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ESTIMATION Or' THE PARAMETIIRS IN STATIONARY
AUTOREGRESSIVE PROCESSES AFTER HARD LIMITING

by

Benjamin Kedem

§1. Introduction

Let Zt’ t =0, #1,..., be a stationary stochastic process

and define the clipped ‘process Xt by

X, = 2 t =2 0y X5 (1.1)

RS AR RNt SRR AT

There are several reasons for the transformation (l1.1) commonly
known as clipping or hard limiting. If long records of data are
available then it is convenient to clip the original data and
store the observed information in just a few sufficient tics
whose computation is extremely fast as only counting is in. .ved.
All the more so, experience has shown, [6], [7], [10], [1], (3],
[18] that very little precision in estimation is lost due to this
coarse quantization. Also, there are situations [9] when the
data must be actually observed in the form (1.1) as to allow
certain noise modulation. Evidently the problem of outliers in
the Zt data ceases to exist.

From a statistical viewpoint (1.1) is tractable because:

if the binary process xt is finitely dependent then the like-

lihood function of an observed time series xl,....xn is always
available regardless of the probability law which governs the
original process zt. This means that efficient estimation of

i parameters based on the quantized data is possible.




Suppose now Zt is. an autoregressive process of order p

2. = ¢.2 + ¢ .7 +...%¢ 2 + u = O e (1.2)

t 1 t=-1 2 t-2 p t-p i

2
where the ut are independent N(0,0" ) variates, and where the
roots of the associated polynomial 1 - ¢lB —...—¢po lie out-
side the unit circle. In this paper we shall obtain approximate maxi-

mum likelihood estimates for ¢ from the clipped process

l""’¢p

X when Xt is a stationary pth-order Markov chain. The re-

8
lated problems of estimating the covariance function and spectral
density of Zt from the clipped data were discussed in [6], [11],
[13], [07], [18). The main difference between these works and the
present one is that we base our estimation on the likelihood

function of the 0-1 data where the sufficient statistics are

determined by the axis-crossings by Zt' In other words the

l

|

“ estimates are functions of the particular arrangements and lengths
i of the l-runs and O-runs as formed by Zt while crossing level

9. 7his principle will become clear as we proceed. It is shown

that the clipped data estimates are obtained at a substantial sav-
ing in computing as expressed in terms of the number of arithmetical
operations. At the same time they compete well with the usual maxi-
mum likelihood estimates.

Experience has shown that (1.2) is an adequate representa-
tion for describing a wide range of stationary time series e.g.
see [3], [14]. Maximum likelihood estimation of the parameters
in (1.2) based on the original data zt has been discussed in
[12]. Moderate modifications are considered in [1], [3]. It

turns out that the maximum likelihood estimates of the ‘j ob-
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obtained from the original data are essentially the same as the
least squares estimates.

In what follows we shall make use of a famous formula. Let
(X,Y) have a bivariate normal distribution with parameters
EX = EY = 0, Var X = Var Y = 02 and correlation pP. Then by

introducing polar coordinates one obtains

AR S (1.3)
+ 55 Sin (p).

£l

Bri(X 2 0, ¥ = @)=

This formula can be traced back to the writings of Sheppard [15]

Stieltjes [16].

§2. The Likelihood Function of the Clipped Time Series and Esti-
mation of Transition Probabilities

If X 1is a Bernoulli random variable with a probability of

success 6 then Pr(X = x) = 0%(1 - 6)l-x, X = 0,1. In deriving

this exponential distribution, use was made of the fact that X
can take the values 0 or 1. This observation is instrumental

in constructing the likelihood function of the clipped series

Xt.

Define

Prl, ®n, (X, . on, “gici X, 2%, ) uP
i 711741 Tia *Ti-k  Ti-k XgXe qeeeXy o

and observe that from (l1l.1) we have

Pr(xi=x ) =

i

X l-xi el x4 l-x:l l-xi—l
PriXg=xg [Xg ) =%5.0) = [p);(2-pyy) *[P10(2Pyp) ’

N =

*1-2
NN 1-x1 %1
Pr(Xg=x;y [ Xy g =% 10Xy 5 =%y ) = {[pnlpon _I ["101"001

X

*4- 1 %, lex b 1
rieeone’] ‘
pllOPOI p1oopooo ’
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etc., and therefore in general

1 0 IiIi l...Il
PréX, * X sivendi o B 3 2 5 N Uy ) K (2.1)
1 1 n n 2 i=2 yiyi—l"'yl
such that the second product is over all 2% -1 i-tuples
(yi'yi-l""’yl) and
X if ¥ = 1
=
i
l—xi if I 0
This is the joint distribution of any 0-1 time series xl""’xn
; % = =
provided Pr(x1 —xl) ok

Evidently, since Zt, the original process, is strictly
stationary also the clipped process is strictly stationary; that
is, the stationary property was preserved by Xt. But Zt is
also Markovian. However, mathematically speaking, Xt is not
a Markov process as well because for one thing, the hard limiting
transformation is not 1-1. In this case it is apparent that (2.1)
viewed as a likelihood function is useless, for as the series
size n increases also the number of unknown parameters in-
creases so that (2.1) cannot be used for estimation purposes.

To get around this difficulty one has to condense somehow (2.1).
We shall then overlook the mathematical difficulty and assume
that the pth order Markov property is inherent in the clipped
process. This is a statistical assumption which is certainly

reasonable when 02 is small. This assumption is analogous to

the normal assumption in the general linear model or to the




assumption of Poisson arrivals in queuing theory for it enables
us to pursue statistical analysis based on the likelihood (2.1).

Now let Zt, t = 1;25+0430s be given by (1.2), and %
t =1,2,...,n, be given by (1l.1). Under the assumption that Xt

t’

is a p 8 order Markov process the joint distribution (2.1) re-

duces to

n IiIi IREEET] p
Pr(E, o civesRomR ) s B HPp T - (2.2)
e Wt H O N ¥y Tisp
n
1 LTS FUREETS PR
izp+1l Z %
=Rp T >

Fe b3 T ap

where as before the product in the last expression extends over

all the gP Y bei arrangements (yi’yi-l"' Ja o En (2.2

¥y 5
terms which do not depend on n were ignored. This likelihood
function is a special case of the one given by Bartlett (1951),

except that formally we utilize it in a different way. We shall

make use of the following identity:

(1-2) + z = (1l-y)(1-2) + y(l-2) + (l-y)z + yz

[
"

(1-%)(1-y)(1-2) + x(1l-y)(1-z) + (1-x)y(1l-z) + xy(1-2) (2.3)

(1-%x)(1-y)z + x(1-y)z + (l-x)yz + xyz,

+

and so on. Define

A, = Pr(x =1 lxt_k L S R S W SRR 1




We estimate the ¢k from the Rk. It is possible to rewrite

(2.2) as a product of a function in Xk and a function of nui-

sance parameters in this case higher order probabilities. The

function in Xk is a power of Xk times a power of 1 - A

Only terms in (2.2) of the form

K

n
 SEE DREER £ X, ; o e X, (2.4)
i=p+l i i-p+k+l1 i-p+k i-p+k-1 i-p+1l i-p
P
Yo Yeoperait Pppekar Paiper
or of the same form but with the x's replaced by (l—xi_p+k)
and (l-xi_p) respectively, and the 1's replaced by O0's,

contribute their exponents to the power of Xk. The rest of the

terms in (2.2) contribute their exponents to (1 - Xk). The sum
of all these exponents in n-p. Thus the exponent of Xk is
n
i=g+1[ zIi"'Ii-p+k+1Ii-p+k-l'"Ii-p+l]xi-p+kxi-p

+ri )2

i=p+l

i'"Ii-p+k+lIi-p+k-l"'Ii-p+1](l—xi-p+k)(l-xi—p)’
where the second sum extends over all possible terms of the

form (2.4). Evidently, this second sum is just the telescopic
identity (2.3) and is equal to 1. The exponent of 1 - X\ is

k
obtained in the same way. (2.2) can now be rewritten as




2 X, X,
= % e i-p+k i-p & i-ptk p
Pp(xl-xl,...,xn-xn)¢ Ak i=p+l © p+l (2.5)
n
S S R R, 1-2 l(xi-p+k+xi—p)
'(l-kk) i=p+l =p+
« powers of nuisance parameters.
It follows that a maximum likelihood estimate of Xk is given
by n n
i 4 i=p+l xi-p+kxi-~p . i= +l(xi—p+k+xi—p) taarp)
K R W= R aDs (248)
n-p
i We 5« = A and for a sufficiently large n [2] ik is

asymptotically normal such that Var VE(ik-xk) ~ Xk(l-lk).

‘ From a computational viewpoint it is preferable to express

ik in the simpler form
=) 2Rk - 2S + n
Xk = ; | o LY R, (27
n-k
n n
where Rk = ._Z xixi-k’ S = .2 Xi' This unbaised form is
i=zk+1 153

essentially the same as (2.6) except for end effects of the series

which become negligible as n increases. We shall use (2.7).

In the next section we show how to obtain approximate maximum like-

lihood estimates for the ¢, from the Kk.

Now we immediately see that ik depends on the axis cross-

ings by Zt. In particular




i % n-2(# of l-runs)’ (2.8)

1 n-1

or, neglecting end effects as is the case for large n

n - (# of axis crossings by Zt) (2.9)

Ty -l

n-2(# of runs between the first and last 1
E with two or more symbols +1) (2.10)
2 n~2 3

>>

etc.

The exact distribution of the number of axis crossings by Zt
when Xt is either a first or second order Markov chain has
been recently obtained in [8].

It should be noted that the estimation problem of transition
probabilities treated here is somewhat different than the usual
problem of estimation of conditional probabilities in pth order
Markov chains where the quantities of interest are the probabili-

ties of a state given the previous p states. That problem was

first solved in [21].

§3. Estimation of the ¢'s

We start with a brief review of the maximum likelihood esti-
mation of ¢l,...,¢p from the original 2 series. This will
give rise to natural estimates based on the clipped data.
Given a time series zl,...,zn from the Gaussian process
Z then its joint distribution is N(0,T ), where T = {y ., ¥s
t kit n [i-3 |
i,j = 1,...,n, and the joint density can be written as the

product




2 2 2
f(zl,...,znlg,o )= fi2 ,...,znlg,o ,zl,...,zp)f(zl,...,zplg,c

pt+l

Because the second term on the right hand side is independent of
n the log-likelihood for sufficiently large n can be conveniently

defined as

2
£(¢) = log f(zp+l,...,zn|£,c ,zl,...,zp)

2 ]
Zzt Zg’tzt i

o R Y esane - et g £3.1)
4 et o8 5 5z 2!
= TeZi %y el 5

= t = '
where ¢ (¢1,...,¢p), z (zt-l’zt-Q’ "zt-p) , and the sums
extend from p+l to n. Then
| 2ug) = 2s(25z.2 - 2322 ¢}
az 2 2 ~t t vttt
o

and by equating to 0 we obtain the maximum likelihood estimator

) Y22 (3.2)

Now, multiply (3.2) by 1 = Z‘.Z:/Zzi and define

Zz_z
A= 2edatnte 23K,
2 n 5 22

t

Then apart from neglibible end effects (3.2) takes the form

~

1 sinm (’i‘l—’!) sinﬂ('i'p_l-’i).l e r.s:ln"('i‘l-’!)
, ;;z t,(z.) A sfnn(}l—k) 1 si..nﬂ(lp_2-k) si..nn(kz-k) (3.3)
h.si.l'nr().l:._l—!’) sinw(kp-z-lg) e - 5 L-s:i.nﬂ()\p--l().J :
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where :X = (%l’°"’ip)" It follows that the approximate maxi-

mum likelihood estimator based on the clipped data is

>>
N

£= i’,( (3.4)

2

s

~ ~

where Xk is given in (2.7) and X (xl,...,xp)'. It is possible

to calculate Q(i) recursively using formulae developed in [5].
This is equivalent to finding the inverse in (3.3).

From (3.3) and (3.4) it is seen that the estimation problem
of ¢ was reduced to the estimation of L and that the loss of

~

efficiency due to clipping depends on the closeness ol A to x.

~a
~ -~

Obviously when X and z are close so are ¢ and % by con-
tinuity. It is convenient to introduce the shift operator B

defined by BZ, = 2

. ¥ o B p
> L and let ¢(B) =1 ¢1B e ¢pB . Also

let Py be the correlation function of Zt and let Kx(i,j,k)
be the fourth order cumulant function of Xt (obviously it corre-

sponds to stationarity).

€ (130K) = BOX =0 (X =30 (X s =) (X o)

- —ii{sin_l(p.)sin'l(p. k)
um " o

+ sin-l(pj)sin-l(pi_k) + sin-l(pk)sin-l(pi_j)}.

Because Zt is Gaussian KZ vanishes. Now Kx is a measure
of dependence in the clipped series and since the pairwise depen-
dence in this series is weaker than the pairwise dependence in

the original Gaussian process (see (4.1) and the remarks following

it) it is reasonable to assume that Kx is small and summable.
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Theorem 1: Let 2 be an AR(p) process

—_——— t

$(B)Z_ = u L W ANt

t’
. 2 P
u, are independent N(0,0°) random variables, where the roots

of ¢(B) = 0 1lie outside the unit circle. Let Xt be given by

oo ~

(Loidi - 12 L3 Kx(k,-r,j-r)l < @ then ¢ converges to ¢ in

r=-®

mean square in the sense that

lim Eflg - gll = o,
n >
where |[*|l denotes the usual norm.
Proof: With obvious notation write
i |

£ = 20 = Mg |

Let
sinﬂ(Xk-%) = sinn(kk-k) t o€ Kiom=r s deagDs
’E = (,51,...,6p)',
and
0 sl 52.-.ep_1
€1 0 el...sp_z
E =
82 el 0 ...ep_2
€ [ B ave0




2=

12

Then

$A) = (M + ) (gre).

Observe that ]ekl s 2|sin

e

>

that Pi is absolutely summable, E

. D ] s =l s .. =1 . =1
i:m n Cov(xk,lj) e § [sin (pr)SIn (pr+k-j) + sin (pr_j)Sln (pr+k)]
+o T prE-e
@
+ 4 Z K (k,-r,j-r) (3.5).
rP=~o s
that E ei = 0(1/n). Thus, for sufficiently large n we can use

(xk-xk)l. It follows from the fact

= A, and [1] p. ué6u,

results from perturbation theory. Accordingly [4] we add another

equation
-1
2o * 8 (prs)
eud define the norm of a pxp matrix A Dby

maximum [AYI

Al =
l"‘ v € gp DAl

We shall find a bound on ||27£ . Note that

g -oll = g -¢ Il + g, -2l

As n 1increases "g:lgﬂ = § = op(l/Vﬁ) becomes small, so that

for sufficiently large n it follows (4] by the perturbation

theorem that

g - gl = IEEN Ig

B e e e ——
{3 .
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while

lg,-¢ll = Iy~ tell ana Mgl = hu=2ell + lgl

Thus
I - ¢l = cum~ Ll + HoldUM M HIEN + e~ Hiel,

and observe that by the Frobenius norm estimation

EIEN® s 2 Be®); ;) = oC1/n).
i#]

Theorem 2: Under the same conditions as in Theorem 1 the approxi-

mate asymptotic distribution of £ is N(g, 02/n ’l\"’;l).

Proof: Observe that Ez e 0(1/n). From [1] p, 489 and using

a Taylor series expansion to one term

Z 2
r=—-Fprpr+k-j+pr-jpr+k+2pjpkpr-2pjprpr—k_29kprpn-i
1/2(l 5 p§)1f2

1. (3.6)

1im n Cov(X ,X,) =
n-+® k™3 ﬂ2(1 -pz)

[ 4
from which it follows that 'B(Xk-kk)2-—» 0, n— «. Hence

plimz = A and by the fact that ¢(A) is continuous also
Nae

plim;,= ¢. From this and Theorem 1 then
n->e

plim ($-g) = 0.
Npes

Therefore it is sufficient to consider the asymptotic distribution
of ;‘ only. Since it is well known that z has an asymptotic

normal distribution we only sketch the rest of the proof for con-

venience. The asymptotic covariance matrix can be obtained from
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(3.1) by noting that the ij element of the information matrix is

2
9 n-p
«f —— l(z) = Y -
36500, & 11=3)
~ 2 -1
and so Var(z) ™ ff; Fp . Observe that
3 n B | " n
B = Vn s z
Valg - 4) = VB(GES ( Bey Beke) 575 taperfeVt

1 n

. . 3 . . s . = 5 z g
and this has the same limiting distribution as Yy I/VEFP t=p+b5tut

Anderson [1] pp. 198-200 has shown that if ¢ 1is any vector of

constants then 22! has an asymptotic normal distribution. It

follows that VE(;-¢)$» N(O,ozf;l).

B ! When Yo the variance of Zt’ is known then an approximate

maximum likelihood estimator of 02 is,

A2 pA - ~
o = yv[1 - 2 ¢ sinn(A -%)] (3.7)
0 IR k
1 k=1
However when Yo is unknown it is impossible to estimate it
from the clipped data since the variability in the Zt process
is not preserved in the axis crossings. This means that there is
no connection between Xk and 02. In order to be able to estimate
02 the quantity Zz: is needed in addition to the clipped data.

We consider now two important special cases.

Example 3.1. Estimation in AR(1l).

Assume 2 +ug, |¢;1 <1. The likelihood (2.2)

g L

reduces to

SN 3-8 gy « A AR e, (3.8)
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where d = 2s - 2rl - (xl+ xn) is the number of axis crossings
by Zt' Owing to (2.9), (3.4) becomes
= 2 Z (n-1) - (# of axis crossings) 1
= A = B i - 2
. ¢l( l) sinmw{ s 2} (3.9)

This estimator has been studied in [7] where it was shown that it

competes well with 3&

data. 31 behaves remarkably well even for |¢l| close to 1.

the estimate obtained from the original

Now from (3.8) and the uniqueness of the binomial expansion we

immediately obtain (see [8] for another proof)

D ~b(n-1, 1-X ). (3.10)

That is, the distribution of the number of axis crossings D under
the assumption that xt is a first order Markov chain is binomial.
However in [8] it was experimentally shown that (3.10) is reasonable

only when ¢ is in the approximate range |¢l| = 0.6. This dis-

1
cussion leads to the interesting observation that the Markov assump-
tion is suitable for estimation as is seen from Theorem 1. However
the distribution (3.10) obtained under this assumption should be
regarded not without reservations. This seemingly a paradox can be
resolved as follows. The estimation problem is rather simple since
estimated is only one parameter while the distribution problem is
much more complex and may involve many parameters which our Markov
assumption excludes from consideration. But when |¢1l is rather
small (3.10) is adequate from which it follows directly that
\/tT(il-ll)-—Lo N(O,Xl(l-xl)), n + », which in turn implies that
Vi-(zl-Ol)-‘-" N(O,ﬂzll(l-xl)), n + = Thus, to test the hypothesis

| 8
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that Zt is white noise, i.e. H0:¢l = 0, we reject for large

— ~ 1
values of Vn |¢l|/§1h

The main advantage of 31 is that its computation is fast
and can be carried on a small calculator. Let us compare the ex-
pected number of arithmetical operations needed in order to cal-

culate 31 vs. the number needed for 3?

1 Neglecting end effects

we have:

Expected # of arithmetical operations needed for $. i(l—l )n+6
P el 1

Expected # of arithmetical operations needed for ;1 N uyn,

where taking the sine and counting a l-run are considered as single

operations.

Example 3.2: Estimation in AR(2)

Here (1.2) becomes
Be WMTL s F Wty P ou,,

The estimates (3.4) are

o sinln(R o301 - sinm(},-%)]

Cos’Lm (R, -1)]

, Hla (3.11)
slnn(l2-k) - sin [n(ll—k)] E

>

cos?[n(R,-3)3

-~ ~

Note that |32|<Jq ¢1 + ¢2 <1, ;2 - 01 < 1 as is needed for

zt to be stationary.
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It follows from (2.8), (2.10) that ¢l and ¢2 are functions
of the number of axis crossings and the number of runs with two
or more symbols in ti.. 0-1 series. We investigate here via an
extensive simulation . ‘'ase suggested by Wold (1965) and studied
in [1] section 5.9. Accordingly $y * be = -¢2,

02 = (1 - ¢6)/(1 + ¢2) so that VarZt = 1. The model is then

L 2 A
Z = ¢2 ) Zt—2 + ut, VarZt - S 15

The values of ¢ are 0.25, 0.7, 0.9 and of n 250, 500, 1000,
2000. For each pair (¢,n) ten time series were generated from

~

which the sample averages and variances of ¢ and of $l,

i $2
32 were computed. The results are given in Table 2, Table 1
gives typical records corresponding to the three choices of ¢.
It is seen that 31, 32 are on the average just as good point
estimates as ;1’ $2 are. However the variances of 31, ;2
are usually smaller than those of ;1 and ;2. Roughly speaking,
in order to achieve the same order of precision for the estimates
based on the clipped data, the 0-1 series should be approximately
twice as large as the original series. Although the estimates
based on the original series are endowed with a relatively higher
efficiency, for large data records the difference between these
two types of estimators is negligible. This is in accordance
with Theorem 2. The study of this relative efficiency is the sub-
ject of the next section.

What happens if in the clipped series the 0's are replaced
by 1's and the 1's are replaced by 0's? In this case the

information pertaining to axis crossings is left intact and the
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same is true for the number of runs with at least two symbols
between the first and last 1 except for negligible end effects.

This means that we obtain almost exactly the same estimates for

2 0.25 we obtained

b1 by For example with n = 1000 and ¢

n

ave ‘;1 = 0.2539, ave .;2 = -0.0646, Var ‘:1 0.0017, Var §,

0.0026 which are almost the same as the corresponding results

in Table 2.

Table 1. Typical realizations of size 50
obtained by clipping

2
By T 00 o =W % 4 * N

uy ~ NCO,(1-4%)/(144%))

# Axis-
¢ Clipped Series crossings
0.25 01111010100001101111001110110000100110001011100011 23
0.7 01111000110001100111001110010000110010001111100011 19
0.9 11000111000111000111000111000100000000112000111110 15

Again (3.11) can be computed much faster than ?1 and ;2.
In fact the difference in the expected number of operationsis

approximately 6n -~ % (2 - Xl - h2) in favor of 31 and ;2.
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§4. Loss of efficiency

A problem associated with estimation after hard limiting
is the problem of measuring the loss in the precision of our
estimates due to this transformation. That clipping results in

a loss of "information" can be seen from the inequality

< L.

2 e i 3 v
where px(k) = 5 sin (pk) is the autocorrelation of Xt. Now
since in addition Xt and xt—k are independent if and only if

they are uncorrelated, (4.1) means that the pairwise dependence
in the clipped series is weaker than that in Zt' Intuitively,
this may affect the efficiency of estimates computed from the
clipped data. More precisély,'if ¢u(b) is the oth component
of ¢(X) let a, = a¢u(k)/axi. Then upon using a Taylor series

1iv

approximation we obtain when n is sufficiently large

Var ¢ v (A) ~ a'
= r
w ¢u e ¢u ~ iu'éxéu
= . (4,2)
v = & g' A
ar ¢. var ¢ (X) a, Zxa,
where a = (a, ,+.s.45a ) and 2 is the covariance matrix of
~U lou pv Y

5. It is convenient to associate the efficiency of £ with the

sum of the eigenvalues of Accordingly we define

%

def tr Ai

eff(é) - = (4.3)
tr Nx
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The choice for (4.3) stems from the simplicity of its calcula-
tion and the fact that if tréi is relatively large so will
be Var 30 too. Using the dominating terms in (3.5) and (3.6)

we obtain

Var A\ (l-pi) Z _(sin-l(p ))?2
—_— — E (4.4)
X a
i s
r=-= “p
Therefore when p, is small, e.g. |p Kl =0-2, k#0, (4.3)

is near unity and the clipping results in almost no loss for
all practical purposes. In general we obtain an approximate

upper bound using (4.1)

2
eff($) < max (1-pi) %r (4.5)
Gl " R

Because Var ;o = 0(1/n) (4.5) means that for 30 to be as
efficient as ;u is the binary series should be roughly twice

as long as the original series. The experimental results in
Example (3.2) support this finding. See [13], [18] for similar
results. It should be noted however that for long series the
difference between é and z is hegligible. Also, observe that
when Py > 0 an approximate upper bound for the ratio Var $U/

Var ;u is again (4.5). Finally it is easy to see that the expected

number of operations that can be saved owing to clipping is at

least (p+2)n for an AR(p).
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