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Let T > O be an arbitrary real number and H, H_ real

Abstract

Hilbert spaces with H, ¢ H algebraically and topologically

and H_ dense in H. Let.H_be the dual of H, via the inner

product of H and denote by LS(H+,H-) the space of symmetric

bounded linear operators from H, into H_. We prove that the

evolution of the electric displacement field in a simple class
of holohedral isotropic dielectrics can be modeled by an

abstract initial-value problem of the form

o7
o
Q. ugy - ou. - Lu + ft M(t-t)ult)dr = B(t)u_, 0 =< t < T
S ~ ~t ~~ 0 -~ ~ ~0
O
} u(0) = v, u,(0) = uy (ugsuy € HY)
- -J
S =
P where L ¢ Lg(H,, H), M(t) ¢ LZ(L0,T); Lg(H,, H D), B(t) ¢ clcro,m)),
= £ and o is an arbitrary (non-zero) real number. By employing a
s S~
;9ﬂd§rive growth estimates for

logarithmic convexity argument
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solution of the above system which lie in uniformly bounded

classes of the form

N = {9 € CQ([O,T); H) { sup []ul]

H,

EQ,TY =

N}

for some N > 0; our results are derived under a variety of

assumptions concerning a, B(t), and the initial data (without

making any definiteness assumptions on the operators L or

y(t), O £ t < T) and are used to obtain growth estimates for

the electric displacement field D(x,t) in rigid dielectrics

which satisfy constitutive relations of the form

P(g,t)

H(x,t)

a EGx,t) + [§ ¢ (t-T)E(x,T)dr

b B(x,t) + fg ¥ (t-T)B(x,T)dT .

where E, H, B are the usual electromagnetic field variables,

(x,t) € @ x [0,T), @ < R®

boundary 3Q, a,

is a bounded region with smooth

and b0 are positive constants, and ¢, Y are

non-negative monotonically decreasing functions of t.
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1. Introduction

In recent work [1] - [u4] this author has derived stability
and growth estimates for specific classes of solutions to
initial-value problems associated with abstract integrodifferential
equations of the form

U, - Nu+ ffw K(t-t)ulr)dr = 9, 0 =<t < T, (1.0)

where T > 0 is an arbitrary real number; in this equation

e C1(r0,T); H,),and u__ e C°([0,T);H ),

i ~tt
where H _, H_ are Hilbert spaces which are defined as follows:

u e €2(10,T); H,) with u

Let H be any real Hilbert space with inner-product <,> and let
H, ¢ H (algebraically and topologically) with H_ dense in H;

denote the inner-product on H, by <,> Then H_ is the co-

3

pletion of H under the norm

| <v,w>|

BISEKRS = Bubc Sereyss= (1.2)
3 MEd

veH,

If we let L(H,,H_) denote the space of bounded linear operators

from H, into H_ then in (1.1) we only require that
(i) N e L(H,,H ) is symmetric and
(1) K(t), K () ¢ LP((==,»); L(H,,H_))

where Kt denotes the strong operator derivative of Kj; no
definiteness assumptions are placed on N and thus the initial-

value problem obtained by appending to (1.1) the initial data




E(O) = f, gt(O) =gy Eaf € H, (1.3a)

and the prescription of the past history, i.e.,
u(t) = U(t), - o« < 1 <0 (1.3b)

is, in general, non well-posed. If, however, we restrict our

attention to classes of bounded solutions to (1.1) - (1.3) of
the form
2 2
N = {v ¢ C°CLO0,T); HD| sup [1v(e)il, = N°}
- (0,T)

for some arbitrary real number N, then it is possible to
derive both stability and growth estimates for solutions

u ¢ N under the assumption that K(0) satisfies

- <v,K(0)v> > clivit?, Vv e n, (1.1a)
with
¥ = ¥T sup [IK . Ct)l] (1.4b)

In (1.4b) Y represents the embedding constant, i.e., as we

assume that H_ ¢ H topologically, Ilyll < Yllyll+ for some
Yy > 0 and all v € H,.

The technique used in [1] - [3] to derive the aforementoned
stability and growth estimates for solutions u ¢ N of the
abstract system (1.1), (1.3a), (1.3b) is based on a logarithmic

convexity argument first employed by Knops and Payne (51 for




the abstract wave equation obtained from (1.1) by setting

K(t) = 0; a different logarithmic convexity argument was
employed by this author in [4] to derive continuous data
dependence theorems for the system (1.1), (1.3a), (1.3b).

The results obtained in [2] - [4] are applied in those papers
to obtain growth, stability, and continuous data dependence
theorems for solutions to initial-value problems associated
with the equations of motion for linear isothermal viscoelastic
materials; the spaces H, H+, and H_, as well as the operators
N and K(t),are constructed and no definiteness assumptions are
made on the initial value of the relaxation tensor. 1In the
case of a one-dimensional homogeneous (isothermal) linear
viscoelastic body, it is shown in [3] that the conditions

(1.4a), (1.4b) are equivalent to the requirement that

g'(0) < -k with ¢k > yT sup ld(t)| £1:5]
(0,T)

where g(t) is the relaxation function of the material.

More recently we have turned our attention to the way
in which integrodifferential equations arise in the theory
of polarized non-conducting material dielectrics, i.e., in
[6] we have considered the following problem: Let E, ?, f,
and P dencte, respectively, the elecfric field vector, the
magnetic flux density, the polarization vector, and the electric
displacement in a non-conducting medium; the polarization

and electric displacement vectors are related via




D= e E# P, . = const. (1.6)
i O~ ~ O

Tf (x*,t), i = 1,2,3, denotes a Lorentz reference frame, with
the (x1) rectangular Cartesian coordinates and t the time

parameter, then Maxwell's equations have the local form

9B

5% R euplSES=SOL S div SB =10 (1.7a)
aD

curl H - 5% = 0, div D =0 (1.7b)

gF = 0, the magnetization

M = 0, and the density of free charge QF = 0; in (1.7b), H

~

whenever the density of free current

represents the magnetic intensity and is related to the

magnetic flux density via

H = u;I B (1.8)
where g, = c_2, c being the speed of light in a vacuum. A
determinate system of equations for the fields appearing in
Maxwell's equations is ogtained by specifying a set of
constitutive relations. For example, in a vacuum =0 and

the classical relations

D=¢egE, H= y 1B (1.9)
~ O~ ~ i ) ~

applv, while in a rigid, linear, stationary nonconducting

dielectric

D= coE, B =yl (1.10)




where ¢ and ¥ are constant second order tensors; the constitutive
equations (1.10) were given by Maxwell in 1873 [7]. 1In [6]
we considered the set of equations which define the dielectric

as being a Maxwell-Hopkinson material, i.e., (1.102) and

D(t) = eE(t) + ffm¢(t-r)§(T)dr et

where € > 0 and ¢(t) is a continuous monotonically decreasing
function for t > 0; following a suggestion of Maxwell, Hopkinson
[8] employed the constitutive equations (1.102), (1.31) in
connection with his studies on the residual charge of the

Leyden jar. It was demonstrated in [6] that (1.11), in con-
junction with the local Maxwell equations (1.7a), (1.7b),
implies that the following integrodifferential equations govern
the evolution of the electric field and the electric dis-
placement field, PespectiQely, in a non-conducting material

dielectric of Maxwell-Hopkinson type:

-1

(eE + ¢*§)tt = W TAE (1.12a)
and
etht = AP + ¢*AP (1.12b)
where for any vector field V
(6*V), (x,t) = [l (t-T)V, (x,1)dr (1.13a)
and
AV = grad (div V) = curl curl V (1.13b)

e ———————————————



The function ®(t) in (1.12b) is given in terms of the

specified memory function ¢(t) by

dct) = ) (-1 () (1.14a)
n=1

where the ¢"(t), n 2 1, are determined by the recursion

relations
¢l(t) = c'1¢(t) (1.14b)

") = [T ott-me" H(mrar, n 2 2

Together with (1.12a), (1.12b) we considered initial data of

the form
5(5,0) = Eo(x), gt(§,0) = gl(g) (1.15a)
9(5,0) = Po(x),. Pt(§,0) = Pl(f) (1.15b)

for x € 2 (a bounded region in R3 with smooth boundary 93Q)

and homogeneous boundary data of the form

ECx,t) = Dlg,t) =0, (x.t) ¢ 801 % (<=0} (1.16)

The functions E_,..., D; were taken to be continuous on .

By introducing suitable Hilbert spaces H,,H+, H_ and
operators N ¢ L(H+,H_) and g(t) € Lz((-m,w); L(H+,H_)) we were
able in [6] to treat the initial-boundary value problem for
D, i.e. (1.12b), (1.15b), (1.162), as a special case of the

abstract initial-value problem (1.1), (1.2) (in [6] we assumed




that P(T) S 0= w4 T 0). TFrom the stability and growth
estimates derived for the electric displacement field D,
corresponding estimates were then derived for the electric
field E by employing the relation

t

E(t) = s"lp(t) ¥ et IO

¢(t—T)P(T)dT (A7)

which is obtaining by inverting the Maxwell-Hopkinson relation
(3l 1 the usual technique of successive approximations.
nstitutive relations associated with the Maxwell-
on theory, i.e., (1.102) and (1.11), embody three basic
simplifying assumptions: they are linear, they effect an a
priori separation of electric and magnetic effects, and they
do not allow for magnetic memory effects. As early as 1912
Volterra (9] proposed extending the Maxwell-Hopkinscn theory
to treat the case where the dielectric is anisotropic, non-
linear, and magnetized; his constitutive relations were of
the form

itz
§'§(§,t) + ? (g(g, TR (1.18a)

- 00

P(g,t)

1

"

t
B(x,t) = ueH(x,t) + B (H(x,1) (1.18b)

and it can be shown that (1.18a) reduces to (1.11) if the
functional ? is linear and isotropic and the body satisfies
various restrictions which follow from considerations of
material symmetry. Of course, (1.18a), (1.18b) still effect

an a priori separation of electric and magnetic effects and,




as pointed out by Toupin and Rivlin [10], such a separation
is inadequate with respect to predicting such phenomena as
the Faraday effect in dielectrics. Thus, Toupin and Rivlin
postulate {10] constitutive equations of the form

n n
P(t) 1 z o E(v)(t) + Z (v)

e (t) (1.18a)
(o1 - v=0

+ ftw ?1(t,T)'§(T)dT + ffm ¢, (t,T) - B(t)dr

n
F W e T e 8 P
vz0 ~

iHe~—ms

HEE) =
i v

d

0 v

~

+ [T, v (e, - BT 4 [Ty, (t,T) - E(T)dr

(v)

where E (t) = dvE(t)/dtv and a d,, are constant tensors;

RS RSN
the kernels ¢l,..., w? are taken to be continuous tensor
functions of t and 1t which satisfy growth conditions of the

form

6 (t,T) < o/the 3P 5 5 (1.20)

Toupin and Rivlin [10] also assume that the dielectric does
not exhibit aging and as a consequence it follows that P(t)
and g(t) are periodic functions whenever g(t) and ?(t) are;
this latter result, when combined with the hypothesized growth
estimates on the kernel functions, e.g. (1.20), and early
results of Volterra on the theory of functionals [9], yields

the conclusion that ¢1,..., ¥, depend on t and t only through




the difference t-1 (the converse of this rcsult is also true).
Toupin and Rivlin [10) then prove that if the dielectric
exhibits holohedral isotropy, i.e., if it admits as its group
of material symmetry transformations the full orthogonal group,
then E(t) may be eliminated from (1.18b) and B(t) may be
eliminated from (1.1%a); for a holohedral isotropic dielectric
the constitutive equations (1.1%a), (1.19b) are, therefore,

reducible to the uncoupled set

D(t) eV ) + [T s(t-mIE(Dar (1.21a)

1"
i1~
Q

H(t) 8V (1) + [T u(t-0IB(rIar (1.21b)

1"
e
o7

where ¢ = ¢l’ Y = wl and where (due to the assumption of

31

to the identity tensor and thus appear as scalars in (1.21a),

holohederal isotropy) a b

8,3 bys and ?1 are all proportional

(4 S -0
In this paper we will examine the special case of (1.21a),

(1.21b) which corresponds to the assumptions

() a, =0,b =0, vz21
(H2) EtT)Y = 0, ?(T) ST0y o & R
! namely,
D(t) = a E(t) + [ ¢(t-1)E(T)dr (1.22a)
- t —
H(t) = b B(t) + [ w(t-1)B(1)dr (1.22b)

‘h___d-hJlllll!!!!!================""ﬁ=!!"E!=2E"""""'!====!!!!llllllllll.l.l.lll-l.‘
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This special case of a holohedral isotropic non-conducting

material dielectric still embodies a separation of electric

and magnetic effects in the constitutive theory but generalizes
the Maxwell-Hopkinson theory in that magnetic memory effects
are taken into account through the presence of the kernel
function Y(t). In the next section we will formulate an
initial-boundary value problem for the electric displacement
field P(t) in a holohedral isotropic dielectric; provicded

pica) # O, Q(t) will be shown to satisfy a (non-homogeneous)
damped integrodifferential equation. By introducing suitable
Hilbert spaces and operators,the initial-boundary value

problem for D(t) is easily demonstrated to be equivalent to

an initial value problem for an abstract damped integro-
differential equation and growth estimates for specific

classes of solutions to this abstract problem are then obtained

by employing a suitable lcgarithmic convexity argument. When

p(O) # 9 the growth estimates obtained depend on hypotheses
concerning the relative magnitudes of certain measures of the
size of the initial data (e.g., the initial energy) and the
strong operator norm of the kernel of the relevant integral

operator; in each case, however, the basic hypothesis employed is a

coerciveness assumption(on the initial value of the kernel of

the integral operator) of the type represented by (1l.4a), (1l.u4b).

2. An Initial-Boundary Value Problem for Holohedral Isotropic

Dielectrics

Let (xl,t) be a fixed lLorentz reference frame; the local
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forms of Maxwell's equations are then given by (1.7a), (1.7b).
Let Q < R3 be a bounded region with boundary 9Q and assume
that 390 is sufficiently smooth so that the divergence theorem
may be applied. Finally, assume that Q@ is filled with a
holohedral isotropic non-conducting dielectric material which
is non-deformable and which satisfies hypotheses H, and H2

of §1; in 2, therefore, the electromagnetic field satisfies
constitutive relations of the form (1.22a), (1.22b) where we
assume that a, > Ok bo > 0 and ¢(t), Y(t) are monotonically

de _.reasing functions which are (at least) twice continuously

differentiable on [0,») with w(3)(t) a bounded integrable
function on [O,»). The basic result of this section is the
following:

Theorem II.1 The evolution of the electric displacement

field D(x,t) in any holohedral isotropic non-conducting
material dielectric (which conforms to the constitutive
hypotheses (1.22a), (1.22b)) is governed by the system of

cdamped integrodifferential equations

2 2
D. D.
d ] 9 Dk

+ y(0) sl bo \.{J(O)[COGijGjL 'ax—a;{z
J

3t - Di] (2.1)

82Dk(t)
sl IOk —_—
ik~ 352 axjaxl

Ydrt

+ b [SC ¥(t=TID, (1) - o (t-1)8

= boy(t)D;(0), i = 1,2,2

where c_ = 1/aow(0) and ¢o(t) = ¢(t)/ao.




-1

Remark In (2.1) ¢(t) is given in terms of the memory
function ¢(t) by (1.1lk%a) and (1.14b) - with e replaced by
ag - and Y¥(t) is defined in terms of ¥(t) in an analogous
manner, i.e., by (1l.1l%a) and (1.14b) with ¢(t) replaced by

Y(t) and € replaced by by

Procof By using successive approximations we may invert the

constitutive relations (1.22a) and (1.22b) to obtain, respectively,

E(t) = 2= D(t) + 2 [f o(t-t)DCr)ar (2.2a)
O (0]
dl L ¢t

B(t) = ¢ H(t) + b fo ¥(t-t)H(T)dr (2.2b)

- 0

with ¢(t) and ¥Y¥(t) defined in terms of ¢(t) and Y(t), re-
spectively, as indicated in the above remark. Now,
from (2.2a) and the second Maxwell relation in (1.7b) we have

div E(t) = 0 and, therefore,

ég(t) = - curl curl g(t) (2.3)

From (2.2b)., however, and the first Maxwell relation in (1l.7a)

curl E(t) = - B, = - Eo= e

il
B, S; + 5 W(O)g(t) (2.4)

O

t
- IO Y, (t-1)H(T)dT
Therefore,

- curl curl E(t) = g: (curl H), + g— ¥(0)(curl H(t)) (2.5)
o e} .

& fgwt(t-r)curl H(t)ar




-
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1
G ‘J’(O)IBt
o

+ [5 ¥ (t-T)D_(T)dr

where the second relation in (2.5) follows from the first
Maxwell equation in (1.7b). Combining (2.52) with (2.3) and

then employing (2.2a) we obtain

t
Doy * ¥OID, + B fo ¥, (t-1)D_(T1)dr (2.6)

o4
o

t

= ¥
=g e IO

O o

¢(t-t)AP(r)dr

However,

[§ ¥ (t-1)D_(T)dr

t
d - IO Y (t-1)D_(1)dt (2.7}

t
= B CE=tdlCE

o+

jg WTT(t—T)P(T)dT

¥(0)D(t) - ¥(t)D(O)

+

IE WTT(t-T)P(T)dT

Substituting (2.73) into (2.6) and using the fact that




T

WTT(t—T) = th(t—w) we easily obtain

Diy ¥ W(O)Pt + bow(O)(} = e é)D(t) (2.8)

~

-+

t
by [o¥y  (t-0T - o (t-1)4)D(1)dr

"

b, Y(t)D(0), on Q x [0,»),

where c_ = 1/ao y(0) and ¢O(t) = ¢(t)/ao; this establishes

the required result.

Remark We are assuming that ¥(0) # 0 so that cy is defined;
if ¥(0) = O then the third expression on the left hand side
of equation (2.1) reduces to

32D

o k
— 68.. 8 , /i
a -l S ijaxz

o8

(@]

In conjunction with the integrodifferential equation (2.8)

we consider initial and boundary data of the fcrm

D(x, 0) = D_(x), D (x,0) = D(x), x ¢ & (2.9)
and

D(x,t) = 0, (x,t) e 3Q X [0,%) (2.10)
where ?0, Pl are continuous on {. At this point it is con-

venient to recast the initial-boundary value problem (2.8),




w5

(2.9), (2.10) as an initial value problem for an
integrodifferential equation in Hilbert space. As in (6] we
let CZ(Q) denote the set of three dimensional vector fields
with compact support in £ whose components are in cT(R). We
define the Hilbert space H to be the completion of C:(Q) under

the norm induced by the inner product

<VL,W IQ viwid§ £2.131)

while the Hilbert space F, is taken to be the completion of
C:(Q) under the norm induced by the inner product

5 aviavi
T S | dx (2.12)

H, -~ 9 8%.9%. -~
+ gy
Finally, H_ is the Hilbert space obtained by completing
CZ(Q) under the norm
;B8 S
Hvily = sup [lfguiw,dxl/(Jo o== 572)7dx)] (2.13)
- yeH+ ] J

It may be established that H, < H (both topologically and
algebraically) and that H_ is dense in Hj the spaces H, How B
which are defined above are commonly denoted by L2(Q), Hg(Q), and
-1 .
H “(Q), respectively. We denote by w the embedding constant for
the inclusion map i: H, =+ H.

+

Operators L ¢ L(H,, H_ ) and M(t) e L2((—m,w); L(H, ,H_))

are now defined as follows:




e
~ N BQVk
= e S T . Iz
(EY)]_ = bo\P(O)[Coalksjl’_ ijaxf. 61]\’]] Y € H+ (2. 1ka)
s i 32vy velH,
(}j(t)y)l = bo[‘i’(‘t)ﬁijvj - Qo(t)éikdjf W] t e (-w,2) (2.14b)

It follows directly from the definitions (2.11) - (2.13), (2.1ka),
(2.14b) and the smoothness assumptions on the memory functions

d(t), Yp(t) that

(1) Loe Lg(H,, H ), M(t) ¢ Lg(H,, H )\ t ¢ (-,m)

o s > 2
(ii) yt(-) e L7((~-=,=); L(H,, H ))

where LS(H+’ H ) denotes the space of all symmetric bounded
linear operators from H, into H_ and @t is the strong operator
derivative of 6(-). Using the definitions of H, H , H_ and
the operators @, @(t) given above we may rewrite the system

(2.1), (2.9), (2.10) in the form

g - X t s o .
D,y * ¥(0)D, - LD + [o M(t-t)D(r)dr = b ¥(£)D (2.15)
D(0) = D_, D ,(0) = D, (2.16)

where Dy» D, ¢ H, and D ¢ €7((0,=); H,) with D, ¢ C'([0,®); H,)

-~

and Dtt € C([0,»); H_). Actually, we shall be interested in

solutions of (2.15), (2.16) on iinite time intervals of the

form [0,T) where T, 0 < T < », is an arbitrary real number;
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this suggests that we examine the following abstruact initial
value problem: Let H, H+ be Hilbert spaces with inner products

<,> and <,>+’resp9"ive1y,and assume that H_ < H (algebraically

and topologically: .i:th H, dense in H: define H_ as in (1.2).

We consider solutions u e C2(fO,T); H+) of the system

G
u - ou - Lu + [0 M(t-1)ult)dr (2.17)
= B(t)go, QR <t <T
u(0) = uo Bt(O) = Uy (go, u, e H)) (2.18)

where @ # 0 is an arbitrary real constant, B(t) is any real-

valued function such that é(t) exists a.e. on [0,T) and

(1%} L b lH,, B3
o s 2
(ii') MC+), M () € LCL0,T); Lg(H,, H_))

We assume that u, e Cl([O;T); H+) and U, € C(Lo,T); H).

In §3 we will derive some growth estimates for solutions

u(t) of the system (2.17), (2.18), which lie in a certain

urniifcrmly bounded subset of CQ(!O,T); H+); our estimates will

be obtained under various combinations of the following

[) 0 = 0 =0y 0 8§ %t €T
hypothesecs: « y U ” and g(t)
1< 0 z 0 £ Oy on [l

In §4 we will apply our results to the system consisting of

O e A Do I 8 e 5 NP

v




A8

(2.1), (2.9), and (2.10); at no point in this work do we make

any definiteness assumptions on the operators L or M(t), t e [0,T).

3. Some Growth Estimates for a Damped Integrodifferential Fquation

We begin with some preliminary definitions. Let N > O

be an arbitrary positive real number and let

N = {u e C2([O,T); H+)] sup [lull, < N}
T [(0,T)

Let K(t) = %Ilgtll2 denote the kinetic energy associated with

solutions u of the system (2.17), (2.18) and P(t) = -%<u,Nu>

11

the potential energy; then E(t) K(E) + PLt) is the total
energy. Finally, let Yy and t, be arbitrary non-negative real

numbers and define

i

r(t;y,to) |Ig(t)||2 + Y(t+to)2, g = ¢ < 7T (3.1)

The various growth estimates we derive in this section

all follow frcm the following basic

Lemma Let u ¢ N be any solution of (2.17), (2.18) and suppose

that M(0) satisfies

-<v, M(O)v> > KI]VHE« Vy e H, (3.2a)
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with
K > YT[ng)llytllL(H+,H_) (3.2b)
Then there exists p > O such that for all t, 0 s t < T
FF" - F'2 2 -2F(2E(0) + u) + aFF' (3.3)

- 2aF(y(t+t ) + 4fT K(p)an
- 0
+ 2F(2[ B(x)<u,u>dt - B(t)<u,u_>)

2
+ NFB(O)IIyOII

Proof From the definition of F(t;y,to), i.e. (3.1), we easily

compute

P‘(t;Y,to) 2<9’Pt> + y(t+to) (3.4)

and

~

2||gtll‘ + 2a<u,u,> (3.5)

~

F"(t;y,to)
* 2<u, LU ~ 2<u, fg M(t-t)u(T)dr

~~

+ 28(t)<3,go> * 2y,

where we have made use of (2.17) in (3.5). Using the definitions

of K(t), E(t),we may rewrite (3.5) in the form

F"(t;y,to) 2a<9,9t> + 28(t)<g,go> (3.6)

- 2<u, [E M(t-t)u(t)dr

+

L(2K(t) + v) = 2(2E(O) + y) - u(E(t) - ECO))
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However, for any 1T, O < 1 < t « T

Ef(T) (3.7)

<u._u - > = <u JLu>
ST2STT =i

~ -~

2
allu_|1° + B(t)<u_,u_>
T < (o]

- U4 fT M(t~0)u(o)do>

where (3.72) follows by taking the inner product (in H) of

(2.17) with u_ . Therefore,

"

E'(T) 20K(t) + B(T)<ET’UO> (3.8)

- = <um), [} M(t-0)u(o)do>

+ <u(r), [7 M_(t-0)ulo)do>

+ <B(T), y(o)g(r)>

Integrating this last result from zero to t and substituting

for E(t) - E(O) in (3.6) we obtain

F"(t;y,to) 2a<g,gt> + 25(t)<§’90> (3.9)

+ 2<u, [{ M(t-T)ulr)drs
+ B(2K(t) + y) - 2(2EC0) + y)

- fg K(t)dr - H]E B(T)<ET, u >dr

” ujg <9(r), IE @T(T—a)g(o)do>dr

- bfy <ult), M(O)ulr)>dr

SS—



SR
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Therefore,

2

FF" = F'2 = 4F(2K(t) + Y) = F'° ~ 2F(2E(0) + ¥) (3.10)

t
* 2aF(<u,u > - 4fo K(1)dT)
t
+ 2F(B(t)<9,90> - 2[0 e(r)<9T,go>d1)
t
A 2F<9,f0 M(t-t)ult)dr>

+ uFfE <u(1), fg M (t-0)u(o)do>dt
- 4F[ <u(t), M(O)ulr)>dr

However, from (3.1), (3.4), the definition of K(t), and the

Schwarz inequality it follows that

1
G(t3Y,t ) = WFCt3y,t )(2K(t) + ¥) - F 2(t;y,to) 20 (8.a1)

and, therefore, (3.10) yields the inequality

FE"* - pt

v

+ aF(Eiiuni? - 8fF koran

+ 2F(2fg é(r)<9,go>dr - B(t)<9’80>)

2
+ 4FB(O) | lu ||

+ 2F <u, IE M(t-t)ult)dr>

~

7 "FIE <E(T)a f; MT(T-O)E(c)do>dr

-~

- WFf§ <ult), M(0)u(r)>dr

- 2F(2E(O0) + v) (3.12)
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If we make note of the fact that

= F'(t;Y,to) - 2y(t+to>

then we can rewrite (3.12) in the form

FF* - F'° 2 - 2F(2E(D) + ¥) + ofF"

- 20F(y(t+t ) + ufg K(t)dr)

(3.13)

+ 2P (2[5 Blr)<u,u_>dt - B(t)<u,u >) + 4FR(O)Ilu_I|

* 2F<u, fg M(t-t)u(r)dr>

- urfg <B(T), fg @T(T—o)g(c)do>dr

- 4F jg<9(1), M(Odu(t)>dr

In order to complete the proof of the Lemma we now use the

hypotheses (3.2a), (3.2b) and the fact that u ¢ N to bound,

from below, the sum of the\last three terms in

of all

t
I<u, fc y(t-r)g(r)dr>|

IA

uCE 51 IMCe=0ula) | ldr

IA

IA

wT( sup ||u||+)2 sup | IM(t) ]|

FOLTY - © [0,T)

WN2T sup | IMCt) 1 |
[C,T) i

IA

L(H, ,H)

(3.13),

L(H,,H_)

First

wllu(e) I, IE(II@(t—r)l{L(H+’H_))Iig(r)lI+d1

Srer 4t Sege conp 0 jovsne




-23-

ancé thus, as F(t;Y,to) b (01 S OB < R

e
2F<u, [, M(t-Tu(r)dr> (3.14b)

2
> - 2wN°T sup |IM(t) I FCtsy.t )
[OaT) i L(H+’H_) .

Also,

- NFIS<B(T), M(0)u(t)>dt (3.15)
> NKFIS"B(T)IIE dt

4T sup |IM

t 2
Il Bf | laley{l, dT s
[O,T) "'t L(H+’H_) 0 o *

by virtue of (3.2a) and (3.2b). Finally,

J§ <u(x), f§ M (r-0)u(o)do>dr (3.16a)

IA

IEI<B(1), f; M, (1-0)u(o)do>|dT

IA

t 1
jollg(r)ll(jo(llyT(r-o)||L(H+,H_))||g(o>l|+do)dr

A

€ T
w sup |IM_ 1[I [olluCo) L, (f 1 1uo) ||, doddr
ROV T o TR e

A

e 2
m[gug)llytllL(H+’H-)(IolIg(T)II+dT)
b

A

t 2
oT sup |IM, || JolluCt) 115 ar
(o,T) -t L(H ,H_)'0" '~ +

from which we easily deduce that
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2 uy18<5(1), [§ Y (t-0)ulo)do>ar (3. 161)

> - LT sup |IM IIE(T)IIE dt

it
W B
0.0y ~t LGHH)DM o

Combining (3.13) with the estimates (3.1ib), (3.152) and
(3.16b) we obtain the reguired result, i.e., the estimate

(3.3) with

b=y + WN2T sup |IMCE) ] (3.17)

T L(H, ,H_)

Q-E.D.

With the preceding Lemma as a starting point we now
begin our study of the growth behavior of solgﬁions e N T 70)
(2.18) which lie in the class N; in each of the cases examined
below we assume that M(0) satisfies (3.2a) for some k > 0 which
satisfies (3.2b)

Case I: uo = 0 and a < 0 3

~

In this case E(0) = 15||u1||2 and the second expression
on the right-hand side of (3.3), being non-negative, may be
dropped. Therefore,
”n |2 2 1
EEY = F 2 = 20 Fl it = g EE (3.18)

for all t, 0 < t < T, where u is given by (3.17). However,

for v, tO arbitrary nonnegative real numbers,
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el € AT+ ay (et D 2 AFCE575t) (3.19)

for any A 2 0. If, in particular, we choose

2

201 Tug 115+ W)

(3.20)

"

A= A(yst) 2
Y (o}

then for all t, O < t < T, and all nonnegative real numbers

¥s

2
2(||31|| + u) < A(Y;tO)F(t;y,to) (3.21)

and (3.18) may be replaced by the estimate
" '2 . 2 '
EEYSENE > - A(y,to)F - |lalFF (3.22)

The differential inequality (3.22) now forms the basis for

the following growth estimate:

Theorem III.1 Let u € N be any solution of (2.17), (2.18)

with W = 0 and a < 0. Assume that M(0) satisfies (3.2a),
(3.2b) and that T > 1/])a]. Then there exist real constants
A >0 and A > O and a real-valued function gD 2 0y O € £ < Tg

such that

T%Tg(t)
Ae 3

Hull? < 0<t«<T (3.23)

Furthermore,




-26-

(i) g(0) = 0, 1lim_ g(t) = 0
ET

increasing] for

(ii) g(t) is (strictly) monotonically {decreasing

ey b Tla]l
et o [;*W]
-e

Proof From (3.22) and Jensen's inequality we obtain the

estimate,

-

A A
et Tol © ) ——Tt 1-6
F(t;y,to) < elu| [F(tl;y,to)e|a 1] [F(tz;y,to)e‘a 2]

(valid for O < ty < t e t2 < T) where
s(t) = (e lelt _ mlaltyy, o~lalty _ ~lalty,

The interval [ty-t,] ¢ [0,T) is any closed interval such that

F(t;y,to) > 0, t1 < t < t2. However, it is a simple con-

sequence of (3.24) and the definition of F(t;y,to) that

Fltiy,t ) 0 on [0,T) if F(E;Y,to) = § for any t « (0,15

Thus, without loss of generality, we may assume that

F(t;y,to) 5 0y O < £ < T Taking tl = 0, t2 = T in (@3.14)
we obtain
l_il LA _|3|T 1-6
F(t;Y,to) < e Cyty] [F(T;Y,to)e ]

where

By & (e NE L gt Wity o g ISRy

(3.24)

(3.25)
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We now choose Y = l/tg and then take the limit in (3.26) as |

tO -+ +oo, Clearly, as |

Flts 1/t2, ) = [lu) 112 + (& + 1)?
o o = 'to i
Yim - BCESIAES ) =lpuce) 1% ¥ 1 (3.28a)
t >+ o o =
o
for all t e [0,T). Also
. 2 o . 2 i 2
1im  FCT:3/t,t ) = Tam €] laCTyi]s * (f_ + 1)7)) (3.28b)
t >+t o o t >+ i lo) f
o o '
|
< w2N2 + 1 |
as u € N. Finally
. 2 = " 2 2 - ;
1im ACL/E :t ) =  Iam  2C1 Il + L/E & ) (3.28c)
0" ©O =l o
t >+ t ++w |
o o |
= 201 luy 1™ 4 n) 2 X

where u = wNZT sup IIM(t)IIL(H H) Thus, withy = llt2 and
[0,T) ~ +77- -
Ty = in (3.26), we obtain the estimate

X

— g(t)
Hute) 117 < ae'®! . DT e, (3.29)
where
. 2.2 1-8(t)
i [ng)(“ e (3.30)
and
g(t) = T(1-3(t)) - t (3.31)
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From the definition of &(t) it is clear that g(0) = 0 and
lim_g(t) = 0. Also
T
- _|a|e‘|0-|t
Gltey = 22 g, 0 =4 W, (3.32)
1-¢~1@IT
=Ye)
ghlt) = ~T8'(t) - 1L = TI3"Ct)| - 2 (3.33)
Thus
<0 i <1/T
g'(t) = 0 if and only if [&8'(t) | =1/T (3.34)
> 0 >1/T
However,
1§teey) = falo %15 g e~ 1o ITy
SO
1B CEd] < 14T <= faleIOIT o %(1-e"“'T) (3.35)
From (3.35) it follows directly that
181 (£)] < 1/T <=> t > == gn|—I2IT (3.36)
la| 1 -la|T
-e
provided
T > lee iR (3.37) |

(and this last condition is certainly satisfied if T > 1/]al).

This completes the proof of the theorem.
Q.E.D

Remark Let M > 0O be chosen so that

-\
Sl
GoNE 4 1 < M

- _— . |

(3.38)
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If we again set y = l/tg in (3.26) and take the limit as

to +> +o then we obtain the estimate
Pluedil® < w0 . O <t <T (3.39)

which shows that Ilgll2 is bounded above by an exponentially
decreasing function of t for all t €[0,T).

In contrast to the result contained in the statement of
Theorem III.1l,and the above remark, we have the following
theorem concerning lower bounds for solutions u e N of (2.17),

(2.18):

Theorem 1I11.2 Let u ¢ N be any solution of (2.17), (2.18)

with uy = 0 and a < 0 and assume that M(0) satisfies (3.2a),

(3.2b). If |a] < 1 then there exists T > 0 such that llull2

~

is bounded below by a monotonically increasing exponential

function of t, 0 = t < T,

Proof We begin by integrating the differential inequality
(3.22) according to the "tangent property" of convex functions-
assuming that F(t;y,to) >0, O <t < T, where T > 0 is an
arbitrary real number by the "tangent property" for convex
functions we refer to the fact that the graph of a convex

1)

function( on [0,T) lies above the tangent line to the curve

at any point t € T0,T). Thus, we obtain directly from (3.22)

the estimate

(1) The inequality (3.22) and the assumpt%on that Fltyystgy) > 0

-A/a

on [0,T) imq%y that £n(F(o;Y,to)e ) is a convex function
o

of 6 = e~ on [0,1).

|
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|al
laIF(O;Y,tO)

A
FrB5y.E ) # ——FPl05yst,) _
F(t;y,to)z F(O;Y;to)exp[{ o ©_t(1-e lO‘It)

(3.40)
A
Y t]
(0 - ot 2 : 5

However, F(O,Y,to) = YL and F'(O,y,to) = 2yto. Therefore,
if we set y = l/ti in (3.40) we obtain

IIu(t)II2 + [t/tO + 1]2 > exp[x(t;to)], Q< i< T (3.41)
where

2
ACL/ES st )

. =_1 /2. o’ o -lalty _ 2 .
x(t,to>-|a| [(to + 7 )(1l-e ) - AL/t st )t] (3.42)
and

2 2 il ALY
AQ1At:t ) = 2€1u. |} + = =+ @' N°T sup ||M]l ) (3.43)
o’ o =1 tg [0,T) ~ L(H+,H_)

We note, in passing, that x(O;to) = 0. TFor the sake of con-

venience we now set

. g
e(to) = - +

Then

[ 3 - -lalt
X (t,to) = e(to)e

From (3.u44) it follows immediately that x'(t;to) >0

1 c(to) 2
for U = % € T4 AR fme—— provided e(to) > AC1l/e_ st Js
3 ML/t 5t ) e

We now take the limit in (3.41) as L +o and obtain

2. '
- A(l/to,to) (3.44)

DIl G



o P
PraCed 112 % 1.5 expl Lim wftsk )], 0 5% < T (3.45)
= t o+ ©
(@]
But
lim X(t3t ) = T%T [l els Y1 HITy (3.u46)

t >+ t +to
(o) (o}

1im AC2/t23t )]
t >+t o A2
O

A

|a

-lalt

(1-e ) - At = x(t)

I 2

where X is given by (3.28c). Also

-lalt
. d - =,
Tim yhCEst ) = =— YGtY = X( - 1) (3.47)
t_>te Yo dt [al
and, therefore,
X'(t) >0, 05t < ,i] Zn(T%T) (3.u8)

if lal < 1. The statement of the theorem now follows with

e 1 .
T = Tai tn(T;T), S O

e Y s (3.49)
la | la|

IIu(t)Il2 + 1 2 exp(x(t)), 0 s t <
where y(t), as determined by (3.US2), is nonnegative and

monotonically increasing on 70, T%T ln(T%T))'

Qivilsisis

Remark In deducing the differential inequality (3.18) we took

advantage of the hypothesis that a < 0 to drop the expression

i,




~ 80

H(t3y3t,) = - 20F(y(t+t ) + 4[5 K(T)dr)

from (3.3); if we retain this expression in (3.3) then the

as . = 0,
(o) ~

~

u(t) = fg u_foddt, 0 =% < 0

We have, therefore, the estimates

a1 s (fgliu (o11dn?
< tfgllgT(T)llsz
< TfEIIBT(T)Ilsz
But
2 2
Ilg(t)ll = F(t;Y,to) - y(t+to)

h 2
> F(t;y,to) - y(T+to) s

so for any t € [0,T)
t 2 1 2
[ollu ¢ 11%dt > Flul) ]

i 2
>.= Flinat ) « % (T+t )

the lower bound

‘l-._.‘Inlllllilllll-l!!!!-'"L E——

(3.50)

upper bound obtained in theorem III.1 may be sharpened some-

what. In order to show this let us note, first of all that,

(3.51)

(3.52)

(3.53)

(3.54)

Therefore, from (3.50) and the assumption that a < O we obtain
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% ? )
Htsy,t ) = 2lalFly(t+t ) + 2f 1lu (1) 117dT) (3.55)

bla| .2 PHAIY s 52
> L FY - or (2 (et )° - alyt)

From (3.3) (with u, = 0, a < 0), (3.50), and (3.55) we now

obtain the differential inequality

& 2
S 2F(Ilu1\|2 ® W) % EL%LE— - lalFF', (3.56)
where
A N 2
u = y[l1 - felie gl%L (T+to) 1 (3.57)
g
M .
+ wN°T sup |]~(t7||L(H+,H_) (3.57)

ORI

By virtue of the same reasoning which led to (3.22) we have
the following result: 1If

2 A

2C Jug I # u)

then F(t;y,to) satisfies, for all t ¢ [0,T),
FE" - P17 s - Geyst,) - Hebr? o g rr

and, as a consequence,we obtain the estimate

=X P A ¥ 1o
F(t;y,to)s ela'I e % [F(tl;y,to)ela' - e T ]G(t)
Rk T
x [F(t2;y,to)e'a| € . ]1-6(t),




T

where 8(t) is given by (3.25) and [tl,t,z1 c [0,T) is any
closed interval such that F(t;y;to) >0, t; < t s t,. With

the assumption that F(t;Y;to) > 0 on [0,T) we may set tl =d el

t, = T in (3.60) and obtain
ST S ) it
F(t;Y,to) < elal eq‘[ytg]G[F(T;Y,to)ela' ]1_6: (3.61)

where 8(t) is given by (3.27). We note, in passing, that we

-4(1-8)

have dropped, from (3.61), the factor e whose supreémum

2

1/tO and take the 1limit (in

1"

on [0,T) is 1. We again set ¥y
(3.61)) as £y * e Clearly, (3.28a) and (3.28b) still apply.

Also, from (3.58) and (3.57)

T ACLfE2 e ) = K 4 blal ks (3.62)
t >+ o 04 &
o
where A is defined by (3.28c). Thus, (3.61) yields
2 u(1—8)\l§| B(t) o<t < (3.63)
Ilg(t)ll < Ae e 2 N ;

where g(t) is again given by (3.31) while A is defined by
(3.30). Our results can be summarized in the following

corollary to theorem IIT.1:

Corollary III.1 Let u ¢ N be any solution of (2.17), (2.18)

with U, © 0 and a < 0. Assume that M(0) satisfies (3.2a) and

(3.2b) and that T > T%T .  Then llu(t)ll2 satisfies the

re——




e

TSR e ke

estimate (3.63) on [0,T) where A is given by (3.30), §(t)
by (3.27), and g(t) = T(1-8(t)) - t satisfies (i) and (ii)

of Theorem II.1.

Remark In contrast to the improved upper bound obtained
above, retention of the expression (3.50) in (3.3) does not

lead to an improvement over the lower bound obtained in (3.49). ?

This is easily seen as follows: If we retain the expression

(3.50) in (3.3) we are led to consider the differential in-

equality (3.59) in lieu of (3.22). By the "tangent property"
l for convex functions we again obtain an estimate of the form

(3.41) with x(t;to) replaced by

A1/e2 st )
O (o)

4 3 -
|O,| -T)(le ) (3.64)

. = 4 _2__ +
x(t,to) = TET(tO

2 2, o Bl
~( A(l/to,to) —ﬁr—)t],

where A is given by (3.57)'and (3.58). In view of (3.62),

however, it is clear that

2
2

(hee 1A%y L R

lim i(t;to)
to-++oo Ial

= x(t)

= 1lim x(ts3t )
o)
to-»+uo

and, therefore, precisely the same lower bound, i.e. (3.u49),

ie obtained as A +o if we retain the terms in (3.50) in




Lemma Let u ¢ N be any solution of (2.17), (2.18) with

=36 =

the differential inequality (3.3).

Case I1: ug = 0and a > 0

~

In this case the expression (3.50) can not be dropped
from the differential inequality (3.3). As t < T and a > 0,
(3.3) with B o O implies that

2 2

PR SRS s 2F(Ilu1|| + u) + aFF! (3.66)

t 2
- 20F(y(T+t ) + 2f Ilu 11%°d1)

In order to proceed further we shall need the following

U, = 0. Then there exists a real-valued continuous function

ha(t), defined for O < t < T, such that

Lo 2 2
s= gt liiar = Pl # B 1), 0 & €5 ¢ (3.67)

Proof: From the identity

t
- +
Pt !0 ETT oF 91’

and (2.17),we easily obtain (after substituting for . and

using the assumption that u, = 0)

ug T up toau ¢+ f; PE(T)dT - jgfg !(T‘O)B(O)dodT (3.68)

Thus,
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1 ) 2
Pluglh s Hluglh + allute) )]+ fo"?"L(H*,H_)llg(r)||+d‘ (3.69)
Y T Mt-o) 1 | luCo) ||, dodt
oAl L(H+,H_) = +
< Jla bl + owllutEY ], & tllL|l sup |lu(t) ||
b ® . = LR rn. - %
5 N
+ — sup | IM(t) ]| H .H ). SupP [ TuCt F
2ro,t) L AR,
& Jlu )l + p (£ sup llult)il
- & ety g
where
't2 (
p.(t) = aw + t|IL]| + =— sup |IMCE)]I 3.70)
o = Vi, B 7 oy - L(H, ,H_)
Clearly pa(t) < pa(T), for all t ¢ [0,T) and,as u € N
HTugll < Ilglll + Np(T), 0 s £t < T (3.71)
Therefore,
5 2 2 Z_ 2
Jollu l1%t = 2tC1lu  11° + N (T)), O st <T (3.72)
and the lemma follows with
I
hy(t) = N pa(t) (3.73)

If we combine (3.66) with (3.67) we obtain the

differential inequality




—gig=

2

FF" - F'2 2 = 2FC11uy 1% + ) + oFF!

where a > 0 is defined by

= 2
= [
u n o+ a-Y(T+to) + MT(IIBIII + ha(T))]
Choosing
e 2011y 117+ W)
A = A (gt ) = -
o t2
Tty
We have
FF" - F'2 = - A“(Y;to)rz & aFF'y 0 =t % T, (3.77)

and upper and lower bounds for Hg(t)ll2 may be derived from
the differential inequality (3.77) in a manner analogous to
that followed in analyzing (3.22); the essential difference
between (3.22) and (3.77) is of course, not the difference

in complexity between the respective coefficients of the

quantity F2,but rather the simple difference in the signs of
the coefficients of the term FF'.
If we apply Jensen's inequality to (3.77), taking (0,T)

as the relevant interval, we obtain

4 %
Nt o}

%
F(t;Y,to) < ea_[ytgla*[F(T;y,to)ea— T11-6 " (%.78)
where
1
5 tt) = (% - " Ty7¢1-e%T), O <t < 7T (3.79)
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As a > 0,

Bl aeat
S GE) = < 0,0 = £ < T (3.80a)
l—eaT
SO
!
18 (o)) = 25t te®E - 1), 0 st < T (3.80b)

In (3.78) we again use the device of first setting Y= 1/t§

and then taking the limit, on both sides of the inequality,

as t =+ +o, Since
o
- * 2 Lo 2
lim A (1/t7s3t )= A + 8aT(l Ju., |l + h (T)) (3.81)
£ pfes o o ~1 a
o
E XH,
with X defined by (3.28c), we obtain
X*
2 ~ flt)
IIg(t)II < Be 5 0 et e T (3.82)
where f(t) = t - (1—6h)T and
2.2 1=6" (
B = Sup (w N + l) e (t) 3-83)
(O,T)

Remark If we choose Q > O so large that

Qly
£

i,
m2N2 +oll s Qe s (3.84)

then we obtain (from (3.78)) the estimate




==

1_ 6:.

Hued 112 s @1"%e® ', 0st<T (3.85)

If, of course, there exists TO > 0 such that

-X .
e + e Pe (3.86)
then (3.85) may be replaced by the much simpler estimate
—%
A
B oy
Padt) 1 |® < e s @st =T (3.87)
We now return to (3.82). Directly from the definition
of f(t) (and (3.80a))
L ' E
F't) = 1 T8 ¥y =1 =T¥6 (E)|s O 2 £ <°T (3.88)
Therefore,
> L
< 0 et ']I_‘
EHCE) (=10 if and only if |6 (t)I\= 7 (3.89)
> 0 g
1
But by (3.80b)
®?
167 (£)] < 1/T <= ae®® < 1 T - 1) (3.90)
and the latter inequality is satisfied if and only if
T
1 e =1
it S 3 ZD[T"] (3.91)
(Note that m(t) = et -t -1>0 for all t > 0 so that, in




.

Tl =
- oT >
particular, e - 12 aT fora > 0). As f(0) = 0 and
lim f(t) = O we can summarize our results in the following
t-T~
theorem:

Theorem IIT.3 Let u ¢ N be any solution of (2.17), (2.18)

with s 0O and o > 0. Assume that M(0) satisfies (3.2a)

and (3.2b). Then for all T > 0, ||ull satisfies (3.82) where

X"and B are defined, respectively, by (3.81) and (3.83), and '
f(t) is a nonnegative real-valued function which satisfies

(LYY - £¢0Y = @, Xim  £(E) = 0

t+T"
S ¥ . . increasing
(ii') f(t) is (strictly) monotonically {decreasing
aT
EG e - 1
for {t >} oy Zn[—naf-—J

To close out our study of the case B = 0, a > O we now

integrate the differential inequality (3.7) according to the
"tangent property" of convex functions and we obtain the

estimate

2 .
2Yto a Yto} (1-e21 N

2
}"(t',Y,tO) 2 Yyt exp { ) + - it (3.92)

2
-ayto

% %
which, with y = lltg, A' — (1/tg;to), reduces to

* *
2 .t 2 A 2 at A
||9(t)|l +(€; + 1)° 2 exp [{a? - Olto}-(l-e ) + W

t] (3.93)

Were we to follow the arguments previously employed we would,

at this point, take the 1imit in (3.93) as to + 4+, If we
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proceed in this fashion, however, we obtain

=

1
G112 + 1> exp 2 (5 (1-e%F) + 1)) (3.94)

But %(t) = % (1-e*%) + t satisfies i(O) = 0 and i
XCEY = = 6% e 1w B, B2t < T, (3.95)

1¥f @ > 0.  Thus

&

exp [A— ( L (l-eat) o e )= R
a a
which means, of course, that the estimate (3.84), obtained
from (3.93) by letting B 17 ey is without any value as far
as obtaining a lower bound on Ilu(t)ll2 goes. An exponentially

increasing lower bound could be obtained for ||9(t)|[2 from

(3.93) if we could find t (real and nonnegative) such that

* - o A
t, & (M/t st ) = 2a, (3.96)

however, a little algebra shows that this equation possesses
only pure imaginary roots. In fact, if we rewrite the estimate

(3.92) in the form

% »
2 L o A 2 x e @t A
Hg(t)ll + Y(t+to) >yt  exp [ {a? a———to} (1-e” ")+ . t] (3.97)

x *
where A = A (y;to) is defined by (3.75), (3.76), and (3.17),

then it is not possible to determine y = Y(to) such that




with Y(to) real and nonnegative.

o

tOA (Y(to); to) = 2a

to examine the function

J(t;Y,tO)

Clearly, J(O;Y,to)

Y, to- Also

J'(t;y,to)

A yst )

Y3

= of o2 _a

ke 2 at yallre
a (@]

it

) +

"

e
o Qa

% *
A (Y;to) A

"

from which, bv the definition of A“, it foll

ayt2

(—2) I (tsy,t ) = O + k?y)(l-eat) +

2

where

k, = Hlug 112(1 + saT) + 0 + 4aTh_(T)

kK, = 1 + aT

Thus, if we choose

(kytkoy)  op

(e = l), Y > 0

° O,Y ay

then J'(t;Y’to

k]

Y) > (O sor all s UE -t s T,

Y > O,and we can state the following result:

Theorem T1I1.4

Let u ¢ N be any solution of

It is worthwhile, however,

0 for arbitrary nonnegative constants

(3.98)

* i
A(yst Dy ;
o
S (3.99)
(ys;t.)
o
= (3.100)
ows that
ayto (3.101)
(3.102a)
(3.102b)
(3.103)
and each real
(2.17) (2.18) .




Ll

with Y ® 0 and a > 0 and assume that M(0) satisfies (3.7a),

(3.2b). Then for any T > 0 and each real y > 0

2 2 2
+ :
llg(t)ll Y(t+to’y) 2 YtO,Y exp[J(t,Y,to,Y)], Ol < & < T (3.104)

where t, 3 is defined by (3.102a), (3.102b), and (3.103) and

b

J(t;y,to Y), defined by (3.99) with to = is nonnegative
3

0,Y"°
and strictly monotonically increasing on [0,T).
The results obtained in cases I and I1 did not involve
any hypotheses concerning the sign of the initial energy
E(0); as we assumed u, = 9 in both cases, E(0) = ‘fs_lll:\lll2 >0

if uqy £ 0. In the cases considered below we remove the

restriction that W, S 0

Case III: ug (0T I T o o 1= 6 o RS 0 1SR I -y -

In this case (provided we use the fact that a < 0 to

delete the term H(t;y,to) defined by (3.50)) the inequality

(3.3) reduces to

FF" - F'2 3 - 2F(l|u1||2 - <ugsLug> + w) (3.105)

= laEE"

with ¥ given by (3.17). We now assume that the initial data

u satisfies

b Ml |

g 117 = <ugsLug>< - @ (3.106)




S

where u = mNZT sup | IM(t) || Taking v = 0 in (3.10%)

0.7y - LeH, 8 )
we obtain
FCOIE"(t) - (F'(£)12 2 - |alP(t)F'(t), O <t < T, (3.107)
where F(t) = Ilg(t)llz. Jensen's inequality then yields the '
upper bound
Nt 112 < 1 1128 11249 0 o ¢ e, (3.108a)

where §(t) is given by (3.27). We note that the hypothesis

that u e N,and (3.108), imply that there exists R > 0 such that

= e 112
(@]

Hult) 112 < R

A
ot

T (3.108b)

However, as (3.106) can not be valid for Iluoll sufficiently
small, (3.108b) represents only an upper bound on |lu(t)]]|
in terms of Iluoll and not a stability estimate. A better

result is found by integrating (3.107) according to the "tangent

property" of convex function; in fact, directly from (3.40)

with A = 0 and F(t;Y,to) replaced by F(t) = Ilg(t)ll2 we obtain

I B R S
~1’<0

o 112 2 11u 117 exp ” (1-e"“'t{], 0<t<T (3.109)

lall lug 1|

Directly from the estimate (3.109) is obvious that if

1 < o = < > > u
either u,»u 0 or uy Q (and Bo’ggo ¥) then
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Ilu(t)ll2 > Ilgoll2 for all te [0,T). On the other hand, if

<u,,u > > 0,then on [0,T) Ilg(t)ll2 is bounded below by a
monotonically increasing exponential function of t. Finally

if <uo,u > < 0 then IIu(t)ll2 can not decay any faster than
a monotonically decreasing exponential function of t. Our

results are summarized as

Theorem III.5 Let u ¢ N be any solution of (2.17), (2.18)
with ug H 0, a <0, and B(t) = 0 on [0,T). Assume that @(O)
satisfies (3.2a) and (3.2b). Then
(A) If the initial data satisfy (3.106) ||u(t)|| is
bounded above by Ijgoll'according to (3.108b), for all

£ e 10,9

(B) If the initial data satisfy (3.106) then there exists

K(a) such that for all t, 0 < t < T,

-la|t

HuCe) 117 2 Ty 117 explk(a)(1-¢'*1Fy 1, (3.110)

where for each real a, K(a) is real-valued and

(i) K(a) 0 if either u, = 0 or <go,g > =0

(ii) K(a)

v

Q- af <u sy >>0

A

(iii) K(a) (0 T <u,»u > <0

~

and
(iv) |K(a) |

+

0 as |at » =,

O can be treated

Remark The case Mo Z 0, a > 0, and B(t)
in the same manner as Case I1II; in fact, from (3.74) (which
was derived under the assumption that u, = 9 with a > 0) we

can write down immediately the differential inequality

0 S il I O o e . e o A AT A S
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FF" - F'% 2 = 2P 1uy 117 - <u_,Lu > + u) (3.111)

+ oFF'

for the case where Ho £ 0 e > 05 but B(E) = 05 in (3 100
p is defined by (3.75) and (3.17). Suppose we set y = 0;

then if the initial data satisfy
2 -
(G UQT)IIEIII - <BO,EBO> < - (u + uaTha(T))

the above differential inequality reduces to

F(E)F"(t) - [F' ()12 > aF(t)F'(t), O < t < T, (3.112)

where F(t) = Ilg(t)llz. We leave the integration of (3.112)
and the analysis of the resulting estimates on ||u(t)|l2 to the

reader and turn, instead, to consider a case where both uO# 0 and

gB(t) % O.

Case IV Mo £ 0 BEE) £ 05 a < 0 and B(O) > ©

~ ~

In this case (3.3) is easily seen to imply that

FF" - F'2 > = 2F(2g(0) + y) - |a|FF' (3 dnlL8)

+ 2F(2f; é(T)<E’Eo>dT - B(t)<9,go>)

+ “FB(O)"EOI|2

- 2F(2£(0) - 28(0) | Ju |1% + w) - |alFF'

+

2E( 2[8 é(1)<9,90>d1 - 8(t)<9,go>)




=l

In order to proceed further we must bound from below the
third expression on the right-hand side of the differential
inequality (3.1132); this is accomplished by the following

lemma:

Lemma Suppose that B(t) is bounded on [0,T) for each fixed
T, 0 < T < »,. Then there exists a constant C > O such that

for all t € [0,T)

't .
2f0 B(r)<g,go>d1 = B(t)<9’90> 2 - cllu !l
Proof We set p = sup I8Ct)| < w. Then
EOLT)

|ft é(r)<g(r), Eo>dTl

l<fg é(r)g(r)dr, u>

A

735 |é<r>|||g<r>||dr)||goll

IA

T
p(foliuted1dr) | ju 1

IA

\
PONT| [u 1|
so
.t .
IO B(T)<B,Bo>dr 2 = pwNTJju ], O st <T
Also

Is(t)<8,go>| < Is(t)l-|<g,uo>|

~

IA

leB(t)I'IIEOII

IA

wN l fg g(r)dt + B(O) L1ug il

1A

wN(pT + e(o))llgoll

(3.114)

(3.15)

(3.116)

(3.117)
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SO

- B(t)<u,go> > - WN(pT + B(O))Iluoll, 0 <t < T

Combining (3.112), €3.116), and (2.118) we obtain (3.
with

C = wN(3pT + B(0)) > O

We now return to (3.1132); in view of the last lemma this

latter inequality implies that

2

FI* < F'" 3 = 2F(||gl||2 + {(BO) * ud) = |a)FE"

where J: H,_ + R* is defined by

- C — —
IGw) = 28O | 1wl (Gargy = 1wl = <w,Lu>

for any w ¢ H,. If we set y =20 then (3.120) easily reduc

FCOF'(6) - (F1 ()77 > = 2P (Hug 112 + Ju) + )
- Ja]F(t)
p 2 - 2
dith FC(tY = Jluety || and w = oN- sup | IMEey i, - )
~ [O,T) ~ L\H+3H_)

and we have the following simple result:

Theorem III.6 Let u ¢ N be any solution of (2.17), (2.18)

where Mo Z# 0, B(t) £ 0, a < 0, and B(O) > 0. Assume that

~

@(O) satisfies (3.2a), (3.2b) and that B(t) is bounded for

(3.118)

114)

(3.119)

(3.120)

(3.121)

es to

(3.122)
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8 = t < T. Then if the initial data satisfy
Pha. 1% % T6u ¥ = - @ (3.123)
~1 St 2

where ] is defined by (3.121), ||u(t)|| satisfies the estimates

(3.108) and (3.109). 1In particular,if u, = O and Z(Eo) < -1

ol
then HutedlI® = ffu (1% for all £5 0 < ¢t < T

Remark We leave to the reader the consideration of the other
cases possible when ug # 0 and B(t) # 0, e.g.»a < O and

B(0) < 0; the stability and growth estimates which apply in
these situations may easily be derived by suitably modifying
the last lemma and making use of the basic differential in-

equalities derived for the previous cases.

4. Examples of Growth Estimates for Electric Displacement

Fields in Holohedral Isotropic Dielectrics.

In order to apply the results of the previous section
to solutions of the initial-boundary value problem (2.1),
(2.9), (2.10) (associated with the constitutive relations
(1.22a), (1.22b)) we must first delineate the forms assumed
Ly the basic hypotheses (3.2a), (3.2b). In other words, for
the operator M(t),which is defined by (2.14b), we wish to

examine the implications of the condition that

e 2
- <y,M(0)v>H > KllvllH (4.1a)
- < B4 .

with
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Kk 2 wT sup IIM | (4.1bd)

(0.py =t 'L(H H)?

where the Hilbert spaces H, H, are defined to be the completions
of CZ(Q) with respect to the norms induced by the inner products
(2.11) and (2.12), respectively, while H_ is the completion

of Cz(Q) with respect to the norm (2.13); Q is, of course, a
bounded region in R3 with smooth boundary 99 and w is the
embedding constant associated with the inclusion map i: H, - H.

+

From (2.14b) and (2.11) we easily compute

<v M(O)v>H = - | (M(0)v), v dx (4. 2)
= =-b ‘i’(O)j',2 e dx
2
b v
o k
+ — 8(0) [, 6..68., =—a— v.dx
a, Qe g2 axjax2 i
2
o 9°v
: 2 o k
= = b, ¥OXIells * <b(0)f96ik<sj£ s vy
o e
for any v ¢ H, . But if v ¢ H_ then #
82vk 32vk
Ja83x852 s Vid®% = [abs5e Vi maoans & WheSH
31k 378
= - Iq 850 :Ik a:k -
J j£~

= ’IV||H,

where we have used integration by parts together with the fact

that v vanishes on BQ(2). Thus

(2) This follows from the definition of H; and a standard trace theorem.
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- <Y,ﬁ(0)y> - bOW(O)IIVIIQ 2

v

- bo(w2|¥(0)| +

Therefore, (4.la),

il 58 i
= bo(w l¥(0) | + 5; 3(0)

with k¥ = &T sup ||M

b ITCOTIVITE +

o
< bo(w2|i(t)| + éLwé
o
? It now follows that
A )<v,Mtv>|
IIMtII s SR SR s
- LS L Y€H+ ||Y||H+

L” B 555 AP 0 e

(4.1b) will be satisfied if

I .
[0,T) "t L(H ,H_)
we now set T(t) = ¥(t). From (2.14b) again we have, for any
3
v e Hi ),
2
. av
= 2t _@(t) k
(Mevdg = BoLTCEI0:5Ys = =0~ S50 0w, S
o el
so
|<VsM V> |fﬂ[§tv]ividx| (%.7)
2 bo BQVk
- T = =2 — X
I T LIV 3, <p(t)jg<sjZ ) B%;9%, X |

(3) We assume that T exists and is bounded on [0,T).

2~

O

2
¢(0)||v||ﬂ (4.0
= +

(@)

AL 2
— ¢(0))||Vv]]
a, = H+

)

>

K (4.5)

For the sake of convenience

O DIV
" +

2 * i .=
bo(w IT(t) ] + g;l¢(t)l) (4.8)
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for each t, 0 = t < T. Thus, (4.1b) will be satisfied if

K > wTb (0’ sup IT(t)] + 2 sup [8(t)]) (4.9)
& e ) % [0,T)

Combining (4.5) and (4.9) we find that a condition which
suffices for the simultaneous satisfaction of (4.1la) and

(. 1b) ds

= (uw 1TCO)] + L oo = wT(o? sup (PCE)l + L sup 18CE)1)  (u.10)

o [0,T) He [o,T)

Remark It is clear, from (4.10),that the inequality can be
satisfied only if ¢(0) < O with [9(0)| > aow2lT(O)|.
Recall now that ¢(t) is defined in terms of ¢(t) by

(1.14a), (1.14b) while ¥(t) is defined in terms of y(t) by

¥et) = § (-1 (4.11a)
n=1

ety = gL v ()
o (4.11b)

P (t) = jg viet-t)9" Teeddr, n o2 2

It is worthwhile, at this point, to recall the following result

which has been proven in [6]:

Lemma Let ¢(t) ¢ leO,T) and assume that the series (1l.1lu4a),

as well as the derived series, which is obtained by term by
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term differentiation, are uniformly convergent on every interval

O T-el, @O < € < T, If

sup l¢(t)| < a /T (4.12)
[0,T) ¥
then
(i) sup [#(t)) < F(T) (4.13a)
(0,T) i
sup |¢(t)]|
(1) sup I14(t)) < B2 4 g [O0T) (4.13b)
[0,T) sup 1¢(t)]|
£O.T)
where
F(T) = sup I¢(t)l/(a_ - T sup |¢(t)]) (4.14)
[0,T) # [0,T)

Remark Similar results hold for sup |¥(t)| and sup ly(t)],
[0,T) [OsT)

of course, under analogous assumptions on Y(t) and the series

(4.11a), e.g., we require that sup |yp(t)]| < bo/T; the constant
EO,T)

F(T) appearing in (4.13a), (4.13b) would, in this case, be

replaced by

G(T) = sup IP(t)I/(b_ - T sup Ip(t)|) (4.15)
[0,T) £ [0,T)

In recalling the above lemma we have been motivated by

a desire to replace the sufficient condition represented by
(4.10) by a condition which involves only the basic memory
functions ¢(t), Y(t) specified in the constitutive relations

(1.22a), (1.22b). To this end we note that (l.1l4a), (1.1u4b)




S pie

and (4.11a), (4.11b) imply, respectively, that

1 O r

BUEDY * = glt) & e - !0 p(t-1)e(r)dr (4.16a)
O O

W(t) + = (1) = - 2 [T plt-nvinar (4.16b)
bo bo 0

The derivations of (4.16a), (4.16b) depend only on the assumed
uniform convergence of the series defining ¢(t) and Y(t).

From (4.16a) and (4.16b) we immediately obtain

$(0) = - é}-¢(o>, y(o) = - g; $(0) (4.17)
(@) o

and thus (4.10) can only be satisfied if ¢(0) > 0. Directly

from (4.16b) we now compute that

. . 1
Fo) + P = - 2 p0¥ ) - g [ou (t-D¥lndr (4.18a)
(o] o o
a 1 - e : 1 .
V() + 2 BE) = - 5= WO - £ $0I¥(L) (4.18Db)
o o ' o
1 gt
e [o¥yy (t-TI¥(TIAT
Therefore,
¥(0) = TCO) = - - (§(0) + Y(OIF(O) + {(0I¥(0)) (4.19)

o

However, from (4.17) and (4.18a),

¥(0) = - Mm-%wmwm=-$wm+
(o]

v2(0) (4.20)
o ~

2
bO

e
b2
o
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T0) = - &= (5 3%0) - Z p(OH0) + §(0)) .
o bO o t

The left-hand side of (4.10) now assumes the form

N

1
b

U‘iE

Wty - éL Pp(0)P0) + $(0) | (4.22)
(o)

1
3 ¢(0) - |
a

(o]

2
o

(¢)

We now turn our attention to the right-hand side of (4.10).

Directly from (4.18b) we obtain

Tty = - & 3y + plodTed) + Peorvce) (4.23)
(@]

+ POV + [Tyt ¥()dD)

Also, in view of (4.18b),

1

Sr sup L§CE) |+ [$(0) | sup 1§(t)] (4.24)

(o] [O;T) [O,T)

sup |P(t)| <
E @5 T

+ (JPC0)] + T sup Jp(t)]) sup |¥(t)]]
[0,T) [0,T)

while, by (4.23),

sup 17t < 2 sup 193021 + p(0) sup IT(t)] (4.25)
(0,T) o [0,T) [0,T)

+ $€0) sup 1¥CE)] + €190l + T sup 10837¢t)1) sup 1¥C)1]
[0,T) LOT) [0,T)

R NRPNPI P ——




B

If we substitute for sup | (t)| in (4.25) from (4.24) then
(0,T)

it is easily seen that we obtain an estimate of the form
T e

sup IT(t)] < A sup |¥(t)| + B sup |[¥(t)] + C (4.26)
[0,T) [0,T) [0,T)

where, in fact, the constants A, B, C are given by

A= 2ot sup o1 b1+ O g1+ T sup 1P o)
o [0,T) o [0,T)
g 20
B = o [ (o) + ¥200
O O
¢ = 21 sup 1p P orr + gH1v ] sup 192 (6)13 §
o [O,T) o (0,T) ;

As a result of the estimate (4.26), the right-hand side of the

inequality (4.10) is bounded above by the expression

wBT(A sup |¥(t)| + B sup 1¥(t)| + ) + wl sup lé(t)l, (4.27)
[0,T) [0,T) % [0,T) '

which, in view of the lemma preceding (4.16a), (4.16b), and

the subsequent remark, is itself bounded above by

sup)l@(t)|
3 BG(T) (0,T -
w TLAG(T) + T Gl s&p lw(t)l) + CJ (4.28)
[Og )
. sup lo(t) ]
wf (T) [OT) =
S i T

(0,T)
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a
provided sup I1¢(t)]| < 3? and sup ()| <
(o,T) [0,T)

b

B0,

0

From (4.28), the definitions of the constants A, B, C, (4.14),
and (4.15), it is clear that

(1)

Gl mip e mup W ey (. 29)

D = D(N,T, a ,b s Iw
e [0,T) £0LT)

with 4 = 0,1,2, 3 = 0,1, and k = 68,1,2,3. ' Thus, P is com-

putable once @, T > 0, and the constitutive relations (1.22a),
(1.22b) are specified. Furthermore (4.10), and hence (4.la),
(4.1b), will be satisfied if

L 030> - Z v0§(0) + (o)) 2 (4.30)
(o}

(@)

L a0 -
a o b
(o]

We offer below an example of the kind of considerations
which are involved in verifying that (4.30) - and hence the
condition represented by (4.la) and (4.1b) - is satisfied.

It must be noted that (4.la), (u4.1b) are implied by (4.30) but
that, conversely, (4.30) does not represent a necessarv con-
dition which must be satisfied if (4.1la), (4.1b) are to be
valid; in particular, we have used some very rough estimates

in passing from (4.10) to (4.30) and even the former inequality

stands as a sufficient (but not necessary) condition as regards

the satisfaction of (4.la) and (u4.1b).

s ) 0
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Example In the constitutive equations (1.22a), (1.22b) we
take
$(t) = e %%, wit) = &°F (4.31)
| | ot

where K > O is arbitrary; for the sake of convenience we set
T=1. The region @ ¢ R3 (and hence the embedding constant
w) are left arbitrary at this point as are the constants a»

bo. From (4.31) we have

$€0) = sup |¢(t)]= 1, sup 14(t)] = K (4.32a)
[0,1) [0,1)
and
sup Iw(k)(t)l =0 e = gl 258 (4.32b)
LOL.L)

W0) = P(0) = 1, $(0) = - 1 (4.32¢)

Therefore, the constants A, B, C in (4.26) are given by

)s B =C =z &—=(1 + &) (4.33)

F(1) = & el G(1) = (4.34)
o

Combining (4.28) and (4.30) with (4.32a) - (4.32¢c), (4.33),

and (4.34) it follows that the operator M(t), which is defined

e

A~ | TR, 7 O e
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by (2.14b), (1l.l4a), (1.14b), (4.1la), (4.11b), and (4.31),
will satisfy the fundamental hypotheses (4.la) and (4.1b)

if a_s bo’ and w are chosen so as to satisfy

1 _w(1+K) g b1 <b0+3) (4.35)
22 ao(ao-15 e b2 : b -1 4
(] (o]
2
L
o bo o

As bo must be restricted to satisfy bo > 1, the right-hand

side of (4.35), which we denote as g(bo,w), is clearly positive.

Thus, in order for (4.35) to be satisfied for an arbitrary

a, > 1, w must satisfy

il
) < -+—K— (4.36)

=
(o]
+
=

oml“
—

“hen (4.35) becomes

limo(b_, w) = 0 (for any w > 0)
bo++® -




“B1=

and thus it is clear that for an arbitrary g, = 1 and
w = W defined by (4.36), the inequality (u4.35) will be
satisfied if bo is chosen sufficiently large. We summarize

our results in the following lemma:

Lemma Consider the-holohedral isotropic dielectric material

which is defined by the constitutive relations

e—K(t-T)

Dixat) < a B+ [ E(x,7)dT (4.39a)

§(§’t) e—(t-r)

B Blx.t) * [ B(x,T)dt (4.39b)
where K > 0 and a, * 1 are arbitrary and (§,t) e 9 x [0,1)

with @ < R3 chosen so that the bedding constant w, defined

by the inclusion map of H_(the completion of C:(Q) w.r.t.

(2.11) imto H, satisfies (43600 IE 9(§,t) =0

(§,t) e 30 x [0,1), then there exists a constant T > 1 such

that the operator @(t), defined by (2.14b), satisfies the

basic hypotheses (4.la), (4.1b) whenever bo = F.

We now close this discussion of holohedral isotropic
material dielectrics by offering, below, an example of how
some of the theoremes of the last section (which were derived
for the abstract integrodifferential system (2.17), (2.18))
may be used to obtain information about the growth behavior
of the electric displacement field in the material which is
defined by the constitutive relations (4.39a), (4.39b); in

these equations aj > 1 and K > 0 are taken to be arbitrary

e,




e

3 .
and @ ¢ R” and bo > 1 are assumed chosen so as to satisiy

the conditions of the Lemma above, j.e., we take
by =T = inf{db > 1 | (b, w,) < s(ao,wK)} (uin)

where wK’ o, o are defined by the discussion preceding the

lemma. Comparing (2.17) with (2.15), and using (4.17),

(4.31), and (4.40) we easily find that

i PO = = (4.41)
b i

o

As T > 1, 0 < o < 1. The simplest case we can consider in

this situation would seem to be Case III of the last section;
thus, we shall assume that, in addition to the constitutive
relations (4.39a), (4.39b) we have initial conditions specified

of the form
D(x,0) = O, B, (x,0) = Dy (xX)y X e @ (4.u42)
as well as the boundary condition

Blx,t) = 8, (x,t) ¢ 98 = (0,1 (4.43)

~

The displacements our theorems apply to must lie in

the class N, i.e., they should satisfy

3D, (x,t) D, (x,t)

sup (
O<t<1 Q a)(j an

d>~<);5 < N




A

for some N > 0. Directly from theorem II1.3 we then have

the following result

Theorem IV.1 Let D(x,t), (x,t) ¢  x [0,1) be any solution

of (2.1) (subject to (4.42) and (4.43)) which satisfies (u4.ul4)
for some N > 0, where we assume that ¢(t), ¥Y(t) are determined,
respectively, by (M.Sll), (1.14a), (1.14b) and (u.312), (4.11a),
(4.11b); we also assume that e 2 1, X > 0 are arbitrary while

2 is such that the corresponding embedding constant w satisfies
(4.36) and bo = T is defined by (4.40). Then there exists

A = A(T) with A(T) > 0 and A(T) » +©» as I' + +o such that

IQ D, (x,t)D, (x,t)dx < Be "LIECET S o s oy (4.45)
where "
B = sup (w§N2+1)1'5 (t) (4.46a)
O<t<1
ey = 16 L ey, os ko 2 (4.46D)
e
f(t) = t - (1=6 ), @ 5 t < 3 (4.46¢c)
14, 1T

Furthermore, if T < e '/ (e - 1), then f(t) is (strictly)

; increasing t< 1IT
monotonically {decreaSing} for {t>} I' Zn(T[e 133}

Remark The function A(T') specified in Theorem IV.1 is obtained
in the following way: From (3.28c), (3.81), and (3.82) we

see that we need

‘hi-.E---.------IIlll===z?'——“’""
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AT > 2rCiip 11?7+ wKN?[SfE)IIB(t)IIL(H+’H_)) (u
+ gty 11? « w%l e & i
where, by (3.70)
PLp) = T4 ULl 4y + 3 sup 1IMCEN]
e oH [0,1)

However, from (2.14a), (2.14b), (4.31), (4.33), and the
definition of H and H, , it follows easily that there exist
positive constants my, m such that

2

LT W RS e e e R
b

(the computations needed to establish the existence of m

m, are similar the one which led to the estimate (L4.8), e.g.,

2
from (4.8), with bo = TI'y 1t follows easily that there exists

E m, > 0 such that sup llﬁ 11 < m.T).
: 3 [0,1) -t LCH, H_) 3

? From (4.48) and (4.49) it follows that there exist con-

tants n, > 0, n

1 2

% 2
TA < 2(T+W) [IDq 11" + nT" + — 4 n,
for all T > 0; the statement of the theorem now follows with
’ A(T) equal to the right-hand side of (4.50).

g Besides the upper bound represented by (4.45) we also

L have, as a direct consequence of theorem III.4, the following

S S—

L47)

L(H,,H)  (u.u8)

(4.49)

> 0, and ng > 0 (independent of T') such that

(4.50)
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results concerning lower bounds for solutions of (2.1),
subject to (4.42) and (4.43), where ®(t) and ¥(t) are again

determined by (u.311) and (u.312), respectively:

Theorem IV.? Under the hypotheses which prevail in theorem IV.1

we have, for each real w > 0, and t ¢ [0,1),

f D; (X, 1)D; (x,t)dx + Y(t+t ) (4.51)

b

2 5
> yto ¥ exp[J(t,y,to Y)J

b b

where to y 1s defined by

]

3 2 y 2 2
‘ t = <[(IID PECE + =) =+ w N~ sup | IMeE) ] (4.52)
= I8 K ~ H
O,Y e [O,l) L(H_'_, _)
un? o2 aba i)( T
T 1/r = Bl
with P (1) given by (L4.u48)3also,J(t;y,t ) is defined by
/T O,Y
: = R i 2r . Ty
J(t,y,to,Y) = (P A (Y’to,y )(1 (4.53)
+ a )
T (Y’to,Y t
with
ATeyst. ) = —2 [}1 ¢ DD e Rt ) s
Oy 2 = r O, 5
yt
o,y

2 = B o2
+ 2N°(w, sup |IM(t)]]| + = P (1)i]
K to.5) - tH, 8. " F "

Furthermore, J(t;y,to Y) is non-negative and (strictly)
v

monotonically increasing for 0 < t < 1.

*EEEEIIIIIIIIIIIIIIIIIII‘
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Remarks We could, of course, examine the consequences of the
other theorems contained in §3 as regards the growth behavior

of electric displacement fields in a wide variety of holohedral
isotropic dielectric materials which conform to the basic
constitutive theory represented by (1.22a) and (1.22b). Clearly,
examples which can be categorized as belonging to each of the
cases considered in the previous section may be easily constructed
by selecting suitable memory anctions di(t), Ylt) in (1.22a)

and (1.22b), respectively; we leave the construction of such
examples to the interested reader. In future work we shall
return to consider the abstract system (2.17), (2.18) and will
examine other applications to a variety of non well-posed

initial boundary value problems. In particular, our work

may be easily generalized to cover the case where the abstract
equation has the form

t
e, - Kug - Lu + [o MCt-t)ulr)dr = H(t) (4.55)

with K e L2([O,T); L(H+,H_)) either positive definite or
negative definite for all t, O < t < T, for some T > 0, and
H: [0,») » H_ sufficiently smooth. The abstract problem (U 550
(2.18) can then be viewed as modeling the evolution of the
displacement vector in an isothermal linear viscoelastic
material with nonzero past history and a time dependent (mono-

tonically increasing or decreasing) material density.
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