
Ii1/ AD—AO ’ 46 250 MARYLAND UN I V CO1.LZIC PARK D tT  OF MAYICMATICS F/G 12/1
£STIMAT IOI4 Of Tilt PARAMCTERS IN STAT iONARY AUTOR EORCSS IVC PROCE——Etc (u )
AUG 77 8 KEOCM AFOSR—77—3333

UNCLASSIFILD 1e77—54—IK AFOSR—TR—77—1231 NI.
Icr i

_ _  I

I p p ______________ I I

END
D A T E

FILMI 0

I 2—70
TAO

N 
_ _ _ _ _ _  1



j j 7

~~~~~~~ E~~~MATIr oF THE pA ERs IN~~~~~IoNARy

~~~~~~~~~~ja minj Kedem

Department of Mathematics
• University of Maryland
U... College Park , Maryland

20Th2

III
_ _ _  ““ MD77 5t~~B~~

T R 77-42DCC B ft $ectiGn C

_ _ _  

~~~~~~~~Aug~~~~ ~Ii7 ~~~~~~~~~~~~~~~~~~~

Y~ _ _ _ _



.

I L

~44

MR FORCE OFFICE OF SCIENTI FIC RE~EABCH (AFSC j
NOTIC! OF T:~~”~~ITT.~L TO ~~C
T}~~z ~~~ ~~~~~ 

;~~ ~~~~ : t  ~~~~~~~~~~~ ~ ~“d is
‘r ~~~~~~ 

(Yb) .

~~~~~ ~ ~~~ u~1im~ted. I

Tecbnical Inforwation Off taer

i

j



I ,

E S T I M A T I O N  or THE P A R A M E T E R S  IN S T A T I O N A R Y

A U T O R E G R E S S I V E  P R O C E S S E S  AFTER H A R D  L I M I T I N G

by

Benjamin Kedem

§1. I n t r o d u c t i o n

Le t Z~~, t = 0 , ±1,..., be a stationary  s tochastic proce ss

an d d ef i n e  the cli pped process X.~ by

(1, z ~~~o
x~ < 

t 
, t = 0, ±1,... (1.1)

z t

There are several reasons for the transformation (1.1) commonly

known as clipping or hard limiting. If long records of data are

available then it is convenient to clip the ori gin al da ta and

store the ob serv ed in fo rma t ion in j u s t a few s u f f i c i e n t  t ics

whos e compu tation is ex tremely fas t as only coun ting is in~ ..ved.

All the more so , experi en ce has  sh own , [6], [7], [10], Di.), [13],

£18] that very little precision in estimation is lost due to this

coarse quan tization . Also , there are situations [9) when the

data must be actually observed in the form (1.1) as to allow

certain noise modulation . Evidently the problem of outliers in

the Z~ data ceases to exist.

From a statistical viewpoint (1.1) is tractable because:

if th e binary process X~ is finitely dependent then the like-

lihood function of an observed time series X
1
,...,X

1~ 
is always

j available regardless of the probability law which governs the

original process Z~ . This means that efficisnt estimation of

parameters based on the quantized data is possible.
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Suppose now ~~ is. an autoregressive process of order p

Z~ = + ~~~~~~~~~ ~~~~~~ + u~~ , t = 0,±l ,... , (1.2)

where the u~ are independent N (O ,a
2
) variates , and wh ere the

roots of the associated polynomial 1 - ~~ B - .. . -~~~B~ lie out-

side the unit circle. In this paper we shall obtain approximate maxi-

mum likelihood estimates for 
~
‘l ’•• 

. 
~~~ 

from the clipped process

wh en is a stationary  p th...order Markov chain . The re-

lated problems of estimating the covariance function and spectral

den sity of f ro m th e cl ipp ed da ta  were d i scussed  in [6) ,  [11],

[13), [17) , [18). The main difference between these works and the

presen t one is tha t we bas e our est ima t ion on the like lihood

func tion of the 0-1 data where the sufficient statistics are

determined by the axis-crossin&s by Z~~. In other words the

es t im ates ar e func t ion s of the par ticular  ar rangemen ts an d leng ths

of the 1-runs and 0-runs as formed by 
~~ 

w h i l e  c ross ing  leve l

3.  i i ~~ principle will become clear ~s we proceed. 
It is shown

that the clipped data estimates are obtained at a substantial sav-

ing in computing as expressed in terms of the number of arithmetical

operations. At the same time they compete well with the usual maxi-

mum likelihood estimates.

Expirience has shown that (1.2) is an adequate representa-

tion for describing a wide range of stationary time series e.g.

4 see [3), [jq]. Maximum likelihood estimation of the parameters

in (1.2) based on the original data Z,~ has been discussed in

D2]. Moderate modifications are considered in [j), (3). It

turns out that the maximum likelihood estimates of the • oh- I



obtained from the original data are essentially the same as the

least squares estimates.

In what follows we shall make use of a famous formula . Let

(X ,Y) have a bivariate normal distribution with parameters

EX = EY = 0, Var X Var Y = a2 and correlation p. Then by

~ntrodu -ing polar coordinates one obtains

1 1 . —1Pr(X ‘~ 0, V > 0) ÷ Sin (p). . 1.3

This formula can be traced back to the writings of Sheppard [15]

Stieltjes £L5).

§2. The Likelihood Function of the Clipped Time Series and Esti-
mation of Transition Probabilities

If X is a Bernoulli random variable wi th a probability of

success 0 then Pr(X x) 0x (1 - 0)
1_x

, x = 0,1. In deriving

thi s exponen tial d i s t r i but ion , use wa s made of the fac t tha t X

can take the values 0 or 1. This observation is instrumental

in cons tr u c t i n g  the  l ik el ihood f u n c t i o n  of the c lipped series

x
t
.

D e f i n e

Pr(X
1 x1 Xi1=x i l ,...,Xi k =x jk ) =

and observe that from (1.1) we have

Pr(X
i

xj) 4~ x 1-x
Pr(X1 = x~ J X 1_i :x i_i ) [X 1 x~•

] {1
x
i] 

i-I.

x 1-x _X j_1 x 1-x 1-x1_1 ~“i-2
Pr(X~ = Xj  I X~_ 1 xi_i ,Xj ..2 = xi_2) ([p

i p ij .[~1
~
1
~
001i]

([

i;x
ij

x
l {~~~~~:L]

l
~

xi
~1Y2



if

t~t c .  , cand t h e ro f or e  in general

n 1 .1. ...I
x ) Ii f l p  1 1~ 1 I

, (2.1)
i=2 Y~ Y1.. 1 . .

such that the second product is over all 0-1 i-tuples

and

(x. if y. 1
J 3 .  1

I. =
1

l-x. if y. = 0.
1 1

This is the joint distribution of any 0-1 time series X
1
,... ,X

1
provided Pr(X

1 
x
1
) =

Evide nt l y ,  since Z,~, the original process , is strictly

stationary also the clipped process is strictly stationary; that

is , the stationary property was preserved by X~~. But Z~ is

also Markovian. However , ma thema ti ca l ly  sp ea k i n g ,  X .~ is not

a Ma rkov pro cess as well  becaus e for  one th in g , the hard limiting

transformation is not 1-1. In this case it is apparent that (2.1)

view ed as a l i k e l i hood fu nct ion is us eless , for  as the series

size n increases also the number of unknown parameters in-

crea ses so that (2.1) cannot be used for estimation purposes.

To get around this difficulty one has to condense somehow (2.1).

We shall then overlook the mathematical difficulty and assume

ththa t  the  p order Markov property is inh e r e n t  in the  cl ipped

process. This  is a s t a ti s t i ca l  assumpt ion  which  is ce r t a i n ly

reaso nable  when 0 2 is smal l .  This  assumption is analogous to

the normal assumption in the general linear model or to the
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as~~umpt ior i of  Poisson arrivals in queuing theory for it enables

u~’ t o  pursue ~t~iti~~tical analysis based on the likelihood (2.1).

N ow le t Z~~, t 1,2,... ,n , be given by (1.2), and

t = 1,2,... ,n , be given by (1.1). Under the assumption that X.~

is a ~th ord er Markov process the joint distribution (2.1) re-

d u c e s  to

n 1.1 ...I .
Pr ( X  x ,...,X = x  ) fl fl p ~ 2. -p ( 2 . 2 )

1 1 n n i p+l ~“ i~’i-l~ 
.

n

~ 1.1 . ...I .
i p+i  3. 3.-i

= ~ P ~

w h e r e  as b e f o r e  t h e  p r o d u c t  in t he  last  expression e x t e n d s  over

a l l  t he 2 p+1 
~~~ a r r a n g e m e n t s  (Y j~~Y . 1~~.•  . ~~~~~~~~ In ( 2 . 2 )

term s w h i c h  do not depend on n were  ignored . This  l i k el i h o o d

f u n c t i o n  is a spec ia l  case of t h e  one given by Ba r t l e t t  ( 1951) ,

except that formally we utilize it in a d i f f e r e n t  way .  We sha l l

make use of the f o l l o w i n g  i d e n t i t y :

1 = (1-z) + z ( l — y) ( l - z )  + y ( 1-z )  + ( l — y ) z  + yz

(1—x)(l—y)(1—z) + x ( 1— y ) ( l — z )  + (l—x)y(l—z) + xy(1—z) ( 2 . 3 )

+ (1—x)(l—y )z s x(l-y)z s (1-x)yz + xyz ,

and  so o n .  D e f i n e

= P r ( X
~~~~l ~ Xt ...k 1), k

V.



&

We estimate the from the X
k • It is possible to rewrite

(2.2) as a product of a function in and a function of nui-

sanr~ p~arameters in this case higher order probabilities. The

function in is a power of times a power of 1 -

Only terms in (2.2) of the form

n

~ I ....I . x . I . ...i . x . ( 2 . L t)
i p+l 

1 i-p+k+l i—p +k i-p+k-l i-p+l i—p

~~i-p+k +1 
1 
~i-p +k-l~~ -p+1 

1

or of the same form but with the x ’s replaced by (l_x j p+k
)

and (l_x
1~~~

) resp ect ive l y ,  and the l’s replaced by 0’s,

contribute their exponents to the power of The rest of the

terms in (2.2) contribute their exponents to (1 - A
k
). The sum

of all these exponents in n-p. Thus the exponent of A
k 

is

~ 
I~~~• ‘i-p+k+l

1
i-p+k-1~ 

I
~~~P+l ]X i P +kX I P

~~~~~~~~~~ 
~~
I
i
...I i p ÷k +lIj p÷k l

...I i p ÷ 1
](l_x i p÷k

)(l_x
i p )~

where the second sum extends over all possible terms of the

form (2.’~). Eviden tly, this second sum is just the telescopic

id entity (2.3) and is equal to 1. The exponent of 1 - A
k 

is

obtained ia the same way. (2.2) can now be rewritten as

-



•1

n
2 ~ x. x. - ~ (x. +x. )+(n-p)

Pr(X
1

x
1~
...,X

5
x~ )x A

k i p+l a.-p+k i-p i=p+1 i. p+k i—p 
(2.5)

•(l-~~) 
~ 

X i p+k
X i + 

i=~+l i_p÷k+xi_p )

•powers of nuisance parameters.

It follows tha.t a maximum likelihood estimate of Ak 
is given

by n

X~~ p+k
X
i 

~~ 

- 

~ 
(x i p+k +xl p

) + (n-p)

k i—P+ 
, k = 1,2,... ‘p. (2.6)

n-p

We A~ and f or a s u f f i c ient ly larg e n [2 ]  Ak is

asymptotically normal such that Var \/i
~

( X
k Xk

)

From a computational viewpoint it is preferable to express

in the simpler  form

Ak 
= , k = 1,2,... ,p, (2.7)

n-k

n n
where  R = ~~ X .X . , S ~ X. , This  unba i sed  form isk . u — k  .i=k +l

essentially the same as (2.6) except for end effects of the series

which  become neg ligible as n increases. We shall use (2.7).

In the next section we show how to obtain approximate maximum like-

lihood estimates for the •k from the

Now we immediately see that depends ~~ th~ axi s cross-

~~ 
Z~~. In particular

IL
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n-2(# of 1-runs) (2.8)
1 n-i

or , n eglec t ing end e f f e c ts as is the cas e for  lar ge n

n - ( H  of ax i s  cros s i n g s  by Z)
~~ (2.9)

A
1 

= n-i

n-2(# of runs between the first and last I

= 
with two or more symbols + 1) 

— (2 10)
2 n-2

etc.

The exact distribution of the number of axis crossings by Z~

wh en X .~ is either a first or second order Markov chain has

been recently obtained in [8].

It should be noted that the estimation problem of transition

probabilities treated here is somewhat different than the usual

pro blem of es t ima t ion of condi tional  probabi l ities in ~~~ order

Markov chains where the quantities of interest are the probabili-

ties of a state given the previous p states. That problem was

first solved in (2).

§3. Estimation of the c$~’s

We start with a brief review of the maximum likelihood esti-

ma tion of •~~
,. .. , from the original Z series. This will

give rise to natural estimates based on the clipped data.

Given a time series z
1
,...,z f r om the Gauss ian pro cess

then its joint distribution is N(~~,r~
), where = {~~11_ ~ I~’

1,1 l,...,n, and the joint density can be written as the

product .:
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f ( z
1
1...~~z~~I~~~a

2
) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Because the second term on the right hand side is independent of

n the log-likelihood for sufficiently large n can be conveniently

d e f i ned as

t (~~) = log f ( z
÷1
,.. . ,z 

~~,a
2
,z1

,.. . ,z )

Zz 2 -Zz ’z

= — !~j.2. log2na
2 

— —
~~

-.
~~

- (l ,~,’) 
( J (3 1)

2a _z
~ t

z
t ~~~~~~~~ 

~~~ /
where = 

~~l ’ ’ ~~p~” ~~ 
= (z

~~_ 1~~
z
~~_ 2~ ~~~~~~~~~ 

and the sums

extend from p+l to n. Then

= —
~~~~~

.{ 2Zz
~~
z
~ 

— 2Z
~~~

z
~~~
}

2a

and by equating to 0 we obtain the maximum likelihood estimator

—l
= ~~~~~~ ~~~~~ (3.2)

Now , mul tiply (3.2) by 1 Zz~ /Zz~ and d e f i ne

1 1 -l 
EZ

t
Z
t kA

k 
= + sin ( ) .

Then apart from neglibible end effects (3.2) takes the form

1 sins (X
1
-½) ... sinffO~~1-¼) -1

. (~~ 
einn(~1—½ ) 1 ... sinnO~~ 2-¼) sinTrO~2-½) (3.3)

aintva .,1-½) sin~r(~~~2-½) ... 1. sin n~~~-½)
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where = 
l’~~
”’

~~p~~
’
~ 

It follows that the approximate maxi-

mum likelihood estimator based on the cli pped data is

= (3.4)

where is given in (2.7) and = ~~~~~~~~~ It is possible

to calculate ~ (X) recursively using formulae developed in [5].

This is equivalent to finding the inverse in (3.3).

From (3.3) and (3.4.) it is seen that the estimation problem

of was reduced to the estimation of A and that the loss of

efficiency due to clipping depends on the closeness o.~ X to

Obviously when X and are close so are and ~ by con-

tinuity. It is convenient to introduce the shift operator B

defined by BZ
t 

Z~~1, and let 4(B) = 1 - ~~~~~~~~~~~~~ Also

let 
~k 

be the correlation function of and let K ( i ,j,k )

be the fourth order cumulant function of X~ (o bvi ou s l y  it corre-

sponds to stationarity).

K~~
(i , j ,k )  =

- ..~~~.{sin~~~( p .  )si n~~~
(p . k )

+ sin~~~(p j ) sin
~~~( P i ...k

) + sin
~~~

( P k ) s in ’( P j..j
)}.

Becaus e Z is Ga uss ian K van i shes .  Now i is a measure

of dependence in the clipped series and since the pairwise depen-

dence in this series is weaker than the pairwise dependence in

the original Gaussian process (see (4.1) and the remarks following

it) it is reasonable to assume that K
~ 

is small and summable.
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p.

1 r t ’m l : Let Z~ be an AR(p) pror.e~~s

= u~~, t =

u
~ 

are independent N(0,a
2 ) r and om v ar i ab l e s, where the roots

of i~(B) 0 lie outside the unit circle. Let be given by

(1.1). If 1 2 : x
, ,j_r )I < then ~ converges to in

mean square in the sense that

u r n  EII~~~ 
— 

~lI 0,
n -+~~

where 1f 11 denotes the usual norm .

Proof: With obvious notation write

=

Let

s i n n ( A
k
_½ ) + 5k ’ k

S = (.& ,. . .,e .
1 p

and

/ 0 ~l ~~~

/ 0 
~l

’
~ 
5
p— 2

~2 
e
~

\ p ~
1 e P-2 ~p-3
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I

,

Then

~ (X) = (i’i +

Observe that 5 2jsin .

~~

. (A
k
_A

k )J . It follows from the fact

that 
~k 

is absolu tely summable , EX = A , and (1) p. 464,

lim n Cov(Xk , X .) = 
~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~ 
+ 8in

_l
(pr_j )sin _l

(p~,.~k
)]

+ ~ ~ 
K
~
0,_r,i_r) (3.5).

that E = 0(1/n). Thus , for sufficiently large n we can use
results from perturbation theory . Accordingly [4] we add another

equa t ion

—1

~~~~~~~ ~~~~
.~ ud define the norm of a p x p matrix ~ by

A - maximum I I~~~I
- 

P i v Hv E E

We shal l  f i nd  a bound on 
~~~~~~~~~~ II . Note that

- S ii; -, ii + I,. - .11,. -. ~~ .~~

As n increases  H M ’EII = 8 = 0 (i/V i~~) becomes small , so tha tp
for sufficiently large n it follows (4] by the perturbation

theorem that

- ~~ ~~~~-‘ ~~ ~ ll~0H

j
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w h i l e

li~,0-tll IIM
-1 11 and IIE O H — H~~~~~~~ll + H~~II

Thus

— S ( 
~~~~~~~ 

+ ii ~ ii ) 11M 111 h u h  + flM 
lii ile II

and ob serve tha t by the Froben ius  norm est ima tion

z E~
2 

. = 0(1/n).
i#j  1 :1

Theorem 2: Under  the same con d it ions as in Theorem 1 the  approxi-

2 —l
• mate asymptotic distribution of is N(~~, ~ In r .

Proof: Observe that E~ = A + 0(1/n). From [1] p. 4.89 and using

a Taylor  series expans ion  to one term

u r n  n Cov( ,~ ) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(3.6)

n-~~ n ( l~~~P k ) f2(l~~~pj
)

from which it follows that ‘ E ( X
k
_A
k
)2
~~~

+ 0, n— p ~~~. Henc e

p1im~~ = and by the fa ct that ~ (A) is continuous also
n-..

pliin~ ~~,
. From th is  and Theorem 1 then

p~~~~~~ 
(~~~

-
~~~

) = 0.

Therefore  it is s u f f i c i e n t  to consider the  asymptot ic  d i s t r ibu t ion

of • only. Sin ce it is well known that has an asymptotic

normal d is t r ibut ion  we only sketch the rest of the proof for con-

venience. The asymptotic covariance matrix can be obtained from
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(3.1) by noting that the ij e l emen t  of the  i n f o r m a tio n  m a t r i x  is

-E 
a — t (  ) !~. .2.t 2

2
and so Var (~~) ~ ~~~ F 1. Observ e tha t

n- p p

n ,-l n
V~ (— ~-~ t=~ +l ~~~ t=~ +l’~t

’
~t

and this has the same limiting distribution as y = i/’f~r 1 Z z U
p t p+l~ t t

A nderson [1] pp. 198-200 has shown that if c is any vector of

constants then has an asymptotic normal distribution. It

follows that v5(,-41)-L N(o ,a2r ’).

Wh en y~~, th e var iance of Z .~, is known then an approxi mate

• maximum likelihood estimator of a
2 is ,

• 2 P A *

~~~~~~~~~~~~~~~~ = 

~~~ 
— E *k

s m n u
k ½fl (3.7)

k 1

However  when is unkn own it is impos sible to es t imate  it

from the clipped data since the variability in th e process

is not preserved in the axis crossings. This means that there is

no connection between Ak 
and ~

2 
In order to be able to estimate

the  quantity Zz~ is needed in addition to the clipped data.

We consider now two important special cases.

Exampl e 3.1. Es t imat ion  in A R ( l ) .

V Assume Z,~ = •1Z~ _1 + u~~, ~~~~~~~ The l ikel ihood (2  2)

r ed u ces to

L ( X  ) 1/2(1 - A ~~~~~~~~~~~~~~~~~~~~~~~~~ 
(3.8)1 1 1
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where d 2s - 2r - (x + x ) is the number of axis crossings
1 1 1 n

by Z~~. Owing to (2.9), (3.4) becomes

• 4, ( X  ) 5~~ 5{(n-1) — ( # o f  axis crossings) _ 1} ~~~~~1 i i  n-i 2

This  est ima tor has been studied in [7] where  it was shown tha t it

compe tes well  wi th 
~l 

the es t ima te obtained f ro m the ori g inal

data. •l 
behaves  rem arkab ly well even for  k]1 close to 1.

Now f rom ( 3 . 8)  and the  u n i queness  of the  b i n o m i a l  expans ion  we

immedia tely obtain ( see  [8] for  ano ther p r o o f )

D ~-.‘b(n—l , 1—A 1
). (3.10)

Tha t is , the d i s t r i bution of the numb er of axis crossings D under

the assumpt ion tha t X .~ is a first order Markov chain is binomial.

However in (8] it was experimentally shown that (3.10) is reasonable

only when is in the approximate range I4,
~

I 5 0.6. This dis-

cussion leads to the interesting observation that the Markov assump-

tion is suitable for estimation as is seen f rom Theorem 1. However

the distribution (3.10) obtained under this assumption should be

regarded not without reservations. This seemingly a paradox can be

resolved as follows. The estimation problem is rather simple since

estimated is only one parameter while the distribution problem is

much more complex and may involve many parameters which our Markov

assumption excludes from consideration . But when is rather

small (3.10) is adequate from which it follows directly that

n -. ~, which in turn implies that

V

~

(

~~

_ ,1 ) -L x(o,n2x1(l-x.~)), n -. .. Thus , to test the hypothesis
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that is white noise , i.e. H
0
:~~1 

= 0, we r e j e c t  fo r  l a rge

v a l u e s  of v’i~

The m a i n  a d v a n t ag e  of 
~ l is tha t its com p u t a t i o n  is f as t

and can be carried on a small calculator. Let us compare the ex-

pected number of arithmetical operations needed in order to cal-

culate vs. the number needed for 
~~~~~. Negl ect ing end eff ects

we have :

Expected # of arithmetical operations needed for 
~~~ 

4(l_1
1
)n+6

Exp ect ed H of ari thme tica l ope ra t i ons  ne eded for  ~

where taking the sine and •counting a 1-run are considered as single

operations.

Example 3.2: Estimation in AR(2)

Here (1.2) becomes

• zt = •izt_i + ~2
Z~ _ 2 +

The e s t i m a t e s  ( 3 . 4 )  are

-

2Cos
A 2 A (3.11)

sinu (A
2—½ ) — sin [ff(X

1—½ )J .

2 cos2(Tr(~ 1-½))

Note that 1 21< l I 1 + 2 < 1, #2 
- 1. as is needed for’

to be stationary.

4..
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It follows from (2.8), (2.10) that and are functions

of the numb er of ax i s cross ings  and the numb er of runs  w i t h  two

or more symbols in t~ 0-1 series. We investigate here via an

extensivc simulation ase suggested by Wold (1965) and studied

in [1] sec t ion  5 . 9 .  A ccor d i n g l y  •~ ~~ 4~ = _ 4,2,

2 6 2
a (1 - 4, )/(l ÷ 4, ) so that VarZ

~ 
= 1. The model is then

Z

~ 

= ~z~ _1 - ~
2
Z~ _ 2 + u~~, VarZ

~ 
= 1.

The values of 4, are 0.25 , 0.7, 0.9 and of n 250 , 500, 1000,

2000. For each pair (4,,n) ten time series were generated from

whi ch the sampl e average s and va r iances  of ~~ and of

were computed. The resul ts a re given in Table 2. Table 1

giv es typ ical re cords correspon d in g to the t h r e e choices of 4 , .
* *

It is seen t h a t  are on t h e  average  j u s t  as good po int
e.# “a #%a 1’a

estimates as •~~‘ ~~ 
are . How ever the variances of 4,,~, •2

A *

are u s u a l l y  smal l e r  t h a n  those  of and 
~~~~~~ 

Roughly speaking,

in order to achieve the same order  of p rec i s ion  for  t h e  estimates

based on the cli pped da ta , the 0-1 series should be approximately

twice as large as the original series. Although the estimates

based on the original series are endowed with a relatively higher

efficiency, for large data records the difference between these

two types of estimators is negligible. This is in accordance

with Theorem 2. The study of this relative efficiency is the sub-

ject of the next section .

What happens if in the clipped series the 0’s are replaced
4.

by l’s and the l’s are replaced by 0’s? In this case the

— 

information pertaining to axis crossings is left intact and the
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same is t r u e  f o r  the number of runs with at least two symbols

b et w e e n  t h e  f i r s t  an d  last 1 e x c e p t  fo r  n e g l i g i b l e  end e f f e c t s .

T h i s  m.’ans that we obtain almost exactly t h e  same  e s t i m a t e s  f o r

•
~~~
, 

~~~~ 
For example with n 1000 and 4, 0.25 we obtained

ave 0.2539 , ave -0.0646, Var 0.0017 , Var +2 =

0.0026 which are almost the same as the corresponding results

• in Tab le  2 .

• Table 1. Typ ical  r e a l i z a t i o n s  of s i ze  50
o b t a i n e d  by c l ip p ing

zt = •Zt i  
- •

2
Zt_ 2 + U

t
,

u
~ 

“a N ( O ,(l-4,
6
)/(l+4,

2 ) )

H A x i s -
4, Clip ped Series crossings

0.25 OllllOlOl0000llOllllOOUlOll0000lOOll000lOlll000ll 23

0.7 Ollll000ll000llOOlllOOlllOOl0000llOOl000lllll000ll 19

0.9 ll000lll000lll000lll000lll000l00000000lll000lllllO 15

Again  (3. 11) can be computed  much f as t e r  than  and

In fact the difference in the expected number of operationsis

approximately 6n - ~~
. (2  - A

1 
- A

2
) in favor of and 

2
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§4. Loss of efficiency

A problem associated with estimation after hard limiting

is t’he proble m of meas ur in g th e loss in th e prec i s ion  of our

e s t i m a t e s  due to this transformation. That clipping results in

a loss of “information ” can be seen from the inequality

~
PX

(k)I (L 1 .1)

w h e r e  p ( k )  = 
~~

- sin~~~(p ~~) is the autocorrelation of X~ . Now

since in addition X~ a n d X t _ k  are independent if and only if

they are uncorrela ted , (4.1) means that the pairwise dependence

in the clipp ed series is w eak er than t h a t  in Z~~. Intuitively,

this may affect the efficiency of estimates computed from the

clipped data. More precisely, if ~~ (A) is the 0
th 

component

of .t(X) let a
10 = ~~0

(X) /~~A . . Then upon using a Taylor series

appr ox i m a t i o n  we obta in when n is su f f i c i e n t l y  large

* AVar 4, = Var • ( A )  ~ a Zc’aU U ’ ”
(4,2)

Var 4, = Var ~ (2~
) 

~
where  a = (a ,.. . ,a ) and ~~ is the cova r i ance  ma tr ix oflo pu

It is convenien t to associate the efficiency of with the

sum of the elgenvalues of 
~~~~~ Accordingly we define

.4
def tr Z~I

A ~A ‘1.3eff (~)
tr Z~
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The choic e for (4.3) stems from the simplicity of its calcula-

tion and the fact that if trZ~ is r ela t i ve ly  large so wi ll

be Var 4, too. Using the dominating terms in (3.5) and (3.6)

we obtain

Var (l-p 2) ~ ,,,( s in ~~~( p ) ) 2
k k r-- r (4 4)

Var A
k 2

r =- ~~

The r e f o r e  when is smal l,  e . g .  
~~ k 1  

< 0.2 , k � 0 , (4.3)

is near unity and the clipping results in almost no loss for

all p r a c t i c a l  pu rposes .  In gene ra l  we ob tain an approxima te

upper  bound u s i n g  (4 . 1)

2
e f f (~~) max (l-P ~~) 

!!~-. (4.5)
k=l ,...

Because Var = 0(1/n) (4.5) means that for to be as

ef f ic ien t as 
~ 

is the b inary series  should be roughly  tw ice

as long as the original series. The experimental results in

E x a m p l e  ( 3 . 2 )  suppor t  t h i s  f i n d i n g .  See [13), [18] for  s i m i l a r

r e s u l t s .  It should be noted  however  t h a t  for  long se r ies  the

d i f f e r e n c e  be tween  and is negl i g ible .  Also , observe t h a t

when > 0 an approximate upper bound for the ratio Var 4,/

Var is again (4.5). Finally it is easy to see that the expected

number  of o p e r a t i o n s  t h a t  can be saved owing to clipp ing is at

least (p+2)n for _an AR (p).

:.
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