

(t_T ) we easily obtain

- -

Pt t  
+ ‘

~~~
°

~~Pt 
+ b 4 ’( O ) ( I  — c A)D(t) (2.8)

+ b0 J~~
(
~
P
~ ±

(t_ -r )I — ~~~(t—TTh)D(T)dT

= b0 
‘y(t)D(O), on ~2 

x [0 ,oo) ,

where c = 1/a0 ~js (o) and ~0(t) = ~,(t)/a0
; this establishes

the required result.

Remark We are assuming that ‘Y(0) � 0 so that c0 is defined;

if ‘Y(O) = 0 then the third expression on the left hand side

of equation (2.1) reduces to

- b  ~
2 D

0 k
a0 i j  k~

In c o n j u n c t i o n  w i t h  the in t e g r o i i f f e r e n tia l  equation (2.8)

we consider initial and boundary data of the form

P(x , 0) = D0
(x), 

~~~~~~ 
= p 1(

~
) , ,~ ~~ 

(2.9)

and

D(x ,t) = 0, (x ,t )  c ~ 1 x [0 ,~~) (2.10)

where D0, 111 are continuous on ~~~~. At this point it is con-

venient to recast the initial-boundary value problem (2.8), 

::~~~~~~~~~~~~~~~~~ . I T T~~~~~~
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(2.9), (2.10) as an initial value problem for an

integrodifferential equation in Hilbert space . As in [6] we

let C~~(f~) denote the set of three dimensional 
vector fields

0

with compact support in Sl whose components are in C~~(c2). We

define the filbert space H to be the completion of C cc) under

the norm induced by the inner product

E f v.w.dx (2.11)
- - H  ~ ii..

while the filbert space H~,. is taken to be the 
completion of

C ( ~l) under the norm induced by the inner product

av.av.

f~ ~~~~~~ dx 
(2.12)

+ D l

Finally , H is the filbert space obtained by completing

C~~
(ç
~
) under the norm

I I v I  sup { 
~f~ v~

w j dx I !( f ~ ~~~ ~—~)
½dx)] (2.13)

It may be established that H.,. c H (both topologically and

algebraically ) and that H~ Is dense in H; the spaces H , H.,.., H

which are defined above are commonly denoted by L2U2), H~ (c2), and

respectively . We denote by w the embedding constant for

t h e  in cl u s i o n  map i: H~. -
~ H.

Operators L L (H~~, H )  and Met) € L
2((—~~,~~); L(H~~,H))

are now defined as follows :

~~~~- - - - ~~~~~~~ 
_ _ _ _ _ _ _ _—-- —.-—--— ~~~~~ -— -



-

—16—

2

(Lv )1 b
0~
(O)[C

o~ jk~ j~ ~~~~~~~ 
- ~~.. v .1, v E H~ ( 2 . 1 ’ ; a )

2 v c H

(M(t)~~
)
1 

b
0
[
~~~

( t )
~~ u~~

v
~ 

- 

~~
( t )

~~ik
ó
jt ~~~~~~~~~~~ t € ~~~~~ 

(2.l4b)

It follows directly from the definitions (2.11) - ( 2 . 1 3 ), (2.l~ a) ,

(2.14b) and the smoothness assumptions on the memory functions

th (t), i p ( t )  that

(1) L LS
(H+ , H ) , M ( t )  L~ (H~~ H ) , t (-~~~, c O )

(ii) M
~~
(.) c L

2((-o’,°~); L(H~~, H_
) )

where L~~(H~ , H )  denotes the space of all symmetric bounded

linear operators from H.,. into H and M
t 

is the strong operator

derivative of M ( • ) .  U s i n g  the d e f in i t i o n s  of H , H ., , H and

the operators L, M(t) given abo”e we may rewrite the system

(2.1), (2.9), (2.10) in the form

-

~ 

— LD + f~ 
M ( t — T ) D ( T ) d T  b0

4 ’(t ) D0 (2.15)

D(0) 11 , D
~
(O) = P 1 (2 . 1 6)

where D0, P1 E H~ and 11 ~ C 2 ( [ O ,oo ) ;  H ., ) with D
~ 

E C
1([0,~~); H.,)

and C ( [0 ,co); H ) . Acl .u a l l v , we shall be interested in

solutions of (2.15 ), (2.16) on ~inite time intervals of the

form [0 ,T) where T, 0 < T < ~~~, is an arbitrary real number ; 

- - - - - -.- -  - _ _ _ _
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this suggests that we examine the fcilowinr . dh5 iI’ ~tc 1 m u  i.tl

val ue problem : Let H, H+ be Hilbert spaces with inner products

< , > and < ,>+~
reSpe ’ ively’and assume that H., c H (algebraically

and topologically ~ Th H ,. dense in H; define H_ as in (1.2).

We consider solutions u c C
2
(10 ,T); H.,.) of the system

— - + M(t—t)u (t)dt (2.17)

= 8 ( t ) u 0 , 0 � t < T

u(0) 
~~~ 

= 
~l ~~~

‘ 
~l 

~ H~ ) (2.18)

where a � 0 is an arbitrary real constant , 6(t) is any real-

valued function such that 6(t) exists a.e. on [0,T) and

(1’) L € L s(H +~ 
H )

(ii’) M (•), Mt
(.) E L 2 ( [0 ,T ) ;  L S (H + , H _ ) )

We assume that € C
1([O ,’T); H.,.) and c C([O ,T); H ).

In ~3 we will derive some growth estimates for solutions

u (t) of the sys--em (2.17) , (2.18) , which lie in a certain

urdfcrmly bounded subset of C2(!0 ,T); H.,.); our estimates will

be obtained under various combinations of the following

1> o~) 1= 0 ~) f~ 
0, 0 < t

h y p o t h e s es  : a ~ U ~ and 8(t) ~1< 0) 0 
1’ 0 .1 ( i  0, on 1O ,T)

In §4 we w i l l  apply  our r e s u l t s  to the sys tem cons i s t ing  of
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( 2 . 1 ) , (2.9), and (2.10); at no point in this work do we make

any de f ini t enes s  assumptions on the operators L or M e t ) , t ~ [0.,T).

3. Some Growth Estimates for a Damped Integrodifferential Equation

We begin with some preliminary definitions. Let N > 0

be an arbitrary positive real number and let

N {u C2([0,T); H~ ) sup m I u I I ~ � N )
- [0 ,T)

Let K (t) = ½ 1 ~~~1 I ? denote the kinetic energy associated with

solutions u of the system (2.17), (2.18) and Pet) —½<u ,Nu>

the potential energy ; then E(t) K(t) + P(t) is the total

energy . Finally, let y and t
o 
be arbitrary non-negative real

numbers and define

F (t;y,t0
) II u(t) II 2 + y ( t +t

0
)2, 0 � t < T (3.1)

The various growth estimates we derive in this section

all follow frcrr’ the following basic

Lemma Let u ~ N be any solution of (2.17) , (2.18) and suppose

that 11(0) satisfies

—<v , M (0)v> ~ K J I v I I ~~. ~ v H., (3.2a)
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with

K � yT sup 111t 1 ’ ( H  H ) (3.2b)
[O ,T)  — 

+ , 
—

Then there exists ~i > 0 such that for all t , 0 � t < T

FF” - F’ 2 � -2F (2E(0) + ii) + aFF ’ (3.3)

— 2aF(y (t+t ) + K (-r)dr)

+ 2F(2f~ 8(-r)<u ,u0>di 
—

+ 4 F 8 ( O ) I  u I  1 2

Px uof From the definition of F(t;y,t0
), i.e. (3.1), we easily

compute

F’(t;Y,t0
) = 2 <u ,u

~
> + y (t+t ) (3.4)

and

F” (t;y,t )  = 2 I I u
~~
IV + 2a<u ,u

~
> (3.5)

+ 2<u , Lu> — 2<u , f~ 
M(t—T )u (T)dT

+ 28(t)<u ,u0
> + 2~- ,

where we have made use of (2.17) in (3.5). Using the definitions

of K (t), E(t),we may rewrite (3.5) in the form

F” (t;y, t0
) = 2ci<u

~
u
~~

’ + 28 (t)<u ,u > (3.6)

— 2<u , f~ 
M(t—r)u(t)dr

4 4 ( 2 K ( t )  + •y) — 2(2E(0) + y )  — 4(E(t) — [(0))

- _u.._-_ ----~~~~~~ - - - ——- — - — -
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However , for any T , 0 < s t -
~ T

E’(T) = <
~ T ’~~T-r > — 

~-r ’~~ 
(3.7)

= a l l u  I I
2 

+

— U
T~ f~ 

M( -r - - o ) u ( o ) d cy >

where 
~~~~~ 

follows by taking the inner product (in H) of

(2.17) with U
T
• Therefore ,

= 2aK (T) + B (T)<u
~~
,u0

> (3.8)

— <u (t), f~ 
M(t—ci)u(c)dc>

+ <u(r), f~ 
M (i—c~)u(c,)dci>

+ <u (-t-), M (0)u(T)>

Integrating this last result from zero to t and substituting

for E(t) - E(0) in (3.6) we obtain

F”(t;y ,t0
) = 2a<u ,u

~
> + 2 $ ( t ) <u ,u > (3.9)

+ 2<u , f~ 
M (t—-r )u (-r)di>

+ 4(2K(t) + y )  — 2(2E(0) + y)

— 8ct f ~ K (T)dT — 4f~ 8(T)<UT , U0>dT

— 4f ~ <u(-r), f~ 
M
~
(T_a)u(a)da>dT

- 4f ~ < u ( r ) ,  M(0)u (r)>d-r 
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Therefore,

FF” = F’ 2 = 4F(2K(t) 
~ 

y )  - ft
2 

- 2F(2E (O) + y) (3.10)

+ 2czF(<u,u
~
> — 4f ~ K (-r)dt )

+ 2F(8(t)-<u ,u > — 2f~ B (t)<u
T
,u
o
>dT )

+ 2F <u ,f~ M (t— -r)u (T)dT >

+ J 4 F f ~ <u (t) , f~ 
M 1( ’ r— a ) u ( a ) da> dt

— 4Ff~ <u (-t), M (0)u(r)>dr

However , from (3.1), (3.4), the definition of K (t), and the

Sehwarz inequality it follows that

G (t;y,t
0
) 4F(t;y,t )(2K(t) + y) - F 2(t;y,t0

) � 0 (3.11)

and , therefore, (3.10) yields the inequality

FF” - F’2 � - 2F(2E(0) + y) (3.12)

+ aF(~~ - l I u I j 2 — 8f~ K (r)dT)

+ 2F(2f~ ~(T)<u ,u0>dt 
— 8(t)-<u ,u

0
> )

+ 4F8(0) I ) u
~~

I 1 2

+ 2F <U , ~ 
M(t— -r)u(t)dr>

— 4Ff~ <u (-r), f~ 
M T (T u a ) da dt

— 4Ff~ < u ( t ) , M (0)u(r)>di

_______________________________
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If we make note of the fact that

~~- I I u I  i
2 

= F’(t;y,t )  - 2 y (t +t
0
)

then we can rewri te  ( 3 . 1 2)  in the form

FF” - F ’ 2 � - 2F(2E(0) + y) + aFF ’ (3.13)

— 2aF(y (t+t0
) + 4f ~ K (T)dT )

+ 2F(2f~ ~(T)<u ,u >dT — B (t)-<u ,u > )  + 4F8(0)1 Iu0 ! I

+ 2F<u , f~ 
M(t—T)u(T)dT>

— 4Ff~ <u er ) , f~ 
H ( T — a ) u ( a ) d c y > d t

— 4F f~~<u (t) , M(0)u (-r)>dt

In order to complete the proof of the Lemma we now use the

hypotheses (3.2a), (3.2b) and the fact that u € P4 to bound ,

from below , the sum of the last three terms in (3.13). First

of all

t
<u , f 0 M (t—i-)u (T)d-r > I

I Iu (t )I If~~i IM (t-r)u (~~)lI d T

~ ~ I I~~(t) I I~ f~( I M ( t - T )  I L H ~~,H )) ju(T) I I~~d~

� u T (  sup I l u l I +)
2 sup I I M ( t ) I I , ,  H )[0 ,T) - [0 ,T)  - ~~~~~~ -

~ u~N
2 T sup I I M ( t ) I I L H H )[C ,T)  - + ‘ -
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and thus , as F(t;y,t )  � 0 , 0 � t < T ,

2F<u , f~ 
M ( t - T ) u ( T ) d T >  (3 . 1 4b )

— 2(~)N~ T SUP I 111 (t) II L (H P )F(t;y,t )
[0 ,T) — + , ~~— °

Also ,

- 4Ff ~~< u ( T ) , M ( 0 ) u ( - r ) > d t  (3 . 1 5)

� 4KFf~ I Iu(i) I I~ dT

4wT sup I I M t I 1 L ( H  H )Ff0 1 lu (i) I I~ di
[0,T) + , 

— 
—

by virtue of (3.2a) and (3.2b). Finally ,

<u(t), 5~ 
M
~
et_o)u(o)d

~
>dT (3.l6a)

< f~~ku (t), f~ 
M 1( i — o ) u ( o ) d o > I dT

~ f~ I I~~(i ) II (f ~( I I~~~(T_o ) II L (H~~,H )
) I I~~(o) I I 4dc~)di

� 

[O T )~~~
t L (H+~

l
~ 
)f0 IIU (T ) I I ~~(f0 II t ~(~~) I I ~~dbo)dT

� 

[O ,T) 
1
~~~

1 L (H ,H ) ~ f o~ 
I~~(i ) I 1 4th)

2

� wT sup I I
~~~

I L(H ,H ) 1o~ 
Iu (t) I I~ di

frorr: wh ich we easily deduce that

L ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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- 4Ff~~<u (T), 5~ ~~~~
( 0 ) 0 ) c

~~~~
L T  ( .~ . ~ t b )

- 4 u T  sup J I M  I L H  H )FJ 0 I Iu(T) I I~ dT
[0 ,T) ~~ +

, 
-

Combining (3.13) ~‘ith the estimates (3.l4b) , (3.15 2) and

(3.l6b) we obtain the required result , i.e., the estimate

(3.3) with

p y + WN2T sup IIM (t)I L(H H ) (3.17)
[0,T) - + ,  —

Q . E . D .

With the preceding Lemma as a starting point we now

begin our study of the growth behavior of solutions to (2.17),

(2 . 1 8 )  which lie in the class P 4 ;  in each of the cases examined

below we assume that M (0) satisfies (3.2a) for some K > 0 which

satisfies (3.2b)

Case I: u = 0 and a < 0
-o

2
In this case E(0) = ½ I Iu 1 I I and the second expression

on the right-hand side of (3.3) , being non-negative , may be

dropped . Thi-re fore ,

FF” - F’ 2 � - 2 F (IIu
1 ) I

2 
+ p) - a I F F ’  ( 3 . 1 8)

for all t, 0 < t < T, where p is given by (3.17). However ,

for  y ,  t o a r b i t r a r y  n o n ne g a t i v e  real numbers ,
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Ay t ~ � A~ Iu (t )I J 2 
+ Ay (t+t0

)2 A F ( t ; y ; t 0
) ( 3 . 19 )

for any A � 0. If, in particular , we choose

- 22( II u , I I  + p)
A = A (y;t ) E 2 (3.20)

yt0

then for all t, 0 � t < T, and all nonnegative real numbers

y, to

2 ( I I u 1I J 2 + p )  � A ( y ; t ) F ( t ;y , t 0
) ( 3 . 2 1)

and (3.18) may be replaced by the estimate

Fl” - F ’ 2 � - A (y;t0
)F2 — IaIFF ’ (3.22)

The differential inequality (3.22) now forms the basis for

the following growth estimate:

Theorem 111.1 Let U c N be any solution of (2.17), (2.18)

with = 0 and cx < 0. Assume that 11(0) satisfies (3.2a),

( 3 . 2 1~) and that T > 1/ I c i l .  Then there exist real constants

A > 0 and A > 0 and a real-valued function g(t) � 0, 0 < t < T,

such that

2
h u l l  � Ae I a T  

, 0 s t < T (3.23)

Furthermore ,

L _ _ _ _ _ _ _ _  _ _ _  _ _ _
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(i) g(0) = 0, lim g(t) = C’
t÷T

increasing ,
(ii) g(t) is (strictly ) monotonically 

~decreasing
’ for

{~~~} 
~~~~~~~~~ tn 
[

l I T ]

Proof From (3.22) and Jensen ’s inequality we obtain the

estimate ,

F(t;y,t )  � e~~~ [F(t
1;y,t )e~~~ 

1] [F(t2 ;y,t )e~~~~
2] (3.24)

(v~ 1id for 0 � t1 < t ~ t 2 < T) where

6(t) = (e~~~~
t 

— e aIt 2)/(e I~
X It 1 — e~~~~

t2) (3.25)

The interval [t 1,t2] c [0,T) is any closed interval such that

F ( t ;y , t )  > 0, t1 < t � t2. However , it is a simple con-

sequence of (3.24) and thle definition of F (t;y,t )  that

F(t;y,t )  0 on f0 ,T) if F(~~;y,t )  = 0 for any € 1O ,T ) .

Thus , without loss of generality , we may assume that

F(t;y,t0
) > 0, 0 < t < T. Taking t1 = 0, t2 = T in (3.14)

we obtain

—A — A —

F(t;y,t
0
) � e a [yt ] [F(T;y,t0)e 

a (3.26)

where

~(t) = (e~~~~
t 

- e
_ T

,l - e~~~~
T) (3.27)

- -~~~-- -. -.-~~~~~-.- - - -..---~~——-~~~~ 

__
~~~

_.
~
_:_
~ ±ii~~~~

_ _ ±~~~~~~~~ iT ~~~~~~~~~~~~~~~~~~~~~~ -—---------.— ~~~~~~~~~~~
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We now choose y lit2 and then take the limit in (3.26) as

-~ +~~~~~. Clearly , as
0

F(t; lit 2 , t )  = I h u ( t ) I 1 2 
+ (~~~ + 1)

2

u r n  F (t;l/t 2,t ) = I Iu(t) 11
2 

+ 1 (3.28a)
t ++,x) 0 0 -

0

for all t ~ [0,T). Also

lim F(T;l/t2 ,t )  = lim (ll u (T )II 2 
+ (

~~~~
._ + 1)~~)) (3.28b)

t -*+~~~~ t -*+~~~o 0

� 
2~ 2 

+ 1

as u € N . Finally

lim A (l/t2;t ) = lim 2 (1 lu + l/t2 + ~i) (3.28c)
t _,.+~~~~ 

0 0 
~ 

-l 0

0 0

= 2( II u 1 I l 2 
+ ~j) E A

where p wN 2T sup I IM(t) l L I~H H )• Thus , with y = lit 2 and
[O ,T) — 

+
, 

—

t0-~ +~~~ in (3.26) , we obtain the estimate

A
2 ~~~ 

g(t)
II u (t) II < Ae , 0 � t < T, (3.29~

where

A = sup (w2N2 + 1)1 6(t)

10 ,T) (3.30)

and

g (t )  E T ( l — ~5 ( t ) )  — t (3.31) 

- —-- -~~~~~~~~~~~~—~~~~~ 
- -
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From the d e f i n i t i o n  of ó ( t )  it is clear that g ( O )  = 0 and

lim g(t) 0. Also
t-~T

I c x I t
= 

— h a l e  
T < 

~~~~, 0 � -
~~ 

< T, (3.32)
l-e cx l

so

g’(t) = —T~~’(t) 
— 1 = TJ~~’(t)I 

— 1 (3.33)

Thus

(< 0 ’) ( <li T )
g ’( t )  ~ 0 ~ if and only if 16’ (t)l ~ 1/T } (3.34)

t > o~~ ). > l/ T )

However ,

I~~’ ( t ) l  = a l e  t / ( l e_ t cx l T )

so

I~~’( t ) I  < l/T < >  icx ,e
_ I c d t  

< ~~(l_e
_
~~~~

T) (3.35)

From (3.35) it follows directly that

I~~’( t ) I  < l /T  <=> t > -i-~-r £nf1~~~~~~IT] 
(3.36)

provided

alT > l_e~~~~~
T (3.37)

(and this last condition is certainly satisfied if T > 1/h a l ).

This completes the proof of the theorem .
Q~E.D

Remark Let 11 > 0 be chosen so that

w
2
N
2 

+ 1 < Me ’
~~ (3.38)
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If we again set y = l/t 2 in (3.26) and take the l i m i t  as

t -~ +co then we obtain  the es t imate
0

-A

h I u ( t ) 1 I 2 
� M~~~~e 

hal  
, 0 � t < T (3.39)

which shows that J l u J l
2 
is bounded above by an exponentially

decreasing function of t for all t E [O ,T).

In contrast to the result contained in the statement of

Theorem III.l ,and the above remark , we have the following

theorem concerning lower bounds for solutions u c N of (2.17),

(2.18):

Theorem 111.2 Let u ~ P4 be any solution of (2.17 ), (2.18)

with u = 0 and a < 0 and assume that M(O) satisfies (3.2a),

( 3 . 2 b ) .  If c x l  < 1 then there exists T > 0 such that I l u l

is bounded below by a monotonically increasing exponential

function of t , 0 < t < T.

Proof We beg in by integrating the differential inequality

(3.22) according to the “tangent property” of convex functions-

assuming that F(t;y,t )  > 0, 0 < t < T, where T > 0 is an

a rb i t ra ry  real number by the “t angen t  property ” for convex

functions we refer to the fact that the graph of a convex

f u n c ti o n~~
1
~ on [0 ,T) lies above the tangent line to the curve

at any point  t ~ ‘O ,T). Thus , we obtain directly from (3.22)

the e s t ima t e

(1) The inequality (3.72) and the assumpt~ on that F(t;y,t0) > 0

on F O ,T)  im~~i y  t h a t  ~ n ( F ( ~~;y , t )e
_ A

~’
a ) is a convex function

of a e l a l t  on 1O , T ) .

-II !’



- — - - -  - --~~~~- -

—30—

I F’(0;y,t0) + -2-—F(O;y,t0)) -la It )F (t;y,t ) � F(O;y;t )exp
JalF (0;y ,t0

)

(3.40)

T~T tJ

However , F(0;y,t0) = yt 2 and F’ (0;y,t0
) 2yt

0
. Therefore ,

if we set y = l / t 2 in (3.40) we obtain
0

l I u ( t ) 1 1 2 
+ [t/t

0 
+ 112 

� exp[x (t;t0
)], 0 � t < T (3.41)

where
A ( l / t 2 ;t )

x ( t ; t  )~~
_
~i_ 

[ ( -
~~
-_ + ° ° 1a1t A (l/t

2 ;t )tl (3.42)l eo h al to cxl 
- 

0 0

and

2 1 2 2
A (1/t2 ;t ) = 2(1 lu~ I I  + — + ~ N T sup I IM I I L (H ,H )

) (3.43)
o o [0 ,T) -

0

We note , in passing, tha t x ( O ; t  ) = 0. For the sake of con-
0

venience we now set

A(l/t2 ;t )
+ ° °o t h a l

0

Then

x ’(t;t
0
) = E (t

0
)e~~~~ - A (l/t~~;t0

) (3.44)

From (3.44) it follows immediately that x ’(t;t ) > 0
0

for 0 t < —
~~~~~~ 

)
0

Ial 1A ( l / t 2 ;t 
] provided c (t

0
) > A (1/t2~ t

0
).

0 0

We now take the limit in (3.41) as t -
~~ +~~~ and obtain

0
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l u (t)l 1
2 

+ 1 � exp[ lim x (t;t
0

) ] ,  0 � t < T (3.45)
— 

~~

But

lim x (t;t ) -
~
-1— 

~ u r n  c (t )(l_e~~~~~
t) (3.146)

~ ~~~~~ 
,a 0

0 0

- lim A ( l / t 2 ;t ) ]
t - ~-+ 0D 

0 0
0

= 2~~~
e h a l t ) - 

~t ~ (t )
l a l

where X is given by (3.28c). Also

-lct l t
lim x ’(t;t

0
) 

~~~~~
- x (t) = A (e

I a f 
— 1) (3 147)

t -’.+~’0

and , therefore ,

> 0, 0 � t < -j-
~
-
~
- Ln (-1~-j-) (3.48)

if I al < 1. The statement of the theorem now follows with

1 1T -~-~-1- tn(-j-—-1-)~ i.e.,

I u ( t ) I  1 2 + 1 � exp (~~(t)), 0 � t < -j -
~
-
~
- en ( 1~-1~-) ( 3. 149 )

where ~(t), as determined by ~~~~~~~ 
is nonnegative and

monotonically increasing on [0 , 
-1

~~~~~.1 tnt .j - .Lj~i ) .

Q.E.D.

Remark In deducing the differential inequality (3.18) we took

advantage of the hypothesis t h a t  a < 0 to drop the expression



_~~~~~-

—32—

H (t;y;t0
) E — 2aF (y (t+t ~ + 4j t K(T)dT)

from (3.3); if we retain this expression in (3.3) then the

upper bound obtained in theorem 111 .1 may be sharpened some-

what . In order to show this let us note , first of all that ,

as U = 0,
-o -

u ( t )  = f~ 
u
~~
(t)dt , 0 � t < T (3.51)

We have , therefore , the estimates

I lu (t) 11
2 

� (f ~ I lu~ (T) I ldt )
2 (3.52)

� tf~~l I u ( t ) I l 2 di

� Tf ~~l l u 1
( i )  I 1 2th

But

I Iu (t) 11
2 

= F(t;y,t )  - y ( t + t
0
)
2 (3.53)

> F(t;y,t )  - y (T+t
0

) 2 ,

so for any t € [0 ,T)

f ~ I Iu 1
(-r ) I 1

2 th > ~-I Iu (t) I i
2 (3 514)

> ~~~ F (t;y,t )  - ~~~ (T+t0
)2

Therefore , from (3.50) and the assumption that a < 0 we obtain

the lower bound

~~~~~~~~~~~~~~~~~~~ ~
—

~~~~
-
~~~~~~~~

—
~~~~~~~~~~~~~~~~:: ~~~~~~~~~~~~~~~~

-
~~i TTT . —~~~~~-- - - -
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H (t;y,t0
) = 2IahF(y (t+t ) + ?f ~~

I I u
~~

(T) ll
~~
dT) (3.s~~)

> 1 4 I c x l  F2 — 2F ( 21
~~~

’ (T+t )2 — IcxIy t0
)

From (3.3) (with = 0, cx < 0), (3.50) , and (3.55) we now

obtain the differential inequality

FF” - F ’ 2 � - 2F(I Iu 1 l 1 2 + + 4~~~IF
2 

- Ia IFF ’ , (3.56)

where

P yEl - l a l t 0 
+ ~~~~ (T+ t0)

2] (3.57)

+ ~N
2T sup I IM(t )h (H H ) (3.57)
[0,T) - L +~~ -

By virtue of the same reasoning which led to (3.22) we have

the following result: If

2
— - 2 ( J l u 1 l l  +

A (y;t0) = 
— 

2 (3.58)
yt0 -

then F(t;y,t0
) satisfies , for all t ~ [0,T) ,

FF” — F ’ 2 � — (3(y;t0
) — 

14
~~~

1 )F2 — IaIFF ’ (3.59)

and , as a consequence,we obtain the estimate

~4t  —4t1
F(t;y,t0)~ e~~~ 

t
e T [F(t 1;y,t0

)e~~~ 
~1 e T ~6(t) 

(3.60)

x [F(t2 ;y,t0)e~~~ 
~ e T 1l—6(t)

- ~~~~~~~~~~~~~~~~~~~ ~1— —
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where 6(t) is given by (3.25) and [t 1, t 2
1 c [0 ,T) is any

closed interval such that F(t;y;t0
) > 0, t1 

� t < t
2
. With

the assumption that F (t;y;t ) > 0 on [0 ,T) we may set t1 
= 0,

t2 
= T in (3.60) and obtain

F (t;y,t0
) � e~~~ e

T
[yt

2]6[F ( T ; y , t
0

)e~~~ ~~~~~ ( 3 . 6 1)

where ~ ( t )  is given by ( 3 . 2 7 ) .  We note , in passing, that we

have dropped , from ( 3 . 6 1) , the factor  e 14
~~~~

6
~ whose suprémum

on [0 ,T) is 1. We again set -y l/t~ and take the limit (in

( 3 . 6 1 ) )  as t o 
-

~ 
+oo Clearly , (3.2 8a) and (3.28b) still apply .

Also , from (3.58) and (3.57)

lim A ( l / t 2 ;t ) = + 4 l a I  A , (3.62)
0 0 T

0

where A is defined by (3.28c). Thus , (3.61) yields

hl u (t )h1 2 
� Ae~~~~~~~e~~~ 

g ( t )
, 0 � t < T (3.63)

where g(t) is again given by (3.31) while A is defined by

(3.30). Our results can be summarized in the following

corollary to theorem 111.1:

Corollary 111.1 Let u c N be any solution of (2.17), (2.18)

with = 0 and a < 0. Assume that M (O) satisfies (3.2a) and

(3.2b) and that T > . Then II u (t) l1
2 satisfies thec x l  -

L -- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~j
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es t ima te  (3.63) on niO ,T) where A is given by (3.30), ~
( t )

by (3.27), and g(t) T( 1 6 ( t ) )  — t satisfies (i) and (ii)

of Theorem 11.1.

Remark In contrast to the improved upper bound obtained

above , retention of the expression (3.50) in (3.3) does not

lead to an improvement over the lower bound obtained in (3.49).

This is easily seen as follows : If we retain the expression

(3.50) in (3.3) we are led to consider the differential in-

equality (3.59) in lieu of (3.22). By the “tangent property ”

for convex functions we again obtain an estimate of the form

(3.141) with x (t;t
0
) replaced by

X (l/t 2 :t )

~ (t;t ) + 
h a l  

° — ~~) ( l_ e~~~~~
t ) ( 3 . 6 4 )

— ( A ( 1 /t ~~;t 0
) -

where A is given by (3.57) and (3.58). In view of (3.62),

however , it is clear that

lim x (t;t0
) = A (l_e

_ h
~~~

t) - 5t
to

-~+o, l al

= x (t)

= lim x (t;t )
t

0
-~~+co

and , therefore , precisely the sam e lower bound , i.e. (3.49) ,

i r  nt~~~. in e d  as t o +~~ i f  we r e t a in  the  term s in ( 3 . 5 0 )  in
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the differential inequality (3.3).

Case II: u O a n d c x > O

In this case the expression (3.50) can not be dropped

from the differential inequality (3.3). As t < T and cx > 0,

(3.3) with U
0 

= 0 implies that

Fl” - F’ 2 � - 2F( I1u 1 l 1 2 + p) + aFF’  ( 3 . 6 6 )

- 2 c x F ( y ( T+t
0
) + 2f~~I I

~~~
l l 2d~ )

In order to proceed further we shall need the following

Lemm a Let u € P4 be any solution of (2.17), (2.18) with

= 0. Then there exists a real-valued continuous function

defined for 0 � t < T, such that

j~- f~~l lu
’

l 1 2th s I lu 1 l 1 2 + hcx(T)~ 
0 � t < T (3.67)

Proof: From the identity

= f~ ~~~~~ 
di +

and (2.17), we easily obtain (after substituting for u.~~ and

using the assumption that U
0 

=

+ au + f~ 
Lu (-r)di — f~f~ 

M(i—a )u(a)dadi (3.68)

Th us ,
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I ~ 1 lu 1 l I + a l  h u ( t )  I I  + J~~ l I L l 1 L H  H ~ 
I l u (i) I l 4th (3.69)

+ ‘ —

+ rt IM(t—a )l L(H4,H )
l l~~(a)I 1~ dcdi

I I~~~l I + ac~l Ju(t) l I~ 
+ t I ILl L(1-ç,H )  su~ I h u (T)l I~[O ,T) -

+ sup I l M ( t )  I 1 L ( H ~~,H ~ 
sup I Iu(t) I l~2 r o ,t )  - 

- [O ,T)

1 l u 11 1  + PaCt) sup l l u ( T ) l l ~[o ,t )
where

Pa (t )  aw + t H L l l L (H H )  + su~ l l ~~( t ) l I  ( 3 . 7 0 )
[O ,T )  L ( H ~ ,H )

Clear ly  pa
( t )  < pa (T )

~ for al l  t E [O ,T) and ,as U E N

I l u t I I < l l u 1 l I  + Np cx ( T )
~ 

0 � t < T (3.71)

Therefore ,

I I lu I I 2dt � 2t (lI u 1 l l 2 
+ N2p~ (T)), 0 � t T (3.72)JO — -r

and the lemma follows with

ha(t) N2p~ (t) (3.73)

If we combine (3.66) with (3.67) we obtain the

diff erential inequality

-4
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Fl” - F’
2 

� - 2F(l Iu 1 I 1 2 + p) + aFF ’ ( 3 7 4 )

where p > 0 is defined by

p + a [y ( T + t  ) + ‘4T(11u 1 1 1 2 
+ h

a
(T))]

Choosing

2 ( I l u  1 1 2 
+ p)

A = A (y;t0
) = — l 

2 
( 3 . 7 6)

It o

we have

FF” - F’ 2 � - A~~(y;t )F2 + aFF’ , 0 � t < T, ( 3 . 7 7 )

and upper and lower bounds for I lu (t)l I 2 
may be derived from

the differential inequality (3.77) in a manner analogous to

that followed in analyzing (3.22); the essential difference

between (3.22) and (3.77) is of course , not the difference

in complexity between the respective coefficients of the

quantity F2,but rather the’ simple difference in the signs of

the coefficients of the term FF’ .

If we apply Jensen t s inequality to (3.77), taking CO ,T)

as the relevant interval , we obtain

*At —A
2 *

F(t;y,t0
) � ea [yt 3 [F(T;y,t0

)ea 1 , (3.78)

where

6 (t )  (e at 
- eaT / l_e cxT), 0 � t < T (3.79) 

- - 

~~~~~~~~~~ 
_ _ _ _ _ _ _
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As cx > 0,

at
6 ( t )  ae 

< 0, 0 � t < T (3.80a)aTl-e

so

at T16 (t)l = ae / (e a — 1), 0 � t T (3.80b)

In (3.78) we again use the device of first setting y l/t~

and then taking the limit , on both sides of the inequality ,

as t -~ +~~~~. Since
0

lim A (1/t 2;t )= A + 8cxT(l Iu 11
2 

+ h (T)) (3.81)o o -l a
0

E A ,

with A defined by (3.28c), we obtain

2 f(t )
I lu(t) II � ~e

a 
, 0 � t < T (3.82)

where f(t) E t - (1-6 )T and

B E sup (w 2N2 + 1) l— 6 (t) (3.83)

[0 ,T)

Remark If we choose Q > 0 so large that
A..

+ 1 � Qe~ 

T 
(3.814)

then we obtain (from (3.78)) the estimate

- - ~~ 
1 ~~~~~~~~~~~~~~~~~~~~~~~~~ r’~~~~~~~~’i~~~~’~~~1 ~~~~~%‘ - - - - - * r
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I hu(t) l 1
2 

~c Q
’ 6  ea , 0 � t < T (3.85)

If, of course , there exists T > 0 such that
0

—A
2 2  — T

(c,~ N + l)e a O~~~ 1 (3.86)

then ( 3 . 8 5 )  may be replaced by the much simpler estimate

I Iu (t) 1 1
2 

� ea , 0 < t < T (3.87)

We now return to (3.82). Directly from the definition

of f ( t ) (and ( 3 .80a ))

f ’ ( t )  = 1 + T6 ( t )  = 1 — T I 6  (t)l, 0 � t < T (3.88)

Therefore ,
( > 1

r r:’~ T
< LI 

*‘  u
f’(t)jz ~~ if and only if 16 ( t ) l  

: 

‘~ 
(3.89)

But by ( 3 . 8 0b )

I 6 ( t ) l  < l/T <= aeat < 4 (ear — 1) (3.90)

and the latter inequality is satisfied if and only if

raT 1
~ < ~ £ j~

e 
aT (3.91)

(Note that m (t) E et - t - 1 > 0 for all t > 0 so that , in
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particular , e
aT 

— 1 � aT for a > 0). As f(0) = 0 and

lim f(t) = 0 we can summarize our results in the following

theorem:

Theorem 111.3 Let u ~ N be any solution of (2.17), (2.18)

with = 0 and a > 0. Assume that 11(0) satisfies (3.2a)

and (3.2b). Then for all T > 0 , I l u l l  satisfies (3.82) where

A and B are defined , respectively , by (3.81) and (3.83), and

f(t) is a nonnegative real-valued function which satisfies

(i’) f(0) = 0, lim f ( t )  = 0
t÷T

. ,  . . . increasing
(ii ) f(t) is (strictly) monotonically 

~decreasing

t < 1 eaT _ i
for 

~~ >
} ~~

- 
~n[ aT

To close out our study of the case u = 0, cx > 0 we now

integrate the differential inequality (3.7) according to the

“tangent property ” of convex func t ions  and we obtain the

es t ima te

r 2yt  ~~
- ~~~ It 2) -1

F ( t ; y , t 0
) � yt~ exPLf 

o
2
a (l_e at) + ~~— 

tJ 
(3.92)

2 * 2
which , with 

~ 
= l/t , A = A (l/t 0;t0

), reduces to

l l u ( t ) l l
2+(~~~ 

4 1)2 � exp - ~~~ }.(l_e
at ) + tI (3.93)

Were we to follow the arguments previously employed we would ,

at this point , take the limit in (3.93) as t
o 

4 +a~~. If we
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proceed in t h i s  f a s h i o n , however , we obtain

I I u (t )l 1
2 

+ 1 � exp [~~~ ( ~~ (i_e at) + t)1 (3.94)

But X (t) ~ (i_e at) + t satisfies x ( 0 )  = 0 and

x ’( t )  = — eat 
+ 1 < 0, 0 < t < T, (3.95)

if a > 0. Thus

exp It— ( ~ (i_ eat) + t] 1, 0 � t < T

which means , of course , that the estimate (3.914), obtained

from (3.93) by letting to ~ 
+~~~, is without any value as far

as obtaining a lower bound on ll u (t ) I 1 2 goes. An exponentially

increasing lower bound could be obtained for II u (t ) 1l
2 

from

(3.93) if we could find t (real and nonnegative ) such that
0

2~~~t0 A ( 1 /t ;t ) 2 a ,  ( 3 . 9 6 )

however , a little algebra shows that this equation possesses

only pure imaginary roots. In fact , if we rewrite the estimate

(3.92) in the form

l l u (t ) 1 l
2 

+ y (t+t )2 ~ y t 2 exp I - ~~~ ).(l_e
at ) +  ~~tJ (3.97)

* * .where A = A (y;t ) is defined by (3.75), (3.76), and (3.17),

i t  is no t  p c r r~ i b i  I o de er m i n e  y = ~~t 0
) such that

- 
_~~~~:1~~T~.J’—
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t A (y (t ); t ) 2a (3.98)
0 0 0

w i t h  y (t0
) real and nonnegative . Jt is worthw1~ile , however ,

to examine  the f u n c t i o n

* *A (y;t ) A (y;t )
J(t;y,t )  E ( 

2 
— ~~_ ) . ( l_ e at ) + cx 

0 t

C l e a r l y ,  J ( 0 ;y , t )  0 for  a rb i t r a ry  n o n n e g a t i v e  cons tan ts

y, to
. Also

*

2 ~ (y;t 
) 

t A (y ; t  )
J ’ ( t ; y , t 0

) — ~~ )e a + cx 
° (3.100)

f rom which , by the definition of A , it follows that

2ayt

2 °~ 
J ’ ( t ; - y , t )  = (k

1 
+ k2

1)(1_ea ) + ayt (3.101)

where

k1 = I Iu 1 1 1 2(1 + I4cxT) + Ii + ‘4aTh (T) (3.lO2a)

k
2 

1 + aT (3.102b)

Thus , if we choose

(k
1
+k2y) Tt0 = (ea — 1), y > 0 (3.103)

t h e n  J ’ ( t ; y , t ) > 0 for al] t , 0 � t ~ T, and each real0 ,)’

y ~‘ 0 , and we can state the following result : 4

‘rh~~c ’r ’eTr 111 .4 Let u N be any solution of (2.17), (2.18)
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with u 0 and cx > 0 and assume tha t  11(0) sat ~s fi e s  ( 3 .~~bi)
-

(3.2b). Then for any T > 0 and each real y > 2

l l u (t) 11 2 
+ y ( t + t  )2 

~ expfJ (t ;y,t )]~ 0 ~ t < T, (3.104)

where t0,.~. is defined by (3.lO2a) , (3 . l O 2 b ) , and (3.103) and

J ( t ;y , t ) , d e f i n e d  by (3. 99) wi th  t t , is nonnegative0,1 0 0,)’

and strictly monotonically increasing on [0,T).

The resul ts obtained in cases I and Ii did not involve

any hypotheses concerning the sign of the initial energy

E (0); as we assumed u = 0 in both cases , E(0) = ½ 1  h u 1 I 1 2 > ~

if u
1 � 0. In the cases considered below we remove the

r e s t r i c t ion  that  u = 0.
~~0

Case III: u ~ 0, a > 0 , and ~~~t )  = 0, 0 ~ t < T .

In this case (provided we use the fact that a < 0 to

delete the term H(t~ y , t0) defined by (3.50)) the inequality

(3 . 3 )  reduces to

FF” - F ’ 2 � - 2F( I lu 1 l 1 2 - 

~~~~~~~~~~~~~~ 
+ p) (3.105)

- l a l F F’

w i t h  P g iven by (3.17 ). We now assume that the initial data

~~~ ~l 
satisfies

I 1u 1 1 1
2 

- <
~3o ’~~~o

> <  - (3.106)
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where ~ wN 2 T sup I IM (t ) I ‘ L (}i 11 )~ 
Tak i ng y 0 i n  (

~~ . ~~~[0 ,T) + ‘ —

we obtain

F(t)F”(t) - 1 F ’ ( t )~
2 

~ - lalF (t)F’(t) , 0 ~ t < T, (3.107)

where F(t) I Iu(t) 11
2 . Jensen ’s inequa l i ty  then y ields the l 

-

upper bound

I lu (t )I 1
2 s I lu~~l l 26 

I lu (T)l I
2(1

~~~~, 0 � t < T, (3.lO8a)

where 6 ( t )  is given by (3.27). We note that the hypothesis

that u N ,and (3.108), imply tha t there exis ts  P > 0 such that

I lu (t) 1 1
2 

~
1_ 6

I 1u 0 1 l 2~~, 0 � t < T (3.lOSb)

How ever , as (3 . 1 O E )  can not be val id for I lu 0 l I s uf f i c i e n t l y

small , (3.108b) represents only an upper bound on I Iu (t)I I

in terms of Ih u 0ll and not a stability estimate. A better

result is found by integrating (3.107) according to the “tangent

property ” of convex function ; in fact , directly from (3.140)

..~‘it h  A = 0 and F(t~ y,t )  replaced by F(t) I Iu (t )l 1 2 we obtain

2<u ,u > 1
l l u ( t ) 1 1 2 

� I 1 u 01h 2 exp — l ° 
2 

( l_ e l a l t
)j~ 0 � t < T (3.109)

h a l l  1u 0 1 I

Directly from the estimate (3.109) is obvious that if

either 
~o’~ l = 0 or 0 (and <u ,L u >  > i~

) then
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II u (t) 1 1
2 

� I I  1 1 2 
for all t 10 ,T). On the other hand , if

<
~ l~ i?o> > 0,then on [O ,T) I lu (t) 1 1

2 is bounded below by a

monotonically increasing exponential funct on of t. Finally

if <
~ o ’~~l

> < 0 then Il u (t ) 1 1 2 can not decay any faster than

a monotonically decreasing exponential function of t. Our

resul ts  are summarized as

Theorem 111.5 Let u c N be any solution of (2.17), (2 . 1 8)

with U
0 

� 0, a < 0, and ~(t) E 0 on [O ,T). Assume that 11(0)

satisfies (3.2a) and (3.2b). Then

(A) If the initial data satisfy (3.106) ll u ( t ) l l  is

bounded above by I Iu 0 I I according to (3.lO8b) , for all

t E Eo ,T)

(B) If the initial data satisfy (3.106) then there exists

K ( a ) such tha t  for all t , 0 < t < T ,

I lu (t) I ~2 � I lu 0 l 1 2 exp [K(a)(1_~~~~ t)], (3.110)

where for each real a, K(a) is real-valued and

(i) K (cz) = 0 if either u1 = 0 or 
~o ’~ l

> = 0

(ii) K(a) > 0 if <
~ c ’~~

> > 0

(iii) K(cz) < 0 if <
~o ’~ i

> < o

and
(iv) IK (a )h -

~ 0 as at

Remark The case p � 0, cx > 0, and 8(t) E 0 can be treated

in the same manner as Case III; in fact , from (3.74) (wh i ch

was derived under the assumption that u0 0 with a > 0) we

can write down immediatel y the differential inequality

-
~
- -

~~~
-
~~~

-----—————--~~~~
—----- : r ~~

’ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



FF” - F ’ 2 � - 2F( iI u
1 l l 2 - <u ,L u >  + U) (3.111 )

+ aFF’

for the case where p � 0, cx > 0, but 8 (t) 0; in (3.111)

p is defined by (3.75) and (3.17). Suppose we set y = 0; 4

then if the initial data satisfy

(1 + L 4aT) llu 1 l j 2 
- <u ,L u >  � - (~

j + 4cxTh (T))

the above differential inequality reduces to

F(t)F”(t) - [F’(t)1 2 
� aF(t)F’(t), 0 ~ t < T, (3.112)

where F(t) = I Iu (t )j 1
2 . We leave the integration of (3.112)

and the analysis of the resulting estimates on I lu (t) I i
2 to the

reader and turn , i n s t ead , to consider a case where both u ~ 0 and
-o

8(t) Z 0.

Case IV � 0, 8 (t) ~ O , cx < 0 and 8 (0) > 0

In this case (3.3) is easily seen to imply that

- F’ 2 � - 2 F ( 2 E ( O )  + ~ ) - la IFF ’ (3.113)

+ 2F (2f~ ~(T)<U ,U
0
>dT — 8 (t)<u ,u0

>)

+ 14F 8 (O)Ilu 11
2

= - 2F (2E (O) - 28(0)1 l~~~
l i 2 + p ) - Ia 1FF ’

+ 2F ( 2f~ ~(T)<u ,u
0
>dT — 8(t)<u ,U

0
>)

~~~~~~~~~~~~~~~~~~~~~~~~ !~1!’~L_
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In order to proceed further we must bound from below the

third expression on the right-hand side of the differential

i nequa l i ty  (3 . 113
2

) ;  this is accomplished by the following

lemma :

Lemm a Suppose that  ~
( t )  is bounded on [O ,T) for each fixed

T, 0 < T < ~~~~. Then there exists a constant C > 0 such that

for all t ~ IO ,T)

2f~ ~(r)<u ,u >dT - 8(t)<u ,u >  � - c J lu 0l I (3.1114)

Proof We set p = sup h~~(t)l < ~~~~. Then
[O , T)

J~ ~
(T)<u (t) , u >dt j = I<i~ ~

( r ) u ( T ) d T , u > ~ (3.15)

� (f~ I~~(T ) j l l u ( T ) l l d T ) l l u 0Il

� 
~(J~~l lu(T ) I l d T ) I h % I  I

< p~ NT ll u I l

so

f~ ~
(T)<u ,u0>dT � - pw NT JI u 0j l ,  0 � t < T (3.116)

Also

I8 (t)<u ,u0> l ~ IB (t )i .l<u ,u0>1 (3.117)

< ~N l~~(t)l Il u  II
-o

~ wN f~ ~
(T )dT + 8(0)~ I h~~~l I

w N ( pT + B (0))lIu 0Il

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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so

— B (t)<u ,u0
> � — ~N(pT + 8(0)) I l u l l  , 0 < t < T (3.118)

Combining (3.11
2
), (3.116) , and (3.118) we obtain (3.114)

with

C = WN (3pT + 8(0)) > 0 (3.119)

We now return to (3.113 2); 
in view of the last lemma this

latter inequality implies that

FF” - F’ 2 � - 2F( I h u 1 l 1
2 + + p) - Ia IFF’ (3.120)

where ~: H~ + R
4 

is defined by

~(w) = 28 (0)1 Iw I l ( 2B~ oy 
- I W I I) - <w ,Lw> (3.121)

for any w E H4. If we set -r = 0 then (3.120) easily reduces to

F(t)F” (t) - [F’(t)] 2 
- 2F(t)(l 1u 1 1 1

2 
+ 

~~~~~~~~ 
+ ~~~ (3.122)

— lalF(t)

iith F(t) = I Iu(t) I ~
2 and ~~ = t~~N

2 sup I M(t )I 
L H  H

- [0,T) — 
+

, 
—

and we have the following simple result :

Theorem 111.6 Let u ~ N be any solution of (2.17) , (2.18)

where p~ � 0, 8(t) ~ 0, a ‘ 0, and 8(0) > 0. Assume that

11(0) satisfies (3.2a) , (3.2b) and that 8(t) is bounded for

L~~. 
_ _ _ _ _ _ _
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0 ~ t < T. Then if the initial data satisfy

II u 1 l l + 
~~~~~~~~ ~ 

- (3.123)

where ~ is defined by (3.121) , I Iu( -t )I I satisfies the estimates

(3.108) and (3.109). In particular, if = 0 and ~(u0
) � -

then I Iu (t) 11
2 

� I u01 1 2 for all t , 0 ~ t < T.

Remark We leave to the reader the consideration of the other

cases possible when u � 0 and 8(t) ~ 0, e.g.,a < 0 and

8(0) � 0; the stability and growth estimates which apply in

these situations may easily be derived by suitably modifying

the last lemma and making use of the basic differential in-

equalities derived for the previous cases.

4. Examples of Growth Estimates for Electric Displacement

Fields in Holohedral Isotropic Dielectrics.

In order to apply the results of the previous section

to solutions of the initial-boundary value problem (2.1),

(2.9), (2.10)(associated with the constitutive relations

(1.22a) , (1.22b)) we must first delineate the forms assumed

by the basic hypotheses (3.2a) , (3.2b). In other words , for

tne operator M (t),which is defined by (2.l’4b), we wish to

examine the implications of the condition that

- <
~~‘~~~

0
~
Y>H � K I l v l l~ (14.la)

with
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K � ~iT sup I IM~~I 1 L (H H ) ‘  ( ‘ 4 . lb)
[O ,T) + ‘ —

where the Hu bert spaces H , H4 are defined to be the completicns

of C (c~) with respect to the norms induced by the inner products

(2.11) and (2.12) , respectively , while H is the completion

of C~ (c2 ) with respect to the norm (2.13); ~1 is , of course , a

bounded region in rz3 with smooth boundary 3~] and w is the

embedding constant associated with the inclusion map i: H4 -“ H.

From (2.l’th ) and (2.11) we easily compute

= — f~~(M (0)v).v.dx (4.2)

= - b ‘P ( o ) f  6 .  .v .v .dx
0 ~2 ij i j - .

b
+ ~~ ~(0)f~.~ 6ik6j~ 3x .~~x 

v
1d~

0 j £

b a2v
= - h ‘Y(O) I I v h  l~ 

+ 2. 
~
(O)f

~
6i k6.L v1dx

fnr any v H4. Bu t if v H 4, then

2 2

I~~~~
6 ik 6 j Z  ~~~~~~~~~ 

v.dx = ~~~ V
k 

dx (14.3)

av avk k
- 

j 
o . — — — dx

c~ j .~~ ax. ax -

j £

2= — I I v I
+

where we have used integration by parts together with the fact

that V van i shes on ac~~2~~. ‘Thus

(7) This follows from the definition of H4 and a standard trace theorem.

L .  _ _ _ _  _ _ _ _ _ _ _ _ _  
.
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., b~
— <v ,~’(0)v> = — b ’f’(O)I l v i  I~ 

— — I
~~~~0)  I l v i  I~ 

( I 4 ~~~1I ~~

- b
0

(w 2 
I ~‘(0) I + -

~~
— 

~(O)) I l ” i l~

Therefore , (‘4 .la), (‘4.lb) will be satisfied if

- b0
(
~~
2
I’Y (0)I + i— ~(O)) � K (~~.5)

with K � t~T SU~~ I IM I I, ‘H H )~ 
For the sake of convenience

[O ,T) ~t L.~. ~~ —

we now set T(t) = ‘y(t). From (2.l’4b) again we have , for any

(3)
v € H ~

~~t~~ i = b0u~~(t)61~ v~ 
- 6ik6jL 

( 14 . 6 )

= l f~~
[M t~~~±

v
~~~~l 

(4.7)

2

= lb 0~ (t ) I i v i I ~ 
- 
~~~~

(t)f
~
o .
~~
v
k ~~~~~~~

dx I

= b
0I~~( t ) l I V I l ~~ 

+ J.~ ~(t) I l v l l ~~~l

� b (w 2
I~~
(t) I + ~ -l~~(t )I )Il ~~l I ~

It now follows that

Kv ,M
~
v > l 2 • 1

I IM t I 1 L (H ,H ) = sup ‘ — < b0
(w IT (t) I + ~— I~~

(t) I) (14.8)
+ — v~H4 I H H °

+

(3) ~~ ~issume that T exists and is bounded on [0,T). 



—
~~ 

j —

fc ’ r c - ~~ h t , 0 < t < T. Thus , (4.lb) will be satisfied if

K � ~Tb0
(w 2 

sup IT (t)l + sup l~~(t)I) (4.9)
[O,T) a0 [UT )

Combining (4.5) and (4.9) we find that a condition which

suffices for the simultaneous satisfaction of (‘4.la) and

(4.lb) is

— (w 2 lT(O) l + -
~~— c~ ( 0 ) )  � ~T (W~ sup ~(t)I + -

~~
— sup h~~(t)l) (4.10)

a0 [O ,T) a0 [O ,T)

Remark It is clear , from (4- .lO),that the inequality can be

satisfied only if ~(O) < 0 with I~~(O )l > a
0
W2 IT (0)I.

Recall now that ~ ( t )  is defined in terms of •(t) by

(l.l14a) , (l.l’4b) while ‘Y(t) is defined in terms of i~
(t )  by

~(t) ~~(l)
n
~
n(~~) (14.lla)

~~ ( t )  = ~~~
— ~i ( t )
0 (14.llb)

= f~ 
(t-T)~~~~~(T)dr , n � 2

L I t  

is worthwhile , at this point , to recall the following result

wh ich has been proven in [6]:

Lemma Let 4(t) c C’IO ,T) and assume that the series (l.l14a),

as well as the derived series , which is obtained by term by 

- --r-- -~ - -‘ - --



term differentiation , are uni form ly convergent on every interval

[O ,T— cl , 0 < c < T. If

sup l4 (t )l < a /T (‘4.12)
[O ,T)

the n

(i) sup 14 (t )l < F(T) (14.13a)
[O ,T)

sup

( i i)  sup I~~(t)i 
< F(T)1 1 + T [0 ,T) I (4.l3b)

[O,T) L sup 14 (t)l
[0 ,T)

where

F(T) = sup i~~(t)i/(a — T sup I4 (t) J ) (‘4.114)
[O,T) ° [0 ,T)

Remark Similar results hold for sup l’Y (t)l and sup l’~’(t)I,
[O ,T) [0,T)

of course , under analogous assumptions on ~p (t) and the series

(‘4.lla), e.g., we require that sup l~~(t)l 
< b0/T; the constant[0 ,T)

f(T) appearing in (4.13a) , (‘4.13b) would , in this case , be

replaced by

G(T) = sup hP (t)i/ (b — T sup hP (t)I) (14.15)
[0 ,T) ° [0,T)

In recalling the above lemma we have been motivated by

a desire to replace the sufficient condition represented by

(‘4.10) by a condition which involves only the basic memory

func t ions  4 ( t ) , 4 ’(t )  specif ied in the const i tut ive relations

(l.22a) , (l.22b). To this end we note that (l.l14a) , (l.lI4b)
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4

and (4.ila) , (‘4.llb) imply, respectively, that

~(t) + -a-- ~(t) = - 

~~ 
f~ ~

(t-T)~~(T)dT 
(L4.l6a)

~(t) + ~ ( t )  = - 

~~ f~ ~
(t-t)~~(t)dr (‘4.l6b)

The derivations of (4.16a), (4.16b) depend only on the assumed

uniform convergence of the series defining ‘~(t) and ‘V(t).

From (‘4.l6a) and (4.16b) we immediately obtain

= — ~~~
— ~(0), ‘~‘(0) = — ~~~ — ~p (0) (4.17)

and thus (14.10) can only be satisfied if 4(0) > 0. Directly

from (‘4.l6b) we now compute that

~(t) + ~~~~
_ 

~(t) = - j~
_ ili(O)’1’(t) — 

~~ f~~ t
(t—T)’

~~
T
~~

T (‘4.l8a)

‘Y(t) + 
~~~~~~ 

4,(t) = — 
~~~~

— 

~L,(0)4~(t) — 
i

!-. 

~(0)’p(t) (‘4.lBb)

- 

~~ I ~~
ct_ t ) T

~~~
T

Therefore ,

T(0) — ~~ L. (~p (0) + ~j(o)4’(O) + ,~(0)’v(0)) (4.19)

However , from (‘4.17) and (‘4.l8a),

= — -
~~~

— ~(0) - ~~ ~p (0)w (O) = - ~~ ~i(0) + i~ ~p~~(o) (14.20)
0 o o b

0

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~
‘ 

~TT~~ ~
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Combining (‘4.172
) and (4.20

7) with (4.19) we have , ti n al y,

T(0) = - 
~~ 

(~~~ ~~(O) - ~~~~ ~(O)~~(0) + ~(O)) (‘4.21)

The left-hand side of (4.10) now assumes the form

‘4 ~(O) — 

2 
I 4 ~~ (O) — ~~~

— ~p (0)~i(0) + 
~(o)l (4.22)

We now turn our attention to the right-hand side of (14.10).

Directly from (‘4.18b ) we obtain

= — 

~~~~

— (~p~
3
~ (t) + ~p ( O ) T ( t)  + ~(D)’~’(t) (4.23)

+ ip(0)p(t) + f~ ~ttt
(t_T)

~~
(T)dT )

Also , in view of (4.l8b) ,

sup l ’r (t )l < 
~—[ sup l.~ (t)l + l~~(0)l sup l~~(t)I (‘4.2’4)

[0,T) o [O,T) [O,T)

+ (J ii~(0)I + T sup J~~(t)I) sup Jq ’ (t )l]
[0 ,T) [0 ,T)

while , by (4.23),

sup IT (t )l < 
~— [ sup I~p~

3
~~(t ) l + ~(0) sup IT (t )I (‘4.25)

[O ,T) 0 [0 ,T) [0 ,T)

+ I~)(0) Sup I ’1’(t)l + (l ~P (0)l + T sup lu ’~
3
~~ t ) l )  sup I ’ P ( t ) l ]

10 ,T) 10 ,T) [0,T)

- L~~-~~ ~
—

~~~~
-
~
--  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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V

If we substitute for sup I (t)l in (‘4.25) from (4.24) t h en
[O ,T)

it is easily seen that we obtain an estimate of the form

sup l’f (t) l � A sup I’M (t) l + B sup I’~’(t)I + C ( ‘4 . 2 6 )
[0 ,T) [O,T) [0 ,T)

where , in fact , the constants A , B , C are given by

A = i—CT sup I~~~
3
~~(t)l + N (O)I + I

~
J (0)I (l ~~(o)l + T sup h~~~

2
~~(t)l)]o [0 ,T) [0 ,T)
:1

= B [ l~~(0)I 
+ ~

2(0)

C = ~-[ sup l~~~
3
~~(t )l + ~ -l~~(0)l sup I~~~

2
~~(t)l]o [0,T) o [O ,T)

As a result of the estimate (‘4.26), the right—hand side of the

ine~~~aiity (4 .10) is bounded above by the expression

w
3
T(A sup I’Y (t) I + B sup I’v (t) I + C) + sup l~~(t) I , (‘4.27)

[0 ,T) [0 ,T) 
a0 [0,T)

which , in view of the lemm a preceding (4.16a) , (4.l6b) , and

the subsequent remark , is itself bounded above by

sup 14 (t)l

~
3TLAG T + 

8G(T) (1 + T [0~~~~I~,(j),
) + C] (4.28)

[0,T)
. I ;

sup h q (t) l
_______ 

I 0,1) —

a sup i~ t I
I0 ,T)

_ _ _  - - ~~~~~~~~~~ -,~ ~ .A
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a b
0 0

provided sup l~~(t)I -
~~~
- and sup lip (t )l T

[0 ,T) i0,T)

From (4.28), the definitions of the constants A , B , C , (4.14),

and (‘4.15), it is clear that

V = V (w,T, a ,b , l~~~~~o l ,  sup l~~~~~(t)I, sup l~~~~~(t)l) (4.29)
° ° [0,T) [0 ,T)

with i = 0 ,1,2, j = 0,1, and k = 0,1,2 ,3. Thus , V is corn—

putable once C2 , T ‘ 0, and the constitutive relations (1.22a) ,

(l.22b) are specified. Furthermore (4.10), and hence (4.la),

(4.lb) , will be satisfied if

2-4 •(o) - 
w_ l  4 ~p 3 (o) - ~~~ — ~p (O)i~i(0) + ip (0)I � V (4.30)

a0 
b
0 b o

We offer below an example of the kind of considerations

which are involved in verifying that (4.30) - and hence the

condition represented by (~~.la) and (4.lb ) - is satisfied.

It must be noted that (‘4 .la) , (‘4.lb) are implied by (4.30) but

t h a t , conversely , (~4 .3Q) does not represent a necessary con-

dition which must be satisfied if (‘4.la), (‘i.lb) are to be

valid; in particular , we have used some very rough estimates

in passing from (‘4.10) to (4.30) and even the former inequality

stands as  a sufficient ( b u t not necessary ) condition as regards

the satisfactinn of (4- .1i ) and (‘4.lb). 

-— 
~~~~~~~~~~~~~~ -~~-~~~~~~:: ~~~~~~~~~~~~~
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Ex amp l e  in  the  const  i t u t  ~~V ( (‘(itlat i ons (1 .22a) , ( 1 .  2 2 b )  we

t ake

q (t) = e kt
, ~(t) = e t (‘4.31)

where K > 0 is arbitrary ; for the sake of convenience we set

T = 1. The region ~ (and hence the embedding constant

w) are left arbitrary dt this point as are the constants a ,

b .  From (4.31) we have

~~0) = sup I ~(t)I = 1 , sup 1q (t) I = K (‘4.32a)
[0,1) [0,1)

and

sup N,
(k)(t) I = 1, k 0,1 ,2 ,3 (14.32b)

[0,1)

1, ~(0) = — 1 (4.32c)

Therefore , the constants A , B , C in (4.26) are given by

A = ~— (l + ~4_) , B = C = ~~-(l + i.—) ( ‘4 . 3 3 )

Al so, if a0 > 1, b0 > 1, then from (‘4.14) and (4.15)

F(l) = , G(l) = b0— l ( ‘ 4 . 3 4 )

Combining (4.28) and (4.30) with (4.32a) — (4.32c) , (4.33),

and (‘4 .34) it follows that the operator M (t), which is defined

- - ~~~~~~~~~~~ ~~i
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by (2.1’4h), (1.l’4a) , (1.l4b) , (4.ila) , (4.llh) , and (14.31),

will satisfy the fundamental hypotheses (‘4.la) and (4.lb)

if a , b , and w are chosen so as to satisfy

1 w (l+K) ~ 
(b~+1) rb0+3~- 

a (a -1) > ~ 2 ~~ - i i  ( 1 4 . 3 5 )
a o o b 0

0 0

2
+ ¶~_ (J... + ~~ + 1)

b0 b2 b0
0

As b0 
must  be res t r ic ted to satisf y b > 1, the right-hand

side of (4.35), which we denote as a(b0,w), 
is clearly positive .

Thus , in order for (4.35) to be satisfied for an arbitrary

a > 1, w must satisf’,
0

U) = U) < — (4.36)

If we now choose ~ so that (4.36) is satisfied and define

- 

‘w (l+K)
o (a0, ~~~ 

= - 

a (a -1)a0 0 0

hen (4.35) becomes

o (a0, W
K

) > ~~~~~ ( 1 4 . 37)

But

lim a (b0, 
w) = 0 (for any w > 0) (4.38) 
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and thus  it is clear that for an arbitrary a0 > I and

= 
~K 

defined by (4.36 ), the inequality (4.35) will be

sati s f i ed  if b0 is chosen sufficiently large. We summarize

our resu l t s  in the fol lowing lemma :

Lemma Consider the holohedral isotropic dielectric material

which is defined by the constitutive relations

D(x ,t )  = a E (x ,t )  + f~ 
e t T )E x ,T d T  (4.39a)

H ( x ,t )  = b
0

B (x ,t )  + f~ 
e

t_T )B x ,T d T  (4.39b)

where K > 0 and a0 > 1 are arbitrary and (x ,t )  ~ S~ x [0,1)

wi th  ~2 c chosen so that the bedding constant U) , defined

by the inclusion map of H÷
(the  completion of C (~2) w.r.t.

(2.11) in to  H , satisfies (4.36). If D(x ,t) = 0

(x ,t) € aci x [0,1) ,  then there exists a constant r > 1 such

that the operator M (t), defined by (2.l’th ), satisfies the

basic hypotheses (4.la), (4.lb) whenever b0 
� 1’.

We now close this discussion of holohedral isotropic

material dielectrics by offering, below , an example of how

some of the theoremes of the last section (which were derived

for the abstract integrodifferential system (2.17) , (2.18))

may be used to obtain information about the growth behavior

of the electric displacement field in the material which is

defined by the constitutive relations (14.39a), (4.39b); in

these equations a0 
> 1 and K > 0 are taken to be arbitrary

- . _ _ _ _  ~~. .
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and S~ and b0 1 are assumed chosen so as to SdtiSI\’

the condi t ions  of the Lemma above , i.e., we take

b
0 = F inf{b > 1 I o(b , 

~~~ 
< (a

O ,WK
)) (4.40)

where 
~K ’ 0 , 0 are defined by the discussion preceding the

lemma. Comparing (2.17) with (2.15) , and using (4.17),

(4.31), and (4.40) we easily f ind  that

a = — ~‘(0) = ~~~ — i J ( O )  = (4.41)

As F > 1, 0 < a < 1. The simplest case we can consider in

this situation would seem to be Case III of the last section ;

thus , we shall assume that , in addition to the constitutive

relations (4.39a) , (4.39b) we have initial conditions specified

of the form

D (x ,0) = 
9~~~ ~~~~~~~ = D1

(x), x € ci (4.42)

as well as the boundary condition

D(x ,t) = 0, (x ,t) e aci x [0,1) (4.43)

The displacements our theorems apply to must lie in

the class N , i.e. , they should satisfy

~D . ( x ,t )  3D . ( x ,t )
sup - 

________  
d X )

½ 
< N ( 4 . 4 4 )

0 - t < l  X
5 

—



r -- -- — - -- —.—. .- 
~~~~~~~~

—-
~~~~~

-
~~~~~~~~~~~

-— -. - -~~~~~ —~~~~~~~~~~~~~-

—63—

for some N > 0. Directly from theorem 111.3 we then have

the fo l lowing result

Theorem IV .l Let D(x ,t ) ,  (x ,t) c ci x [0 ,1) be any solution

of (2.1) (sub)ect to (4.42) and (4.43)) wh ich satisfies (4.44)

for some N > 0, where we assume that 4(t), ‘~(t) are determined ,

respect ively , by (4.3l
l
)
~ 

(1.14a) , (l.14b) and (4.312
), (1 4 .l la ) ,

(4.llb); we also assume that a > 1, K > 0 are arbitrary while

ci is such that the corresponding embedding constant w satisfies

(4.36) and b = I’ is defined by (4.40). Then there exists

A = A (F) with A (F) > 0 and A (r) - -  +
~~~ as F -“ +~~ such that

f~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
� Be f(t )

, 0 � ~ < 1 (14.45)

where

B = sup ( N 2+l) 6 (t )  
(4.46à)

0�t<l

6~~(t) = ( e
tfl’ 

- e / l -e 1”
~
’ , 0 � t 1 (4.46b)

* 
S

f(t) = t — (1—6 ), 0 � t < 1 (‘4 .’46c)

Furthermore , if r < e ’
~’(e~~~

’ 
- 1), then f(t) is (strictly)

monotonically for {~~) F £n (F[e1”1’ — 1]).

Remark The function !t(F) specified in Theorem IV.l is obtained

in the following way : From (3.28c) , (3.81), and (3.82) we

see that  we need

-- -~~ -- ~~~~~~—- ~~~~~ ~~~~~~~~~~~~ - -
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2
A (I’) � 2F( I lD 1 l I + 

~~~~ 
sup I 111 (t) I ‘ L (H H )

) ( 14 . 4 7 )
— [0,1) +

, 
—

+ 8(1 lD 1 l ~ + N
2P
~ ,r

(1)) = r X~

where , by (3.70)

= + I I~~ I 1 L (H~~,H )  + 2 [o ,~ ) I l~~(t) I L (H~~,H )  (14.48)

However , from (2.l4a) , (2.l’4b) , (4.31) , (4.33), and the

definition of H and H4, it follows easily that there exist

positive constants m1, m2 such that

I I L l I ~ rn F , ~up I 11(t) I 1 L ( H ) � m r (4•49)
- H4, [ ) —

(the computations needed to establish the existence of m1,

m2 are similar the one which led to the estimate (14.8), e.g.,

from (‘4.8), with b0 = F , it follows easily that there exists

m > 0 such that sup I IN 1 1 L H ) � m F).
,~~ — t H+ ,

From (4.48) and (4.49) it follows that there exist con-

tants n
1 

> 0, n2 > 0, and n3 > 0 (independent of F) such that

-* 2 n 2
r A  � 2 (F+4)l lD 1 l I + n1r

2 + —
~~
. + n

3 
(14.50)

— 

r

for all 1’ > 0; the statement of the theorem now follows with

A (r) equal to the r ight-hand side of ( 4 . 5 0 ) .

Besides the upper bound represented by (‘4.45) we also

h ave , as a direct consequence of theorem 111.4 , the following

-.4
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results concerning lower bounds for solutions of (2.1),

subject to (‘4.42) and (4.43), where ~(t) and ‘Y(t) are again

determined by (4.31 1
) and (4.31 2

), respectively :

Theorem IV.2 Under the hypotheses which prevail in theorem IV.1

we have , for each real w > 0, and t ~ [0 ,1) ,

f ciD1 , t
~~~~

(x ,t )
~~~ 

+ y(t +t ) 2 (4 . 5 1 )

� yt~~~ exp [J(t;y,t
1
)]

where t is defined by
0 ,1

= ([( I ID 1 I i 2 i + ~) + sup I I~~(t) I 1 L (H4,H )  (4.52)

~~~~ 
P

~~,r
( l ) ]

~~~ 
+ F + l~~(e

_ l
~~ - 1),

with 
~~~~~~~ 

given by (4.48);also ,J (t;y,t01
) is defined by

J(t;y,t
01
) = (r

2A *(y;t o y
) - 

t
1~~

(l - et/r ) (4.53)

+ rA (y;t
0

)t

w ith

yt 2 
{1 + ~)I ID 1 l 1 2 + (1 + ~ (l  + t0,1

) )  (4.54)

0 ,‘y’

+ 2N 2 (W K 1O ,~~) 
I~~(t)I 1 L H ~~,H 

+ 
~~

- P
~ ,
,
~~
(l))]

Fu~ t-herrpore , J(t;i~ t0~~
) is non-negative and (strictly)

m on o t o n i c a l i l y i n c r e a s i n g  for  0 ~ t < 1.
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Remark s We could , of course , examine  the  consequences  of the

other theorems cont ained in §3 as regards the growth behavior

of e lec t r ic  d isp la cement f i e l d s  in a wide var ie ty  of holohedral

isotropic dielectric materials which conform to the basic

constitutive theory represented by (l.22a) and (l.22b). Clearly , j
examples which can be categorized as belonging to each of the

cases considered in the previous section may be easily constructed

by selecting suitable memory f unctions  4 ( t ) , ~~ t )  in ( l . 2 2 a)

and (l.22b ), respectively ; we leave the construction of such

examples to the interested reader. In future work we shall

return to consider the abstract system (2.17), (2.18) and will

examine other applications to a variety of non well-posed

initial boundary value problems . In particular , our work

may be easily generalized to cover the case where the abstract

equation has the form

— — Lu + f~ 
M (t—T)u (T)dT = 11(t) (4.55)

wi th  K c L 2 ( [0 ,T ) ;  L ( H 4 ,H ) )  e i ther  posi t ive de f in i t e  or

negative definite for all t, 0 ~ t T, for some T 0, and

H: [0 ,co) + H.1. sufficiently smooth . The abstract problem (‘4.55),

(2.18) can then be viewed as mode ling the evolution of the

displacement vector in an isothermal linear viscoelastic

material with nonzero past history and a time dependent (mono-

tonically increasing or decreasing) material density.
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