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I INTRODUCTION

This report describes the research activity conducted during Phase II of
a three phase investigation into the development of an improved method of thin
section residual strength prediction where conditions of plane stress or mixed
mode fracture prevails.

In this volume those data required to characterize a materials fracture

behavior and necessary to the method proposed in Volume I are presented for the
materials examined in this study. These data were developed from an extensive
series of crack growth resistance tests, performed on the relatively new crack
line wedge loaded (CLWL) specimen geometry. Since these data were also obtained
from material which is well characterized in mechanical properties a good com-
parative basis was thus available. It was felt advisable to present these data,
as obtained, so that those wishing to examine other analysis methods or perhaps
their own particular technique would have a common material data source from
which to draw. The crack growth resistance data presented herein were obtained
essentially following the proposed recommended practice for R-Curve Determina-
tion as published by ASTM for information only, dated November 1974.

In Section II the material coding and heat treatment for all materials are
presented along with a complete metallurgical history of the titanium 6AI-4V
material which was obtained as surplus SST material. In particular, the role of
material anisotropty caused by preferred rolling on development of crack growth
resistance data from the CLWL specimen geometry in the LT direction is explored.

Mechanical property data for all materials, thicknesses and test direc-
tions, including representative load-strain curves are also presented in Sec-
tion III.

Section IV details the specifics of the CLWL specimen, the development of
the calibration data and interpretation of the data. All CLWL data is pre-
sented in Section V in the form of deflection traces and as crack growth resis-
tance KR data in Section VI.

These material property and fracture resistance data form the basis for

the residual strength prediction technique developed during Phase II and serve
as complimentary information to the failure criterion of the method given in
Volume I. of this report.



II MATERIAL AND PROCESSING VARIABLES

2.1 MATERIAL AND SPECIMEN CODING

The materials which were tested during Phase II of this program are given
in Table I.

TABLE I MATERIALS

ALUMINUMS TITANIUMS STEEL

7075-T6 Ti-6Af-4V 9Ni-4Co-.2C

7075-T73 Ti-6Af-6V-2Sn

2024-T3

Except for the 9 nickel steel, two thicknesses were tested of each alloy
type. Heat treatment of 7075-T6 material to the overaged-T73 condition produced
the required difference in toughness conditions from one lot of material. Addi-
tional information on heat treatment procedures will be presented in subsequent
discusson in this report.

Figure 1 shows the basic specimen coding for all of the crack line wedge
loaded (CLWL) specimens. A basic seven letter/numeral code identifies the
material and specimen. The AB code (first two identification digits, see Fig-
ure 1) identifies the material, the C and D code the sheet or plate thickness
and lot number, E the specimen type and FG the fracture plane orientation. The
last two digits (XX) indicate the specimen number within a given test series.

2.2 MATERIAL POST PROCESSING

2.2.1 Aluminum

The 7075-T6 and the 2024-T3 alloy of Table I were purchased from the same
lots of material. Moreover, some of the 7075-T6 sheet and plate were heat
treated to the -T73 condition by overaging, in air to 3250F for 24 hours. No
further heat treatment was performed on the aluminum alloys.

2.2.2 Steel

Post processing of the 9 Nickel sheet was not necessary.

2.2.3 Titaniums

The titanium 6Af-6V-2Sn was received in the mill annealed condition and no
additional pro:essing was felt necessary. The Ti-6AA-4V sheet and plate were
supplied from excess material inventory under SST contract. The heat number for

2
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the 0.198 inch thick material was K-7621, no heat reference number was available
for the sheet material. Both thicknesses of the Ti-6AI-4V material showed large
scatter and banding in crack growth resistance data. An investigation was per-
formed to determine the cause of banding and to recommend corrective action.

2.2.4 Ti-6AP-4V Material

The Ti-6AA-4V material (nominally 0.198 and .058 inch thickness) received
as excess inventory lots from terminated contract FA-SS-67-3 for this study was
metallurgically examined to determine the reason for nonrepeatability of crack
growth resistance, KR data. This material was processed to contractor specifi-
cation BMS7-174A which we understood was a beta mill annealed condition. Typi-
cal micro-structure is shown in Figures 2 and 3 for both thicknesses. From the
1OOX photo micrographs it is evident that banding conditions are prevalent. The
higher magnification indicates that the beta mill annealed condition was never
reached and large amounts of primary alpha remain.

In subsequent discussion with SST contractor personnel it was determined
that the BMS7-174A specification was a beta-rolled process and that many lots
of this material were part of the excess inventorydlot. The beta mill annealed
condition carries the contractor's BMS7-174B designation.

The mechanical property data for this material in the as received condi-
tion are given in Table II.

To determine if the as received titanium could be placed in the beta mill
annealed condition a small sample (from specimen 4V-81CTL-005) was heat treated
to the following specification supplied by the SST contractor.

"* Heat in vacuum to 1900'F.
" Hold at 1900'F for 5 minutes.
" Cool to 1350'F.
" Hold at 1350'F for 2 hours.
". Cool to room temperature (R.T.).

This specification is essentially the BMS7-174B treatment (as called for by the
contractor) where the only variance is that the -174B specification calls for a
cool to R.T. and reheat to 1350'F.

The results of this treatment are shown in Figure 4 at two magnifications.
Comparison with the prior microstructure indicates that the beta mill annealed
condition has been achieved with a not unexpected increase in grain growth.

Based on the results of this study approximately one-half of the as re-
ceived Ti-6AI-4V material was heat treated to the above specification. This
beta mill annealed material was subsequently used during this program and no
further testing of the beta processed material was attempted.
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Figure 2. Microstructure of As Received Ti-6AX-4V Material, B 0,198 Incher
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Figure 3. Microstructure of As Received Ti-6A&. 4V Material, B =0.058 Inches
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Figure 4. Fhotomicrographs of Ti-6AA-4V Material, Before and After Beta
Mill Annealed Heat Treatment -Longitudinal Direction (Gont'd.)
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2.3 INFLUENCE OF PREFERRED ROLLING ON KR

It became evident early in the generation of crack growth resistance data
that testing in the so-called strong (LT) direction could be a problem in some
of the materials due to crack deviation out of a plane perpendicular to the
loading axis. A separate investigation into means of alleviating this problem
by side grooving of the CLWL specimens was attempted. The results of that study
are reported in Section IV.
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III MECHANICAL PROPERTIES AND LOAD-STRAIN DATA

Mechanical property data were obtained from all material for which crack
growth resistance data were obtained. In all cases the tensile coupons were
excised from the fractured halves of specified CLWL specimens from two direc-
tions--TL and LT (corresponding to fracture plane orientation of ASTM E-399)
and were fabricated and tested to ASTM E8-69 (Tension Testing of Metallic

Materials).

In addition to the us-e of a full range SATEC KSM-DH extensometer to record

load and strain to fracture, every other specimen was strain gaged to obtain

reference Youngs Modulus data. These strain gage determined Moduli were used in
all cases in the development of the crack growth resistance data of this report
since more scatter was evident in the Modulus data from the extended range exten-
someter. This scatter is due primarily to the extensometer being an ASTM class B

and difficulty in interpretation of the linear slope of the resulting test record.

The mechanical property data for the aluminum material is given in Table

III. The mechanical properties of the titanium material are shown in Table IV
and those of the 9 nickel steel in Table V.

Data have been separated by test direction (strong LT and weak TL) and

thickness by alloy class within each Table.

As supplementary information, typical representative load-strain curves for

each thickness and test direction are shown in Figures 5 through 11 for the
aluminum alloys; 7075-T6 (Figures 5-6), 7075-T73 (Figures 7-8) and 2024-T3 (Fig-
ures 9-11). Figures 12-17 show typical load-strain traces for the titanium
alloys tested as part of this study; beta processed Ti-6AI-4V (Figures 12-13),
beta mill annealed Ti-6AI-4V (Figures 14-15) and Ti-6AI-6V-2Sn (Figures 16-17)
followed by the steel alloy in Figure 18.

The particular tensile coupon from which these traces were obtained can be
determined by cross referencing strain to fracture with the tabular data of
Tables III-V.
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IV CLWL SPECIMEN CALIBRATION AND DATA ANALYSIS PROCEDURE

4.1 THE CRACK LINE WEDGE LOADED (CLWL) SPECIMEN

Figure 19 shows typical dimensions of the CLWL specimen used in this pro-
gram. The height (H) to width (W) ratio is 0.6. In some cases the specimen
width must be reduced to accommodate available material. In all cases the H/W
ratio remains the same (0.6) by reducing specimen height. These adjustments are
necessary so that the specimen calibration may be used without adjustments for
varying H/W. A photo of the CLWL specimen (subsize) is shown in Figure 20.

4.2 DEVELOPMENT OF THE CLWL CALIBRATION CURVES

The procedure used to obtain the calibration curves for the CLWL specimen
are essentially the same as those given in Reference I. However, the inter-
pretation of data, least squares fits and other points peculiar to these data
will be described in detail.

An overall view of the calibration set up is shown in Figure 21. The
specimen is loaded in tension through half-moon shaped loading devices as shown
in Figure 22 (right hand side). In Figure 19 two measurement points, V1 and V2

are indicated. These points are located at distances of 0.1576W and 0.303W,
respectively from the point of load application, i.e., the centerline of the
loading hole. These displacement measurement locations correspond to those
given in Reference 2. Two (MTS type) beam clip gages were placed between two
round flat head bolts attached to the specimen at the V1 and V2 positions.

Displacements were recorded for the V1 and V2 probe positions on separate

charts as a function of load (P) for various crack (slot) lengths.

The calibration specimen was a 1/4 inch thick, clad 2024-T351 material
tested with saw slots to simulate the required crack lengths. Two directions
of fracture plane orientation were examined, TL and LT to determine if any
effect on repeatability of data and test set up could be detected.

Each specimen was loaded in tension (see Figure 22), elastically, with
successive saw slot to specimen width ratios, i.e., a/W's. Displacements V1 vs
V2 as a function of P traces were recorded at each successive a/W's. The slope

EV Bn
of these traces was then used to calculate values of n or the required com-
pliance curves for both probe positions. Values of Young's Modulus for this
material were determined from four excised tensile coupons from the calibration
specimen as described previously in Section III. An average value of 10.338x10 6

psi was used since there was little variation in modulus in the LT and TL di-
rection for this material. Figures 23 and 24 show the compliance data for the
V1 and V2 probe positions and least squares polynomial fits to those data.

Since the CLWL specimen is loaded in wedge loading and the load, P must be
determined from these calibration curves, care was taken that repeatability and
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B, Thickness 
or

Drill and Tap (10-32NF)- Four Places 8.40

S2.500 (± .010)

.650_

16.80

14.0
(W)

17.50
NOTE: All Dimensions in Inches.

TL - Specimens have rolling direction parallel to slot.

LT - Specimens have rolling direction perpendicular to slot.

Figure 19. Crack Line Wedge Loaded (CLWL), CS Type Specimen (H/W - .6)
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Figure 23. CLWL Compliance Curve for V1 Probe Location
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V = 0.303W (see Fig. 19)

H/W = .6
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Figure 24. CLWL Compliance Curve for V2 Probe Location
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accuracy of V n/P slope was maintained. This procedure differs from that of a

center crack tension (CCT) specimen, for example, where load (P) is a known
quantity and a/W is the factor of interest. In all subsequent calculations the
measured deflection at V1 is used to determine load, and the analytical proce-

dure uses the least square fit equation of Figure 23. The VI probe position
was selected for these calculations since it's output is more sensitive (larger
displacements) to changes in crack size (hence load) than the V2 location.

The ratio of V1 to V2 (return slope after partial unloading in the CLWL
test) is used in the double compliance method to determine a/W (see Reference 2).
A plot of the data obtained from the 2024-T3 calibration specimen and resulting
least squares data fit are shown in Figure 25. For comparison the curve from
Reference 2 data is also shown in Figure 25 and indicates slightly larger slopes
for a given crack size. This difference could be caused by several factors; one
of which could be slight twisting on loading. Although care was exercised in
restraining in-plane buckling by guides placed on the specimen faces, some
twisting could have taken place. The loading point on the large diameter hole
could also have shifted to a radial position other than perpendicular to the
slot which also is known to effect displacement at both probe locations (see
e.g., the discussion of load distribution for the CLWL specimen geometry in
Volume I)'. However, the data for the two specimens indicate no consistent
trends with test conditions (see Figures 23 and 24) so all data of this report
was analyzed using the equation of Figure 25.
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0 TL Direction

.6 
ALT Direction

NOTE

V1  = .1576W (see Fig. 19)

V2  = .303W (see Fig. 19)
B = 0.250 inches
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d 0)\ H/W = .6

C; .2024-T351
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From Reference 2

oC

0

a,

4.J

o

\0\

00

a/w = 6 . 9 6 48-8.5008(VI/V2)+4.6073(V1/V2) 2 1. 2 8 3 7 (V IV/) 3

.3 + 0.1807 (VI/V2 ) 4_0.0102(VIIV2) 5

L I I I
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Ratio of VI To V2 Displacements, V1 /V 2

Figure 25. Displacement Ratios for CLWL Specimens

As A Function of Crack Length
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V CLWL SPECIMEN DATA

5.1 EVALUATION OF DOUBLE COMPLIANCE DATA

For the crack line wedge loaded (CLWL) specimen, load P, is applied through
a wedge and split clevis device and double compliance displacement measured at
two points along the crack line, V1 and V2 (see Figure 19). A typical sketch of
the Vi versus the V2 trace is shown in Figure 26. The semi-ductile (or semi-
brittle) material of Figure 26(a) shows distinct steps in the V1 versus the V2
trace for each increment of crack extension. The ductile material (Figure 26(b))
exhibits few distinct steps but rather consists of a slow tear process represented
by the round house nature of the V1 versus V2 trace.

At specific times (after physical crack extension), unloading of the specimen
is undertaken and a trace recorded as shown in Figure 26. A visual crack length

measurement (to within 0.05 inch) is also recorded at the time of unloading as a
reference point. In all cases, the slope of the unload line is used to determine
the extent of physical crack length. (In our case, a least squares fit to the
inverse slope Vl/V 2 is used to compute a/W from a sixth degree polynomial fit
to the compliance calibration data (see Figure 25)). Once the crack length is
determined (from the VI/V 2 data), the load P can be determined from the least
squares fit to the compliance curve for either the V1 or V2 probe position from
the following relationship:

E(V 1 or V2 ) B
p =_____ - f(a/W)

E(VI or V2 ) B (1)
or P =

f(a/W)

where E is material modulus and B, thickness. In our case, a fifth degree poly-
nomial fit to the V, compliance data is used to determine load P (see Figure 23).

At this point, a distinction must be made between what is referred to as a physi-
cal crack size (aPHYSICAL or aPHY.) and an effective crack size (aeffective or aeff.).

5.1.1 Physical Crack Length

As mentioned previously, the slope of the unload line (see Figure 26) is
used to calculate a/W where "a" in this case is apHy.. The value of displacement
V1 PHY., used to calculate load P is that value after crack extension and is norm-
ally the same as the value prior to crack extension except at the longer crack
lengths (see Figure 2 6 (a) for example).

The exception to this behavior occurs for ductile materials where slow
tear takes place in an almost continuous manner. In those cases (see Figure
26(b)), the value of VI PHY. is taken from the point of intersection of the
unloading and loading lines.
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Figure 26. Typical V1 , V2 Plots for a Semi-Ductile and Ductile Material
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The reference crack length for physical crack extension is the physical crack
length (starter slot plus fatigue precrack) at the start of testing, ao. This ...
length is readily determined from post examination of the fracture surface to
determine fatigue crack length.

Thus the incremental crack extension Apa is determined from successive,
computed values of a/W or aPHY.. Each successive value has the initial
physical crack size ao subtracted to establish incremental, physical crack
growth a aPHY..

5.2.2 Effective Crack Length

To determine effective crack size (physical + plastic zone), the ratio
of the deflection at points V1 and V2 is used directly in the inverse poly-
nomial expression for a/W. The initial (linear) portion of the trace prior to
plastic zone development (see Figure 26, Point X) is used to establish an effec-
tive crack length data base, aoe. This value of effective crack length is
generally within 5% of the physical crack length; i.e., slot + fatigue crack.

At each increment of crack extension, the ratio of displacements at
those points can be used to calculate the respective value of a/W, where the
crack length "a" is the value of effective crack size (physical + plastic zone),
aeff.. Incremental crack extension is then determined by subtracting the initial,
effective crack size (aoe) from the respective values of aeff..

The value of V, used in the compliance equation to determine load, P
is that value of displacement just prior to crack extension that is V1 eff.
(see Figure 2 6(a)) since this is the value of displacement which occurs when
the maximum load is reached prior to slow tear. This load then corresponds to
the maximum value of aeff. for the given value of maximum load.

For ductile material behavior, the point at which V1 and V2 displacements
are employed to determine effective a/W are as noted in Figure 26(b). The point
on the VI/V 2 trace at which the measurement is taken corresponds to some point
prior to a rapid change in slope of the VI/V 2 trace. This point is readily
detected for the materials tested during this program. The sketch of Figure 26(b)
has been purposely exaggerated to point out the differences between the semi-
ductile and ductile materials.

5.2 DEFLECTION TRACES FOR CLWL SPECIMENS

Traces of the actual V1 versus V2 deflection curves are reproduced here so
that comparisons can be made between the various materials tested. In most cases,
the overall specimen dimensions shown in Figure 19 have been maintained and in
those specimens where specimen width (W) was altered, all other dimensions were
also changed to maintain geometric similarity (e.g., H/W remained 0.6,V 2 probe
position remained at .303W, etc.).

To maintain consistency in data presentation, the thinner gage, LT and TL
data are shown first, followed by the thicker gage data for each alloy class.
These data are consistent with the mechanical property data given in Tables
III through V. It will be noted that in many cases, traces are of small craci
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extension. In these cases, the crack was deviating significantly out of plane
and no further data was taken. This will be discussed further in Section VI.

In order to extend the measurement range at the longer crack lengths, it was
necessary to change the bolt heads at the Vl probe position to a large dia-
meter head (hence producing a smaller gap) for the tougher materials. This is
reflected by a series of additional traces on the VI versus V2 plots which follow.
This procedure extended the useful range of data for a given magnification. The
majority of the displacement data was recorded at a magnification of 0.020 inches/
inch at the Vl and V2 clip gages. Prior to each CLWL test, a calibration was per-
formed on each clip gage using an extensometer calibrator (high magnification)
with an accuracy of + 0.00002 inches. This calibration is noted as the tick marks
on each VI versus V2 trace which follow.

5.2.1 V 1 versus V 2 Deflection Data - Aluminum Alloys

Figures 27-28 are data for 0.63 inch gage 7075-T6 in the LT direction
and Figures 29-31 in the TL direction. Deflection traces for .195 inch gage 7075-
T651 in the LT direction are presented in Figures 32-34 and in Figures 35-38 for
the TL direction.

The heat treated 7075-T73 deflection data are shown in Figures 39-41
for the IT, thin gage and Figures 42-43 for the TL test direction. VI versus

V2 traces for the thicker (.195 inch) 7075-T7351 material tested in the LT direc-
tion are shown in Figures 44-46 and in the TL direction in Figures 47-52.

The 2024-T3 aluminum alloy data are shown in Figures 53-55 for the .064
inch gage IT and Figures 56-57 for the TL direction. Figures 58-61 include
the .258 inch gage LT data and Figures 62-67 the TL data traces. This same
2024-T351 (plate) material, chem milled to .083 nominal thickness has deflection
data as shown in Figures 68-70 for the LT direction and Figure 71 for the TL
direction.

5.2.2 V I versus V 2 Deflection Data - Titanium Alloys

Deflection data from the beta processed Ti-6Al-4V has not been included
in this report since additional testing of this material was not attempted. The
beta mill annealed 6AI-4V, V, versus V2 traces are shown in Figures 72-73 for
the thin LT direction and in Figures 74-75 for the TL direction. The thicker
gage material data is shown in Figures 76-79 for the LT direction and Figures
80-83 for the TL direction.

Displacement data for the mill annealed Ti-6Al-6V-2Sn, .063 inch gage,
LT direction data are shown in Figures 84-86 and TL data in Figures 87-91.
The thick LT data traces are shown in Figures 92-94 and TL data in Figures 95-
100.

5.2.3 V 1 versus V 2 Deflection Data - Steel Alloy

All of the deflection data for the 9 nickel steel tested during this
program are shown in Figures 101-103 for the LT direction and Figures 104-106
for the TL direction.
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VI CRACK GROWTH RESISTANCE DATA AND SPECIAL TEST SERIES

6.1 CALCULATION OF STRESS INTENSITY DATA FOR CRACK GROWTH RESISTANCE

The stress intensity equation employed for the CLWL specimen with semi-
height (H) to width (W) ratio, H/W = 0.6 is from the following expression (see
Reference 2):

KR [96()/2185.5 (fW)/ +~ 655.7 (a5/ - 1017.0 (W)7 + 638.9 (&9/ (2

Here, KR is the value of stress intensity (K) for crack growth resistance, a/W
is the instantaneous value of crack length to specimen width ratio (either
aPHY. or aeff. and P the corresponding value of maximum load at those selected

W W
values of a/W. The determination of a/W and P were explained previously in
Section V and will not be repeated here.

As in the previous section, data will be presented by alloy class, fracture
plane orientation and thickness. All data shown are based on physical crack
extension,A aPHY. and "effective" stress intensity. By "effective" stress
intensity, it is meant the value of stress intensity associated with the maximum
load (stress) and effective crack size which includes an artificial crack length
or that increment which includes some result of crack tip plasticity. In other
words, the value of KR has been corrected for plasticity through use of the
double compliance technique and is plotted as a function of physical
(return slope determined)crack size. In all data, the value of ao is the value
of physical crack size (including fatigue precrack length) measured after
specimen fracture.

6.1.1 KR Data - Aluminum Alloys

Crack growth resistance data for 7075-T6 aluminum, .063 inch thick
tested in the LT direction, are shown in Figure 107 and for the TL direction in
Figure 108. Thicker 7075-T6 data are shown in Figures 109 and 110. It will be
noted from Figures 107 and 108 that some experimentation was carried out on the
configuration of the initial stress riser. It appeared that the scatter in the
initial portion of the KR curve could be attributed to the saw cut versus an
electric discharge machined notch versus a natural fatigue starter crack. It
was thus decided to fatigue precrack all subsequent CLWL specimens. In both
the thin and thick LT specimen, it should be noted that deviation of the crack
from a plane perpendicular to the loading axis precluded obtaining data beyond
a A apHy. of approximately one inch (see Figures 107 and 109). However, even with
this small amount of crack growth, a plateau level appears to have been reached
which is approximately 20 to 30 percent higher than the TL test direction. As
these data were some of the initial data obtained during the course of this phase
of the program, the repeathbility of the data of Figure 110 was quite encouraging.

Crack growth resistance data for 7075-T73 material (NOTE; This material
is from the same lot as 7075-T6 and was batch-heat treated to the T73 condition)
in the LT and TL direction for thin and thick gages are shown in Figures 111 -
114. As with the 7075-T6 material, change in crack direction (towards the rolling
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direction) was noted for each thick specimen after 1 to 1½ inches of crack
extension (see Figure 113). However, the deviation trend was less pronounced
in this heat treatment (T7 versus T6) and took place over a longer crack length -

eventually reaching a maximum of approximately 45 degrees to the original crack
plane. Whereas the 7075-T6 material in the same thickness showed crack deviation
of 90 degrees to the original fatigue crack direction after small amounts ( 0.75
inch) of crack extension.

As part of a separate study of preferred crack direction which will be
explored deeper later in this section, the effect of side (or face) grooving
was examined as a method of containing the crack in a plane normal to the loading
axis. In addition, it was felt that the highly textured nature of the original
material (7075-T6) was causing the crack to deviate when tested in the LT
direction. To determine if this was a contributing factor, a specimen of 7075- EM
T651 (B = 0.195 inch) was examined by x-ray diffraction which indicated the
relative intensities of the (200) and (Ill) crystrallographic directions. These
results indicated that the number of grains oriented in the (200) direction was
higher than the (Ill) direction. For comparative purposes, a specimen of 2024-
T351 was also examined in the same manner since crack deviation was not a problem
in the L• direction for that material. These x-ray data indicated an opposite
trend; i.e., more (111) than (200). It was thus concluded that texturing was the
primary cause of the tendency for the crack to follow the rolling direction in
the 7075 (0.195 inch) material. By going through the -T73 heat treatment, some
of the texturing is reduced and the tendency for the crack to follow the rolling
direction is still there, but to a lesser degree.

The 0.063 inch, 7075-T73 crack growth resistance data are shown in
Figures I11 and 112. It will be noted that with the exception of specimen
T7-41CLT-009 (Figure 111), there is little scatter in the data. Specimen T7-
41CLT-009 had crack extension which angled after an initial extension of 0.8
inch of physical growth. This fact is reflected in the data of Figure 111,
whereas the other two specimens (-008 and -010) did not show crack deviation
until the crack aspect ratio, (a/W), was >0.5.

Figures 115-118 contain all of the KR data from the 2024-T3 aluminum
alloy sheet and plate. There was no tendency for the crack to deviate from its
initial plane for the thicker specimens (Figure 117). The repeatability of data
for both thicknesses is good and a plateau level of toughness of approximately
150-160 ksi inch is being reached for thin (0.063) material in the LT direction.

It will be noted that there is a spread in data at the longer crack
extensions. Some slight angling of the crack (< 15') did take place at a/W's
greater than 0.5 for the thinner gage material. However, it is thought that a
combination of back edge buckling caused by both specimen "hinging" and plastic
zone-back edge interaction also contribute to this long crack length scatter.
In fact, it is believed that these interactions are the principal cause of
crack deviation, for the thinner gage 2024 material, due to the large plastic
zones at the longer crack lengths.

The crack growth resistance data for the chem milled material are shown
in Figure 119 for the LT direction and the TL direction in Figure 120. This
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material was chem milled from the -31 piece (0.258 inches thick) by removing area
from one face only. The data from Figure 119 was used as an integral part in
analysis of the zee stiffened panels reported on in Volume I of this report.

6.1.2 KR Data - Titanium Alloys

The beta mill annealed Ti-6AI-4V crack growth resistance data are shown
in Figures 121-124.. The 0.053 inch gage material shows excellent repeatability
for both the LT (Figure 121) and TL (Figure 122) directions. In Figure 123, it
will be noted that specimen 4V-87CLT-012 does not follow the pattern of the other
three specimens. A behavior typical of most of the more preferred directional materials•
of this study occurred; i.e., angling of the crack away from its original plane.
These data have been included here to point out the differences in KR data possi-
ble from a given plate of material. It can be seen, however, that the weak
direction data (Figure 124) give consistent results where crack deviation was
not a problem. It must also be pointed out that some of the thicker gage speci-
mens (noteably 4V-87CLT-012, -014 and 4V-87CTL-008) were tested in a bowed condi-
tion where the bow was normally perpendicular to the crack.

Figures 125 and 126 show the CLWL, KR data for the 0.062 inch thick Ti-6A1-6V-2Sn
(mill annealed) material tested in the LT and TL direction. Extreme banding of
the KR data is noted for the LT direction data (see Figure 125). Specimens
6V-lICLT-007 and -009 had crack progression in a zig-zag fashion after approximately
one half inch of crack extension. The crack deviated at 20 degree angles and
could account for the scatter in the data. Specimen -008 (Figure 125) did not -
have a propensity for the crack to zig-zag and showed less than 10 degrees of
angling and could explain the higher values of KR for this specimen.

NOTE: The fact that physical crack size is determined from a return slope
compliance relationship based on assumed straight line crack progression would
lead to scatter for any data taken on any specimen where angling occurs. Pro-
jection of the crack back to the load line does not appear to alleviate the
problem which is compounded by having a mixture of mode I and II crack progression
when angling occurs. Further discussion of this problem and possible means of
obtaining crack growth resistance data in materials and fracture plane orienta-
tions which show a propensity towards angling will be discussed later in this
section.

It can be noted from the data of Figure 126 that the TL data does not
appear to have the banding which occured in the LT data of Figure 125. Two
specimens of this data set showed crack angling of approximately 20 degrees
after 0.4 inches of crack extension, 6V-ll-CTL-002 and -004. It can be noted
that these specimen data are above and below the band of the other three specimens.

KR data for the LT and TL direction for Ti-6AI-6V-2Sn, 0.20 thick, are
given in Figures 127 and 128. One observation was made during the testing of the
thicker specimens of Figure 128 which was unexpected. It was observed that after
an a/W of .45 to .5 is reached, angling of the crack took place (approximately
20 degrees or less) from the plane normal to the loading direction. This is the
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first instance of the crack deviating from a direction normal to the load for
thicker specimens tested in the TL direction. Such behavior has been previously
noticed for the LT orientation, in particular for 7075-T651 plate. There is a
slight difference in average Young's Modulus 17.08 versus 16.66 x 106 psi (see
Table IV) for the strong and weak direction which could explain this tendency
toward crack deviation. An even greater difference in average Young's Modulus
occurs for the 0.2 inch thick material (16.84 versus 14.58 x 106 psi) for the
strong and weak directions. From the KR data of Figure 127 it is obvious that
the anisotropic nature of this material (as noted by Modulus) was evident where
the crack deviated at 45 degree angles after minute crack extension. As a result
the full KR curve could not be obtained for this thickness material in the LT
direction.

6.1.3 KR Data - 9 Nickel Steel

Crack growth resistance data for the 0.063 inch gage, 9Ni-4Co-.2C steel are
shown in Figures 129-131. Figure 129 shows the KR data for this material in the
LT direction. Extreme toughness is noted for this annealed material with no
indication of a toughness plateau and values of toughness in excess of 600 ksi~in-ch.
This material did experience back edge buckling at a/W>0.4 indicating the extent
of crack tip plasticity. The "as received" condition of this material was quite
"rippled" and does cause considerable testing difficulties - particularly in
keeping the specimen flat during unloading around the loading hole (e.g., twist-
ing of the specimen).

Figure 130 shows KR data for the TL test direction. More scatter is
evident in this data; however, the problems associated with testing this material
preclude making any definitive statemeAts about the individual data.

A comparison of the 9 nickel steel TL and LT data is shown in Figure 131.
A plateau of approximately 500 ksii~n-ch-appears for the material tested in the
TL direction. No plateau is evident .for the crack oriented in the LT direction.

6.1.4 Summary of KR Data

In summary, KR data have been obtained for all materials tested in this

program but not without some difficulties for those materials which are aniso-
tropic due to preferred rolling, banding, etc. In those cases, the complete KR
curve cannot be obtained from the CLWL geometry. Other specimen configurations
must then be introduced to remedy this problem.

It is becoming apparent that the role of material rolling history on

crack growth resistance becomes increasingly important in any fracture criteria.
This will become evident from the aluminum side grooving and off angle tests to
be reported on next. It is even muore apparent in materials such as titanium
where significant differences occur in the TL and LT mechanical properties.

6.2 SIDE OR FACE GROOVING OF THE CLWL SPECIMEN GEOMETRY

Initial tests on the 0.195 and 0.063 inch gage, 7075-T6 material in the
LT (crack oriented normal to the rolling direction) direction for the CLWL
specimen geometry indicated that some type of anisotropic material behavior was
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influencing crack extension. Cracks in all cases tended to deviate signifi-
cantly from the plane normal to the rolling direction after small amounts
(<2.0 inches) of stable crack growth. Thus, the full resistance curve could
not be developed for this crack orientation. Since in most aircraft applica-
tions, the path of crack extension can be in any of several directions, but
principally in the TL and LT directions for through cracks, it was apparent
that some means of controlling crack direction (principally normal to the load-
ing axis) was mandatory if an effective residual strength analysis was to be
developed which included a comprehensive fracture criterion. The criterion
must include cracks which are oriented in this so-called "strong" orientation.
Side grooving has been used in plane strain fracture toughness testing with some
degree of success in suppressing the side boundary plastic zone formation but
has been found to be influenced by groove geometry and material. A review of
these complexities is given in Reference 3.

In our case, the groove would be serving as a guide to maintain the crack
in the plane perpendicular to the rolling direction. This would, hopefully, be
accomplished by minimum suppression of the surface plastic zone. Several CLWL
specimens were prepared with side grooves as shown in Figure 132, in both the
TL and LT directions from the 0.195 inch thick, 7075-T651 material. Control
specimens without side grooving were also fabricated. In addition, specimens
were also prepared from 0.258 inch thick 2024-T351 material to verify the obser-
vations from the 7075-T651 test series. In both cases, the depth of remaining
material (after grooving), Bg, was kept as a constant percentage of the overall
thickness, B, (nominally 85 percent to 90 percent) and the groove width, wg,
varied from 1 to 3 times the material nominal thickness. Using this procedure,
the effect of surface plastic zone suppression, which was thought to be the most
significant factor in effecting crack growth resistance, could be evaluated.

The 7075-T651 side grooving study will be discussed first, followed by the
2024-T351 results and the results of a special off-angled test series from
both materials. At the conclusion of these discussions, recommendations
as to the alternative specimens and disposition of LT (CLWL) specimens with
strong material anisotropy will be presented.

6.2.1 7075-T6 Side Grooving Study

Figure 133 shows the data for side grooved, CLWL (TL) specimens. A
control specimen is also indicated. It is obvious that decreasing the notch
width (w ) (i.e., decreasing notch radius) decreased the plateau level of the KR
curve. The initial one-half inch of physical crack extension does not appear
to be influenced by the degree of side grooving. In all cases, the crack ran
completely across the CLWL panel without deviation from the TL plane. However,
the wider notch (larger w ) did result in a crack advancement which ran from the
bottom of the groove to t~e free surface and then back again as noted in Figure
133, specimen -OOD. Cross sections of the control specimen (-0OC) and -0OD
indicated typical 45 degrees shear (slant) crack progression typical of this
thickness. On the other hand, when full plastic zone suppression takes place,
as is the case when wg = B (-OOA), crack progression occurred with little or
no evidence of any shear development (i.e., flat cracking) across the entire
specimen. This progression is shown in Figure 134 where crack growth resistance
data from CLWL (LT) are presented. Specimens -OOA and -OOB are grooved such that
the groove width wg is equal to the thickness for maximum surface plastic zone
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suppression. The -OOA (TL) and -OOB (LT) coupons are compared in the left hand
photograph. The CLWL (LT) specimen has a "saw tooth" appearance (there was
negligible shear development through the thickness) which indicated a strong
tendency for the crack to turn toward the rolling direction even with full zone
suppression. The data of Figure 134 also shows a difference in KR curves with
grooving over the full range of data with an unexplained cross over at approxi-
mately 1½ inches of physical crack extension.

6.2.2 2024-T3 Side Grooving Study -

To further study the effect of side grooving on crack growth resistance
and crack progression CLWL specimens of 0.258 inch thick 2024-T351 plate were
side grooved with groove widths equal to two and three times the material thick-
ness. The results of the TL specimen tests are shown in Figure 135 with accom-
panying fracture surfaces in Figure 136. The separation of data is similar to
that obtained for the 7075 material (see Figure 133); however, the decrease in KR
for the specimen with full plastic zone suppression (-OOB of Figure 135) is not
as large as for the 7075 material. However, it must be noted that the KR curve
has barely reached a plateau value as with 7075 but the early stages of crack
extension a'nd subsequent trends are similar.

Figure 137 shows KR data for CLWL specimens in the so-called strong
direction, LT. Decreasing KR with decreasing notch radii are once again evi-
dent. One factor of utmost importance is also indicated, that is the unnotched
specimen (-001) showed no signs of crack deviation over the entire range of
craAk lengths. Thus a full range (for the 14 inch wide CLWL specimen)Ada versus
KR curve was readily obtained. This, of course, was also apparent from the data
of Figure 117.

The fracture surfaces of all specimens showed no evidence of shear in
either the grooved or ungrooved conditions for both the TL and LT direction.
The fracture paths for the 2024-T351 (LT) specimens is shown in Figure 138.

In analyzing the data of Figure 137, one may conclude that the reduction
in KR with decreasing groove radii could also occur due to increasing initial
starter fatigue crack length, ao. However, the data of Figure 135 show similar
trends for constant initial crack size. Indeed, the 7075-T651 data of Figure 133
for two specimen widths (14 and 10.63 inches) and dissimilar initial crack
lengths (but same ao/W's) definitely indicate the influence of surface plastic
zone suppression on the KR curve.

6.2.3 Off-Rolling Direction Specimens

To confirm the role of material anisotropy due to rolling for the change
in fracture direction for the 7075-T651 material, two specimens were prepared
from a 4 ft. x 8 ft. plate as indicated in Figure 13 9 (a). The fracture direction
for these 45 degree specimens is shown in Figure 139(b). The black triangle is
a 450/450/900 triangle and indicates that almost immediately from the starter
fatigue crack, the crack ran in the direction parallel to the rolling direction.

Similar tests were run on the 2024-T351 material and the results are
shown in Figure 140. In this case, the crack slowly progressed to a 15-20 degree
angle to the initial crack plane.
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6.2.4 Conclusions and Recommendations Based on Side Grooving Studies

Based on the results of the previous sub-studies, the following comments
apply:

The use of crack growth resistance as a fracture criterion would have
definite limitations if CLWL curves cannot be developed in the LT
direction for materials with strong directional properties. This may
be partially overcome by testing the center cracked tension geometry
(CCT) with corresponding increased cost and effort.

Side grooving should be used as a last resort to obtain a KR curve for
the following reasons:

(i) Extrapolation to the base (ungrooved) geometry would currently
be a matter of judgment based on limited data obtained thus far.

(ii) The early life (small crack extension) portion of the curve
indicates small changes in KR with groove radii for the highly
directional 7075-T651 material. Since the rising portion of the
resistance curve is of prime concern in application to structural
failure, this portion can be obtained (at least for 7075-T65i)
quite readily from ungrooved specimens.

(iii) The plateau level is definitely affected by side grooving and
use of crack growth resistance curves for material evaluation
purposes would require additional study, particularly for the
CLWL specimen geometry.

Perhaps the unexpected crack extension of the ungrooved 2024-T351 (LT) specimen
compared to the strongly directional behavior of the 7075-T651 (LT specimens can
be explained by examining the respective TL and LT resistance curves. In com-
paring data from the LT direction with similar data for the TL direction (data
presented earlier in this report), it is shown that there is little difference
in the KR curves for 2024-T351 for the two crack orientations; e.g., Figures 117
and 118. (The LT direction is approximately two to five ksi /i-ch higher than
the TL.) By comparison, the 7075-T651 material data (see Figures 109 and 110),
indicate that differences in KR of 10 to 15 ksi Vinch between the TL and LT

direction are evident.

6.3 SUMMARY

This report contains all of the essential materials test data obtained
from Phase II of the program. Only those data deemed necessary to the develop-
ment of the failure criterion were explored. These data are presented here so
that a wider understanding of the problems and difficulties associated with crack
growth resistance type tests and the resultant data may be objectively examined
and evaluated.

The intent has been to obtain only those data necessary to the method
proposed in Volume I of this report so that more accurate and reliable predictions
can be made of the residual strength of thin section structures.
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