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Abstract

There are k (> 2) competing ncrmal populations with common known

variance and unknown means 8,2095¢44,0 Let 0r13 S ++0 £ O denote

K’
the ordered values of the {ei}. Nothing is known concerning the

pairing of the {Bi} and the {0[;q}. In the location invariant
identification problem, the differences {°[i] - °[1]} are given and

it is desired to sclect the population assnciated with e[k]' of
particular interest is the slippage configugatiog' eqi] s e[k-l] = e[k] - &*
where §* > 0 is given. We re@ gttent/igﬁ/\to prdcedures that
guarantee that the population with the largest mean is correctly selected
with probability at least P* where ,;71 <Pt <1 is preassigned.
Essentially, this requirement is satisfied by the stopping rule

Bechhofer, Kiefer and Sobel (Sequential Identif;patiﬁﬁ'iﬁa—ﬁzgiézz

Procedures, Univ. of Chicago Fress 1968, Chap.§3i>independent1y of the

sampling rule and thus data dependent allocation rules can be considered.

Unlike the case k = gi:ggee Robbins and Siegmund (1974) J. Am. Statist.
Q R

Assoc., 69, 132-139),)when k % 3, substantial savings in expected total

sample size can be obtained when adaptive sampling is used instead of

the equal allocation rule (Atector at a time"}gampling). Several procedures

are proposed and investigated with rcspect to this criterion. Also their

performance with regard to the alternative criterion of minifiiting
expected number of observations on the inferior populations is studied.
Both theoretical and simulation results are presented. Comparisons are
made with the performance of elimination-type procedures, such as that

of Paulson (1964), Ann. Meth. Statist., 35, 174-180.

Finally, for the ranking problem where the differences 0[1] - 0[1]

'}111( /L'




(2 <2 <k) are now unknown, it is shown that, when edaptive sampling
rules are used, the slippage configuration is no longer necessarily least
favorable for the usual indifference zone approach. This poses some

interesting problems for future research.

T SRS AN I VR e

”
iy YRR Y

WSROI




1. Introduction

Adaptive sampling procedures have been the subject of considerable,
theoretical interest in the methodology of sequential medical trials,
where it is desired to compare k (> 2) treatments. A recent survey
article by Hoel, Sobel and Weiss (1975) provides a comprehensive overview
of the literature. Most authors have concentrated on the two-armed
trial, k = 2, but studies with three or more arms are important. Gent
(1976) describes a situation in which three independent nationwide trials
involving aspirin substitutes were begun around the same time. He points
out that, instead of conducting three separate 2-armed trials of drug vs.
control, a single 4-armed study would have resulted in a considerable
saving in the number of control subjects needed.

However, adaptive sampling might be advantageous in other areas of
application. In a quality control situation there may be k batches of
items which deteriorate in time (e.g. food, drugs, etc.) and due to
records being lost it is not known which batch is the newest (oldest)
unless sampling is undertaken. Alternatively there may be k apparently
identical lots of items but of varying quality and it is desired to pick
the superior one. Another application occurs when the observations are
radar measurements on the nose cone, booster and other debris of a
rocket after separation and it is desired to identify the nose cone as

.quickly as possible e.g. for guidance or for possible counter-measures
if the nose cone is a warhead and the other objects are decoys. There
have been several papers on the subject of how search radars could be
improved by non-uniform scan controlled by a sequential detector - see

e.g. Edrington and Petersen (1971).




Consider a k-ary communication channel with feedback. The receiver
sequentially processes the signal corresponding to one of the k possible
characters until it identifies it with some degree of certainty - the
receiver then directs the transmitter to send the next chapacter. In
this application (and possibly others), there is a single input process
with k hypotheses. If so, the k populations may be taken as the
output processes of k filters. If the k possible signals are
orthogonal and the noise Gaussian, then matched filters would accomplish
the desired transformation. There are further applications to unsupervised
learning and classification techniques -- see Nagy and Tolaba (1972).

An adaptive sequential procedure consists of three parts -- a

sampling rule (also called assignment or allocation algorithm) for

deciding from which population the next observation is to be taken, a

stopping rule for deciding when sampling should cease, and a terminal

decision rule for selecting a population as '"best". Robbins and Siegmund

(1974) treat the problem of deciding which of two normally distributed
treatments with a common known variance has the larger mean response. They
show how to construct a location invariant stopping rule and terminal
decision rule of sequential probability ratio test type (SPRT) so that

the error probabilities are essentially independent of the (symmetric)
sampling rule used. In particular the SPRT can be constructed to
guarantee that the probability (PCS) of correctly selecting the treatment
with the larger mean is at least P% wherever the difference of the means
is no less than &%, Here &% > 0 and 1/2 < P* < 1 are preassigned.
They then consider various sampling rules with respect to two measures of
performance, namely (A) expected total number of observations (ASN) and

(B) expected total number of observations on the inferior population (ITN).
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They showed that the ASN was minimized by pairwise (or vector-at-

a-time VT) sampling. They also show how adaptive sampling rules which
reduce the ITN necessarily cause a considerable increase in ASN. (As
we shall demonstrate later, this result is in sharp contrast with the case
k >3 where the two goals (A), (B) are no longer in direct conflict.)
Subsequently Louis (1975) obtained the optimal allocation rule for
minimizing ASN + y.ITN (for <y > 0) in the continuous time analogue of
this k = 2 problem.

In this paper, we attempt to attack the k (> 3) treatment problem
in the same spirit as Robbins and Siegmund. Bechhofer, Kiefer and
Sobel (1968) [BKS] treat in great detail vector-at-a-time (VT) sampling for
selecting the best of k populations for a stopping rule which is a
generalization of the SPRT. However, when k > 3, great savings in ASN
can be made if the sampling rule is allowed to be adaptive (i.e. data-
dependent). As mentioned before, such rules can have the side benefit of
producing a lower expected total number of observations on the k -1
inferior treatments (ITN). This is intuitively clear; for consider the
normal case with k = 3 and when one population mean is much smaller than
the others. Very early on in experimentation, this population will become
apparent and only two populations will be left in contention. Thus,

comparad to VT sampling, we might expect that the ASN can be reduced by

almost half: Correspondingly larger savings could occur with larger values
of k. In fact, although previous authors have treated small values
of k (usually k = 2), there are applications where k may be as s
large as 1000. That ASN can be reduced by adaptive sampling is 'impox*'car'i't:.~
since recently Byar et al. (1976) have suggested that it is ASN and"'

not ITN which should be the more important criterion for clinical trials.




In the next section, we describe a k-population location invariant

(LI) identification problem and propose a stopping/terminal decision rule

with the property that its PCS is independent of the sampling rule used. In
Section 3, we describe some adaptive allocation rules, and also, in Section

L4, the elimination-type procedures of Paulson(1964) which can also be viewed
as an adaptive rules. In Section 5, these rules are compared via Monte

Carlo simulation. In Section 6, we investigate the ranking problem associated

with the LI identification problem of Section 2. However, unlike the case

k

2, or the case of k > 2 with VT sampling, we find that the usual

slippage configuration is no longer 'least favorable' and thus the results
of Section 2 cannot be extended. This is a somewhat surprising result

(at least to the authors). All the above ideas will be made more precise

i :ctions that follow.




2. The location invariant (LI) identification problem

Observations xij (1<ic<k, ] Z.l) are available sequentially
from each of k (> 2) populations my» n2,...,nk. The observations

{xij} are independent with probability density function f£(x - ei)

where 9i 1s a real location parameter. We let e[l] € cesene ip[k-l] 5_e[k]
denote the ranked values of the {ei}. We assume that nothing is known

a priori concerning the pairings of the {e[i]} and the {ni}. Also we

i . =06, - o sy = 0o~ 0
define T 91 e[l] and let 1[1] [i] [1] be the ranked

values of the {ri}. If the values of the e[i] are known (unknown) then we

say we have an identification (ranking) problem. Here we shall consider

the location invariant (LI) identification problem where only the differences

(T[i]} are known. We shall discuss the construction of adaptive sequential
procedures which guarantee that the probability of correctly selecting

(PCS) that population associated with k] is at least P%*, where

k_1 < P%® <1 is prespecified (we assume Trx] is unique i.e.

k] > T[k-l])' As in Robbins and Siegmund (1974), by invariance we can

restrict consideration to procedures based on the maximal invariants

Yij = xij - xll’ 1 <ic<k,j> 1l. Suppose that we have taken n,

k
observations from ni and define N = ) n..
1
The likelihood functilon based on the {Yij} is given by
n
i

ng f(yij STyt t z)dz

k
L*(tl,t2,...,tk) = [ g

where of course Vi1 © 0.

i = * .o
Define L(a) = L (T[ull’r[a2]’ ,T[uk]) where a € Sk’ the group of

permutations of k elements. Let Sk_l(i,j) denote the subgroup of

permutations @ € S, for which ai = §j. Define




I e
T aeSk_l(l,k)
= }  L(a)
aeSk

which is the likelihood that T = TCk] and g is the “best"
population. (Qi is also the a posteriori probability of this event,
assuming the {Hi} are all equally likely to be the best, a priori.)

Finally, define

The BKS stopping rule (and terminal decision rule) is as follows:

YTerminate sampling the first time that Q > P% p )
and select that population associated with the ( BKS
largest value of Qi'"
Theorem. If PBKS is used for the LI identification problem above
then P[CS] > p*¥ for any symmetric sampling rule such that the procedure

terminates almost surely.

Proof. This is essentially contained in BKS (Chap. 3).

Remark 1. Scale parameters. The case where f(xlei) = f(x/0;) is
analogous and can be handled either by a log transformation or by
considering quotients instead of differences.

For the remainder of this paper we will treat the example in which the
observations {xij} are normal with means {91} with known variance o2.
For k = 2, this setup has been recently treated by Robbins and Siegmund

(1974) and Louis (1975). Here it is easy to show that

) 2 ’f nzi % 0%
LR(T, 3T seeesT, ) @ exp - — (X,, - X -1, + 71
o . 20° i=1 j=1 I .
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3 S L g
where x =N~ }] ] X, and TN ] n,T;. Note that x  and
2 s ey yop * i=1 * s
T are not invariant under pernutations of the subscripts.

We specialize to the §*-slippage configuration (Karlin and Truax,
1960) for which =t
interest in its own right (e.g. see some of the examples in Section 1),
this configuration also is the "least favorable" in the associated ranking

problem with VT sampling - see Section 6. 3Substituting for iy L(a)

simplifies and for 4 ¢ Sk_l(i,k), we have

i L ni - 2
L(a) =exp-—5[) J (x, ~x )% -26%z]
26° heL§=1 M. .

where

and %, =0, Y x.-
145 1

Let Zryy < ee < 20y denote the ranked values of the {zi}, (Ties
occur with probability zero.)
Then
k-1 2
a—— - - (3 -
3 igl exp[-6 (z[k] z[i])/o ]
and PBKS is equivalent to:

(2.1) "Stop the first time that (1- Q)/Q < (1 - P*)/P* and select

that population associated with z[k].

It should be noted that for non VT sampling the population associated with

i i max. (x, ).
z[k] is not necessarily the same as the one associated with 153:3 (xi’)

We now address the question of sufficient conditions for the

almost sure termination of rule (2.1).

= 1 - = % A i .
[i] 0 (<i<k-1) and t[k] 6% > 0. While of




Lemma 1. For the &%-slippage LI-identification problem, we suppose
that the sampling rule used is such that:

(2.2) P[ni(N) +® as N+ foreach 1 <ick]=1l

Then Q+ 1 as N + » almost surely. It follows that if the stopping
rule (2.1) is used, termination will occur with probability one.

Proof. We first show that X, +6; a.s. for 1<ick as N »e.
The sequence {Xij; = 19 is i.i.d. N(ei,o2). Hence, by the

}
strong law of large numbers X../v + 9, a.s. as v+ , The
g law of Jarg , Zl i i

]
sequence { i{ xij/v; v =1,2,...} by "stuttering", i.e. repeating

J=1 =
each value several times before going on to the next. Hence Xi + 0

almost surely.
Now, without loss of generality assume T, = Tr,q(1<i < k).

Then

X
7 = m (X, - " 121 n X, ) - n (N - n )e*/2N

Hence

1 1 kil kil
( +—=—)% =X - 8%/2 - ( n.X, / n,.),
N—nk n k K i=1 ifi.,2,01

which by.:the argument above converges almost surely to some strictly
positive limit as N + «. Thus we must have Zk +4+® a,s. N+ o,

Similarly for i # k we can write

e il e :
;"o i S ML LR
kil s kil )
= n.X / n,) - &%/2
=1V hgey 2
241 241




and the lim sup of the RHS is s‘'rictly negative almost surely as N + .
Thus lim sup Zi = -» a.s.,and ‘l -Q)/Q+0 a.s. which prov ; the
lemma.

Remark 2. If the sampling rule is suth that condition (2.2) is 1 ¢t
satisfied then Q may not converge to unity. For example, suppose that,

with non-zero probability, ni(N) +n, <o for some i(l<i<k-1)

i
and nk(N) + o as N + », Then Zk - Z1 = n, j;k nj(ik. - ij. - 8%/2)/N

-n, ) niX, -X. - &%/2)/N remains finite and Q # 1.
i1 p e 8 3.




3. Sampling rules

In this section we describe several sampling (allocation) rules
to be used in conjunction with the stopping rule and terminal decision
rule given by (2.1). For convenience, we assume that all rules initially
take one observation from each population.
(i) VT At each stage a block of k observations is taken, one from
each population. In the medical context, within each block, patients
are assigned at random to each of the k treatments. A closely related
rule is the one in which observations are taken singly, one observation
from each population in turn. The ASN of this rule must be smaller than
that of the VT rule yet our experience suggests that the difference
is small. Extensive tables for VT sampling are available (BKS, Chap. 18),
and those results provide a yardstick against which our adaptive
sampling results can be compared.
(ii) RAND Q This is a randomized allocation rule in which the next
observation is taken from I with probability Qi (L <ic<k). Recall
that for the LI identification problem Qi can be considered the -
posterior probability that ni is "best'". ( Note that the nonrandomized
rule that always samples from the population associated with m?x Qi may
not terminate by Remark 2.) For k = 2 and Bernoulli observations, Simon,
Weiss and Hoel (1975) have investigated this rule.

(iii) GRS Robbins and Siegmund (1974 Sect. 3) proposed a non-randomized

rule for k = 2. Here we describe one particular generalization to k > 2. ﬂ

From the stopping rule (2.1), we note that sampling has certainly terminated

if

2
(k-1)expl[-8*(z, 4 - z[k-lJ)/a J<(1-pr)/p¥




i.e. Iif k) " Z[k-1] >b }t

where b = o2 logl(k - 1)P*/(1 - P*)]/6*%. The GRS rule depends on a

parameter c > b and is as follows: If

"0~ -1 ) Poo T Pk-1)
c = N

take the next observation from the population associated with 2073

otherwise take a vector of observations from the remaining k - 1
populations. Here D1y denotes the sample size associated with Zriy°

For k = 2 this reduces to the rule of Robbins and Siegmund. For our
simulations, two values of c¢ were chosen, namely c¢/b. = 1 and c¢/b = 1.2;

these were the values used by Robbins and Siegmund.

(iv) Bessler Bessler ( 1960, Section 8) treated this problem with

k = 3, but from a decision theoretic viewpoint in which there are costs
assigned to incorrect terminal decisions and there is a cost c¢ per
observation -- there is no P* requirement. He obtains asymptotic
properties as ¢ + 0 for his procedure. Because Bessler's stopping rule
does not guarantee error probability requirements we continue to use the
stopping rule (2.1) and consider only Bessler's sampling rule. Let

;[l]. < Xpo7. 5_5[3]. denote the ranked values of the {x, , 1 <i <3}
Define C(X) = [(§[3]. - i[l].)/(i[a]. - §[2].)]2. Bessler's allocation

rule is randomized and prescribes that the next observation be taken

from the population associated with i[i] with probability ~Ai (i=1,2,3),

where A = (Al,x2,A3) maximizes A233/(A2 + As) subject to the

constraints Al + A2 + As =1 and




Ao

Bessler tabulates & as a function of C(*). He also conjectures some
asymptotic optimality properties for the ASN functions. Although we
are not using his stopping rule, we might still hope for low ASN values.
In theory, Bessler's procedure can be‘generalized to k > 3.

(v) vYk-1:1:1 Randomization. If we can assume that the 1; are in

the é&%-slippage configuration, we might consider replacing C(x) by
the quantity C(x) is estimating, namely C(y). But when 1t = (0,0,6%),

C(z) = 1 and it is easy to show that A, =X, = 1/(2 + v2), Ay = v2/(2 + ¥2).

1
Sampling rule (v) is therefore to sample from the population associated

with max Q, (i.e. with 20y
1<i<3 g
other two each with probability (2+v2) ~. These are the same limiting

1) with probability Y2/(2 +v2), and the

proportions as those obtained by Bechhofer (1969) in the related fixed
sample size multiple comparisons problem for two experimental treatments
and a control. When k > 3, the analogous rule would be to sample from

the population associated with ZE with probability (1 + vk -l)-l

k]
and the remaining populations with equal probability.
If should be noted that rule (iii) (GRS) is the only one that

does not involve any randomization. From the remarks of Byar et al. (1976)

and Bailar (1976), randomization is important in clinical trials.
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4. Paulson's procedure

Paulson (1964), considered a procedure based on VT sampling but
featuring permanent elimination of non-contending populations. At the
n'th stage of experimentation let In be the set of populations not yet
eliminated (Il consists of all k populations). An observation is
taken from each population in In and the cumulative sample sums

n

L | =
{S;p: i In} are computed where Sin kzl L If

+
< -
Sin max S. (a - nr), then

ieIn n
IIi is eliminated. Here a > 0 and O <A< 8" are specified constants
and y+ = max(y,0). The procedure continues until only one population
remains which is selected as best. A desirable property is that when
A > 0 the number of stages is bounded by [a/A] + 1. Here [y] denotes

the integer part of y. _Note that the stopping rule is different

from (2.1).
02 k-1
Paulson proved that if a = ——— log—5-, then PCS > P¥
§ -2 1-P

whenever Trk] = T[k-1] > &%. Paulson originally suggested the choice
of A = §%/4, whereas Fabian (1974) recommended A = §%*/2 since
asymptotically (P* + 1) this choice minimizes the maximum ASN over all
parameter configurations. The unbounded procedure when A = 0 is also
of interest. In fact, Paulson's procedure is conservative in that the
PCS guaranteed is considerably greater than P* even in the LF
§*-slippage configuration. Fabian (1974) proposed a modification of
Paulson's procedure whereby this "overprotection" is reduced and
consequently so is the ASN. This modification consists of replacing

"l - P%" in the formula for "a" by a quantity B8 > 1 - P®*, For
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A=0, g=(-P¥)/[1-(Q-P¥)/(k-1)]; for =%/, 8

is the solution to the equation

1/3

1-p* =gl - -;-(e/(k - 1)L
finally for A = §%/2, g = 2(1 - P¥),
A more d- ‘ed comparison via simulation of the BKS (with VT.sampling)

and Paulson proc-zures with regard to RCS. ahd ASN for a wide range of P#*
values can be found in unpublished papers of Ramberg (1966), Bechhofer and
Raﬁberg (1977). The asymptotic relative efficiency of the 2 procedures
has been studied by Perng (1969). Paulson's procedure has been

extended by Hoel and Mazumdar (1968) and Hoel (1971).




5. Simulation results for the LI identification problem

A Monte Carlo study was performed in order to compare performances
with regard to ASN, ITN and PCS of the procedures described in Sections
3,4 for the g*-slippage problem. The values P¥* = 0.9, g% = 0.2, 02 =1
were chosen along with two values of k, namely k = 3, 10. The
results are displayed in Tables I,II. These values were chosen so that our
results would be directly comparable with those tables in Chap. 18 of
BKS. Ten procedures were considered namely (A) FIXED sample size
(Bechhofer, 1954); (B) VT; (C) RAND Q; (D) GRS with c¢/b = 1.0;

(E) GRS with ¢/b = 1.2; (F) the BESSLER sampling rule with stopping

rule (2.1); (G) the vk_1:1:1 allocation rule; (H), (I), (J) Paulson's
procedure with the Fabian modification with A/8* = .5, .25, 0 respectively.
These are abbreviated PF(.5), PF(.25), PF(0).

In the tables that follow, the FIXED sample sizes of the non-
sequential single stage procedure were taken from Table I of Bechhofer
(1954). For k = 10, simulations were only performed for procedures
(B), (C), (E), (I). This was for reasons of economy and because these
seemed the most prcmising. In any event, Bessler's rule is not easy to
obtain explicitly for k = 10.

The tables display {Ni’ 1 <i<k} where N, is the mean number
of observations taken from the population associated with iy Also
displayed is the average total sample size ASN. The three entries
in each cell are the estimated mean, its standard error (in parentheses),
and the estimated standard deviation. Also tabulated are the observed
proportion of correct selections and the mean value of Q wupon
termination. The latter yields a more precise unbiased estimate of the

PCS for the &%-slippage configuration -- see BKS page 289. Q also gives
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a measure of "excess'" or "overshoot'.

It can be seen from Tables I,II that the adaptive rules possess
some distinct advantages over VI. For k = 3, the decrease in ASN
is about 6% for k = 3 (Table I) and the savings increase to about
50% for k = 10 (Table II). Also there is the side benefit in that
the ITN can be reduced by about 22% for k = 3 and the savings increases
to 60% for k = 10. Most of the adaptive rules (C) - (G) perform about
the same -- RAND Q seems to do slightly better with regard to ASN, GRS
slightly better -for ITN. Among the PF rules, the results here are
consistent with Paulson's choice of A = 8§%/4. Of course, the simulations
are only for P* = 0.9, 6%/0 = 0.2, but we believe that the results

are indicative of what happens for other (P*, §%/0) combinations.

bty




6. The ranking problem.

We now attempt the transition from the LI identification to the
ranking problem where we assume that the ordered values T[i] are completely
unknown. In the indifference zone formulation of the normal means ranking

problem, we define the preference zone PZ = {EIT[k] -] > 8F =

{gle[k] = Ork-1] > 6%} and seek procedures that guarantee the requirement
that PCS > P*¥ wherever 1 & PZ. BKS (Theorem 6.1.1) prove that rule
(2.1) with VT sampling satisfies this requirement. Paulson (1964) showed
that his procedure also meets the requirement. (So does of course the

fixed sample size rule of Bechhofer (1954).) All three procedures

utilize the fact that, for a given set of procedure parameters (P%,5% etc.),
the infimum of the PCS over all g in PZ is achieved in the §&%-slippage
configuration, which is therefore termed f'the least-favorable'" (LF)
configuration. Thus for those procedures the ranking problem can be
reduced to an LI identification problem. It might be reasonably conjectured
that any procedure using stopping rule (2.1) and a symmetric sampling rule
that assures temmination w.p. 1 would also guarantee PCS > P* whenever

1€ PZ. However our simulations (see Table VII) demonstrate this very

intuitive conjecture to be false. In general there are configurations in

PZ less favorable than the §¥*-slippage configuration. This was & rather
surprising result - at least to the authors. A heuristic explanation for
this phenomenon is given in the Appendix.

Monte Carlo simulations were carried out to investigate the
performance of the ten procedures of Tables I,II when presented with
parameter configurations other than &%-slippage. For k = 3, four

alternate configurations were chosen, for k = 10 one alternate

configuration. These were chosen so that easy comparison could be made




T a——
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with Tables 18.5 of BKS. Again P%* = 0.9, 6% = 0.2, and o = 1.0.
The results are presented in Tables III-VII, The format is the same as
that used earlier in Tables I, II.

The FIXED, VT and PF rules do, of course, guarantee the probability
requirement for the ranking problem. It is well known that, under
certain parameter configurations, the sequential procedures lead to
considerahly lower ASN's than does the single-stage procedure. As
between VT and PF, overall PF has of course a much lower ITN, and it appears
to have a comparable or lower ASN. Also the overprotection (PCS actually
attained) seems to be greater for the Paulson procedure even with the
Fabian modification. Bechhofer and Ramberg (1977) compare the VT and PF
procedures in much greater detail.

One desirable feature of any ranking procedure is that the ASN
should not be greatly increased by the introduction of extra '"non-contending"
populations with means 6 < < 0. The Paulson procedure does not have this
feature since the continuation region is enlarged as k increases and it
takes longer for the contending populations to be eliminated. On the
other hand, the number of observations on the ''contending' populations
is fairly insensitive for procedures involving the BKS stopping rule.

Concerning the almost sure termination of the adaptive rules, Lemma
1 of Section 2 holds whenever k] "~ T[k-11 > §%/2. The proof is
unchanged. The simulation results from Table III suggest that this result
should hold even if the restriction is removed. As with any of the
procedures, if one is concerned about a large variance of the sample size,
bounded procedures can be constructed which still enjoy some of the
benefits of adaptive sequential sampling. To do this, define

P' 4+ P" = 1 + P*, use the adaptive sequential procedure but with P'
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replacing P#*, but take no mcre observations than prescribed by the

fixed sample size rule (Bechhofer 1954) for PCS = P". This idea was

suggested by BKS (p. 227).
An advantage of the VT and PF rules not enjoyed by the adaptive

rules is that there is a "time-blocking" effect. This might be important

if, for instance, overall quality of treatment improves with time.
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7. Directions of future research.

It is disappointing that, in the ranking problem, the BKS stopping
rule (2.1) does not guarantee the requirement that PCS> P#* whenever

e[k] - e[k-lJ > §* independently of the sampling rule when k > 3. Thus

the adaptive procedures of Section 3 cannot be magarded as a satisfactory
Solution to the general ranking problem. It is possible that the
Sﬁslippage configuration is least favorable within a restricted class of
configurations such as perhaps the §-slippage (GLF) configurations where
8§ > 6%/2 is unknown. Alternatively it may be possible to construct
sampling rules (other than VT) for which the 6&%-slippage configuration
is least favorable. Further investigation is needed into these questionms.
In the past, there seems to have been little work done on adaptive
sampling for identification or ranking problems with k > 3. Many of
the arguments used by authors for k = 2 do not seem to carry over
easily. For Bernoulli sbservations on k > 3 populations, Sobel and
Weiss (1972) have discussed '"Play-the-Winner" sampling and inverse
stopping rules -- see also Berry and Young (1977).
For the LI identification problem the potential savings in ITN and
ASN might seem to justify the more complex allocation rules of the
adaptive procedures. Other procedures that might also be of interest,
but were not compared here, are those of Box and Hill (1967) and Blot
and Meeter (1973). No attempt here was made to find optimal sampling rules
for the LI identification problem -- it is possible that the approach of

Kiefer and Sacks (1963) might lead to optimal fully sequential procedures.
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APPENDIX

Here we give heuristic arguments concerning some sufficient
conditions in the ranking problem for the non-consistency of the
procedure (2.1) when adaptive sampling rules are employed. - This
gives insight into why the 6%*-slippage configuration is not least

favorable and it is possible for PCS < P* for some configurations in

.

the preference zone.

= X -- - - * Dol e
Recall z, ni(Xi. X (N ni)G /2). W.l.o.g. assume

o0

My Z0g X sue 5 M, - Suppose also N >>0 with By >> 0

l1<j<n. Alsolet n, = max (n.) and n, > n. . For the adaptive
A, 1<j<k i k
sampling rules discussed,thig'gltuation can occur with positive probability

due to an "unlucky start." Suppose n, = C.N and on some set Q'
of positive probability C tends to a limit a where a is bounded
away from 0 and 1. (For the argument that follows all we really
need is that 1im inf C> 0 and 1lim sup C < 1 on some set Q'

Nowo Moo
of non-zero probability. There is also a condition analogous to (Al)

if a =1 on some 2' of non-zero probability.)

Then by use of the law of the iterated logarithm it is possible to
show that oh Q'

(A1) =z, - Y oa(l -a)N(u, - 6*%/2) -a )
T i $#1

configuration {ui} is such that Z; -2 + +o as N+ » then

Q-+ 1, the procedure will stop but Hi will be incorrectly selected

nj"j + o(N). If the

as best. From (Al), this happens if
k
(A2) M, - (L -a)N6%/2 - §| nu, + + =,
i jsp 33
For the §-slippage (GLF) configuration this cannot happen since

the expression (A2) tends to - » and eventually z > z. (Of course,

e o ol
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for g = §% (the LI identification problem) we already have the
consistency of the procedure (2.1) for any symmetric sampling rule
that terminates almost surely.)

However, for a general configuration of the (uj}, it is quite
possible for condition (A2) to hold (e.g. for the equally-spaced
configuration with Pipp " e = 8§, Lxji<k~1)

The question arises concerning the kind of sampling rules for which
this phenomenon can occur, i.e., roughly speaking, when we can have
n, > >n for i #k and n > > 0. Unfortunately it occurs
for rules like RAND Q and GRS, which have the feature of being more
likely to sample next from the population with the highest current

value of zj (with the aim of reducing ITN). For these rules, due

to an unlucky start it is quite possible for z; > Z, after some

stage of sampling. For such rules this is likely to imply that Ry .
Then n, is more likely to be sampled on next and, if (A2) is satisfied, the

difference z; =7y is likely to be increased, thus perpetuating and

worsening the condition.
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procedures; identification p“oolomo, slippage problems; Paulson procedure;
__data depezndent_allocation; normal_disteibution bl
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- There are k (> 2) compating normal populations with common known
E . variance and unknown neans 0,0 ..., 0 . Iet 0. . < ... <.0. o "
f « i i 3 1, 2 g l]‘ . ~ l}‘-' denote
! “the ondered values of the [‘) }. Hothing is known concerning the paicing of
$ the {ﬂiY and the (0[”}. In the location invariaat identificarion problem,
the differsnces {0[” - OI l'l} are given and it is dv\m-‘-l &0 select the i
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population associated with 0[k1' OF particular interest is the slippage
configuration °[1] = 0[k~1] = O[k] - 6% where &% > 0- is given. We
restrict attention to procedures that guarantee that the population with the
largest nean is correctly sclected with probability at least P* yhere

-1 : A . . o ks . - St
k ©= < P% < 1 is preassigned. Essentially, this requirement is satisfied by

the stopping rule of Bechhofer, Kiefer and Sobel (Sequential Identification

and Ranking Procedures, Univ. of Chicago Press 1968, Chap. 3) independently

~ of the sampling rule and thus data dependent allocation rules can be considered.

Unlike the case k =2 (see Robbins and Siecmuhd (1974) J. Am. Statist. Aouoc.,
69, 13?-139) when. k > 3, oubstantlal sav1ng; 1n expected £9£3£_samplﬂ : §
size can be obtained when adaptlve sampllng 1s used 1nstead of the equal -
allocatlon rule ("vector at a time" sampllng) Several procedures are proposadj'
-and 1nV°>L1gated with respect to this crlterlon.~‘Also their' performance
‘with regard to the alternatlve crlterlon of mln1m121ng expected number of
observations on the inferior powulatlons is studled. Both theoretlcal and
sxmulatlon results are presentod. Compdrlsone ape made w1th the perLormance :
of 011n1nat10n—type procedures, uuch as that of Paulson (1064) Ann. Math.
Statist., 35, 174-180. e B bl S R e
Pﬁnully, for the ranking problem where the differences ?[i] - O[i] ) o
(2 < i < k) are now unknown, it is shown that, when adaptive sampling
rules are uéed, the slippage configuration is no longer necessarily least
favorable for the usual indifferencezona dpproach. ThisAposes soma2 interesting

- problens for future research.




