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SUMMARY AND CONCLUSIONS

An accurate full-wave method for determining the effect
on ELF radio propagation of a localized, cylindrically-
symmetric disturbance has been developed. Application of
this method to the disturbance produced by a high-altitude
nuclear explosion gives, when the transmitter is outside of
the disturbed region, greater attenuation in most of this
region than does the two-dimensional WKB approximation used
by previous workers, but less attenuation at the far edge of

the region. For example, 10 min after a typical megaton-range,

high-altitude nuclear explosion, the signal level at the far
edge is calculated to be 3 dB below that before the bur t,

while the two-dimensional approximation gives a 7-dB decrease.

Such differences are very important for ELF systems whose 1
enormous power requirements may necessitate operation at !
minimal signal-to-noise ratios.
The analysis in this report also shows that ELF fields
:

at the ground are sensitive to the details of ionospheric

conductivity profiles only in two rather limited altitude
ranges. The lower of these is the altitude range where the
conduction and displacement currents are comparable. The
upper region is where the conductivity scale heidght is
comparable with the skin depth. Future effort in obtaining
improved conductivity profiles for ELF propagation calcula-

tions should therefore focus on these two altitude ranges. :
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SECTION I

INTRODUCTION

The purpose of this report is to present a method for
determining the effect on ELF (extremely low frequency) radio
communication of a localized, cylindrically-symmetric iono-
spheric disturbance, such as would be produced by a solar
proton event or a high-altitude nuclear burst. At ELF,
wavelengths are frequently comparable with the dimensions of
ionospheric disturbances, either natural or artificial.
Consequently, approximate methods for handling such problems
at VLF, such as the WKB approximation or the Fresnel diffrac-
tion model of Crombie [l], are not applicable at ELF. At
these lower frequencies, it becomes necessary to work with
full-wave solutions of Maxwell's equations in the earth-
ionosphere waveguide.

There are well-known techniques for obtaining full-wave
solutions for an earth-ionosphere waveguide in which there is
inhomogeneity in only the vertical direction [2-4]. For
certain idealized conductivity profiles, analytic solutions
are possible. However, for more realistic profiles, solutions
can be obtained only by numerical methods. Either procedure
involves the solution of an eigenvalue equation, each eigen-
value and corresponding eigenfunction corresponding to a
particular waveqguide mode. The electromagnetic field radiated
by any source in the waveguide can be expressed as a super-
position of waveguide modes, with relative amplitudes depending
on the nature of the source. At ELF, this representation of
the electromagnetic field is especially convenient because only
the lowest, or TEM, mode is nonevanescent in the earth-ionosphere
waveguide. At distances from a source exceeding 2 or 3 times
the height of the waveguide, only its TEM component remains.

The source of particular interest here is a horizontal
electric dipole antenna located at or near the ground. For a

s




horizontal dipole with current moment Id%, oriented along the

direction a = 0, and varying with time as e_lwt, the vector
potential for the TEM mode is
SR e e T (z) 8 (ks _r) (1-1)
z 2n o o 1 o

where k = w/c is the wave number, n_is the index of refrac-
tion of the ground, z is the height above the ground, and r
is the horizontal distance from the source. The quantity So
is an eigenvalue characterizing the TEM mode and f (z) is the
corresponding eigenfunction normalized to f5 = 1 at the ground
("height-gain function"). The quantity Ao' which has the
dimensions of a reciprocal length, is known as the "excitation
factor."

Sufficiently far from the source, the Hankel function in
Equation (1-1) may be approximated by its large argument
expansion, which has the form

1kSor

H{l) (kS _r) — e (1-2)

r1/2
From this it can be seen that the real part of the (complex)
eigenvalue SO is the reciprocal of the horizontal phase velocity
in units of c. The imaginary part of SO is related to the
horizontal attenuation rate by

3

a = 8.7 x 10 kIm(So) dB/ (1000 km) (1-3)

where k is the wave number in km I.

When the properties of the waveguide are laterally, as
well as vertically, inhomogeneous, such as in the presence
of a localized disturbance, the vector potential no longer has

the simple form of Equation (1-1). However, if the scale
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lengths for the lateral gradients are much larger than those
for the vertical gradients, which is almost always the case,
it can be expected that the vertical variation of the vector
potential will be determined primarily by the local ionosphere.
The lateral variation of the vector potential at the ground is
then governed by a two-dimensional Schroedinger wave equation
in which the effects of the localized disturbance appear in
the form of a complex localized potential. The problem then
reduces to the determination of the scattering from such a
potential. These concepts form the basis of the theory which
will be developed in the following sections.

A related approach to the problem has been developed by

lcox [5]. He presents a descriptive semiquantitative method

partial wave scattering from a cylindrically-symmetric
potential from which upper bounds are obtainable on the
absolute magnitude of scattering and absorption of ELF waves
in a horizontally perturbed earth-ionosphere waveguide. The
method presented here allows a calculation of the electro-

magnetic field everywhere in such a waveguide.




SECTION II

EFFECT OF LATERAL GRADIENTS ON TEM MODE

The equations which govern electromagnetic propagation
in the earth-ionosphere waveqguide are Maxwell's equations for

a conducting medium together with a generalized Ohm's law

—J? = gE + —j? (2_l>

where ;S is the source current density. Due to the presence
of the earth's magnetic field, the medium is anisotropic and
the conductivity o is in general a tensor. However, below
about 70 km magnetic effects become unimportant and the medium
is essentially isotropic. The conductivity below this
altitude can therefore be considered a scalar. It will be
shown later that the TEM field radiated by a source in the
waveguide falls off very rapidly above the altitude at which
the skin depth becomes comparable with the local conductivity
scale height. 1In a nuclear environment, this altitude is
generally below 70 km. For ambient ionospheric conditions,
this altitude is near 70 km in the daytime but above 70 km

at night. 1In the following, it will be assumed that the
ambient ionosphere is a daytime one, so that magnetic effects
may be neglected in the undisturbed as well as the disturbed
region of the ionosphere.

The case to be considered is that of a localized cylin-
drically symmetric disturbance of an otherwise laterally
homogeneous daytime ionosphere. It is convenient to use a
cylindrical coordinate system (p,¢,2) about the axis of the
disturbance, with the origin at the ground. With the above
assumptions, and an assumed time dependence e-iwt, Maxwell's

equations become




VxB=uglolp,z) - ie wlE + ugjg (2-3)

The second of these may be written

o 2
= .2 - in (p.2lk" 2 2 2
V x B i o E + Bode (2-4)
where k = w/c is the free-space wave number and
nz(p,z) - [l + lgiﬁ422} (2-5)
EQW

is the square of the local index of refraction.
It is convenient to express the fields in terms of a
vector potential A and a scalar potential y. Thus one writes,

in the usual manner,
B=V x A (2-6)
E = Vyp + iwA (2-7)

Substitution of Equation (2-6) and (2-7) into Equation (2-4)

leads to

2
3 . L e Te R S o 2 o p ok T
V x V x A = [V (V K) ve A] = : k (?l»u) + iwA) + My de

(2-8)

I1f the gauge of A is chosen to satisfy the condition




the preceding equation becomes

VR + nf(¥-R7 L+ 0%k = - w3, (2-10)
n

For a horizontal dipole source, A has components in the direc-
tion of 35 and in the z-direction. However, if lateral gradients
of n2 are neglected compared with vertical gradients, only the
z-component of A remains finite at distances from the source
exceeding the thickness of the waveguide. Thus, for such
distances, Equation (2-10) with appropriate boundary conditions

can be satisfied by a vector potential of the form

A= (0,0,A) (2-11)
The wave equation then reduces to
oA
3 1 z 1 Y 2 I _
T (—5 5;—)+ = \L % F k B, = 0 (2-12)
n n
where
¥ =2 8 ()3 M (2=13)
o 9¢ Ap p2 8¢2

is the transverse Laplacian.
In the case of a laterally homogeneous medium, where n2 is
a function only of z, the vertical and transverse parts of

Equation (2-12) can be separated. Thus, one writes

A (ps0,2) = glp,¢) f(2) (2-14)

which leads to the two eigenvalue equations




Vfg+ k252g =0 (Bessel's equation) (2-15)

2
a [1 4af 2 S _
dz (n—z a) G (1 n_z') e iy

where S is a constant. The various TM modes, of which the TEM
is the lowest, are solutions of this form satisfying appropriate
boundary conditions. The only constraint on the solutions of
Equation (2-15) is the radiation condition, which requires
outgoing waves at large lateral distances. Such solutions
exist for any value of the parameter S. However, the function
f(z) must satisfy two boundary conditions, one at the ground
and the other at large altitude. These can be satisfied
simultaneously only for certain, in general complex, values

of S. The eigenfunctions corresponding to these eigenvalues
are the TM modes of the waveguide.

In the presence of lateral gradients, a separation of
Equation (2-12) in the form of Equation (2-14) is not possible.
However, since the scale lengths for the horizontal variations
of the ionospheric index of refraction are a few orders of
magnitude larger than those for vertical variations, it seems
reasonable to assume that the vertical dependence of the vector
potential is determined primarily by the local ionosphere.
Thus, it is assumed by analogy with Equation (2-16) that the

vertical variation of Az is governed by the equation

9A 2
0 ! z 2 o 5 (p) & "
3z ( o ) + k (1 ) fo& 0 (2-17)

nz(o,z) nz(p,z)

where Sz(o) is the eigenvalue corresponding to a laterally
homogeneous waveqguide with the vertical conductivity profile

that exists at p.




Near the perfectly conducting ground, AZ has the form

2

A, = g(p,0) + Glp,0) 53— + ... (2-18)

Since n2 = 1 near the ground, Egs. (2-12), (2-17) and (2-18)
give

Glp,0) = - x2(1-82(p)) g (0, 0) (2-19)
v2 g(p,¢) + k25%(p) gl(p,8) = 0 (2-20)

The solution of the problem requires first a determination
of Sz(p), by a solution of Equation (2-17) at as many lateral
distances as necessary, followed by an integration of
Equation (2-20). The first step can of course by carried out
by one of the techniques mentioned in the introduction for
the numerical solution of an eigenvalue equation. However,
this could involve a large amount of computation, which is
probably unwarranted in view of the considerable uncertainties
in ionospheric conductivity profiles. As an alternative, an
approximate method for determininag Sz(p), involving very
little calculation, will be presented in the next section.

It will be shown that approximate eigenvalues obtained in
this manner agree very well with those calculated by full wave
solutions, and are therefore quite adequate for the present

purposes.

10




SECTION III

APPROXIMATE METHOD FOR EIGENVALUE DETERMINATION

The method for determining approximate eigenvalues depends
on the fact, to be demonstrated presently, that the eigenvalue
depends on the details of the conductivity profile only in
two limited altitude ranges. The lower of these is the neigh-
borhood of the altitude hO at which o = EQW- The upper region
is the neighborhood of the altitude hl at which ¢ = (4uomci)—l,
where Sy is the conductivity scale height at the altitude hl'
The method consists first of approximating the conductivity
in each region by an exponential with the local conductivity
scale height. Two analytic solutions of Maxwell's equations
are then obtained. One obeys the proper boundary condition
as z > «» and is valid in the altitude range hO << z < », The
other obeys the appropriate boundary condition at the ground
and is valid in the altitude range 0 < z << h,. There is a

region ho << z << h., where both solutions are valid. The

1
eigenvalue S(p), which appears as a parameter in these
solutions, is determined by requiring that the solutions
agree in the overlap region.

The basic equations are Equation (2-9), which becomes

iw aAz 2
o 0t bori
n

and Equation (2-17). These equations must be solved subject

to appropriate boundary conditions at the ground and at large
altitude. At ELF, the ground can be considered perfectly
conducting, and the horizontal electric field at the ground
must therefore vanish. At very large altitudes, the solution
is required by the radiation condition to contain only upgoing

waves.

1L

..



The conductivity o is an increasing function of altitude.
The altitude ho at which the conduction current becomes equal
to the displacement current, i.e., at which o(ho) = €W,
roughly marks the lower boundary of the ionosphere. For

altitudes z >> ho'

n® = — >>1 (3-2)

and Equation (2-17) becomes approximately

3 €qw BAZ 2

Combined with Equation (3-1), this leads to the wave equation

2

az2

=

+ iuooww =0 (3-4)

In any limited altitude range, the conductivity may be
approximated by an exponential, with a scale height appro-
priate to that altitude. Near a height hl to be determined
shortly, the conductivity may therefore be written

(Z-hl)/Cl
og(z,p) = ol(hl,o)e (3-5)

where both h1 and ;1 are functions of p.

In the vicinity of h a change of variable to

1I

im/4 (z—hl)/2c1
y = e e (3-6)

12




allows Equation (3-4) to be transformed to

2
2 3%y Ay O )
y 5;7 + vy 3y + AU 0wty YU =0 (3-7)

If one chooses h, to be that altitude at which

3l

2, (w oy /% = 1, (3-8)

Equation (3-7) takes the canonical form of Bessel's ecuation.
The solution corresponding to outgoing waves at large alti-

tude 1is

(1) in/4 (z-hl)/ZCl

b= £(p) Hy e e (3-9)

Above hl' which is the altitude at which the skin depth equals
twice the conductivity scale height, the potentials fall to
zero extremely rapidly. Thus, hl represents the upper
boundary of the waveguide, where ultimate reflection takes
place. It will be seen later that significant reflection also
takes place at the altitude ho.

For altitudes z << h the Hankel function in Equation

ll
(3-9) may be approximated by its small argument expansion.

The scalar potential in the altitude range ho << 2 <% h1 thus

takes the form

im

v — Flo) [z-hy - 3L ] g <<z << (3-10)

The vector potential in this region can be determined from

Equations (2-17) and (3-1). The resulting relation is

13




9z 2

E o
jwa, = - &% [1 * S—(—‘l)-} LD
n

Since the second term in the square brackets is negligible in

this region, the vector potential becomes

iwAz -F(p) (ho SRR TR hl) (3-12)
and therefore independent of altitude. Although it has not
been demonstrated here, it can be shown that the vector
potential remains essentially constant over the entire altitude
range 0 < z << hl'

It now remains to construct a solution which obeys the
proper boundary condition at the ground and has a region of
validity in common with the solution just derived. As noted
above, the boundary condition at the ground is that the
horizontal electric field vanishes. The horizontal electric
field is proportional to the scalar potential Yy, and there-
fore, by virtue of Equation (3-1), to 3Az/az. Thus, the
boundary condition at the ground is that BAZ/BZ vanishes
there. With this boundary condition, a first integral of

Equation (2-17) is

2
A f 2
B - S (g -
E— = n-k A [1 rz ] Ade (3 13)

If use is now made of the fact that Az is essentially constant
in the range 0 < z << h;, the quantity A, may be taken outside
the integral for values of the upper limit in this range.
Combined with Equation (3-1), this leads to

14




[ ——

VA
2
w = - iwA_(0,p) |z -f §A2’l dz (3-14)
n
(o]

(z << hl)

For z >> h_, the integrand in Equation (3-14) becomes very
small, and little error is made by extending the range of
integration to infinity. Thus, in the range hO A7 < hl’

the potentials are given by

as = AZ(O,p) (3-15)

IQJ
NN

(I iwAz(O,p) z—Sz(p)J/. (3-16)
(o]

o]

(ho << zZ <<_hl)

The horizontal electric and magnetic fields derived from
Equation (3-15) and (3-16) must be made to agree with those
derived from Equation (3-12) and (3-13) by an adjustment of
the parameter S(p). This is most easily accomplished by
making the ratio of the horizontal electric and magnetic
fields, or the wave impedance, identical in the two cases. It
can easily be shown that the horizontal electric field is pro-
portional to Yy and the horizontal magnetic field is proportional
to Az. Thus, the impedance

Ep(z,o)

Z2(z,p) = m
¢ ’

y(z,p)

19




and the requirement that the impedances be identical for the
two solutions results in the condition

im

(h. + == E.]
s?(p) = 22—+ 2 (3-18)
{h nz(z,p)

For any given index of refraction profile, the eigenvalue
S(p) can now be calculated from Eguation (3-18) in a straight-

forward manner. However, it is possible to carry the approx-

imate method one step further. The integrand in Equation (3-18)

becomes very small at altitudes very much above the height hO
where

o(ho) = e (3-19)

Furthermore, the integrand is essentially unity up to a
conductivity scale height or so below this altitude. There-
fore, an adequate approximation to the integral can be

obtained by writing the index of refraction as

(z=h ) /¢
gl m i e . 2 O (3-20)

where co(p) is the conductivity scale height at the altitude
ho(o). The integral in Equation (3-18) can now be evaluated
analytically, with the result

-
3

i, 25 £

§2(p) = et fn - (3-21)
(h0 i Co)
16




The above is an approximate analytic expression for the
eigenvalue with which it is now possible to integrate
Equation (2-20) in a rapid and straightforward manner. As
mentioned earlier, the exact eigenvalue S(p) is that which
would be obtained for a laterally homogeneous medium with the
local vertical conductivity profile. A number of full-wave
solutions have been obtained numerically by E. C. Field [6]
for a variety of conductivity profiles corresponding to normal
and disturbed ionospheres. In Table 1, the eigenvalues
obtained by Field are compared with those calculated from
Equation (3-21) based on values of hl' Cl' ho’ and co deter-
mined from Field's conductivity profiles. It can be seen
that the agreement is excellent for the real part of S(p)
and quite good for the imaginary part. In view of the basic
uncertainties in conductivity profiles, the use of the approx-

imation derived above seems well justified.

17
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Table 1. Calculated Phase Velocities and Attenuation
Rates for a Laterally Homogeneous Ionosphere

v/c v/c dB/1000 km_ dB/1000 km

r [EQ.(3-21)] (EXACT) [EQ.(3-21)] (EXACT)
1077 .58 .59 1.7 1.8
1078 .61 61 1.7 1.8
1072 .65 .65 1.9 1.9
10710 .69 .69 2.0 2.0
107 T3 .74 2.0 1.95
10712 .79 .79 1.8 1.6
10713 .81 .805 1.1 1.2
10714 .81 805 0.81 0.90

Comparison of approximate phase velocities and attenuation rates, cal-
culated using approximate Equation (3-21), with Field's exact
solutions [6]. 1In both cases the conductivity profiles generated by
Field are used. The parameter T is an ionization intensity parameter
defined as T = (FY)/RZt]'Z, where FY is the total fission yield in
megatons, t is the time after burst in seconds, and R is the radius in
kilometers over which the debris is assumed to be spread uniformly.

18




SECTION IV

SCATTERING BY A CYLINDRICALLY SYMMETRIC DISTURBANCE

The formalism developed in the preceding sections will
now be applied to the calculation of the effect of a local-
ized cylindrically-symmetric ionospheric disturbance on the
radiated field of an ELF transmitter. The applicability of
the theory requires that lateral gradients be small; in
particular, the disturbed region must join continuously, at
its outer boundary, with the undisturbed region. The undis-
turbed region is assumed to be horizontally stratified.

The geometry of transmitter, disturbance, and receiver
is shown in plan view in Figure 1. For simplicity, the
transmitter and receiver have been assumed to be located in
the undisturbed portion of the waveyuide. The coordinates
(r,08) are plane polar coordinates referred to the transmitter,
while (p,¢) are plane polar coordinates referred to the axis
of the disturbance. The quantities to be calculated are the
field amplitudes at the receiver with and without the disturb-
ance.

Near the ground, the vector potential is a function
g(p,9) of the lateral coordinates satisfying Equation (2-20).
The function g(p,¢) in the undisturbed region must satisfy
the same equation with S = So' Thus, the problem may be
regarded as the two-dimensional scattering by a cylindrically-
symmetric complex "potential" V(p) = Sz(p) - Sg.

In the undisturbed region, g(p,¢) can be decomposed into
two parts, one of which represents the incident wave and the
other the scattered wave. Thus, g(p,¢) can be written

g(p,9) = gt + g5(p,9) (4-1)

LY
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Figure 1. Coordinate System and Geometry of Transmitter (T)s
Receiver (R), and Disturbed Region of Waveguide
(Shaded Area Centered at D)

20




The function gl is the transverse factor of Equation (1-1), with
a replaced by (6-68), i.e.,

g*(r,0) = cos(e-8)u{L) (ks,r) (4-2)

By use of Graf's addition theorem for Bessel functions [7],
gl can be expanded, in the region b, S0 £ T, in functions

of the (p,¢) coordinates. The result is

gi(pr¢) = Ei%eme(kSOO)[amcos(m¢) + Bmsin(m¢)]
(P S 0 2 B, (4-3)
where
o 1/2
e = 1 (m # 0)
O o= (-1 cosé[ﬂéii(ksoro) - Héii(ksoro)]
B, = (-1)™1 siné(kgzro)ﬂé\l) (kS r,) (4-4)

The radial function gs(o,¢) must be a solution of Bessel's

equation corresponding to outgoing waves at large radial

distance. The general outgoing wave solution can be written

in the form

o

g° (0,9) =n§0 et (kS0) [v iV a cos me) + v(? 6 sin(me)]

(0 > pg) (4-5)

21
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(1)

where Ym

(2)
m
Equation (4-3) and (4-5), the total radial function in the

and Y are constants yet to be determined. From

region Po < p < r, is

(e8]

g(p,9) = 2: em[g(l)(o)cos(m¢) + géz)(p)sin(m¢)] (4-6)

m=0 o

where

(1)

m

(1)
o H:L (kSop)]

gt (o) = apfap (ks ey +

8 [Im k8000 + v 87 u () (ks o) | (4-7)

]

g{? (o)

In order to complete the solution, it 1is necessary to

solve the wave equation in the disturbed region, subject to

appropriate boundary conditions at p = 0 and p = Po" The
function g(p,¢) must be a solution of Equation (2-20), the
general form of which is given by Equation (4-6). The
functions gél)’(z)(p) satisfy the equation
dg 2
1a m) D2 ohm I 3
5 35 (oa——p +[kS(p) ?}gm-o (4-8)
(P £ b5l

(It will be understood that the omission of a superscript
implies both superscripts.)

The boundary conditions at p = P, are that the electric
and magnetic fields must be continuous there. It can easily

be verified that, with Sz(p) continuous at p = Por all the
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continuity requirements can be satisfied by making g and
dgm/dp continuous at p = Por

The boundary condition at p = 0 is that all the fields
remain finite, which in turn requires gm(O) and gé(O) to be
finite. This boundary condition can be conveniently formal-
ized by transforming Equation (4-8) into a Ricatti-type

equation. First one lets

Ine) = B U (P) (4-9)
where
p = 0/pPg
The function U(p) then satisfies
vl o+ Cotl)Up 2%s%y_ = 0 (4-10)
P
where
k = ke,

If one then introduces as the variable

U
Y, = - plémi) n (4-11)
m U
m
Equation (4-10) becomes
Y2
' 2202 =y =(2m+1) m "
Ym = kS (D)O g -E(Tmm (4 12)
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This equation can be integrated outward from the origin in
a straightforward manner once the behavior of Ym at the
origin is known. This can be deduced from the requirement
that g_(0) and g;(O) are finite. 1In the neighborhood of

p =0, S"(p) is approximately constant, and Equation (4-8)
reduces to Bessel's equation. The solution which is finite
at the origin varies with p as

g = oML+ 0(p?)] o> 0 (4-13)

Thus, from Equation (4-9) and (4-11)
Y (o) = 7 p >0 (4-14)

so that

Ym(O) = Ym(O) =0 (4-15)

The last condition is sufficient to start an outward numerical
integration of Equation (4-12), from which one obtains a value

Y (1) at the boundary p = p_.
W ° (1) (2)
Finally, the constants Yy

m m
can now be determined from the boundary conditions at p =

and y in Equation (4-7)
Poe
Since gm(p) and g;(p) must be continuous at p = Por their
ratio must also be continuous. In the undisturbed region,
the ratio is calculated from Equation (4-7), and in the
disturbed region from Equation (4-9) and (4-11). The resulting
relation, for either superscript, is

!
[J%(ksopo) e (kSopo)]

kS p
o o (1)
[Jm(ksopo) + v nl (ksopo)]

=m - Ym(l) (4-16)
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The constants yél)

(2)

and Ym

are clearly the same, and with ‘a

little further manipulation, can be shown to be given by

& [Jm(ksopo)ym(l)—ksopoJm+l(kSopo)]

|
¥ ) 1
m - §) o) (4-17
[ksoooﬂm+1(ksopo)—ym(1)ﬂm (ksopo)]
Combined with Equation (4-5), this gives 1
g (p,9) = E emvmﬂrfll) (kS_p) [a_cos(m¢)+B8 sin(m¢) ] (4-18) |

m=0

which now enables one to calculate the scattered amplitude

everywhere.
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SECTION V

CALCULATION OF SCATTERED MAGNETIC FIELD

In ELF reception by receivers submerged in the ocean, the
receiving antenna measures the horizontal electric field. The
horizontal electric field at any depth in the ocean can be
determined from the horizontal magnetic field at the surface.
It is therefore the latter quantity which will be calculated
explicitly here.

It can be expected that an ionospheric disturbance will
have its greatest effect when its axis passes through the
transmitter-receiver line. Consequently, it will be assumed
that 6 = 0 and ¢ = 0,71 (see Figure 1). Furthermore, it will be
assumed that the transmitter is oriented for maximum signal
at the receiver, so that § = 0. These assumptions, in addi-
tion to applying to the case of greatest practical interest,
also simplify the calculation somewhat. However, the general-
ization to arbitrary configuration of transmitter, receiver,
and disturbance is straightforward.

For the configuration described above, the horizontal
magnetic field can be shown to have only an azimuthal component.
The azimuthal magnetic field is related to the vector potential
by

3A

- P (5-1)
¢ 3p

Aside from an excitation factor, the total azimuthal magnetic

field is therefore

og
B, ~ E O S . (5-2)
¢ =0 mm 3p
({6 oAl ro)
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0g
B g o (5-3)
m=0

where o is given by Equation (4-4) with § = 0. (The factor
(-1)™ which appears in Eguation (5-2) arises from the factor
cos(m¢) in Equation (4-6), in which ¢ = m for r < ro.) The
azimuthal field of the incident wave is given by

i

o e ,
B¢ T Hl (kSor) (5-4)

B Fp

with the upper sign corresponding to Equation (5-2) and the
lower sign to Equation (5-3j.
dg

m

ap
on whether the receiver is inside or outside the disturbed

The evaluation of in Equation (5-2) and (5-3) depends
region. If the receiver is outside the disturbed region
(0 > 05),

_ (1) "
9w (PY = YpHo (kS_p) + J (kS 0) (5=5)

where T is calculated from Equation (4-17) after an integration
- _ 3g
of Equation (4-12) from p = 0 to p = 1. The quantity TQ? can

then be calculated by a straightforward differentiation of
Equation (5-5).

If the receiver is inside the disturbance (p < po), one

9g

additional integration is required to determine TW?' It is

2/
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easy to show from Equation (4-9) and (4-11) that g, satisfies

the differential equation

Y (P)
", - ) - m m
gm(p) = gm(D) [: w+ _ZT] (5-6)
A
with the boundary condition (Equation (5-5))
_ (0 = o
gm(l) L 1 (kSo) i Jm(kSo) (5=

The function Ym(B) can be tabulated during the same integration
of Equation (4-12) from which Ym is calculated. With Wi and
Ym(5) known, Equatign (5-6) can be integrated inward from

p = 1 to determine §Em anywhere inside the disturbance.

For a configuration in which the transmitter is under the
center of the disturbance and the receiver is outside the dis-
turbance, the field at the receiver can be obtained by inter-
changing the positions of transmitter and receiver, performing

the calculation as described above, and invoking reciprocity.
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SECTION VI

NUMERICAL RESULTS AND DISCUSSION

Illustrative calculations based on the preceding theory
have been carried out for the disturbances resulting from a
high-altitude, megaton-range nuclear explosion during daytime.
The bomb fission yield was taken to be 2 MT and the fission
products were assumed to rise to an altitude of 300 km at
1l min and 1000 km at 10 min after the burst. For both times,
the ionization rate from delayed gamma rays was calculated as
a function of altitude and distance from ground zero using
standard formulas [8]. Ionization from delayed beta rays was
neglected, since it depends on the local magnetic dip angle
and is expected to have a smaller effect than the gammas.

The resulting electron and ion concentrations were
calculated by R. Turco [9] assuming steady-state chemistry
0, H,0'.nH.0, O and NO—.nHZO. Using

2 3 2 2 3
mass-dependent ion mobilities [10] similar to those of Carroll

: : - +
and including e , NO .nH

and Mason [11], ionospheric conductivity profiles were

computed [9]. From these results, the two altitudes and the
two scale heights needed for the calculation of approximate
eigenvalues (Equation (3-21)) at 45 Hz were determined. The
results appear in Tables 2 and 3, the last entry in each table
representing the beginning of ambient conditions. These tables
were the input data for electromagnetic field calculatiocns
using the methods described in the preceding section.

In each case, the transmitter was located outside the
disturbance at 1000 km from the nearest edge, and the electro-
magnetic field was calculated at points along the line between
the transmitter and the center of the disturbance, ranging
from 200 km from the transmitter to 1000 km beyond the far edge
of the disturbance. (Larger transmitter-receiver distances

would require earth-curvature corrections.) The fields
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Table 2. Ionospheric Parameters and Approximate Eigenvalues for 2 MT

of Fission Products at 300 km Altitude 1 Min After Burst Time

GROUND h ; h :
RANGE 0 0 1 1 Re(S) Im(S)
(km) (km) (km) (km) (km)

0 18.66 3.19 59.32 2.97 1.73 .30
200 19.60 3.18 60.22 2.92 2 .28
400 22.60 3.54 62.47 2.73 1.62 .25
600 25.19 3.44 63.88 2.78 1.56 .22
800 27.76 3.71 65.03 2.79 1.50 21

1000 29.88 3.47 65.95 2.77 1.46 .18
1200 31.87 3.42 66.71 2.74 1.43 37
1400 34.30 3.23 67.34 2.71 1.39 .15
1600 36.70 3.01 67.62 2.69 1.35 A3
1800 40.10 2.64 63.04 2.76 1.30 % b
2000 44.58 2.19 68.50 2.77 1.24 .087
2200 50.86 1.73 69.85 2.72 .97 .067
2300 54.63 1.65 7V 2.78 1.14 .062
2400 58.13 2.1 73.68 2.92 12 .067
2450 58.283 2.50 75.53 2.93 1.14 .073
2500 58. 20 2.57 77.53 3.29 1.15 .078
2550 58.20 2.57 78.24 3.42 1.16 .080
2600 58.20 2.57 78.20 3.52 1.16 .081
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Table 3.. Ionospheric Parameters and Approximate Eigenvalues for 2 MT
of Fission Products at 1000 km Altitude 10 Min After Burst Time

GROUND h c h .
RANGE ) 0 1 1 Re(S) Im(S)
(km) (km) (km) (km) (km)

0 33.70 8.52 70.05 3.15 1.36 .31
200 33.81 8.49 70.08 3.16 1.36 31
400 34.45 8.31 70.27 3.21 1.35 .30
700 35.80 8.14 70.67 3.33 1.34 .28

1000 3%.29 8.39 71.11 3.47 1.31 .28
1500 40.00 7.15 71.77 3.71 1.30 23
2000 41.88 6.66 72.38 4.01 1.28 .21
2600 44,13 5.34 73.10 4.12 1 ¥27 .18
3200 47.13 3.90 T3r2 4.20 1.24 .14
3400 49,12 3.12 73.90 4.21 e .12
3500 50.44 2.68 73.99 4.22 .21 .10
3600 52.23 2.28 74.12 4.20 1.19 .094
3800 S7:21 1.87 75.69 3.86 115 .076
4400 58.20 2.57 78.19 352 1.16 .081
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corresponding to the first ten partial waves were calculated,
and superimposed to give the scattered field at any point.

In all cases, only the lowest three or four partial waves
were found to make an appreciable contribution at any field
point.

In Figures 2 and 3 the attenuation of the 45-Hz elec-
tromagnetic field is plotted as a function of distance from
the transmitter. The attenuation in the absence of the
disturbance is also plotted for purposes of comparison at
1 min after the explosion (Figure 2); the radius of the dis-
turbance is about 2600 km, and the ionosphere at the center
has been lowered by 40 km. The additional attenuation across
the entire disturbance is about 0.5 dB. At 10 min after the
explosion (Figure 3) the radius of the disturbance is about
4400 km, the ionosphere at the center has been lowered by
25 km, and the additional attenuation is about 3 dB. In both
cases, the field between the transmitter and the leading edge
of the disturbance is essentially unaltered, indicating that
there is little back-scattering.

It is interesting to compare these results of the full-
wave solution with the "great-circle WKB" approximation which
has been used in ELF calculations by Pappert and Moler [12]
and others. This is essentially a two-dimensional approxima-
tion in which the properties of the waveguide are allowed to
vary along the direction of propagation, but are assumed uniform
in the perpendicular direction. The properties throughout the
waveguide are assumed to be those of the great-circle path
between transmitter and receiver. 1In this approximation, the
magnetic field of the wave is given by

1B (£)| ~ 1 1 IST S(r)[-1/4 L
) r1/2 [hTh (r)]l/z exp —[ I, (s)dr
oo
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where the superscript T denotes ti.e transmitter location.

-1/2

The factor [ho(r)] represents the increase or

decrease

in energy density as the height of the waveguide changes.

The attenuation calculated from this approximation is

also shown in Figures 2 and 3. The approximation

has been

applied only to that portion of the path inside the disturbance,

so that Equation (6-1) has been normalized to the
value at the leading edge. The results show that
imation underestimates the attenuation in most of

ance region, but overestimates the attenuation at

undisturbed
this approx-
the disturb-
the far edge

of the disturbance by about a factor of two. This behavior

is not surprising, since the two-dimensional approximation

forces the wave to go under the ionospheric depression, thus

both compressing and absorbing it, while the realistic full-

wave solution permits the radio wave to go around

depression.
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