
AD AO’+ô 207 CORNELL UNIV ITHACA N Y SCHOOL OF OPERATIONS RESEARC——ETC FIG 12/1
ADAPTIVE SEQUENTIAL PROCEDURES FOR SELECTING THE BEST OF SEVERA—ETCCU)
APR 77 B W TURNBULL, H (ASPI. R L SMITH DAAG29—77 C—0003

UNCLASSIFILD TR—328 NL

40h04620 7

_ _ _ _  

U



___ SCHOOL 

~ IOF
• OPERA TIONS RESEARCH

~~~~ AND
~ INDUSTRIAL ENGINEERING

~
4II

~
.

r ___________________

• • , ~~~ ~~~~~~~~~~~~~ •~

COLLEGE OF ENGINEERING
* CORNELL UNLVERSITY

ITHACA, NEW YORK 14853
C )

s-_I

-~~~~~~ ~ ~~~~~~~~~~ ~?fl
I~~N 0 V g i g n 1 f

BU*ON STA~EMENT A]~~
• 

• 

Approved for pu~1io re1ecIs~~ D
L~ Diitiibutj o~ Unlimited

~~~ti ~~~~~ ~ 
-
~~:i~ Tii~unu ~~



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

acc~ sioa t~i—;;
~~~

- 
W~~e ~~C’IM~

st~c
SIUKKO!J~CEU
iUStII~CAB3~~~~~~~~.

SCHOOL OF OPERATIONS RESEARCHD~STRI .3U1I~~, ~~~~~~~~~~~~~~~ 

~~~ AND INDUS TR. [AL ENGINEERI N G
COLLEGE OF ENGINEER ING
CORNELL UNIVERSITY

ITHACA , NEW YORK

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ THE/ BEST OF SEVERAL NORMAL POPULATIONS
/

by

~~~~~~~~~~~~
uce W kurnbull , Haya/Ka3p1~~~~~~~~~~a r d L / ~~~ th

(2~~~~~ DA:2;_77_c_,sW3, f

~~~~fflLOff.ice of Naval. Research .

1 L ~I~
UTuAppro’io~ for Public Releese; I)istributjon Unlimited . 1)

Invi t~~1 p~iper presented at  the 1q77 Spring Meeting of the Biometric Society( EU AR) h~ 1d in Chapel F(ill , Nor t h C~irolina , April 17-20 .

I ”  i

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—j-—

TIlE FINDINGS IN TillS REPORT ARE NOT TO BE
CONSTRUED AS AN OFFICiAL DEPARTMENT OF THE
ARMY POSITION , UNLI . SS SO DE S tGNATED BY OTHER
AUTHORIZED DOCUME N TS .



— ~ -r~~~~---r r —r

r
Abstr~ict

There are k (> 2) competing ncrmal populations with conm~on known

variance and Unkflbwflmeans ol~
o2,...,ek. Let e[1] c • • •  

~ 
0Ek) denote

the ord~ired valuos of the {e.}. Nothing is known conce?ning the

pairing of the (o~ } and the {O(j]). In the location invariant

identification problem, the differences 
~°Ei] - are given and

it is desired to select the population associated with 0[k] Of

particular interest is the slippage configurat ion 0Ek—l] = 0[k] - 6*

where 6* > 0 is given. We restrivf”~~ttention to procedures that

guarantee that the population with the largest mean is correctly selected

with probability at least P~ where < p* c 1 is preassigned.

EssentIally, this requirement is satisfied by the stopping rule

Bechhofer, Kiefer and Sobel (Seq~ential ~~~~~~~~~~~~~~~~~~~~~~

Procedures, Univ. of Chicago Press 1968, Chap. ‘~~~independently of the

sampling rule and thus data dependent allocation rules can be considered.

Unlike the case k = 2,~~)ee Robbins and Siegmund (197L4 ) J. Am. Statist.

Assoc., 69, 132-3.39) when k~~~3, substantial. savtngs in expected total

sample size can be obtained when adaptive sampling is used instead of

the equal allocation rule (6~ctor at a ~~~~~~~~~~~~~ Several procedures

are p~~~osed and investi~atcd with respect to this criterion. Also their

performance with regard to the alternative criterion of min.~~~~~~g

expected number of observations on the inferior populations is studied.

Both theoretical and simulation results are presented. Comparisons are

made with the performance of elimination-type procedures , such as that

of Paulson (1964), Ann. M€~th. Statist., 35, 174-180.

Finally, for the ranking problem where the differences - 



I
(2 c ± c Ic) are now unknown , it is shown that, when adaptIve sampling

rules are used, the slippage configuration is no longer necessarily least

favorable for the usual indifference zone approach. This poses some

interesting problems for future research.

I
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1. Introduction

Adaptive sampling procedures have been the subject of considerable,

theoretical interest in the methodology of sequential medical trials,

where it is desired to compare k (> 2) treatments. A recent survey

article by Hoel, Sobel and Weiss (1975) provides a comprehensive overview

of the literature. Most authors have concentrated on the two-armed

trial, k = 2 , but studies with three or more arms are Important. Gent

(1976) describes a situation in which three independent nationwide trials

involving aspirin substitutes were begun around the same time. He points

out that, instead of conducting three separate 2-armed trials of drug vs.

control, a single 4-armed study would have resulted in a considerable

saving in the number of control subjects needed.

However, adaptive sampling might be advantageous in other areas of

application. In a quality control situation there may be k batches of

items which deteriorate in time (e.g. food, drugs, etc.) and due to

records being lost it is not known which batch is the newest (oldest)

unless sampling is undertaken. Alternatively there may be Ic appar€ntly

identical lots of items but of varying quality and it is desired to pick

the superior one. Another application occurs when the observations are

radar measurements on the nose cone, booster and other debris of a

rocket after separation and it is desired to identify the nose cone as

quickly as possible e.g. for guidance or for possible counter-measures

if the nose cone is a warhead and the other objects are decoys. There

have been several papers on the subject of how search radars could be

improved by non-uniform scan controlled by a sequential detector - see

e.g. Edrington and Petersen (1971).

_________________ 
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - .— —~~~~,~~~ .——-—.
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Consider a k-ary communication channel with feedback. The receiver

sequentially processes the signal corresponding to one of the k possible

characters until it identifies it with some degree of certainty - the

receiver then directs the transmitter to send the next character. In

this application (and possibly others), there is a single input process

with k hypotheses. If so, the k populations may be taken as the

output processes of k filters. If the Ic possible signals are

orthogonal and the noise Gaussian, then matched filters would accomplish

the desired transformation. There are further applications to unsupervised

learning and classification techniques -- see Nagy and Tolaba (1972).

An adaptive sequential procedure consists of three parts -- a

sampling rule (also called assignment or allocation algorithm) for

deciding from which population the next observation is to be taken, a

stopping rule for deciding when sampling should cease, and a terminal

decision rule for selecting a population as “best”. Robbins and Siegmund

(1974) treat the problem of deciding which of two normally distributed

treatments with a common known variance has the larger mean response. They

show how to construct a location invariant stopping rule and terminal.

decision rule of sequential probability ratio test type (SPRT) so that

the error probabilities are essentially independent of the ( symmetric)

sampling rule used. In particular the SPRT can be constructed to

guarantee that the probability (PCS) of correctly selecting the treatment

with the larger mean is at least P~ wherever the difference of the means

is no less than 6*. Here 6* > 0 and 1/2 < P’~ < 1 are preassigned.

They then consider various sampling rules with respect to two measures of

performance, namely (A) expected total number of observat ions (ASN ) and

(B) expected total number of observations on the inferior population (ITN).

L
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They showed that the ASN was minimized by pairwise (ox’ vector-at-

a-time VT) sampling . They also show how adaptive sampling rules which

reduce the ITN necessarily cause a considerable increase in ASN. (As

we shall demonstrate later, this result is in sharp contrast with the case

k > 3 where the two goals (A), (B) are no longer in direct conflict.)

Subsequently Louis (1975) obtained the optimal. allocation rule for

minimizing ASN + y.ITN (for y > 0) in the continuous time analogue of

this k 2 problem.

In this paper, we attempt to attack the k (> 3) treatment problem

in the same spirit as Robbins and Siegmund . Bechhofer , Kiefer and

Sobel (1968) {BKS] treat in great detail vector-at-a-time (VT) sampling for

selecting the best of k populations for a stopping rule which is a

• generalization of the SPRT. However, when k > 3, great savings in ASN

can be made if the sampling rule is allowed to be adaptive (i.e. data-

dependent). As mentioned before, such rules can have the side benefit of

producing a lower expected total number of observations on the Ic - 1

inferior treatments (ITN). This is intuitively clear; for consider the

normal case with k 3 and when one population mean is much smaller than

the others. Very early on in experimentation, this population will become

apparent and only two populations will be left in contention. Thus,

compared to VT sampling, we might expect that the ASN can be reduced by

almost half. ~oi’iësponding1y larger savings could occur with larger values

of Ic. In fact, although previous authors have treated small values

of k (usually k 2), there are app1icatio~is where k may be as

large as 1000. That ASN can be reduced by adaptive sampling is Important

since recently Byar et al. (1976) have suggested that it is ASN and

not ITN which should be the more important criterion for clinical trials.

________ 

I
L~ ~~~~~~~ -~~~—.. - 
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In the next section, we describe a k-population location Luvariant

(LI) identification problem and propose a stopping/terminal decision rule

with the property that its PCS is independent of the sampling rule used . In

Section 3, we describe some adaptive allocation rules, and also, in Section

4, the elimination-type procedures of Paulson(1964) which can also be viewed

as an adaptive rules. In Section 5, these rules are compared via Monte

Carlo simulation . In Section 6 , we investigate the ranking problem associated

with the LI identification problem of Section 2. However, unlike the case

k = 2 , or the case of k > 2 with VT sampling , we f ind that the usual

slippage configuration is no longer “least favorable ’ and thus the results

of Section 2 cannot be extended. This is a somewhat surprising result $

(at least to the authors). All the above ideas will be made more precise

I actions that follow.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --— -.-—-- .-—. ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~
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2. The location invariant (LI) identification problem

Observations ( 1<1  .ck, j > 1) are available sequentially

from each of k (> 2) populations I1i~ ~~~~ The observations

{x
~~
} are independent with probability density function f(x - o~)

where 0. is a real location parameter. We let ~~~ < <0(k 1) ~
denote the ranked values of the {0.}. We assume that nothing is known

a priori concerning the pairings of the {0[~]) and the {ff~}. Also we

define t. = 0 . - 0 , and let t • 0 . - 0 be the ranked
1 1 [1] Ci] Ci] [1]

values of the {r1}. If the values of the are known (unknown) then we

say we have an identification (ranking) problem. Here we shall consider

the location invariant (LI) identification problem where only the differences

{t[i]} are known. We shall discuss the construction of adaptive sequential

procedures which guarantee that the probability of correctly selecting

(PCS) that population associated with T [k] is at least P’~, where

k~~ c P* c 1 is prespecified (we assume r [k] is unique i.e.

T [k] > T [k l]). As in Robbins and Siegmund (1974), by invariance we can

restrict consideration to procedures based on the maximal invariants

- X11, 1 < i < Ic , j  ‘ 1. Suppose that we have taken n~

observations from 11. and define N n . .
1 1 ’

The likelihood function based on the {Y~~} is given by
c o k  i

,tk ) f IT ii f(y 1. — ‘
~~. 

+ + z)dz
-~~ i=1 j =].

where of course y11 = 0.

Define L(a) L*(T ( l ) ~ T [~ 2)~ • • • ~~T(ak]) where a c Sk~ 
the group of

permutations of k elements. Let Sk l (i ,j )  denote the subgroup of

permutat ions a c Sk for which ai = j .  Define
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L(a)
aeSk 

(i ,k)
1

1 
~ L(a)
aeSk

which is the likelihood that r. = T[k] and li~ is the “best”

• population. (Q1 is also the a posteriori probability of this event,

assuming the {II.} are all equally likely to be the best, a priori.)

Finally , define

~~~~~~~~~~ ~~~~~

The BKS stopping rule (and terminal decision rule ) is as follows :

‘~Terminate sampling the first time that Q > P’~
and select that population associated with the ~ BKS’• largest value of Q1.”

Theorem. If 
~BKS is used for the LI identification problem.above

then PECS] > p
~ for ~~~ symmetric sampling rule such that the procedure

terminates almost surely.

Proof. This is essentially contained in BKS (Chap. 3).

Remark 1. Scale parameters. The case where f(x101
) = f(x/0~

) is

analogous and can be handled either by a log transformation or by

considering quotients instead of differences.

For the remainder of this paper we will treat the example in which the

observations {X. .1 are normal with means {0.} with known variance 2
1) 1

For k = 2, this setup has been recently treated by Robbins and Siegmund

(1974) and Louis (1975). Here it is easy to show that

k
~ exp — —~~~~~

. C ~ 
(x ~~ — x — t + r ) 2 )

20 i=l j1



7
k ~i k

where ~ = N 1 
~ ~ 

x., . and ~ = N 1 
~ n. r1. Note that x and

— 
i 1j 1  ~ 1=1 1

x are not invariant under per~nutations of the subscripts.

We specialize to the 6*_slippage configuration (Karlin and Truax,

1960) for which t[j] 0 (1 ~ i ~ k - 1) and TEk] = 6* > 0. While of

interest in its own right (e.g. see some of the examples in Section 1),

this configuration also is the “least favorable” in the associated ranking

problem with VT sampling - see Section 6. E.ubstituting for L(ct)

simplifies and for a c Sk l (i,k), we have

n .k 1 
- 2L(a) = exp - U 

~ 
(x~~ - x ) - 26*z1

]
2~ h 1 j 1  ~

where

• — — 
n.(N—n.) .~

= - x )  - 
2N 6

n.
1 1

and x. n .  x. - .
1. 1 

~~~~ 
1]

Let Z[1] < ... < denote the ranked values of the {z.). (Ties

occur with probability zero.)

Then

= ~~ exp[_6*(z
Uk] 

- z~~~)/a ]

and 
~BKS ~ equivalent to:

(2.1) “Stop the first time that (1 Q)/Q < (1 - P*)/P* and select

that population associated with

It should be noted that for non VT sampling the population associated with

zEk) is not necessarily the same as the one associated with l’~I~k ~~We now address the question of sufficient conditions for the

almost sure termination of rule (2.1).

I ’
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • -~~~ -~~—•~~~~-- -. ---~~•-~~ —— -~~~~~~~,~~—
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• Lemma 1. for the 6*_slippage LI-identification problem we suppose

• that the sampling rule used is such that :

• (2.2 ) PCni(N)  + as N ~~
. ~ for each 1 c I c k] 1

Then Q -~ 1 as N + ~ almost surely. It follows that if the stopp ing

rule (2.1) is used, termination will occur with probability one.

Proof. We first show that ... a.s. for 1 .c I .c k as N +

The sequence = 1,2,...} is i.i.d. N(8~~a
2). Hence, by the

strong law of 1~rge numbers, ~ x 1.~/v -. 0. a.s. as v -‘ . The
n (N) • _ 1

sequence { ~ x . ../v; ~, = 1,2,.. .} by “stuttering”, i.e. repeating
jl ~ —

each value several, times before going on to the next. Hence X1 -.. 0i

almost surely.

Now, without loss of generality assume r1 ~~~ (]. ~~~ i ~~, 
k).

Then

= 
~k~~k 

- N 1 

~~ 

n.
~i
) - nk(N - nk)6*/2N

Hence

~
N-nk 

+ 
~~~ 
)Zk = Xk 

- 6*12 - ~~~ ~~~~ “i~’

which by. ~tbe argument above converges almost surely to some strictly

positive limit as N + ~~. Thus we must have ÷ + a.s. N 4

Similarly for I � k we can write

+ _
~~
- )z1 - (nk~~ ./0~ 

- Ii
i

) )

k-i k-i
— ( ~ ~~~~ / } — 6*12

L=l
• £�i

_ _ _ _ _ _ _  ________ ~~~~ -.• • - 
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and the u r n  sup of the RIIS is s rIctly negative almost surely as ~N +

Thus his sup Z~ = -
~~~ a.s., and ‘1 - Q)/Q ÷ 0  a.~~. which prov the

lemma.

Remark 2. If the sampling rule is si.~h that condition (2.2) is T t

satisfied then Q may not converge to unity. For example, suppose that,

with non-zero probability, n.(N) + n1 < ~ for some 1(1 < I < k - 1)

and nk
(N) -‘ ~ as N + ~~. Then Zk 

- Z
1 = ~~~ ~~~ - - 6 *12) /N

- n1 ~ n - - 6*/2)/N remains finite and Q~ * 1.1. j.

• 
•

_____ ________L. ______ • - ~~~~~~~~~~~~~~ ._ •_  - —.~~~~~~~~ - - — ~•—  —_ •~~~~ • -—
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• 3. Sampling rules

In this section we describe several sampling (allocation) rules

to be used in conjunction with the stopping rule and terminal decision

rule given by (2.1). For convenience, we assume that all rules initially

take one observation from each population.

(i) VT At each stage a block of k observations is taken, one from

each population. In the medical context, within each block, patients

are assigned at random to each of the k treatments. A closely related

rule is the one in which observations are taken singly, one observation

from each population in turn. The ASN of this rule must be smaller than

that of the VT rule yet our experience suggests that the difference

is small. Extensive tables for VT sampling are available (BKS, Chap. 18),

and those results provide a yardstick against which our adaptive

sampling results can be compared.

(ii) RAND Q This is a randomized allocation rule in which the next

observation is taken from with probability Q~ (1 c i < k). Recall

that for the LI identification problem Q1 
can be considered the -

posterior probability that 
~i 

is “best”. (Note that the nonrendomized

rule that always samples from the population associated with max Q1 may

not terminate by Remark 2.) For Ic = 2 and Bernoulli observations, Simon,

Weiss and Hoel (1975) have investigated this rule.

(iii) CR5 Robbins and Siegmund (1974 Sect. 3) proposed a non-randomized

rule for Ic ~ 2. Here we describe one particular generalization to k > 2.

From the stopping rule (2.1), we note that sampling has certainly terminated

if

(k_1 )exp[_6*(z[k] - ztk_l))/a 3 c (]. - p*)/~~ ~ 

- __ _  

_ _ _  _ _ _ _ _ _ _ _
- — 

— ~— ___ 1
~
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i.e. if Z(k] 
— Z[k_l] > b

where b = ~
2 log((k - l)P*/(l - p*)]/6*. The GRS rule depends on a

parameter c > b and is as follows: If

Z [k] — 
z[kl] 

> ~(k) 
‘
~(k-l)c — N

take the next observation from the population associated with zUk];

otherwise take a vector of observations from the remaining k - 1

populations. Here n(.) denotes the sample size associated with z[i].

For k = 2 this reduces to the rule of Robbins and Siegmund. For our

simulations, two values of c were chosen, namely c/b = 1. and c/b = 1.2;

these were the values used by Robbins and Siegmund.

(iv) Bessler Bessler ( 1960 , Section 8) treated this problem with

k = 3, but from a decision theoretic viewpoint in which there are costs

assigned to incorrect terminal decisions and there is a cost c per

observation -- there is no P* requirement. He obtains asymptotic

properties as c + 0 for his procedure. Because Bessler’s stopping rule

does not guarantee error probability requirements we continue to use the

stopping rule (2.1) and consider only Bessler’s sampling rule. Let

~ 
X (2]~ c X[3] denote the ranked values of the {x 1 , 1. c i < 3).

Define C(~) = ((~[3]• 
- x[1] )/(x(3] 

- x[2]•
)]. Bessler’s allocation

rule is randomized and prescribes that the next observation be taken

from the population associated with with probability A~ (1:1,2,3),

where (11,X2,13) maximizes A2A 3/(A2 + A 3) subject to the

constraints A~ + 12 + 13 = 1 and

~
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~~~~~~

-—- ----—-—•------ —•.-—--- --—-.-

~~~~~~~~~~~~~~~~~~~~~~~~~~

12

- 

1213 
— 

1113 C(x )
12 + 13 

— 

A1 + ) ~j -

Bessler tabulates as a function of c(~). He also conjectures some

asymptotic opt imahity properties for the ASN functions. Although we

are not using his stopping rule, we m ight still hope for low ASN values.

In theory, Bessher’s procedure can be generalized to Ic ) 3.

(v) ‘c i:i:i Randomization. If we can assume that the t~, are in

the 6*_slippage configuration, we might consider replacing C(~) by

the quantity C(~) is estimating, namely C(~). But when C = (0,0,6*),

C(~) = 1 and it is easy to show that 1
1 

12 = 1/(2 + /~
‘) ,  1

3 
= v’~/(2 +

Sampling rule (v) is therefore to sample from the population associated

with max Q. (i.e. with Z I- Ici
) with probability /~

‘/(2+r’~), and the
1<ic3 1

other t~o
’each with probability (2÷f2)~~. These are the same limiting

proportions as those obtained by Bechhofer (1969) in the related fixed

sample size multiple comparisons problem for two experimental treatments

and a control. When k > 3, the analogous rule would be to sample from

the population associated with ZUk] with probability (1 +

and the remaining populations with equal probability.

If should be noted that rule (iii) (GRS) is the only one that

does not involve any randomization. From the remarks of Byar’ et al. (1976)

and Bailar (1976), randomization is important in clinical trials. 

~——-— -- - - —•---- ~~~~~~ —- --~~~~~ -
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i4~ Paulson’s proc’edure

Paulson (1964), considered a procedure based on VT sampling but

featuring permanent elimination of non-contending populations. At the

n’th stage of experimentation let I be the set of populations not yet

eliminated (I
l consists of all Ic populations). An observation is

taken from each population in I and the cumulative sample sums

i £ I) are computed where = 

k~l 
Xik . If

Sin 
< max S4 - (a - nA )+, then
jel ~n

II. is eliminated . Here a > 0 and 0 < A < 6* are specified constants

and y ” = max(y,o). The procedure continues until only one population

remains which is selected as best . A desirable property is that when

A > 0 the number of stages is bounded by [a/A] + 1. Here ty] denotes

the integer part ~L.y.. Note. that the stopping rule is different

from (2.1).
2

Paulson proved that if a = 
~ 

log k-1~ , then PCS >
6-A 1-P

whenever ttk] 
- 

~~ Uk-i] ~~. 6~. Paulson originally suggested the choice

of A = 6*14 , whereas Fabian (1974) recommended A = 6*/2 since

asymptotically (p* -~ 1) this choice minimizes the maximum ASN over all

parameter configurations. The unbounded procedure when A 0 is also

of interest. In fact, Paulson’s procedure is conservative in that the

PCS guaranteed is considerably greater than ~* even in the LF

6*_slippage configuration. Fabian (1974) proposed a modification of

Paulson’s procedure whereby this “overprotection” is reduced and

consequently so is the ASN. This modification consists of replacing

“1 - P*” in the formula for “a” by a quantity B > 1 - ~~ For

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
1____

~~
_ _ _ _

~~
, --
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A = 0, B = (1 — p*)/[]. — (1 — P*)/(k — 1)); for A 6*14, B

is the solution to the equation

1 - ~* = B[l - 
~(B/(k - 1)) l/3 );

finally for A = 6*12 , 8 2(1. -

A more dz ~•ed comparison via simulation of the BKS (with VT sampling)

and Paulson p~ o~ ~ures with regard to BCS. ahd ASN for a wide range of P~

values can be found in unpublished papers of Ramberg (1966), Bechhofer and

Ramberg (1977). The asymptotic relative efficiency of the 2 procedures

has been studied by Perng (1969). Paulson’s procedure has been

extended by Hoel and Mazumdar (1968) and Hoel (1971).

-
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5. Simulation results for the LI identification problem

A Monte Carlo study was performed in order to compare performances

with regard to ASN, ITN and PCS of the procedures described in Sections

3,4 for the 6*_Slippage problem. The values PC = 0.9, 6* = 0.2, = 1

were chosen along with two values of k, namely k = 3, 10. The

results are displayed in Tables 1,11. These values were chosen so that our

results would be directly comparable with those tables in Chap. 18 of

BKS. Ten procedures were considered namely (A) FIXED sample size

(Bechhofer, 1954); (B) VT; (C) RAND Q; (D) GRS with c/b = 1.0;

(E) GRS with c/b = 1.2; (F) the BESSLER sampling rule with stopping

rule (2.1); (C) the ‘cl:l:l allocation rule; (H), (I), (J) Paulson’s

procedure with the Fabian modification with A/6* .5, .25, 0 respectively.

These are abbreviated PF(.5), PF(.25), PF(0).

In the tables that follow, the FIXED sample sizes of the non-

sequential single stage procedure were taken from Table I of Bechhofer

(1954). For k = 10, simulations were only performed for procedures

(B), (C), (E), (I). This was for reasons of economy and because these

seemed the most prcmising. In any event, Bessler’s rule is not easy to

obtain explicitly for k = 10.

The tables display (Ni, 1 < i c k} where N
~ 

is the mean number

of observations taken from the population associated with t[i]. Also

displayed is the average total sample size ASM. The three entries

in each cell are the estimated mean, its standard error (in parentheses),

and the estimated standard deviation. Also tabulated are the observed

proportion of correct selections and the mean value of Q upon

termination. The latter yields a more precise unbiased estimate of the

PCS for the 6*_slippage configuration -- see BKS page 289. Q also gives 
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a measure of “excess” or “ovcrshoot” .

It can be seen from Tables 1,11 that the adaptive rules possess

some distinct advantages over VT. For Jc = 3, the decrease in ASN

is about 6% for k = 3 (Table I) and the savings increase to about

50% for k = 10 (Table II). Also there is the side benefit in that

the ITN can be reduced by about 22% for k = 3 and the savings increases

to 60% for k = 10. Most of the adaptive itiles (C) - (G) perform about

the same -- RAND Q seems to do slightly better with regard to ASN, GRS

slightly better -for ITN. Aioong the PF rules, the results here are

consistent with Paulson’s choice of A *5*/ti.. Of course, the simulations

are only for P* = 0.9, *5*/a = 0.2, but we believe that the results

are indicative of what happens for other (p*, *5*/a) combinations. 
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6. The ranking problem.

We now attempt the transition from the LI identification to the

ranking problem where we assume that the ordered values are completely

unknown. In the indifference zone formulation of the normal means ranking

problem , we define the preference zone PZ = {r
~ r [k] T [k_l] > ‘.5*} =

(
~Ie (k] 

- > *5~~} and seek procedures that guarantee the requirement

that PCS > P* wherever ~ ~ PZ. BKS (Theorem 6.1.1) prove that rule

(2.1) with VT sampling satisfies this requirement . Paulson (l96Li.) showed

that his procedure also meets the requirement. (So does of course the

fixed sample size rule of Bechhofer (195L~).) All three procedures

utilize the fact that, for a given set of procedure parameters (P*,6*,etc.),

the infimum of the PCS over all in PZ is achieved in the *5*_slippage

configuration, which is therefore termed “the least-favorable” (U’)

configuration. Thus for those procedures the ranking problem can be

reduced to an LI identification problem . It might be reaoonably conjectured

that ~~~~procedure using stopping rule (2.1) and a symmetric sampling rule

that assures temmination w.p . 1 would also guarantee PCS > P” whenever

~ PZ. However our simulations (see Table VII) demonstrate this very

intuitive conjecture to be false. In general there are configurations in

PZ less favorable than the 6*_slippage configuration. This was a rather

surprising result - at least to the authors. A heuristic explanation for

this phenomenon is given in the Appendix.

Monte CaI’lo simulations were carried out to investigate the

performance of the ten procedures of Tables 1,11 when presented with

parameter configurations other than *5*_slippage. For k = 3, four

alternate configurations were chosen, for k = 10 one alternate

configuration. These were chosen so that easy comparison could be made

- ~~~~~
- - - —

~~~~~~~~~ ~~~~
-
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with Tables 18.5 of BKS. Again P* = 0.9 , 6* = 0.2 , and a = 1.0.

The results are presented in Tables Ill-Vu , The format is the same as

that used earlier in Tables I, II.

The FIXED, VT and PF rules do, of course, guarantee the probability

requirement for the ranking problem. It is well known that, under

certain parameter configurations, the sequential procedures lead to

considerably lower ASN’s than does the single-stage procedure. As

between VT and PF, overall PF has of course a much lower ITN, and it appears

to have a comparable or lower ASN. Also the overprotection (PCS actually

attained) seems to be greater for the Paulson procedure even with the

Fabian modification. Bechhofer and Ramberg (1977) compare the VT and PF

procedures in much greater detail.

One desirable feature of any ranking procedure is that the ASN

should not be greatly increased by the introduction of extra “non-contending”

populations with means 0 < c 0. The Paulson procedure does not have this

feature since the continuation region is enlarged as k increases and it

takes longer for the contending populations to be eliminated. On the

other hand, the number of observations on the “contending” populations

is fairly insensitive for procedures involving the BKS stopping rule.

I 

- 

Concerning the almost sure termination of the adaptive rules, Lemma

1 of Section 2 holds whenever tEk] 
- t[k_l] > *5*/2. The proof is

unchanged. The simulation results from Table III suggest that this result

should hold even if the restriction is removed. As with any of the

procedures, if one is concerned about a large variance of the sample size,

bounded procedures can be constructed which still enjoy some of the

benefits of adaptive sequential sampling. To do this, define

P’ + P” ~ 1 + P*, use the adaptive sequential procedure but with P’ 

-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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replacing P*, but take no more observations than prescribed by the

fixed sample size rule (Bechhofer 1954) for PCS = P”. This idea was

suggested by BKS (p. 227).

An advantage of the VT and PF rules not enjoyed by the adaptive

rules is that there is a “t ime-blocking” effect . This might be important

if , for instance , overall quality of treatment improves with time -
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7- j)irect ions of future r’eoenrch

It is disappointing that, in the ranking problem, the BKS stopping

rule (2.1) does not guarantee the requirement that PCS > P* whenever

e Ek] - 0[k-1] >- ~ * independently of the sampling rule when k > 3. Thus

the adaptive procedures of Section 3 cannot be t’egarded as a satisfactory

§olution to the general ranking problem It is possible that the

45*_Slippage configuration is least favorable within a restricted class of

configurations such as perhaps the 45-slippage ( GLF ) configuz’~tLons where

45 > 45*f2 is unknown. Alternatively it may be possible to construct

sampling rules (other than VT) for which the 45*_slippage configuration

is least favorable. Further investigation is needed into these questions.

In the past, -there seems to have been little work done on adaptive

sampling for identification or ranking problems with k > 3. Many of

the arguments used by authors for k = 2 do not seem to carry over

easily. For Bernoulli sbservations on k > 3 populations, Sobel and

Weiss (1972) have discussed “Play-the-Winner” sampling and inverse

stopping rules -- see also Berry and Young (1977).

For the LI identification problem the potential savings in ITN and

ASN might seem to justify the more complex allocation rules of the

adaptive procedures. Other procedures that might also be of interest ,

but were not compared here, are those of Box and Hill (1967) and Blot

and Meeter (1973). No attempt here was made to find optimal sampling rules

for the LI identification problem -- it is possible that the approach of
Kiefer and Sacks (1963) might lead to optimal fully sequential procedures. 
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APPENDIX

Here we give heuristic arguments concerning some sufficient

conditions in the ranking problem for the non-consistency of the

procedure (2.1) when adaptive sampling rules are employed. - This
gives insight into why the &*_slippage configuration is not least

favorable and it is possible for PCS < P~’ for some configurations in

the preference zone.

Recall z~ - - (N — n1)45*/2). W.1.-o.g. assume

~ ~2 ~ ~ ~ 
Suppose also N >‘.O with n

~ 
>> 0

1 < -C n. Also let n. = max (n.) and n1 >> 
~k 

For the adaptive
~ • lCj<k ~

sampling rules discussed, thi~ ~ituation can occur with positive probability

due to an “unlucky start.’~ Suppose n1 = C.N and on some set ci’

of positive probability C tends to a limit a where a is bounded

away from 0 and 1. (For the argument that follows all we really

need is that u r n  inf C > 0 and lim sup C < 1 on some set II ’
of non-zero probability. There is also a condition analogous to (Al)

if a = 1 on some ci ’ of non-zero probability.)

Then by use of the law of the iterated logarithm it is possible to

show that oh ci’

(Al) z1 
- Z

k 
4, a(l — a)N(u . — 45*12) — a 

~ 
fl
~u + 0(N). If the1. j �i ~

configuration is such that z1 - Z
k 

+ + as N + then

Q + 1, the procedure will stop but R~ will be incorrectly selected

as best. From (Al), this happens if
k

(A2) Mi1 
- (1 — a)N6*/2 — n _I.’4 + + ~~ .

3 -.‘

For the 45-slippage (GLF) configuration this cannot happen since

the expression (A2) tends to - and eventually Z
K 

> z1. (Of course,
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for 6 6* (the LI identification problem) we already have the

consistency of the procedure (2.1) for any symmetric sampling rule

that terminates almost surely.)

However, for a general configuration of the (u
1
), it is quite

possible for condition (A2) to hold (e.g. for the equally-spaced

configuration with P~ .f1 - ~i. = 45 , 1 < ‘C k - i).

The question arises concern ing the kind of sampling rules for which

this phenomenon can occur, i.e., roughly speaking, when we can have

~ > n~ for i � k and nk > > 0. Unfortunately it occurs

for rules like RAN!) Q and GRS, which have the feature of being more

likely to sample next from the population with the highest current

value of z~ (with the aim of reducing ITN). For these rules, due

to an unlucky start it is quite possible for > Zk after some

stage of sampling. For such rules this is likely to Imply that n~ ~
Then fl~ is more likely to be samplod on next and, if (A2) is satisfied, the

difference z~ - Zk is likely to be increased, thus perpetuating and

worsening the condition.

I
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popuLit~on associated with Of particular interest is the slippage -
.

COt lE igu~~d t iO u O~~ :j 0[k-l] 
0{k] — ó~ where 45~~ > 0 is given . We 

-

x-estrict attent ion  to procedures that guaran tee that the population with the
1arge.~ mean is correctly selected w ith probability at least ~~ where

< P~ < 1 is preassigned . Essentially ,  th is requirement is sat isfied by
the sto:~~ing rule of Bechhofer , Kiefer and Sohel (Seftuential Identification
and I i n ~~in~ Procedures, Univ.  of Chicago Press 1968 , Chap . 3) independently

- 
of the sanpling rule and thus da ta dependent allocation rules can be considered.
Unlike the case k = 2 (see Robbins and Siegmund (19714) J. Am. Statist. Assoc .,

- . 
69, 132-139),. when k > 3, substäntial savings in expected total sample -

- 
size can be obtained when adaptive saTup1in~ is used instead of the equal - -

allocation rule (“vector -at a time” sam~ling). Several procedures are pràposed 
-

-
‘ 

- - end investigated with respect to -this criterion. - -~-:Also their
- performance - - 

-

w ith regard to the alternative criterion of minimizing expected nuir~ ,r of
observations on the inferior populations 

- 
is studied .. Both theoretical and - 

- .

simulation results are presented Comparison s are made wi th the perfori~~nce
of elimination-type- procedures, such as that of Paulson (10614), Ann. Math . -

Statist., 35, 1714—180. - 
-

- 
-

- 
. - -: - 

- - - -

L:irally, for the rarik hig probierri where the differences O {.J - O
f 

- 
-

- 
- -

.

(2 < i. < 1:) are now unknown, it is shown that, when adaptive sampling
rule:-; are used, the slippage configuration is no longer necessai’iiy least -

favorable for the usual indiffcrence~ one approach. This poses somn~ interesting

prob Lems for future research. - 
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