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CHAPTER 1

This report is, in essence, concerned with scheduling
theory. The concern takes two forms. First, there is a
practical engineering scheduling problem that needs to be
solved. To study this problem we have drawn upon a new
theoretical approach to scheduling. And, this is our second
concern, the development of a theory that indeed has

practical implications.

The problem we address is that of scheduling
dial-a-ride transportation systems. A solution would be the
development of a methodology for analysing and designing the
scheduling algorithms. Whilst aiming at a solution, we
investigate to what extent a recent asymptotic probabilistic
technique for tﬁe solving of hard combinatorial optimization
problems is of real interest. This requires that a
mathematical result be generalized for a number of problem

formulations.

ela
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1.1 The Dial-a-Ride Problem

During the past decade there has been some interest in
the planning of innovative public transportation systems.
An area which has received substantial attention is that of

'demand responsive transportation' [19].

One of the outcomes of this research has been the
‘dial-a-ride' proposal. A dial-a-~ride transportation systenm
is somewhere in the range between a rigid bus system and a
flexible taxicab system, and ideally provides large numbers
of passengers with personalized service. Passengers request
service - to be taken from an origin to a destination -~ by
telephone. At this time of request, an estimate of the time
of collection and time of delivery is quoted. Small buses
travel about the region, collecting and~’,delivering
passengers; during his trip, a particular passenger may be

transferred to another bus. At any time a bus may have many

passengers aboard.

The central mathematical problem in a dial-a-ride
transportation system is one of scheduling: an algorithm is
required that will decide to which bus (or sequence of
buses) a particular passenger should be assigned and when
his trip should take place. A number of algorithms have
been proposed to do this scheduling. Most of these are
computer aided; the computer is wused for the detailed
on-line decision making or as an information source,

evaluating the system 'state'.
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We shall be concerned with dial-a-ride scheduling
algorithms at a fundamental 1level, avoiding many of the
modifications and adjustments that must, of course, be made
in an actual implementation (we shall discuss some of the
practicalities in Chapter IV). There are two fundamentally
very different approaches to scheduling which we shall
consider. Let us describe the skeletons of these

approaches.

The first is a system developed at M.I.T. by Wilson

et 13 [21,22]); experimental versions have been
ented since 1972, and currently one is being tested at

:ster, New York. The underlying trait of this scheme is

its search procedure for allocating passengers to buses. At
each instant of time each bus has associated with it a
'prospective route', given by an ordered sequence of future

stops (which may be origins or destinations(1)),

and an
estimated time-of-arrival at each of these stops. With each
stop too there is a 'latest time~of-arrival' - the time
which has been quoted to the associated passenger. A new
incoming passenger must be allocated to a bus. This
involves inserting his origin and destination into the
prospective route of one of the buses. For each new demand,

the scheduler searches through every possible insertion on

every one of the buses and chooses the best, so as to

(1) This scheme requires no transfers for passengers: each
passenger must be delivered by the same bus that collects
him.
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minimize a certain criterion function(Z)- Basic to the

design of algorithms here is the choice of the criterion
function, the method of quotation, and the travel-time
prediction. It appears that the procedure is very sensitive
to these choices, as well as to variations in the péraneters

[21,22,18].

At the other extreme is &a very different approach
towards the scheduling. It is described by the following,
which we shall refer to as the 'Michigan Scheme' since a
related system has been evolving at Ann Arbor, Michigan
[17]. The region in which the system operates is
partitioned into a number of subregions, rq,rs,...rp. In

each region ry there is a bus that travels only in rj. A

(2) The criterion is a function that concerns both present
and future passengers. Present passengers are interested in
their wait time, w, ride-time, r, total travel time, w+r,
pickup-time deviation, Dp, and delivery-time deviation, Dd
(these are deviations from the quoted times). Future
passengers are acknowledged by taking into consideration the
increase in tour-length, DT. Thus, for each possible
assignment one can evaluate :

a1fq1(w) + apfa(r) + a3f3(wer) + ayfy(Dp) + agfg(Dd) (1)

for every current passenger, and a similar value for the

passenger being assigned. Here, the ai'S® are weighting
parameters and the fi's are functions (generally,
fi(x) = x or x2 for all i). Summing (1) for all the
passengers and adding also
bDT
where b is another weight, yields the criterion function to
be minimized.
The time to a point P which is quoted a passenger 1is
determined by

c.E(tp) + d
where E(tp) 4is the expected direct travel-time to P and ¢
and d are fixed parameters. In some versions of the

algorithm the quoted times are retained as hard constraints,
which must never be violated by subsequent assignments.
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larger 'line-haul' bus connects the regions by travelling
along a fixed route, stopping at certain 'transfer points’',
P1sP2sy.+.Pp in each region. This is shown schematically

in Figure 1.1.

-
— -

PR e
\x’ -
" \ rz / rs Tq ( s

Transfer points “Line-haul"route

Figure 1.1 The "Michigan Scheme"

A passenger requiring to go from region rjy to region rj

is collected by the bus in ry, transfers onto the
line-haul bus at py, alights at Py and is delivered by
the bus 1in rj. The regional buses visit their transfer
points every 15 minutes (say). The regions are small enough
that drivers can quite easily choose an optimal or
near-optimal path between visits to their transfer point.
The times which are quoted to passengers for collection and
delivery are simple estimates of travel time given the
lond(a). Under a heavily loaded system a passenger may have

to wait his turn before being collected, as the regional

(3) These quotations are not used in the scheduling
procedure.
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buses can make only a limited number of stops between visits

to the tranasfer point.

We do not intend to give here a detailed evaluation of
present dial-a-ride algorithms - the reader is referred to
[10] - but some critical comments are in order. These focus
on three aszects: the cost, the optimality and the
practical performance. We base our initial observations on
the Rochester approach, since there has been a great deal of

research into this and related schemes.

Basic to the Rochester approach is a 1long and hard
search. Typically, the computational effort required for
such searches grows exponentially with the problem size (see
the comments in Section 2.1), and we should expect it to be

very expensive.

A scheme might be justified if a certain performance
level can be guaranteed. The Rochester search is a local
one [5], both with respect to time and with respect to the
passengers. That 1is, only a single passenger is assigned
(or at best only a small set of passengers is reassigned)
when the schedule is wupdated. Further, optimality (with
respect to the criterion function) is ensured for only that
point in time. For local searches it is very rare that good
performance can be guaranteed. Recent research in [22] has
focused on the criterion function. However, there is no
guarantee that the performance of the system as a whole

(measured, say, in terms of average travel-time and/or
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variance of travel-time(u)) will be improved if the wutility
functions of all current passengers are maximized whenever
decisions are made. This is true even if reasonably
acceptable wutility functions for the passengers could be

represented, itself a notoriously messy problem.

Lastly, what about its practical performance? In the
early stages of implementation, particularly when the system
was heavily loaded, there were often roundabout devious
routes for passengers, with resulting customer
dissatisfaction [18]. In general, it appears that the

results on performance are inconclusive.

In contrast, the simplicity of the scheme at Michigan
is very attractive. The scheduling cost is relatively low,
since the computer is used only to store the demands and
access them efficiently. (Optimal tours for the regional
buses might also be determined on-~line by a computer. Then
each tour is but a small, simple 'travelling salesman tour'
- see Chapter 1II -~ where the distances between points
satisfy the triangle inequality. For these problems there

are some recent efficient heuristic algorithms [12].)

In practice the Michigan scheme has been found to work
well [17]. But there are still some vague questions. Can
one justify the use of the Michigan approach with respect to
some optimality criterion; and how should one design the

regions, the fixed routes and the timing of transfers?

(4) These were the measures loosely used in [22].
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1.2 Qur Approach

Our investigation will be an analytic one into some of
the basic aspects of dial-a-ride algorichms. We shall
derive a class of algorithms - or, more correctly, an
approach towards the design of algorithms -~ for which
optimality can be measured in a certain precise sense. This
sense is asymptotic (in the number of passengers who require
service) and probabilistic (so that the probability is high

that on any given day the algorithm will perform well).

The approach taken is one of preplanning at a global
level. Very loosely, it 1is based on the following
principle. Even though each passenger is unique, with his
own required origin, destination and time-of-delivery, in a
large system, where there are a large number of passengers,
we can predict quite closely the behaviour patterns of the
set of all passengers. This is the 'equalizing' effect of
the law of large numbers that has been observed in many
physical phenomena, the classic example being the

thermodynamic principles for the behaviour of gases.

To analyse the problem theoretically it is necessary to
abstract the essentials and to consider an idealized
version. Chapters II and III present an analysis of models
of the dial-a-ride problem that focus upon its combinatorial
nature. They study separately static versions - in which
demands for service are all available at the start - and

dynamic versions - in which the demands arise over time.
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For the models, we obtain ‘'asymptotically optimal'’
algorithms that minimize simple distance or average

flow-time criteria, and we evaluate suboptimal schemes.

Despite the idealization, many qualitative insights
result, and in Chapter IV, we return to the real problenm.
Here, drawing upon the theoretical results, we obtain their
implications for the real problem and propose an approach
towards the design of dial-a-ride systems. The approach is
of interest then, because it can be theoretically justified,
and also because it has many attractive practical features.
Furthermore, the techniques developed in Chapters II and III
provide us with a powerful analytical tool for use in the
design process. We can investigate changes in performance
when parameters (e.g. the number of buses, the size of the
region and many others) are varied. Proposed schemes can be
easily evaluated without the need to resort, at this basic

level, to simulation.

It is interesting to note, at this point, that the
'Michigan Scheme' described above can be considered as
belonging to our class of algorithms. Thus, we are able to
say in what sense it is optimal as well as to gain some
valuable insights towards its improvement. The attractive
simplicity of the Michigan scheme is common to all of our

proposed algorithms.

B &tk b o9
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CHAPTER II1

STATIC BUS PROBLEMS

In this chapter we begin a theoretical analysis of
dial-a-ride bus systems. In Section 2.0, we introduce the
idealized 'bus problems' which we shall be developing, and
state the basic assumptions and terminology. Our approach
is based on an interesting theorem of Beardwood, Halton and
Hammersley [2] and on a recent paper of Karp [9]; we
describe these results within the context of combinatorial
optimization problems in Section 2.1. Sections 2.2 and 2.3

present a theory for single- and multiple-bus problems.

Throughout this chapter the presentation is informal,
with only heuristic Justifications and proofs. Detailed

proofs of the results are delegated to an appendix.

2.0 Idealized Bus Problems

Wy oty ty, | RTINS b e oot e aNDs s

The travelling salesman problem (TSP) - see the
definition below =~ has received much attention in the
operations-research litc;ature. Not least among the reasons
for this is the fact that the TSP can be regarded as a
prototype for many realistic problems. Clearly, there is a

nontrivial relationship between the TSP and the dial-a-ride

«ll-
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problem, and in this chapter we shall exploit this
relationship. First 1let us describe the problems to be
considered, and state the basic assumptions and our

terminology.

We are given a bounded region R in the ©plane, with
area a. Demands arise in R. A demand p = (o0,d) 1is a
pair of points in R with origin o and destination d. A
set of m buses is at our disposal for meeting these
demands - i.e. for visiting the set of points. A tour for
a bus 1is the sequence of points which it visits. Before a
bus can visit a destination the relevant passenger must be
on board, and so the corresponding origin must already have
been visited. We refer to this as the 'feasibility

constraint'; tours which satisfy it are termed 'feasible’'.

We distinguish between static and dynamic versions of

the problem. In the static version we are given, at time
t=0, a collection of n demands and we are to devise
feasible tours for the buses so that all 2n points are
visited. In dynamic problems, to be discussed in Chapter
I1I, the demands arise as time progresses according to some
random process. Again feasible tours are to be devised (of
course a point can be visited only after the demand arises).
The problem faced is to devise ¢tours 430 ¢that a certain
eriterion 1is linilizodi The criterion will usually be a

function of time or of distance travelled.

-

Kacarme
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We assume that the buses are all of infinite size. The
distance between two points in R 1is the euclidean length
of the straight line joining them, so if R is not convex
the tour might 1leave R. The buses travel at unit speed,
and no time is wasted when a passenger embarks or alights.
Alsdo, transfers are instantaneous (see Section 2.3). These

assumptions will be discussed further in Chapter 1IV.

An instance of a static bus problem of size n is
specified by a set of n demand pairs. Our approach is
probabilistic and we must define a probability distribution
from which the problem instances are drawn. We assume (for
simplicity, although this can be considerably weakened) that
all origins and destinations are drawn independently from
the uniform probability distribution over R. We refer
loosely to this fact by saying that a particular problem

instance (of size n) is 'random'.

We shall 2also be making use of the well-known
travelling salesman problem. An instance of this problem
(the euclidean version) is given by a set of n points

(1)

within R. We are required to find a path which passes
through these n points and which ;;5 shortest length. In
a 'random' instance of the TSP, the n points are drawn
independently from a uniform probability distribution over

(1) By a 'travelling salesman problem' we mean this 'open'
version, in which the required tour through the n points
need not be closed.
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In the algorithms to be considered, the region R is
partitioned into subregions (this emphasis will be
justified). When we say a bus 'visits' certain points in a
subregion we mean that it enters the subregion and performs
an optimal travellin salesman tour on the designated points
there. When the 'us .hen visits points in another region,
it travels to the closest of the new points and similarly

performs an optimal travelling salesman tour in that region.

If we think of R as being divided into m equal
subregions each of area a/m, then any given demand pair
originates in any particular region with probability 1/m,
and has destination in any region with probability 1/m. 1If
there are n demands, with n a large number, then with
high probability there are approximately n/m origins and

n/m destinations in each region. This follows from the
strong law of large numbers [14]. However, we might loosely
assume that there are exactly n/m origins and n/m
destinations in each region. This is an example of the sort
of imprecision that exists in the following pages. Rigorous
statements and detailed proofs of the results are collected
in the appendix, so we are free to concentrate here on the
spirit of the ideas. It should be kept in mind throughout
that inexactitudes as that above hold only asymptotically

(in n) with probability 1.

e ——
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Our analysis will begin with a very simple bus problem,
and the results will then be extended to more complex
problems with corresponding 1increased realism. First,
however, we digress to describe the aspects of scheduling

theory upon which our approach is based.

2.1 Combipatorial Optimization and the Iravelling Salesman
Problem

Recently there have been some theoretical advances in
the understanding of combinatorial optimization problems.
Most important has been the acknowledgement that there
exists a class of 'hard problems' (NP-complete problems).
These are hard in the sense that the computing time required
to find their solution by any known algorithm explodes
exponentially as the size of the problem increases. For
these hard problems, then, there seems to be no way to
avoid, essentially, the enumeration of a very large number
of possible alternatives. This is 1inefficient; an
'efficient' algorithm would be one with an execution time
behaving as pin), a polynomial function of n. These
notions have been made mathematically precise - see Aho

et. al. [1], Coffman [5].

For example, the TSP has been shown to be NP-complete
[16], and there are no known efficient algorithms for its

solution. To solve it, we need to evaluate very many of the
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n/2! possible orderings of the points, or tours.
Furthermore, the existence of an efficient algorithm for the
TSP would imply, and be implied by, the existence of
efficient algorithms for a whole class of hard scheduling
and other combinatorial optimization problems. At present,

this appears extremely unlikely.

This is indeed bad news, but practical problems must
still be solved. To this end, note that we required above
that the algorithm guarantee the optimal solution. An
easier question which might be asked would be one with the
optimality requirement . relaxed. So, find an efficient
algorithm A (if one exists!) that will provide a possibly
nonoptimal cost - call it c¢(A) - but one that is close to
the optimal cost, c%*. More precisely, an algorithm A 1is
said to solve the problem to within the ratio y (y 1is a
real number, larger thanm 1) if

c(A) £ yct (2.1)
(We shall also use the terminology: A is ¢e-optimal if

c(A) £ (1 « €g)ct* )

This approach has been found to be very useful for
certain special problems, and of no use at all for certain
others. For the travelling salesman problem the best that
has been achieved in this sense is an algorithm
(Christofides [3]) that solves the problem in polynomial
time to within 3/2. .
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This ratio is still a little high and one mignt expect
to do Dbetter. For, given an instance of the travelling
salesman problem, it is not too hard to draw a path which
looks pretty much the shortest, and one might then be
tempted to say that with high probability it is close to the
optimum. This implies that we should relax not only the
;ptinality requirement but also the guarantee which the
algorithm promises. This notion <coincides with a very
recent approach, suggested by Karp [9]. Suppose that the
problem instance is derived from a certain known probability
daistribution. Can we then produce an efficient algorithm
that will perform well (i.e. to within an acceptable ratio)

with high probability? This probabilistic approach can best

be illustrated via the TSP.

Let us suppose that a particular problem instance of
the TSP is chosen by drawing n points independently from a
uniform probability distribution over the planar region R.
Let Ln be the length of the shortest path ihrough these

n points. Then L, 1is a random variable.

(2)

The following theoren is due to Beardwood

et. al. [2].

(2) The problem studied in [2] is actually the glosed TSP in
which a closed tour is sought. It is easy to see that the
theorem still holds for the open TSP.
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Iheorem 1
If the region R is bounded and has area a, then
there exists an absolute constant b such that
lim Lp = bv/a almost everywhere (a.e.) (2.2)
n>o v/n (]
The existence of the limit in (2.2) is part of the
assertion. The constant b has been estimated by Monte
Carlo experiments to be .T75. Of course, the rate of
convergence of the sequence Ln/Jﬁ is important; this
aspect of the problem will be discussed in detail in Section
5.3 We shall also discuss there the case in which the

probability distribution is not uniform.

By Theorem 1, then, the length of the shortest path, a
random variable, is asymptotically (i.e. for n large)
equal to bJ/a/n with probability 1. The value bJa/m is a
non-random function of n and so for large n there is no
distinction between the random and non-random versions of
the problem, and we can predict with probability 1 the
length of the optimal tour through any random points. In
particular, suppose that an algorithm A yields a tour
length of L: through n random points, and that n is
very large. Then, by definition (2.1), this algoritm solves
the problem to within Lﬁ/bJ?JB with probability 1. It is
in this asymptotic probabilistic sense that we are able to

investigate the optimality of various algorithms.
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Consider the following algorithm (similar to that of

Karp [9]) which yields a path for any instance of the TSP.

Algorithm 1

Divide the region R into m subregions each of area

a/m, and 1label them r{,r2,...rp. Using an optimal

algorithm, construct an optimal travelling salesman tour
within each of these regions individually. Now, visit the
regions rq,rp,...rp in order; upon completing a tour in
region o visit the <closest unvisited point in region

ri) and thence traverse the tour in

ri+1 (take rpg.q

that region. ' []

For n 1large enough there will be n/m points in each

Kl
region; the tour within each region has lengtb(') (by

bJ’BJE : b/i/a in% )
mim m

Calling the total distance r§ we have

Theorem 1)

¥ < wp/A/E + mA (a.e.)
m

(3) It should be clear that these equations and inequalities
hold in the asymptotic probabilistic sense only. The
derivation can easily be made rigorous. The appendix of
Chapter II will illustrate how this can be done.
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(%)

where A 1is the diameter of the region R.

Hence,

Sk

< b/a + md (a.e.)
J/n

and, given any e, for n 1large enough,
K
In € BDIE + ¢ (a.e.)
So, loosely speaking, Algorithm 1 is ‘'asymptotically

optimal'. More formally, we have

Lorollary 1

Given any ¢€>0, there exists an N(e) such that for
any random problem of size n, with n2N(e), Algorithm 1

is e-optimal with probability 1. (]

It can further be easily shown - see Karp [9] - that if
m grows as loglogn (so that m/n>0 as n>m and an
O(n.2P7) algorithm (e.g. that in [8)) is used within each

subregion, then Algorithm 1 runs in time O(nlogn) a.e.

(4) The diameter of R is nin{"x-y“; x,yéR}. The term
involving the diameter becomes negligible in the limit. The
formulas are independent of the shape (or convexity) of the
region. For example, in a region with shape

the travelling salesman tour will still be hardly likely to
exit from the region if n is large enough.

L R e ——
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2.2 Static, Sipgle-Bus Problems

£2.2,1 QOptimal Algorithms

The simplest static bus problem is one in which there
is only a single bus. We wish to choose a feasible tour
through the n demand pairs so as to minimize the total
distance travelled (this will be the same as minimizing the
time by which the tinal passenger s delivered). This
problem differs from the TSP only in the feasibility

constraint.

As a first observation, note that the problem is

NP-complete (see Observation 2.0 in Appendix II).

Let us define(S)

Lp = length of the optimal travelling salesman tour
through n random points in R.
Yp = length of the optimal reasible bus tour through

n random demand pairs in R.

Observe that, by dropping the feasibility constraint,
we would obtain a tour of length Ly,. Hence
Lan £ Yp (2.3)
An upper bound to Y, can be obtained by any suboptimal
algorithm which might be suggested. For example, if we

first visit all origins in R and then visit all

2

destinations, we would obtain a tour with length L;+Ln,

(5) Both L, and Y, are random variables.




¥
i
i
-'1:
&
e
%
%
1

22 -

where Lg and Ls are the lengths of the two travelling
salesman tours on n random points each. This yields

Yoo £ By

We can easily improve on this upper bound as follows.
Divide R into two equal subregions of area a/2 each,
cqlling them regions rqy and rp. First, visit all origins
in riq (there will be n/2 points, from demands of the
form (rq,rq) and (rq,r2) for n large). Second, visit
the origins and the aestinations from demands (rq,r2) in

ro (there will be 3n/4 points here). Third, visit rq
again, visiting the remaining points there - these will be
the n/2 destinations from demands (rq,rq) and (ro,rq).
Finally, visit the last aestinations in rp2 - there wil! be
n/4 points from demands (rp,r). For n large this tour
has approximate length (a.e.)

b(/n72 + V3070 + /n/72 + Jn/0)J/a/e
= 1.96b/a/n = 1.96Lp.

The obvious generalization is easy, and we can give the
following algorithm, producing a feasible tour which we call

-3

Algorithm 2 (producing the tour T:)

Partition the region R into m equal subregions,
each of area a/m, and label them rq,rp,...rp. Visit the
regions in numerical order; in each region rjy collect all
the origins as well as the destinations from regions

rP1,r2,...P4.1. This is the 'first passage' through the
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regions. Following this, again visit the regions

P1;r2,...Cg in order, visiting all the remaining
destinations in each. This is the 'second passage' through
the regions. Each time a region is visited, the tour is a

travelling salesman tour. I3

It is shown in Lemma 2.2 that the tour T: has length
4/2v/a/n + /n0(1/m) (2.4)
3
If we now assume, as appears reasonable at this stage,
that there exists an absolute constant ¢ such that
1im Yo = cv/a (a.e.) (2.5)
n>o® J/n
then (2.4) and (2.5) (noting that Lo, = J/2nb/a = J/ZLp)
together give
Z & ¢ £ 4/2v/3.

More difficult is Lemma 2.3 where it is shown that the
value of U4/2b/3 4is also a lower bound to c¢ (the rigorous
proofs in the appendix do also guarantee the existence of
the 1limit in (2.5) and hence too that ¢ exists). We give
a rough outline to the proof of Lemma 2.3. Given any
optimal tour with length Y,, it is possible to construct a
sujitable division of the area R into m equal subregions
(for any m21) such that the following infeasible tour does
yield a lower bound to the value Yp. This infeasible tour
visits the regions successively, twice each, in exactly the

manner of the tour r:, except that the destinations of the
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form (ry,ry), 1=1,2,...m, are visited in each region ry
on the first passage through the regions and not on the

(6)

second Letting m>@® the lengths of the infeasible

tours converge to 4/2b/n/3, a.e.

From Lemmas 2.2 and 2.3 we can state

Ibeorem 2
lim ¥Yp = 4/2b/a a.e.
n>® vn 3
= 1.89b/a. []

Henceforth for convenience we write

c = U4/Fv/3.

We shall also refer to the ‘'optimal tour T°' with
length cv/nva, where T° = é&:)T:; by this rough statement
we mean that we can approach arbitrarily close to the
optimal value of Y, by a tour T: given by Algorithm 2;

this is still asymptotic in n (with n/m>x a.e.

More precisely, we get from Lemma 1,

(6) Note that 4if there are nj points to be visited in a
certain region ry and if n! and n' are visited on the
first and second passages throuch ii respectively, then
the tour in ry has length behaving as

y, * bATE(/A] + /AD

1] "
with n1 + n1 s n1

The value yji 1is minimized if In!-n”| is made as 1
possible. i1 arge as
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C 11 2(7)

Given any €>0, there exist N(e) and m(e) such
that for n2N, the tour r: given by Algorithm 2 minimizes
the total distance travelled to within 1+€, with

probability 1. []

2.2.2 Comments on the Iour IS

o

(i) Unigqueness of the Iour I_

Note that the tour To described above does not

uniquely solve the wminimum distance problem. Consider a
tour T:' which visits the regions (rq,rz,...rp) in the
same manner as T: on the first passage through the
regions. On the second passage, however, the regions are

visited in the order (rp,rg-i,...rq), and once again all

feasible destinations are visited in each region. Clearly
T: and T:' have the same length (asymptotically a.e.)
and
' £ 11
o>

would also solve the problem.

(7) This statement can be strengthened slightly: Given any

€>0 there exists an M(¢) andol function N(m,€) such
that for all m2M, the tour Tp minimizes the distance to
within (1+€) a.e., whenever n2N(m,e¢).
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In later sections, particularly for the dynamic
problem, we shall be interested in other criteria; there is
then an inefficiency in the tour T:' as it is 'tail-heavy'
with passengers having on the average a longer travel-time.

This justifies our present emphasis on the tour T:.

There is yet another tour which minimizes the distance
travelled. Consider visiting regions (rjy,...rp) in the
same order on two separate passages. On the first, collect
in each region rj all origins of the form (ri.rJ), J<i.
On the second passage, collect all origins of the form

(ri.rj). i and simultapeously deliver all feasible
destinations (these will be all of the destinations in rj).
It 1is easy to see that this tour will have the same length
as the tour T:, but will be even more tail-heavy than was

-4

We might emphasise the easy principle underlying the
optimal tour T:, which will later be seen to be important.
Visit the regions successively; each time the bus exits from
a region choose as next region the one with the most
unvisited feasible points (break ties arbitrarily), and

visit all of these points.

(44) Simple Iours

This is a suitable juncture at which to digress to make
a further important observation on the tour T°. It belongs

to a class of tours which we shall term ‘simple’.




-

-27~

Conceptually, a simple tour is one that visits the points in

R region-by-region. The tour segment in ry can be
constructed at the time at which the bus enters rjy, in
that all points visited in ry; were feasible at this time

of entry.

More precisely, let m be any integer, m21. Define
Sm» the set of 'simple tours on m subregions' as
follows. A feasible tour T belongs to Sp if there
exists a partition of R 1into at least m subregions of
area a/m each, with the two properties:
1) if T enters a region ry at time tj, then the points
which are visited in r; were already feasible at time t;,
2) if T visits p points in ri, then we can assume that
these p points are randomly distributed over ry (and that
T performs an optimal travelling salesman path on these

p points).

Now define
@
S = U Sy
i=1
Then any tour in S is feasible, and
S§ © S§441€ S for any i=1,2,...

We call S the set of 'simple tours'.

By Corollary 2, for the single-bus static problem it is
enough to consider only simple tours. Most tours which we
encounter will be simple; in Chapter III we shall restrict

our consideration to simple tours only.




I—————

=28
2.2.3 Interesting Suboptimal Algorithms

It is of interest to describe briefly some suboptimal
algorithms. These are closely related to currently used

techniques and will be needed subsequently.

The following might be considered to be the 'Michigan
Algorithm', described in Chapter I, for the static

single-bus case.

Partition the region R into n subregions.
Calculate an optimal travelling salesman tour on the origins
within each region. Visit all regions, performing this
optimal tour in each, and linking the regions together using
some fixed-route, of any length g. Then, again return along
the same fixed-route, deviating within each region to
deliver all destinations, using an optimal travelling

salesman tour within each region.

Let Yg be the total length of this bus tour.
Then
™ . 2mL, + 2g
n n/m
and
M
lim Yg = 2b/a a.e.
n>o /n

The distance g travelled by the fixed-route bus is
asymptotically negligible. It will henceforth be convenient
to think of the region R as the interior of a circle, and

the subregions as sectors (see Figure 2.1).
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Figure 2.1 Partition of R into subregions

It is then easy to visualize, for example, a bus visiting
the subregions 1in any required order, and to eliminate the
need for a fixed-route bus. However, this convenience is

not necessary.

The 'Michigan tour' described above is now seen to be
only a very simple extension of Algorithm 1 to the bus
problem. With respect to distance travelled, it can be

considered the same as the tour T? given by Algorithm 2.

Most important, from the practical point of view, is
that (see (2.1)) the algorithm solves the problem to within
2b/e = 1.06 a.e.

A second suboptimal algorithm is 4 the following
'fixed-route' algorithm. Again the region is divided into
®m subregions and a priori it is specified that the regions

will be visited first in the order r4,...ry and then in
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the order rp,rp-1,...rq. On the first passage, origins of
the form (ri,rj), 123 are collected and destinations of
the form (ri,rj), i< are delivered. In region ry,
there will be (m-1+1)n/m? origins and (1-1)n/m?
destinations visited, a total of n/m points. On the
second passage all remaining origins and destinations are

visited in each region (this will be feasible).

F

Let Y, be the total length of this bus tour. Then,

Yﬁ = 2mbln|a
mlm

F
1im Yp = 2b/a a.e.
n>® /n

or, more precisely,

and this algorithm also solves the problem ¢to within 1.00

2.3 Static, Multiple-Bus Problems

2.3.1 Introduction

We now consider the static problem in which there are
k buses. The problem taced is essentialiy one of
multiprocessing. Any passenger can be served by any bus and
we are to allocate the passengers to buses in some optimal

fashion.
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Two possible generalizations of the previous criterion
immediately arise, and we get the problems:
(i) Minimize the total distance travelled by all k buses
(i.e. minimize fuel used), and
(ii) Minimize the time-to-completion (i.e. time-~to-delivery

of the final passenger).

A feasible solution to the problem is given by a set of
k tours, one for each bus. For any such k tours, let
x% = distance travelled by bus 1, i=1,...k
k
z: = & x%
i=1

y§ - nax{xé, . (PTR  3R

In (1) we wish to choose the tour to minimize z§; let

zﬁ be the optimal such value. 1In (ii) we wish to minimize

y:; let Y: be this optimal value. (Z: and Yﬁ are

random variables.)

Note that

55 s 1g Tn

(Y, 4is as defined in the last section).

It is easy to see that for any instance of the problem
we can always achieve
I3 S Iy
- @8imply wuse only one bus and keep k-1 idle. It appears
reasonable to claim that zg = Yo. This claim is in fact

verified by Lemma 3.1.

e
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(8)

k
lim 2p = cov/a a.e.

o v/n

Thus, by increasing the number of buses we do not
improve upon the total distance travelled or upon the fuel
consumption. If instead, the final time-to-delivery of all
passengers is of interest, we must investigate Yg. Then we
require that each of the buses absorbs part of the load, and
the Jjobs of collecting and delivering passengers must be
executed in parallel. For efficiency, all passengers should
travel an equal distance, so that all buses are busy all the
time. Clearly too, we must have

k 1
- R
k

We ask, under what circumstances do we in fact get

1
Y% s !n ?
k

Theorem 3 to follow indicates that this 1lower bound is
attainable (in the 1limit) if passengers may transfer(9)
between buses, as in the scheme at Michigan. If passengers
cannot transfer, so that the bus collecting a passenger must

also deliver him, as in the scheme at Rochester, then each

(8) The proof of Lemma 3.1 which is given in the appendix is
somewhat indirect, and an easier proof has been found to be
evasive, However, the proof does identify additional
problems as being of interest: these are problems in which
at most 1 transfers are allowed during the tours of the
buses, for 1=1,2,3,...

(9) At a ‘'transfer point', at least two buses meet and the
passengers on board are able to move arbitrarily between
th“l

(]




33

bus must travel a greater distance.

2.3.2 Iransfers Allowed

Iheorem 3
If transfers are allowed
k
1im ¥p = g¢g/a a.e.
n>o /n k [

Consider the following algorithm, producing a tour

k©
which we call Tp .

Figure 2.2  Algorithm 3

Algorithe 3 (producing TX°)
Let m be any positive integer. Partition the region
R into mk subregions each of ar;a a/km. Bus 1 will
be visiting only regions P(i=1)me1y++Timy i21,...k.
First, let each bus i visit region r(j.q1)me1» coOllecting

all origins there. Then, let all Dbuses pnmeet at a
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prearranged transfer point (the point O in Figure 2.2) and
passengers transfer onto the bus that will wultimately be
visiting the region containing the required aestination.
Each bus i then visits region r(j.q)m+2, cocllecting all
origins there and delivering all feasible passengers (from
P(j=1)m+1s J=1,...k).  The k buses meet at the next
transfer point when passengers who have just been collected
again transfer to their required buses. 1In this way, after
m transfers, the buses will have collected all origins.
Then (in the manner of Algorithm 2) bus i revisits regions

F(i-1)m+1s--+-Pim, delivering the remaining passengers. []

The m transfers enable a passenger to be on the bus
visiting his aestination as soon as possible. Whenever a
bus enters a region at time t, it is able to visit every
destination there that was feasible at t, irrespective of
which bus visited the corresponding origin. Each bus visits

2n/k points and effectively serves n/k passengers.
Furthermore, each bus travels through (1/k)th of the total
area a (also, each passenger needs to travel at most
through an area a/k) and travels a total distance
e/n/’k/a’k = c/n/a’/k. The following corollary 1s then

obvious (but see the detailed proof of Theorem 3).

Lorollary 3

Given any ¢€>0 there exist N(e) and m(e) such that
o
for n2N the tour T= given by Algorithm 3 is ¢ -optimal

for problem (ii) (i.e. minimizing completion-time) with
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probability 1. (1]

For the tours T: given by Algorithm 2, we defined a

'tour' i&m T:. There was no conceptual difficulty in
@
doing this: the larger m became the sooner the

destination whose origin had Jjust been collected became
feasible. The tour r:° of Algorithm 3 now requires m

transfer points; in the analogous limit as m>m, a limiting
optimal tour would require continuous transfers on the first
passage through the region R. We thus refrain from

defining a corresponding limiting 'tour'.

If we define the 'Michigan tour with k buses' to be
the tour yielding T?O (so this tour has only one transfer)
what do we lose? As before, the distance travelled by each
bus before the transfer (i.e. n/k origins in an area

a/k are collected) is b/n/kJ/a’k. After the transfer,
n/k destinations are visited in the same area. Hence, if

M
Y: is the completion time which this algorithm yields,

then
kM
1im ¥p = 2pv/a a.e.
o J/n k

Theorem 3 gives that this tour solves problem (ii) to within
(2b/k)/(c/k) = 1.06 a.e. once again; we lose but 6% by

restricting ourselves to only one transfer.
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It is possible to improve on this algorithm slightly.
Passengers with both origin and destination in the same area
serviced by bus i, say, might in fact be able to be
delivered before the transfer point. Thus, divide the
region into mk subregions, with each bus servicing m
regions, &and a single transfer taking place after the first
passage through these regions. Now m can be made large
with no conceptual dirficulty(1o). Such schemes will be

discussed in greater detail for the dynamic problem of

Section 3.3.

2.3.3 No Iransfers Allowed

We now turn our attention to schemes in which transfers
are not allowed. Of course, Lemma 3.1 still nolds, but

Theorem 3 does not. It is easy to see that

1
¥ > Ip (2.6)
k

and, for k>1, it appears that a strict inequality holds if
there are to be no transfers. We do not have results as

strong as Theorem 3 for this case.

M
(10) This scheme yields a completion-time, Y: satisfying

Kk ;
1im Yp = 2b/al(1 « 1/k)3/2 - (1 - 1/k)3/2] a.e,

o /n 3

?ho) proof of this is similar to that of Theorem 6 (Appendix
I11).
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(i) Two-Bus Case

For k=2 consider the following algorithm, which is a
'‘fixed-route scheme' for two buses (recall the fixed-route
algorithm with one bus). Once more divide R into m
subregions F1,P2ys++lpe Let bus I visit the regions in
order (rq,r2,...rg) collecting and delivering all
passengers with demands (ri,rj), J>i. Let bus II visit
the regions 1in order (Pp,Ppatse. 1), collecting and
delivering passengers with demands (ri,rJ), J3<L.
Passengers with demands (rj,rj) are divided evenly between
the buses and, as we can let m>m® these passengers will not

cause difficulties. (See Figure 2.3.)

bus bus

Figure 2.3 Two-bus static scheme without transfers

Each bus will visit n/m points in each region as

before: for example, bus I in region rq will collect

(l-1)n/l2 origins (ry,ry), 31, n/Zn2 origins
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(rq,rq) and will deliver n/2m° destinations (rq,rq).

F
Thus, |if Yg is the completion-time which this

algorithm yields, then

oF

lim ln_ mb[I a
n>® Jn ]m m

bv/a a.e.

Having considered numerous other two-bus schemes, we
are lead to conjecture that

2
lim Zg = bJ/a a.e.
n>wo v/n

i.e. that this scheme is asymptotically optimal (a.e.) for
the minimal completion-time problem (problem (ii)) with no

transfers.

Be this as it may, from (2.6) we obtain

2 1
1im ¥p 2> 1im Yp
n>o /n n>o 2/n

= gJ/a a.e.
2

so that the fixed-route scheme at worst solves problem (ii)

with no transfers to within b/(e¢/2) = 1.00 a.e.

{ii) Ihree-Bus Case

A similar scheme which we conjecture to be optimal for

k=3 buses is '‘he following. (See Figure 2.4.)
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Figure 2.4 Three-bus static scheme without transfers

Divide R into 3m subregions rj;, rz,... rag. Let

m 2m 3m

Ry = U ry, Ry = U ry, R3 = U ry. Then bus I
i=1 iz=m+1 i=2m+1

services demands (Rq1,Rq), (R1,R2) and (R2,Rq) by

travelling in order through Py, 00y ..alg); through
(rom+sP2m=1y+--Pmet) and through (rq,r2,...rp) again.
(Call these the first, second and third passages
respectively.) On the first passage the bus collects in
ry, 1<i<m, all origins of the form (rg,rj), i1£j<2m, and
delivers all feasible destinations, i.e. of the form
(rJ,ri), 1£34<4. On the second passage in regions
ri, m¢1<i<2m (in reverse order!) origins of the form
(ri,rJ), 1£3<4 and all feasible destinations
(rj,ri), 1£jsm and 1i<jg2m are visited. Finally, on the
third passage, all remaining destinations in ry, 1<i<m are

visited, i.e. (ry,ry), me1gjs2m and (rg,ry). At the
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same time, bus I1 services demands (Rp,R3), (R2,R3)
and (R3,R2), and bus 111 services demands (R3,R3),

(R3,Ry) and (Rq,R3), in a similar way.

As m>m the distance travelled by each bus, defined

3F
to be Yp satisfies
3F
1im Yo = .798bs/a a.e.
o J/n

We derive this fact in the appendix, in Proposition 3.2.

{iii) k-Bus Case

The approach taken above can be used to obtain what

appear to be good schemes for k buses, with k 1large.

Suppose there are kas2 buses. Divide R into s
subregions and let each bus service a particular
demand-type, i.e. (ri,rJ), i,9%1,2,...8. For i3, the
bus serving (ri.rj) will collect n/s2 points in each of
the regions rj and ry, yielding a time-to-delivery of

2b na = 2b/n/a (asymptotically a.e.) (2.7)
32 s k3/h

The buses serving demands (ry,ry) would complete their
tours in less time, so (2.7) is the maximum

time~to-delivery.

If k=s{s-1), we are able to do better since it is
then possible to have all buses busy all of the time. Again
with s subregions in R, 1let each bus service a demand

(ry,ry), 143 and 1/2(s-1) of each of the demands (ry,ry)

- s -
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and (ri,rj). Then in each of its regions, a bus will visit

P PR T S U SRR - (T points.
(s=1) s2 32 s(s=-1)

The total distance travelled by each bus is then

2blal__n
s|s(s=-1)

= 2b ____ang____11/2 (a.a.e.) (2.8)
k(/T-Tk-1) |

For very large k the values in (2.7) and (2.8) are

not of too much interest. However, it is believed that the

values are then 'almost optimal': they indicate the minimal

time-to-delivery as a function of k, for k 1large.

The schemes for the multi-bus problem that we have
analysed are seen in retrospect to have &a certain
specialization of the buses in common. For the case in
which transfers are allowed, the buses are restricted to
specialist regions. For the case in which transfers are not

allowed, the buses specialize in collecting demands of a

certain type only.

e e ——
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CHAPTER 111

IHE AVERAGE FLOW-TIME CRITERION AND THE DYNAMIC CASE

Two inadequacies of the models in Chapter II are the
distance criterion, which is not really relevant to an
individual passenger, and the static nature as, in
actuality, we must consider an ongoing process, with demands

arriving over time.

This chapter investigates these aspects of the problem
by generalizing the previous results. 1In the dynamic case
we shall consider the average flow-time <criterion, so
Section 3.1 investigates this criterion for the static case.
Then, Section 3.2 analyses the (single-bus) dynamic problem
and its relationship with the static problem. Finally,

Sections 3.3 and 3.4 study the multiple-bus dynamic problem.

Once again, details of proofs are collected in an
appendix. The notation and assumptions are the same as

those described in Section 2.0.

3.1 Ihe Static, Sipgle-Bus, Average Flow-Time Problem

7

The criterion used in Chapter II - that of minimizing
the time-to-delivery of the final passenger - is not

necessarily satisfactory for an individual passenger. For,

-43-
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he is interested rather in his personal wait-time and
travel-time. Therefore, consider minimizing the average
flow-time, i.e. the average time-to-delivery, of all
passengers. This criterion will be wused in the dynamic
problem; the present section is needed as a link between the

static and dynamic cases.

We need some additional notation. For any given
problem instance of size n, let
Op = set of n origins
Dp = set of n destinations.

Any feasible tour T defines

t(oglT) time at which origin o3 is visited

t(aglT)

time at which destination dj is visited.
Let

n
wa(T) =1 X t(oilT) = average waiting time of T
n i=1

n
fu(T) = 1 X t(d4IT) = average flow-time for all
n i=1
destinations of T.
The problem is, then, given a set of n demand pairs

distributed at random in the region R with area a,

minimize f,(T), with respect to all feasible tours.

We shall be solving a simpler version of this problem:
essentially, we discretize the tours by considering only

simple tours in S, those that visit the points in R

R ST
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region-by-region(1). Then, decisions are made at discrete

instants of time - whenever a bus exits from a region. The

choice of a tour corresponds to the choice of a strategy; at

each stage that a bus exits from a region we must decide:-
(i) which regibn is to be visited next,

(i1) which points are to be visited in that region.

The restricted problem is

minimize {f,(T), Te€S} (3.1)

In order to provide a Beardwood-type result for problem
(3.1) we first consider a problem with an easier solution:

minimize {wp(T) + fp(T), TeSy} (3.2)

We draw on classi:al scheduling theory for our informal
discussion. Recall the following result (see e.g. Conway
[6)). Given a single machine and n jobs to be processed,
the average flow-time is minimized if the jobs are ordered

in increasing processing-time order.

Suppose that each of the m subregions has area a/m,
and that nj points are visited in a certain region. Then,

the time spent there is, for large ng» approximately

(1) Recall the definition in Section 2.2.2.

It might seem that the restriction to S is a stringent
one. However, for the minimum distance problems in Chapter
II there is no loss of generality if we restrict ourselves
to S, as we are interested in c-optimal solutions: for
any optimal tour T there exist an M and a T" in s"
such that

Y(Ty) « Y(T%) < ¢ a.e.
for n large enough. It is believed that this observation
is valid for the average flow-time problem too, but a
rigorous proof promises to be awkward.

S A s A0 5 o
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b/njv/a/m, and we can take the time spent on each of the
points to be bJ/a//m/nj. (Recall that the njy points are
randomly distributed in the region and njy 1is large, so we
can assume that the time spent between visitations 1is
constant.) Now, to minimize the flow-time of all poipts, the
scheduling result described above implies that we must visit
first the points which will require least time, i.e. we
must minimize b/a/v/m/nyj. To do this, use the following

rule.

Algorithm 4

Partition the region R into m subregions of equal
area. At each stage, upon exiting from a region, choose as
next region that with the most feasible points, and visit

all feasible points there. []

This procedure corresponds precisely with the tour T:
given by Algorithm 2 (ties are broken arbitrarily). It
minimizes the average flow-time of all poipnts, i.e. origins

and destinations, which is the criterion of problem (3.2).

Observe that the tour T° has a long average waiting
time, vn(To): passengers wait for collection while as many
previous passengers as possible are delivered. Since T°
minimizes wn(T) + fr(T) 4in (3.2), we might expect that

T° works well at minimizing fn(T) in problem (3.1).
This 4is indeed the case, and ° 1s asymptotically optimal
in (3.1) again. This is stated and proved (in the appendix)

in Theorenm 4.
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More precisely, in Lemma 4.1 we derive the facts that,

for the tour T: given by Algorithm 2,

(]
1im ¥p(Tp) = .575b/3 + O(1/m) a.e.
n?® J/n

(]
lim 555231 = 1.142b/a + 0(1/m) a.e.
n>w n

Hence we have, from the considerations above,

Lemma 4.2
Let wn + fp = inflwg(T) + £o(T), Tes)
Then,
+ +
lim ¥p +* fp = 1.717b/2a a.e.
n>® /n

Further, given any ¢€>0, there exists an M(¢) such that

for m2M and n large enough, T: is e€-optimal for

problem (3.2) PR (1]
Iheorem 4
Let fp = inf{f,(T), TES).
Then,
:.;;% = 1.1417b/a a.e.

Furtner, given any ¢>0, there exists an M(€) such that
for oM and n large enough, T: is ¢-optimal for

problem (3.1) a.e. (1

Thus, we have that the tour r° is nicely robust. It
minimizes a cost relevant both to the passengers and to the

operator of the aystenm.

(2) Recall the footnote at Corollary 2. We require this
stronger statement for the proof of Theorem 4.
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It is worth observing that by combining Lemma 4.2 and
Theorem 4, we obtain the result that the tour T° minimizes
with respect to TE€S any criterion

g.-wp(T) + fn(T), g € [0,1].

As before, it is possible to compare the performance of
suboptimal schemes. Let us look at tours in Sy, for fixed

It was seen earlier that the 'Michigan Scheme'
o
1°
collecting the passengers and bv/na delivering them. The

corresponds to T The bus spends approximate time bvna
average time-to-delivery is then

bv/na + b/na/2

= 1.5bv/na.

£a(T3)

Comparing with f;, we obtain that this tour solves the
problem to within 1.5/1.1417 = 1.314, and we lose over

30% by restricting ourselves to tours in S1.

Nonetheless, the sequence {fn(Tg), m=1,2,...}
converges quite rapidly. For m=2, fn(Tg) = 1.330bv/na
and 8o T; solves the problem to within

1.330/1.1417 = 1.165. For m=3, rn(rg) = 1.269bv/na
solving the problem to within 1.112. Finally, for m=4,
fn(T:) = 1.238b/ma, solving the problem to within 1.08.

Thus, by restricting ourselves to S, Wwe lose only 8%.




-49-
3.2 The Dynamic Case: Single-Bus Problem

Possibly the most glaring inadequacy of the previous
problem formulations was the assumption that all demands
were known at the starting time, t=0. For a more realistic
formulation we must assume that the demands arise as time
proceeds according to some intermittent arrival process. In
this section we study the extension of the results from the

static case to this dynamic version.

As before, we shall assume that any particular demand

has both origin and destination drawn inaepenaently from a

uniform probability distribution over the regidn R and

that the demands are all independent of one another. For
(3)

simplicity, we assume that demands arise at a constant

rate, q.

To complete the problem specification we need a
performance criterion. It is clear that, to minimigze
distance only without regard to time, is uninteresting: we
can always wait until next year and then collect and deliver
all demands together. So we choose to minimize the average
flow-time. Thus, if a particular demand arises at time t1
and the destination is visited at time tz, the flow-time

for this demand 1is tz-t1; this 1is averaged over all

demandas.

(3) This assumption is unnecessarily harsh, and certainly we
could assume a Poisson arrival process with mean q.
However, the assumption is consistent with our informal
presentation and it eliminates the need for many
‘expectations’'.
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As 1in Section 3.1 we discretize the problem by

restricting ourselves to the class of simple tours, S.

A standard easy heuristic for solving the dynamic
version of a decision problem is to use the solution of the
static version recursively - this loosely corresponds to the
'‘open-loop-optimal feedback' control scheme described by
Dreyfus [7]. For our problem the technique is the
following. At each stage compute the optimal (minimal
flow-time) static tour for visiting all remaining points,
assuming that no new demands will arise. Use this tour to
yield the initial decision for the dynamic problem - 1i.e.
which region to visit next, and which points there. By the
time this has been implemented, new demands will have
arisen. With this new initial state, recompute an optimal

static solution.

In general, the heuristic is suboptimal as it does not
take into account that future demands will arise. But,
consider its application to our problem. We claim that the
static minimum flow-time problem which is faced at any
particular stage is solved by the same principle given in
Algorithm 4: at each stage visit the region with most
feasible points and visit all such feasible points there.
We do not prove this claim; a detailed proof would be as
long as, and more involved than, the previous proofs, and no

additional insights would be gained.
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The following is a transiation of the heuristic into a
proposed solution for the dynamic problem ~ Algorithm 4 is
applied recursively. We call the tour T:; it is Dbelieved

that no confusion with the static tour can arise.

Algorithm 5 (yielding the tour T:)

Partition the region R 1into m subregions of equal
area. In each subregion which 1is visited, perform a
travelling salesman tour on all teasible poaints. Upon
exiting from a subregion, choose as the next one that with

most feasible points. (]

In order that the proposed static tour at each stage be
(almost) optimal, the arrival rate q must be very large.
Then the tour T: will wvisit the regions consecutively.
For, with prooability 1, the region with the most feasible
points will also be the one with longest elapsed time since

it was last visitea.

How well does Algorithm 5 perform? Using a fundamental
result from queuing theory we argue the following lemma in

the appendix.

Lemma 5.1
If the system is in steady-state, then with probability
1, the tour 12 given by Algorithm 5 minimizes, among tours

in Sp, the average flow-time of all passengers. []
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With this knowledge it is possible to give a
Beardwood-type relationship for the dynamic problem when it
has reached an equilibrium. Since q 1is the arrival rate
of passengers, in order that the system be in a stable
steady-state, we must serve q passengers per unit time.
Thus, on average, 2q points must be visited per unit time.
For the tour T: in Sp described above, let

Bq = the time spent in each subregion when the arrival

rate is q.
During this time, 2qeq points must be visited; so by

Theorem 1 (recall that the buses travel at unit speed),

lim 6q = bla a.e.
qQ>® ./anq m

i.e. lim Eﬂ z 2b23 a.e. (3.3)
Qo>® q m

Define Pq = meq as the 'period' - this 1is the time
required for the bus ¢to perform a circuit around R,
visiting all subregions. Then,

lim zﬂ = 2bza a.e. (3.4)

Qoo q
From this it is easy to derive the formula below (see

the appendix).

Iheorem 5

Let Fq'- be the optimal average flow-time for tours
in Sy when the arrival rate of passengers is q. Then,

1im Faum = 2p2a(141/m) et (3.5)
Po g
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Hence, if Fq is the optimal average flow-time for
tours in S, then,

lim 53 = 2b2a a.e. (3.6)

oo q (]

This theorem is analogous to Theorem 4, but for the
dynamic problem. It 1is trivial that, by restricting
ourselves to Sp instead of to S, we solve the minimum

flow~-time problem to within (1+1/m) a.e.

3.3 Dypnamic Multiple-Bus Problem: Iransfers allowed

Now let us extend the last section to the k-bus

problem.

To introduce the approach, consider a 'Dynamic Michigan
Scheme', a tour which we call (again) Tfo.

Algoritha 6.1 (yielding T1%°)

Partition the region R into k subregions, each of
area a’/k. Let all buses meet at a common transfer point(“)
at times 0,20,30,.... During time [1i6,(i+1)0] each bus
visits its own subregion collecting passengers who arrived
during [(1i-1)6,08) and delivering passengers who arrived
during [(1-2)0,(i-1)0]. At the transfer point each

passenger transfers onto the bus serving his required

destination. : []

(4) Recall Section 2.3.2 where this was justified by Figure
2.2. We omit any mention here of a 'line-haul' bus.
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Here, 6 = eq, the steady-state time spent by each bus
in its region. During this time qeq additional demands

arise with 2qeq/k new points in each region. Then, as

before,
lim __:EL__ = bla a.e.
Q2> ® ./2q5q7E k

i.e. lim Eﬂ = Zpig a.e.
q>® q k2

The period Pq equals eq, so
lim Eﬂ = ijg a.e.
q2>® q k2

Now seek the average time-to-delivery. Consider a

passenger arriving during time [0.0q] where 0 and eq
are transfer times. This passenger is collected during
[eq,zeq] and is delivered during [zeq.seq]. The average
time-of-arrival is Sq/Z, the pick-up time is on average
36472 and th- delivery-time is on average 564972 (the
expected wait-time is eq. as is the expected travel-time).
So the average flow-time by this algorithm, viz. Fg,k, is

zeq satisfying

FH 2
1im _9kK = 4pca a.e. (3.7)
P q K2

With k=1 this tour is precisely T? and thus (3.7) is but

equation (3.5) with m=1, as it should be.

o

The tour Tf is in Sk A demand arising during
(0,68q] must wait until the next period before it can be
collected. This wait-time can be improved by further

dividing the region of each bus (with area a/k) into m
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equal subregions of area a/km each. Let each bus visit
all of {its m subregions sucessively, visiting as many
origins as possible in each, and all the feasible
destinations - now 'feasible' refers to the fact that the
corresponding origin has peen visited and the passenger is
on the bus. Arter visiting their m subregions, the buses
all meet at the same transfer point as before, passengers

transfer, and the cycle is repeated. We call the resulting

k

tour T1,m;

it 1is in Smk and it requires a single
transfer per period. Compared with Tfo, the waiting-time
of passengers is reduced and passengers with origin and
destination both served by the same bus might not have to

visit the transfer point. It can be shown (this is a

special case of Theorem 6 to follow) tnat this flow-time,

viz. F:;1.m, satisfies
k 2
Fq:
lim 931, - b qa 3 -1 + 1<k a.e. (3.8)
Q> 9 k! k mk

With k=1, (3.8) corresponds to (3.6) as it should.

o
In what sense are the two schemes Tf and T: a
’

optimal? The answer might be forseen from the results of
the static case and Theorem 5. An optimal tour in Sak

would require ] transfers per period, one at each time
that the buses (simultaneously) complete tours in their
subregions of area a’/km. This would ensure that a
passenger who has been collected is transferred as soon as
possible onto the bus that visits his aestination. As a

special case, Tf is optimal in Sy.
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But, as pointed out earlier, it may be of interest to
limit the number of transfers per period. Suppose we insist

on only one transfer per period, and consiaer tours in Spyg.

k©

Then T
1,m

is optimal!

More generally, consider the k-bus problem in which we
have at most h transfers per period, and we allow tours in
Skhm- Then we have the following algorithm yielding the

tour T:,m-

k
Aigorithm 6.2 (producing Tp p)
Divide the region R 1into knm subregions of equal
area. Designate hm subregions for each of the k buses
- e | i
and iabel them r1,r2,...rhm,

successively its regions (r?.r;,...r:). Following this,

i=1,...k. Let bus 1 visit

all buses meet at a preassigned transfer point. Then bus

-

n+1""r;n) and a second transfer

i visits regions (r
occurs. After h such transfers, the buses again visit

regions (r?....r:) and the cycle repeats.

Every time a bus visits a region it visits as many
points as possible in that region; these are all the
uncollected origins and all the feasible destinations of

passengers already on board. [1]

Iheores §
The tour rﬁ,. is optimal (asymptotically a.e.) for
the k-bus minimal flow-time problem when tours are

restricted to Sypmy, and only h transfers are allowed per
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period.

Let F:;h,n be the average flow-time resulting from
this tour. Then,

k
1in Toin,m 5—22“ [2 + 1 (1417K) +_1(1-1/k)] a.e. (3.9)

Qo® q k mh h []

From (3.6), when there is a single bus, the optimal
average flow-time is 2b2aq. From (3.9), when there are k
buses, the conceptual optimal ¢tour in S = S with
continuous transfers (i.e. hdo has & flow-time of

2bzaq/k2, and we have a kz-fold improvement. This 1is

analogous ¢to the static caae(S); each of the k buses
visits (1/k)th of the total area a and has an effective

arrival rate of gq/k.

Using Equation (3.9) it is possible to investigate the
optimality of suggested aligorithms with respect to any

restricted problem formulation.

For example, among tours in which only a single
transfer is allowed per period, what is lost by using the
tour T 7 Well,

rq(rﬁ) = UNb"aq a.e.

Letting m»® with h=1 we get from (3.9) tffat the optimal
tour nas a flow-time of bzuq(3-1/k)/k2 and so T? solves

the problem to within

(5) In the static case in Section 2.3.2, the total distance
travelled was (asymptotically) proportional to vh/a,
yielding a k-fold improvement.

R ————
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y  F o 1 e [4/3,2]
3-1/k 3-1/k

and we lose at least 33%5. This is considerably more than

the 1loss of 6% obtained for the static problem. For the
dynamic problem, then, more is to be gained by having m

large.

Or, what can be gained if we allow two transfers per
period instead of one? With a single transfer we have a

flow-time (m>m® of bzaq(3-1/k)/k2. With two transfers

the velue is b wgl5/2 - 1/2k)/k%. The gain is
§ vmiodla e i L - 1/k = 178
3 - 1/k 2(3 - 1/k)

for k large.

These numerical values should not be taken too
literally. But they do give qualitative insights into the

relative optimality of suggested schemes.

3.4 Dynamic, Multiple-Bus Problem: Transfer-Free

Let wus lastly consider some dynamic multiple bus
schemes with no transfers. As in the static case of Section
2.3.3, we do not guarantee optimality. However, simple

interesting schemes can still be studied.
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3.4.1 Iwo~-Bus Schemes

Consider the following scheme, r'12), as shown in
Figure 3.1. Partition R into m subregions. Bus I
visits the subregions in order (rq,rz,...rg,...), and bus

II visits them in order (rp,rg.yy...r7,...). Bus I
serves demands of the form (ri,rJ) where
I(J-i)modnl < m/2, and bus I1 serves demands with

| (j-i)modm| > m/2. Demands (ri,ry) are snared equally

between the buses.

Figure 3.1 Two-bus dynaomic scheme without transfer

For this scheme, let © be the time spent by each bus
in each of its subregions. During a time-interval 6, qé
demands (i.e. 2q0 points) arise. In equilibrium, each bus
must collect qé points in each subregion, 1i.e.

@ = b/q8/a’m, and 0 = bqu/l. The time for a bus to make

a circuit of the m subregions is P = md = bzqa. For =m
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large, the average wait-time is P/2 and the average

travel~-time 1is P/4. Thus, for m large, the average
]
flow-time for T'(2), viz. Fq(a), is
1
Fq(z) 3b2qa asymptotically a.e.
Yy
A second two-bus scheme T¥(2) is similar to that

above, but with both buses travelling through the m
subregions in the same order (rq,ro,...rgp,...). Each bus
always visits as many points as possible in each subregion
it enters. We can suppose too that the buses are staggered,

with bus II in region when bus I 1is in

T(i+m/2)modm
region rj. For this scheme we have that, when m is
large, the average travel-time 1is P/2 and the average

wait-time is P/4, where P = bzqa again. Thus, if the

"
average flow-time is Fq(z), then for m large,
n
Fq(z) = 3b2qa asymptotically a.e.
4

Although both schemes 5 and have the same

average flow-time, 3 may be more desirable for a number

of reasons. First, for i

the average wait-time is longer
and the average travel-time shorter than those of So,
with T', passengers have more 'coffee time at home'.
Second, with T" the buses will not always remain staggered
because of additional disturbances and uncertain
travel-times. In fact, the buses will ¢tend to merge

together (a similar phenomenon is described by Newell [15])

80 additional controls, causing additional delays, will be
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needed. Third, suppose that R is 1itself a ‘'subregion'
within a larger system, and with a transfer point just
before r4q, say. Then T" 4is unfair in that a passenger
originating 1in rq will always have a longer travel-time
than one originating 1in Pm- The variance of the

travel-times will be smaller for ',

3.4.2 A Three-Bus Scheme

Finally, consider a three-bus scheme T(3) that is a
simple extension of T2 above. The region R 1is
aivided into 3m subregions, each with area a/3m. The
buses perform routes as shown in Figure 3.2; a passenger is
served by the most suitable bus, that is, one that will
provide a shortest travel-time for him. Let © be the time
spent by a bus in each of i1ts subregions. During this time

2q6 points arise, and for equilibrium 2q9q6/3 points must
be visited by the bus. So, ® = b/2qb/3/a73m and
0 = 2b2q1/9n asymptotically a.e. Each bus has period
P = 2m0 = szqa/Q. When m is large, the average
vait-time for a passenger is P/2. The average travel-time

is clearly less than this, and can be shown to be P74,

Hence the average flow-time Pés) is 3P/4, i.e. when m
is large,
2
183) = b qs asymptotically a.e.

3
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The Partition

Routes of buses I and IT Route of bus I

Figure 3.2 A three-bus dynamic scheme without transfers.
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We conjecture that this 4is the minimal average

flow-time for the three-bus transfer-free case. However,
note again that a passenger requiring service from ri to
Tom has a very long travel-time even though the regions
are adjacent. A six-bus scheme might have two buses

travelling 1in opposite directions on each of the routes
shown in Figure A58 and this would reduce the

discrimination.

P




CHAPTER IV

JOWARDS IHE PRACTICAL DESIGN OF DIAL-A-RIDE SYSTEMS

4.1 Introduction

In Chapters II and III we have presented a mathematical
theory for idealized bus problems, which we have tacitly
claimed is relevant to the real dial-a-ride problem. In
order to Justify this claim we must relate the real and
idealized problems and draw upon the theory to obtain
implications for real design. In fact, we would like to go
even further and propose an approach for dial-a-ride
scheduling, which is of both theoretical and practical
interest. It is this that is the goal of the present

chapter.

If a dial-a-ride system is required in a certain area,
how should the service be designed and scheduled? Our
response is essentially described by the following three
planning steps. First, at the most basic level, it must be
decided what approach is to be taken. The proposed appéoach
is through the decentralization of the large problem: each
bus is required to specialize only in passengers of a
certain 'type', determined by their origin-destination pair.
Once this approach has been adopted, the second aspect of

design is that of designating the decomposition; to do this

65
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we must specify the roles to be played by the individual
buses, we must select subregions and plan transfers. At the
tnird level is the more adetailed operational design; here,
we must establish decision rules that will determine the

pehaviour of the buses when passengers arrive.

This trinity yields a class of scheduling ilgorithns
which we wish to propose. The class 1is described
essentially by five 'elements' in Section 4.2. We draw upon
the theory of Cnapters II and 1III ¢to motivate these
qualitative elements and also to derive quantitative
techniques for design. In Section 4.2 too, some of the
theoretical assumptions and their 1limitations emerge more
clearly. Adjustments are tneretore required if the
quantitative approach is to be practically meaningful, and
some of these are discussed in Section 4.3. Finally, to
give an improved grip on the ideas, we describe an example

in Section 4.4, a 'pseudo-real situation', in which the

approach is applied.

4.2 A Design Approach

This section describes, in some generality, an approach
towards the design of dial-a-ride scheduling algorithms with
which we shall be concerned. Given are a region where the
transportation system is to be designed, and an anticipated

probability distribution according to which passenger
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demands will arise. A certain scheduling facility (a
computer?), receiving these demands, is to determine

suitable tours for a fleet of buses.

The following are five elements that characterise a
class of dial-a~-ride scheduling algorithms:
(i) Decomposition of Area and Specialization of Buses
(ii) Simple Tours
(1iii) Rules for Visiting Subregions
(iv) Transfer Points
(v) Method of Quotation.
OQur interest in these algorithms is motivated by the models
of Chapters II and III. We shall discuss the five elements
in detail and draw upon the theory to explain and to justify
them. For this, it must be assumed that the idealized
models do indeed focus upon the quintessentials of the real
problem. Of course, for tractability, many assumptions and
simplaifications have had to be made; some of the more
important of these will be discussed in Section 4.3.
Despite the assumptions, the many reasonable qualitative
implications do yield interesting algorithms. And the
algoritnms, when extended to the real problem, have many

features of practical interest to boot.

Undoubtedly, fundamental to the idealized algorithms in
Chapters II and III is their decomposed and discrete nature:
the buses specialize in certain demand-types only, and the

tours are all 'simple'. For example, recall Theorems 2 and
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3 and the tour T: which approximate to any required

accuracy the optimal performance(1).

Even very
simple-minded algorithms of this form yield good
performance. Thus we are led to claim that the following

two elements of design are worthwhile.

(i) Decomposition of Area and Specialization of
Buses

Initially, the region in which the transportation
system is to be constructed, is partitioned into a
large number, m, of subregions. Then, a
passenger requesting service from a subregion rj
to a subregion rj can be directly classified
according to his demand-type, (ri,rj) - there
are m2 such demand-types. Now, assign to each
of the buses a fixed set of subregions which it
visits. Each bus is to specialize within its
subregions in serving certain demand-types only.
That is, it visits only their origins, or
destinaticas, or both. A bus may also
periodically visit 'transfer points'. At these,
it collects additional passengers and it delivers
a subset of its current passengers, each of whon

will be collected by some other bus.

(1) The measure of performance 1is distance travelled or
average flow-time. The schemes have thus been found to be
robust, minimizing criteria relevant both to the operator of
the system and to the passengers. We shall discuss these,
and other measures of performance, subsequently.
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By the discussion in Section 2.3, we should assign
buses to the demands in such a way that all buses share an
equal portion of the 'load' and that each bus is busy all
the time. We should also ensure that the buses are always
suitably dispersed over the area: this will promise good
service to the futpre demands that arise according to tpe

given probability distribution.

The number m of subregions ¢to which each bus 1is
assigned is important, particularly in dynamic problems.
However, this number does not need to be too large before
good performance is attained (see Sections 3.1 and 3.2).
When the demand distribution is uniform, the subregions can
all simply be of equal area, yet otherwise arbitrary(Z). In
practice, however, physical constraints such as boundaries

of towns, major roads, and 8o on, will influence this

choice.

Once the buses have specialized, the demand-type of a
passenger who requests service will trivially determine the
bus, or sequence of buses, to which he is to be assigned.
The central scheduler that receives the demand performs no
long search, but only informs the relevant bus and provides

the book-keeping.

{44) Simple Iours

Passengers' demands arise over time. Depending

(2) Additional remarks will be made in Section 4.3.
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upon the actual requests, tours for the buses
within their subregions must be determined. Any
point which a bus visits must be 'feasible' - it
must be an origin or a destination of a passenger
who 1is ailready aboara, (These points are of
course within the bus's speciality.) The points
are to be visited in some 'optimal' order. The
problem is simplified by constructing tours in
discrete stages, whenever a bus enters a new
subregion. At this time of entry, 1let the bus
calculate an optimal travelling salesman tour in
the upcoming subregion; any point visited there is
feasible at this instant of time. The calculation

is to be done on-~line.

We have termed tours of this form ‘'simple'. Recall
that the wuse of these tours was justified for the static
problems of Chapter Il, and it was claimed that they were
suitable for the dynamic problems too (Chapter III, page 43,

footnote (1)).

If the subregions are small and only a few points are
to be visited in each, it may be easy for a driver to 'see'
what route he should take. Otherwise, he might have a
minicomputer avpoard that finds a tour for him. Efficient
approximation algorithms for the travelling salesman problem
are given in [12,3]. 1In this way, the calculation of tours

is decentralized - it reduces to a number of small discrete




PP —

~71-

problems. By choosing the number of subregions carefully,
it is possible to guarantee that the total computation time
is bounded by a polynomial function of q, the arrival-rate
of passengers (see Karp [9]). Note too that the
communication between the buses and the central scheduler
does not need to be continuous, so relatively cheap

communication equipment should suffice.

Two questions remain whenever a bus exits from a
subregion at a time ¢tj: which region should it
enter next, and which points should it visit
there? Well, in any region it enters, it must
visit all points within its specialization that
were feasible there at time tjy. And, it should

(3)

visit its regions successively in a fixed

order.

These rul?s were proved valid for the case in which
demands were uniformly distributed, in Section 3.1.
Essentially, they require that buses 'always do as much as
is possible’'. They imply that a bus will not deviate in a

backward direction from its prospective route to service

(3) This should be further qualified. It holds when the
distribution of points is uniform. In the case of more
general distributions, a generalized rule may be required.
For example, visit next the region with largest 'point
density' (i.e. the number of feasible points per unit area)
- see Section 4.3(1).
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newly arriving demands, as this may delay future passengers.
After t3, feasible points that arrive in the subregion are
not <collected: a passenger who just misses the bus must
wait for the next one to enter the subregion. Even though
some passengers are inconvenienced, tneir contribution to

the average performance is kept small.

It may happen that, in a particular subregion, there
are no feasible points, Then, the bus can simply bypass
that subregion .or travel through it as efficiently as
possible to the next. We can think of the bus as travelling
through 1ts subregions along a fixed route 'and deviating
within each subregion to collect and deliver passengers
there. Passengers then know the direction in which the bus
is proceeding, and should be happy, knowing roughly where

they are headed.

{iy) Iransfer Points

The transfer points (see (i) above) at which a bus
stops from time-to-time are typically on the
boundary of some subregions. They must be
considered during the calculation of the optimal
travelling salesman subtours. Our description has
been sufficiently general to allow, for example,
that some buses have 'null subregions', travelling
only between transfer points; these are the

familiar line-haul buses.
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Transfer points were shown to be necessary in Sections
2.3.2 and 3.3 if the delay incurred can be neglected. For,
they provide vast improvements in performance, and this
improvement increases with the number of transfers.
However, too large a number of transfer points is clearly
impractical, and passengers might attach an additional cost
to the number of transfers they have to make. Also, the
theoretical approach of having all buses meet at the same
transfer point may not be cesirable:- the additional trip
from the region to the transfer point will not be negligible
when the number of passengers is small. In this case, the
line-haul bus effectively creates the single transfer in a

practical way.

{v) Quotation Iimes

In the statement of the dial-a-ride problem 1in
Section 1.1 it was required that, at the time a
passenger requests service, he be quoted a time of
collection and delivery. The scheduling procedure
we have described has not needed such a quotation.
We regard it as a separate secondary problem,
requiring that an estimate of the 'load' on the
system, and hence an estimate of the speed of the

buses, be made.
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The approach which we have described guarantees a
certain average service to the set of all passengers. Thus,
if quotations are made to 4individual passengers, and |if
these are then introduced as additional constraints, the
average service to passengers will be reduced. 1In practice,
quotations are required, but the scheduler need not be
committed to them. We Dbelieve that simple constant
estimates of the times of <collection and delivery will
usually suffice. It is known through which subregions a bus
is to travel: the time spent deviating in each subregion
could be estimated and quotation times <could -easily be
provided. So, an accurate prediction of travel-time between

points is avoided.

The elements (i)-(v) above outline, in somewhat general
terms, a class of scheduling algorithms. The basic approach
is described by (i) and (i1ii) and we have claimed that this
approach is justified in an asymptotic probabilistic sense.
The detailed operational design is described by (iii) for a
special case, and in the next section it will be seen that
this can be extended fairly generally. What is lacking,
then, is a methoaology for selecting a suitable
decomposition and for organizing the manner in which the

buses specialize.

For the special-case idealized models of Chapters 11l
and III no such methoaology is required since the solution

is relatively easy: when the demands are uniformly
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distributed over the region, partition it into subregions of
equal area. Then, in the manner of Algorithm 6.2 the buses
specialize in disjoint subregions and have cyclic tours
through them when the arrival-rate of passengers is large.
In general, however, the answer is not as easy and
difficulties, besides the nonuniformity of distributions,
abound in practice. Indeed, let us remark upon a few
practical considerations which indicate that a general
methodology for the determination of subregions and

bus-routes would surely be very complex.

First, what criteria actually determine good service?
The criteria assumed in Chapters II and III, viz. the
distance travelled by the buses and the average flow-time of
passengers are not all-important, but are only first
approximations to real requirements. There are, for
example, the variance of passengers' travel-times
(measuring, in a sense, the 'trairness’' to the passengers)
and the maximum of all passengers' travel-times (since we
wish to provide all demand-types with good service). Or,
there are questions of the reliability of the system (what
nappens if a bus breaks down?) and its stability (what
effect will additional delays and wuncertain travel-time

have?).

Furthermore, a new dial-a-ride system would have to
suit the existing circumstances. Boundaries of towns,

rivers or roads may impose physical constraints on the way

S
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in which the region can be subdivided. We may wish to
supply a special quality of service to certain demand-types
(e.g. to disabled persons, or see Example 4.4). A
dial~a-ride system must be compatable with existing public
transportation systems: it should supplement them, and yet
could also depend upon them. For example, existing bus- or
subway-routes might reduce the number of line-haul buses
that are needed if the subregions are designed to take

advantage of them.

Thus, dial-a-ride schemes must be tailor-made to suit
inadaividual complex requirements. Even though a general
methodology has not been proposed, our study has yielded
many qualitative insights, and no doubt additional

principles could be obtained with further research.

On the other more favourable hand, however, we wish to
suggest that our approach does yield a practical design
tool. The emphasis throughout Chapters II and III was upon
the comparison of algorithmic performance (see Definition
(2:1)). In general, it 4is possible to quantify the
performance of a suggested scheme whenever a distribution of
demands, a decomposition of the region into subregions and
an organization of specialist buses, aré given. For, one
can estimate the time spent by each bus in each of its
subregions (using Beardwood's formula, Theorem 1) and

evaluate its dynamic bohlﬁiour as it travels around its

| SR
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subregions and visits its transfer points(“). The service

supplied to the various demand-types by the suggested scheme
can then be evaluated with respect to average flow-time and
to many other performance criteria. Thus, a suggested
scheme can be quantitatively studied. Usually, closed-form
analytic formulas should be obtainable to express its
characterastics. Then, investigations c¢an be made to
analyse the behaviour of the scheme when the parameters -
e.g. the number of buses, the demand distribution, the
number of transfer points, and so on - are varied. Finally,
alternative schemes, with alternative regional decomposition
and bus-specialization can be evaluated and compared. These
are analytic studies, and avoid the need for complex
simulations. An example that briefly illustrates such a

quantitative investigation is given in Section 4.4.

It is in order, finally, to make some additional
remarks on the design approach which we have expounded in

this section.

The approach can be applied on a broader scale. The
‘city' may itself be a module, connected to others within a
larger system. Also, the method is relevant to
'one-to-many' systems, [(21), where passengers have a common
origin and wish to be taken to various destinations. For,

it is easy to assign 4incoming passengers to buses

(4) This was 4illustrated for the simple models in Chapter
I11I.
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simultaneously, merely treating the single origin as a

transfer point. 'Many-to-one' systems are similar,

In [21], the existence of ‘'advance requests', where
passengers request service some time in advance, is regarded
as important. With our approach these demands are easy to
handle. If the 'period' of a bus is P - this is the time
it takes for the bus to make a circuit of all its subregions
- the passenger can be promised collection during

[t1,t1+P] for any suitable time tq. Then, when the
region is entered, the passenger will be collected if this
can be during [t1,tq+P], otherwise the collection is
deferred. Delivery by a certain time can similarly be

guaranteed in advance.

There is a further important implication of the
decomposition described in (i) above. The success of a
transportation system depends ultimately upon the
co-operation of the bus-drivers, particularly if they have
decision-making capabilities. Since each bus has certain
fixed demand-types assigned to it, it is possible to measure
the efficiency of individual drivers. If each driver
travels as well as possible through his subregions, the
total system performance will be maximized. So, some
incentive might be given to the drivers that will encourage
them to perform well and, for example, to reduce the number
of unnecessary stops. Furthermore, since the drivers

communicate with the central scheduler only intermittently,
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the 'big-orother' paranoia of continuously~-watched drivers

is reduced.

4.3 Quaptatative Aspects of Design

In Section 4.2 it was described how suggested schemes
can be investigated by quantifying their behaviour.
Investigations such as these are 1limited by the many
theoretical assumptions of Chapters II and 1III, since
lnaccuracies are then produced in the resulting
measurements. In this section we discuss some of the more
important of these assumptions and investigate to what
extent they can be relaxed. We 1indicate how the
inaccuracies might be reduced by making adjustments in the

applied formulas.

4,3.1 Ihe Demand Distribution

In deriving formulas measuring, for example, the
average flow~time for a suggested scheme (see Theorems 5 and
6) Tneorem 1 is used to obtain the time spent by a bus in
each of its subregions. For this, it must be assumed that
the points which are visited in each subregion are drawn
from a uniform probability distribution there: this was the
case in our previous analyses since the demand pairs were

'randon’'.
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probability distribution according to which passenger
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Suppose, now, that the points to be visited in a
subregion are not uniformly distributed, but arise according
to a probability density function, p, say. Then it has
been shown in [2] that the optimal tour-length Lp
satisfies

lim Llp = b/ p1/2dv a.e.

n>® vn R
When p = 1/a, we have the wuniform distribution. Since
{ p1/2dv < Ja, nonuniformity of the distribution decreases
Lp. Consequently, the additional structure in the

nonuniform distribution can be used to advantage.

The expression above might be used to improve the
analyses when the distribution is nonuniform, and when all
origins and destinations are inaependent of one another.
The discretization imposed by simple tours will remain
useful, however. For, if the whole region is divided into

m subregions and if we approximate the distribution p to
be uniform within each subreglon, then by making m large,

the approximation can be made artitrarily negligible.

: Now, consider a bus visiting 1its subregions. What rule
(1.e. element (iii)) should it use? It is not hard to see
? that in order to minimize average flow-time the bus should
slways 'do as much as possible' (compare with Lemma 5.1).
Thus, whenever it enters a subregion it should always visit
% ®wany points as possible there. But, which subregion !

shenid it vieis? If, in each of its subregions

. . there are ny feasible points to be visited
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and if then Tj(nj) will be the time spent in each, choose
i so as to  minimize T3(nj)/ny. Even when the
arrival-rate q of demands is large, it may be the case
that the bus does not visit its subregions successively. 1In
general, the analytic calculation of average flow~times will

be more difficult than before, but will still be feasible.

Note that these remarks are not true if the origin and

destination in a demand pair are correlated.

Finally, it is in order to comment upon the stochastic
process by which demands arrive over time. We assumed a
constant arrival-rate q, and the analysis could be
extended for a Poisson process with mean q. 1In practice,

q will change over time. This change will be relatively
slow - at certain times of the day alternative designs for
the decomposition and specialization might be selected, so
as to suit the changing operating conditions. It |is
believed that a few discrete such changes should suffice in

practice.

4.3.2 Ihe Metric

We have taken as the distance between any two points in
the city their euclidean separation - i.e. the length of
the straight line joining them. In reality, the distance
travelled by a bus is not as simple. If the actual distance
can be approximated by a constant multiple of the euclidean

distance, the analysis of Chapters II and III remains valid

. .



(1) The measure of performance is distance travelled or
average flow-time. The schemes have thus been found to be
robust, minimizing criteria relevant both to the operator of
the system and to the passengers. We shall discuss these,
and other measures of performance, subsequently.

%

with very minor modifications.

Alternatively, the distance between two points X, ¥y
may be better approximated by a multiple of the 'Manhattan
metric', or L1, given by

distance(x,y) = Ixq-yql + Ixp-y2!.
Again the results hold, this time with a different value of

the constant b [2].

More general metrics that take into consideration
indirect or faster roads, promise to be an order cf

magnitude more difficult: for, there is then no result

i corresponding to Theorem 1.

4,3.3 Asymptotic Approximation
Possibly the most glaring inadequacy of the approach is
that it 1is asymptotic in the number of passengers. The

expressions which are obtained are laws of large numbers,

and require that the number of passengers and their

arrival-rate q be large. To apply the formulas we would
ideally seek a ‘'central 1limit' result allowing us to
estimate the probable magnitude of the errors when q is
small, and to determine the size of q needed for reliable

estimates.

Sadly, a general result of this nature is not
available. A theoretical analysis is hard and results

depend, for example, upon the shape of the region. For R
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a square, the pest ¢that it has bpeen possible to do
analytically on the convergence of Theorem 1, is to show
that(S)

E[Lp] _ b/@ + 0(logn/n)
/n

where E[L,] 1is the expected length of an optimal travelling
salesman tour for a random instance of the problem of size
n. It might be hoped that the actual rate of convergence

is faster than this.

In this spirit, 1let wus investigate empirically the
convergence of Theorem 1. We shall consider only points
which are distributed randomly in a unit square, and shall
seek to estimate E[Ln] as a function of n. Comparing

E(Lp] with bs/n will yield an expected error in the
prediction. This error will enable us to bound, in a sense,
the error due to the asymptotic approximation in dynamic

versions of the problem as well.

The value of E[L,] was estimated for n=20,30,... as
follows. Random travelling salesman problems were generated
by scattering n points on the unit square (x and y
coordinates were generated uniformly and independently). A

number of instances of each problem size n were solvod(6).

(5) This can be derived in the manner of Beardwood's Lemma
6.

(6) It should be remarked that a similar experiment was
performed by Christofides and Eilon [4); however, details of
their numerical results and the algorithms used were not
provided.




are given in [12,3]. In this way, the calculation of tours

is decentralized - it reduces to a number of small discrete

L’ 7 L

The aigorithm used was a heuristic of Lin and Kernighan
[12): it uses modest computation time and has been found to
'practically guarantee optimality'. For n large the
computation time was still high, however, and fewer problems
were sampled. The results obtained are tabuilated in Figure
4.1, From these, we estimate the value of b to be about

.765; Figure 4.2 compares the empirical expected
tour-length with the value of .765/n. In Figure 4.3 we
plot E[Lp)//n versus n, indicating how it converges to
.765. The curve .765 + 4/n is given for comparison: it
seems clear that E[Lp)//n converges at a faster rate than

s E 0(1/n).

i It 1is 1interesting to note that for every random
| problem-instance tried, with b = .765,
| /A < Lp.
So, with high probability the tour-length predicted by
Theorem 1 is less than the actual value. Indeed, from
Figure 4.3,

b/n £ E[Lp] < b/n + 4/n (4.1)

This yields a tairly close bound on the magnitude of the

error implicit in Theorem 1.

Now let us obtain an estimate of the convergence rate
for a bus problem - we are interested primarily in the
dynamic version. 1In evaluating the performance of a scheme

. »

the time spent by a bus in each of its subregions is

estimated, so we can utilize the results above. We consider




‘qenbs 3yun 9yq uo pajeuaua’d
‘msarqoud uewsaies Juyl[eAeJI] 8Y3] JO €3duejsuj mopuey Ly 24nB14

. - - - = T e T - e - -

G69L° 69L° €6L° 06L° GLL° 9LL° L6L° 028" S28° 4hwg" 9l 826" | ur/(%11a

‘=

®

| 53

o

-

-

=

3

| 9

a

i |

1o ! ! ]
ge ! €880L 6Ln6 626L 66%L 9£69 1689 OLL9 L6LS 0225 w29n LI6E GE62 | (Y113 | |
I~ ]
g P ! LoR9 6625 €205 @8Sh GLRE 1592 | !
 wa ! 2€19 6%LS 06£S L09% 28LE 8962 | !
e ! 68€E9 GLES GOES LLlh H9RE -000f | !
PR ' ' 6685 RBL9 HwLlLLS 6LLh OLLE €182 | ]
 ® s ' L6n9 159G 082S Sl2m 29LE wSEZ | :
> S~ A 9965 LL8S €8ES 2L6W 6ERE BSGSE | 000t x |
. 2y ! 9€€9 LALS #6Sw €61G 60Lm 692f | saouvjsSuUT |
0 & £ ! €619 LEL9 R6ES 2Z#9n 9iihw G9R2 | wWopued JoOj |
.o ! LOL9 628G GSLS L9Lhm 66WE 6E2E | uq !
e ! 1.8 8LL9 926k GLEW LLEw 1062 | suyjBusr-anoy |
2 o - | 6€E8L L0O9L G60L 1L6€E9 g1L29 €ERS gL2s @LSH 6SEw SS82 | Temy3do |
el ! gzlg LOnL OHWLY QOEQ 206G 6S9S 6LLS 228h 69SE SOZE | !
S ! 6L6L GL9L 6689 0199 €229 1219 L69G OL2h OSEm 1962 | H |
e ! w2601 219L 6LLL 6L89 89%9 2565 90LS 9n2S BLOS 9ESE G962 | {
. | LhgoL 6Ln6 9808 2€9L L90L 0899 9069 2£09 QB8ES 88w wBOW LI2E | !
e o ! ! ]
0~ i - e e b bl et e bt b |
8o ! ! u !
- @ 1 002 0s1L 0ol 06 08 0L 09 0S (1] ] (1]9 0¢ ot | 9218 wWayqoaqg |
1 X »h2 .
) ittt et ettt
- - o
D 0 e
=S ®
p O @
0k O §




familiar line-haul buses.

‘payiold ! _u/ g9y aAINd 3yj ‘uosiiodwod 104 'x Aq pajeuap si (U] 3 ‘umoys si synsal
, |pjuawiiadxa Jo abubs @y} ‘u yoDa JO4 ‘DINWIO} S,pOOMPIDAG O} BdduabiaAuod ooydwisy 2'p ainbig

:OON OQ oo_omowohowomov
G = T G R TRk, D s A

-86-




-87-~

'I

3 A ...

(019 00l 06 08 0L 09 0OS Ob Ot 02 Ol -
. X I I BN e M M e i g i
X X
\ Hos:
u .
Itw....mwm
— S8
—H06°
x
4//7[¥1]3 40 sanoA |pjuswisedxa ayj sajouap X
-1S6
N/7[U]3 40 @ouabiaauo) ¢t dinbig
v




-88-

only a very simple problem: a single bus 1is serving a
region of unit area and visits m subregions successively.
Each subregion is a square with area 1/m, and the system

is in steady-state.

Let q be the arrival-rate of demands, and let E[Pq]
be the expected period - i.e. the time for the bus to visit
all m subregions. 1In Equation (3.4) we predicted that

E[Pq] would behave asymptotically as 2b2q. We now ask
the following simplified question: can we bound the
relative error in this prediction by a function of q. That
is, seek a bound to

2
error = E(Pg) - 2b°q (4.2)

szq

Let us make another simplifying assumption. Suppose
that, as the bus travels through its subregions, it visits

the same number of points, n, in each(7).

Then, the
expected time spent in each subregion is E[Ln]JT7i, and
the expected period is E(Pq) = mE[Ly)/T7m. During a
period, mn points are visited,

i.e. - Y e ) | (4.3)
28[1.1:]4'7-

(7) This assumption drastically simplifies the analysis.
The number of points to be visited in each subregion is
really random and we get

®
Expected time in a subregion = X pq(n)E[LnJJ17n
n=0

where pg(n) 4is the probability that there are n points
in the subregion when the arrival-rate is q. (Note that
there is a correlation between the number of points n
visited in successive subregions: there will be sequences
of large n and sequences of lov n.)
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From (4.2),

error = l E(L,] - bzn/E[En] !

bzn/ELLn]

Using (4.1),

error < lM_f_‘iLnlf_:_hin'

B 7 amgt

b n
With b = .765, the relative error given by (4.2) 4is 1less
than 12% when n, the number of points visited in each
subregion, is 20; it is less than 7% when n is 303

and it 4is less than 54 when n {is 35. For any n,

(4,3) determines the corresponding arrival-rate, q.

4,.3.4 Additiopnal Upncertainties

The following are a few additional issues (mainly
related to stochastic variations) that we have neglected and

that we now wish to note.

(1) The speed of a bua is not constant as has been
assumed. The travel-time between two points is uncertain

and is subject to traffic and road conditions.

(14) Delays that occur when a stop is made have been
neglected. A bus may have to wait for a passenger to appear
and for his impedimenta to be loaded. Similar delays occur

for alighting passengers. .

(4141) A bus is also detained at transfer points. The time
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taken 1is not instantaneous, but is a function of the number
of passengers who transfer. 1Indeed, if buses are to meet at
transfer points as was required in Chapters II and III,

waits are inevitable.

tiv) From a passenger's viewpoint, the time spent on a
line~haul bus (including his wait) may be appreciable. In
our asymptotic analysis these, as well as the time taken for

a bus to travel a fixed bounded distance were neglected.

(v) Consider a bus travelling a circuit around its
subregions. In Chapter III we calculated the equilibrium
value of the average flow-time. If, now, the bus |is
delayed, additional passengers still arrive, and the time
spent in the following subregions will be 1longer than
anticipated. So, the delay will persist and the equilibrium

will only be re-achieved gradually.

Because of these assumptions, there will be yet further
errors in the derived formulas. However, it is believed
that many of them could be taken into account in a practical
analysis. For example, studies of urban traffic behaviour
might be used to more fully understand the travel-~times; and
we might be able to estimate the time spent by passengers on
the line-haul system. Then, the tools which we have

proposed could be further sharpened and calibrated.




(4) This was illustrated for the simple models in Chapter
III.
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Finally, a more sophisticated technique for the
detailed operational control -~ one that will take into
consideration the random fluctuations - can be suggested.
Consider specifying in advance a schedule of times for the
buses to be at transfer points. Then, if a bus is running
late, it can improve its speed by selecting carefully which
of its passengers it should collect: some passengers remain
uncollected until the bus (or the next suitable bus)
re-enters their subregion. This feature would require
additional machinery if it is to be analysed. A measure of
the 'state' of each bus would have to be defined, and it
would be nontrivial to determine the schedule in advance -
certain 'slack' would be required to allow for random
disturbances. The schedule would have to be 'stable' with
respect to reasonable perturbations and 'flexible', so that
changes can easily be made if things go awry. To study
these topics would require new methods of some 'stochastic

scheduling theory'.

4.4 An Example

Let us suppose that we have a city, R, in which we
want to construct a dial-a-ride transportation system. This
city is essentially composed of ¢two distinet regions as

shown in Figure 4.4 - downtown, Ry, with area and

a,,
suburbs, Rg, with total area a,. There is already an

efficient public transportation system operating in Rgy.
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communicate with the central scheduler only intermittently,
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Figure 4.4 An example : the city

For most of the day there is heavy traffic travelling
between Rg and Rq in both directions. The dial-a-ride

scheme is to be designed for this scenario.

Suppose we can approximate the distribution of demands
that are to be served by our system by the following. Any
particular demand pair (o,d) is of the form (Rg,Rq) with
probability p/2, p€(0,1); it is of the form (Rq,Rg) with
probability p/2; and it is of the form (Rg,Rg) with
probability (1-p). This distribution, then, is nonuniform.
The system 1is not required to serve demands (Rgq,Rq).
Further, the value of p is large, i.e. fairly close to

unity.

As remarked, the approach which we wish to adopt is one
in which R is decomposed into subregions and in which

buses specialize. The theory of Chapters II and III has not
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given a general methoaological procedure for designing this
decomposition when demands are nonuniform, but the following

could well be reasonable for the present example.

In order to discourage persons who travel between Rg
and Rq from using their private venicles, let us provide
them with attractive transportation, say a transfer-free
service. We describe first a scheme for only these

(Rg,Rq) and (R4q,Rg) demands. Consider a division of
Rg into k regions,v riy...rg, each of area ag/k, for
an integer k. It might be desirable to have natural
divisions here, described by boundaries of suburbs, roads

and so on. This is depicted in Figure 4.5.

Figure 4.5 Partition of suburbs, Rg

Now allocate a bus by to the region ry, for
§85%,.,.k; bus by will serve passengers with origin or

destination in r3y and will travel also in Rg. Each bus
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will travel a ‘'simple tour' (see Section 2.2.2), so
subdivide i e S (ARSI and Rg further, into o
subregions each. Bus by travels a route as shown in

Figure 4.6. It makes a circuit around its 2m subregions,
visiting them successively. If it enters a subregion rj j

at a time ¢t, it visits there all possible points that are
feasible at t. These are the origins of demands that have
arisen during the time since ri,j was last entered, and
all destinations in ri,J cf passengers who are already
aboard bj. The tour in ri, 3 is an optimal travelling
salesman tour, and can be calculated at t. If the number
of points to be visited in ri,j is small, the driver might
easily be able to choose his best tour. Otherwise, there
might be a minicomputer aboard that calculates the tour for
him. Efficient approximation algorithms that might be used

for this are those in [12,3].

L 4

AR
|
|

/.
/
f

\ L4

Figure 4.6 Route taken by o single bus in a region
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The buses communicate with a central computer (or
scheduler) that informs them of the points to be visited in
their subregions. This computer monitors all demands and
assigns them ¢to the buses; the assignment decisions are

trivial - no long or hard search is needed.

With k regions of Rg and k buses, each travelling
at unit speed, the asymptotic equilibrium average flow-time
for the (Rq,Rg) and (Rg,Rq) demands in the above scheme,
can be calculated using the techniques developed in Chapter
III as follows. Consider the route of a particular bus.
Let ® be its period, the time for it to make a circuit of

its 2m subregions(a).

Let 64 be the time spent in each
subregion of R4, and let ©6g be the time spent in each
subregion of ry. Then,

6 = mbg + mOy (4.5)
During e, there arrive 2pq8/k points that are to be
served by this bus, 1i.e. pqé/km in each subregion. Thus,

by Theorem 1,

64 = b[pab[ag (4.6)
k ]

6 = b[Pa8[ag (4.7)
k Jkm

From (4.5), (4.6) and (4.7),

' . bng[,/.—d. )2
k k

As in the proof of Theorem 5 we get that the average

(8) Note that we are being rather loose here. These are the
equilibrium values of O when q 4is large; the equations
to follow hold asymptotically, with probability 1.
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flow-time of these passengers is

2
e g__gs[ 3g + l_‘_ar(1+1/2m) (4.8)
k k

for q large. This approximation to the value of Fq
should not be taken too literally: some of its limitations

are discussed in Section 4.3.

Various other.sin1lar schemes might also be suggested
for serving the (Rg,Rq) and (Rq,Rg) demands. Suppose
that the number of buses is increased. Then, the average
flow-time will be minimized if we increase also the number
of regions of Rg, and retain a single bus 1in eaqh.
However, it might also be desirable to have more than o;e
bus in each region rj. For example, two buses travelling
through the subregions as shown in Figure 4.7 would provide
a more equitable service to passengers (1i.e. ] r
variance of travel-time) arnd a lower value of the ma 3um
flow-time. Tnis scheme is aiso more reliable: if a bus
breaks down, 1its passengers can still be collected by the

other bus. These are all considerations that are important

in practice.

Having described how passengers travelling between Ry
and Rg might be served, we now turn to suburban demands,
of the form (Rg,Rg). In general we have seen that a
service with transfers will yield an average flow-time that
is better than that with a transfer-free service. So,

consider a scheme with transfers.
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Figure 4.7 Route taken by a pair of buses in a
region

With J buses, partition Rg into J regions
P1y...7}§ as was done before, and assign a bus to each.
ALso specify a transfer point in each region and a route for
a line~haul bus, travelling between these tranérer points,
in the manner of the 'Michigan Scheme', as described in
Section 1.1. This line-haul bus will play the role of a
transfer point: the distance which it travels is
asymptotically negligible, and it 1is clearly not always
practical to have all regional buses meeting at the same
transfer point as was required in Algorithm 3. For our

example, this is sketched in Figure 4.8.

Once more, subdivide the regions rys the regional
buses perform simple tours in their subregions in the same
manner as those before, visiting the transfer point each

period. The previous remarks on the number of buses in each
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Figure 4.8 Decomposition for suburban demands

region are again pertinent.

If there are J reg.onal buses and J regions, with
m subregions each, the asymptotic average flow-time can be

calculated from Theorem 6 (set k=j; h=z1) to be

2

F b“(1-p)qa [3 $4 % 1(1-1/m)] + Q (4.9)

q . —a—a !
3 st

Here, Qg is the average time spent by a passenger on a

fixed-route bus - it depends for example upon the number of

these buses and upon the actual route taken.

This scheme corresponds ¢to a single transfer per
period. It 4is possible to odbtain further improvement in
average flow-time by having, say, two transfers per period.
Then, we need 23 regions of Rg, Wwith each bus ns;ignod
to two of them, and a transfer point in each. A bus visits
its two regions alternatingly, pirrorning a tour through the

subregions in each, and visiting the transfer point
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thereafter (in the manner of the tour Tg = of Algorithm
’
6). The asymptotic average flow-time can be calculated as

before to be

2
F b (1-pleag 2.5 + 1 - _1(1-1/m)] + Q2 (4.9a)
o 3 [ 2m 23

With this approach, then, it is possible to calculate
the asymptotic flow-time and other performance criteria for
various suggested schemes as in (4.8) and (4.9). It is
indicated in Section 4.3 how adjustments in these formulas
might be made to reduce their error. Then, a parametric
study can be made to analyse the behaviour of alternative
system designs. For example, given a fixed number of buses,
agetermine how they should be allocated between the suburban
and central subsystems. Or, calculate the possible gain in
flow-time if the number of buses is increased or if there
are more transfers on the suburban subsystem. Different
schemes with alternative aecomposition of the area might
also be studied, and other performance criteria such as the
average waiting-time or maximum travel-time might be
investigated. This can all be done analytically, avoiding

the need for complex simulations.




CHAPTER ¥

Our first aim in this report has been towards the
development of dial-a-ride scheduling algorithms. We have
attempted an analysis of the problem at its most fundamental
level, 1i.e. to question what design approach should be
taken. In our study we have viewed the systenm
macroscopically - by considering the statistics of the
arriving demands, we have analysed probabilistically the
combinatorial aspects of the problenm for suitable
mathematical models. This has led to a derivation of a
class of algorithms (or, schemes) for which performance can
easily be evaluated, and hence to an approach towards the

design of dial-a-ride systems.

The proposed approach, then, is Jjustifiable in a
mathematical sense. The Jjustification is with respect to
simple criteria that are pertinent both to the operator of
the system and to the passengers. The mathematical sense is

asymptotic and probabilistic, and will be discussed shortly.

From a practical viewpoint, the design approach has
many attractive features. Most important is that the
schemes have a decomposed, modular nature. This yields a

remarkable simplicity at many levels. Computational

101
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requirements are kept low: no long searches are needed, and
tours for the buses are calculated at discrete instants of
time in a decentralized fashion. The systems are simple and
easy to visualize: passengers should understand their basic
operation and anticipate the type of service to be provided.
It is possible too to provide incentives for the
bus-drivers: if each driver performs as well as he is able,

good performance for the whole system will result.

A further feature is that a tool for design has been
provided. It 1is possible to calculate analytically the
dynamic behaviour of each bus, and hence to measure the
performance of a suggested scheme in terms of the parameters
(e.g. the number of buses, the size of the region, the
number of transfer points, and so on). One can thus choose
parametric values 'optimally' and can evaluate and compare

alternative schemes.

As remarked, we have concerned ourselves with the
fundamentals of algorithmic design. Therefore, we have had
to avoid operational details - there are very many practical
aspects which we have barely, if at all, touched upon. So,
there is scope for much additional work. Further analytic
work could focus upon a specific methodology for choosing a
decomposition of the region and a specialization of the
buses in subregions, particularly when the demand is
nonuniform. We have but indicated (in Chapter IV) how the

design tool might be sharpened and calibrated if stochastic
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disturbances, low demand rates and additional travel-times
are considered. A computer simulation might be used to
develop these methods. A final validation of the approach
would be in a real implementation: the schemes do appear
promising since a related system at Ann Arbor, Michigan, has

been successful.

The approach has been justified via the mathematical
models of Chapters II and III. This brings us to the second
concern of our report: Scheduling Theory as studied 1in

Operat esearch.

start, we wished to question the asymptotic
approach to combinatorial optimization suggested by Karp
[9]. Karp's approach has permitted a global view of the
problem: when a new demand arises there is no need for a
large combinatorial manipulation of the existing solution,
and a small adjustment suffices. It yields simple,
decentralized algorithms that are efficient (in terms of
computational requirements) and yet are nontrivial.
Optimality can be essentially guaranteed when the problen
size is very large. When the problem size is small, the
theory is no longer valid, but the resulting algorithms are
nonetheless relevant. Thus. we are led to claim that Karp's

approach does appear to have practical worth.

In applying [9]) to our transportation problem we have
generalized a result of Beardwood et. al. [2]. It is

tempting to conjecture that similar generalizations,
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yielding interesting bractical algorithms, might be possible
for other travelling salesman-like problems that abound in

Operations Research.

Traditionally, scheduling has been regarded as a
combinatorial problem. This emphasis has produced largely
intractable problem formulations and, except for some
special cases (see Conway et. al. [6]), few insights. Our
study has essentially avoided combinatoriecs. It is believed
that many of the features we have obtained are more
generally relevant to scheduling applications. Particularly
when there are stochastic disturbances (as is the case in
most large real problems) it is felt that combinatorial

aspects can be dissipated in a fairly simple way, by

decomposing and discretizing the problem suitably. Then,
other effects predominate: these are problems of
coordination and of designing the schedule in advance. The

schedule should be ‘'stable' with respect to reasonable
disturbances and should be 'flexible' so that changes can
easily be made when required. Phenomena such as these are
not well understood within the present framework of

Scheduling Theory.
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APPENDIX IO CHAPTER IIX

This appendix is a collection of detailed proofs of the
assertions in Chapter II. All notation and terminology is
as described there. For the most part the results are
proved rigorously; for the sake of clarity in Proposition

3.2 we do revert to a more informal presentation.

First we make some preliminary notational remarks, and
restate the law of large numbers and Beardwood's result for

completeness.

Prelimipnary Remarks

Throughout the appendix we shall be dealing with random
variables. We must explicitly identify the underlying

probability space and describe our notation.

Let w = {(0y,dq),(02,d2),...} be a countable sequence

of pairs of points in the planar region R. Let
wp = {(0q,dy),...(0n,dpy)} be the first n pairs of w.

The set W of all sequences w is the sample space. If we
regard w as a sequence of 'random' pairs, each element of
{oy,d9,02,d2,03,d3,...] being independently and uniformly

drawn from the points in R, then we have a probability

space. Random variables are all defined on this space. The

-105-
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set of 'problem instances' of size n is {wp, WEW}.

For example, Y,(w) is the length of the optimal bus

tour through the first n points of w€W, and Yp(*) 1is a

random variable. If Xp(:), n=1,2,... are random variables

then limsup Xp(-) and liminf Xp(-) are well defined
n2>m n>m

random variables. If X and Y are random variables,

X<Y means X(w)<Y(w) for all weWw; X<Y almost

1.

everywhere (a.e.) means PrlX(w)<Y(w)]

For clarity, in what follows, we shall omi* explicit
mention of the sample space and the parameterization on the
w's.
Kolmogorov's Stropg Law of Large Numbers [14]

Let 1[X4, dIw1,2,...} be a sequence of independent
identically distributed random variables, such that

E(X1)<o Then

n

2z X4 converges almost everywhere
and

n
iin ) S X = BiXy) a.e.
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2.1 Ihe Iravelling Salesman Problem

Iheorem 1 (Beardwood et. al. [2])
Let R be a planar Lebesgue set with area a>0 and
let Ln be the 1length of the shortest path through n
points which are uniformly and independently distributed in
R. There exists an absolute constant b, independent of
the problem instance and of the shape of R such that

1im kg = b/3 almost everywhere (a.e.)
n>o J/n

Let us prove an easy initial 1lemma that will be
required in many proofs to follow: if the number of points
in a certain subregion is random, we can replace this random

number by its asymptcotic value in Beardwood's formula.

Lepma 1.0
Consider a particular region of area a in which there
are Pn points; Pn is a random variable satisfying for

some constant g,

lim Pp = g a.e. (a1.0)
n>o n

Let hp, be the length of an optimal travelling salesman
tour on these p, points. Then,

lim Bp = b/g/a a.e.
ndo /n

Broof

By Theorem 1, we have

N

iim Bg = b

(A1.1)
Pn¢ﬂ3J3;
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By (A1.0),

n->m

11mJ_g_n : V8 a.e. (A1.2)
n

Let any €>0 be given. Let ¢, = max{€/3,€/3b/a} and

€, = max{€/3,€/3/g}. From (A1.2) we have that there exists
Ni1 such that for n2N,4,
(/g-¢,)/n < J/py & (JB+e))Vm a.e.
From (A1.1), there exists N, such that for n2Np,
(b/a-¢e,)Ypy < hp < (bv/a+ e,)/py a.e.
Thus, for n 2 max{Njq,N3},

(b/g—‘é)(/g- ﬂ) ¢ g K (b/3+€2)(/E+€1) a.e.
vn

4.8 b/a/E - € < bp < b/a/g + ¢ a.e.
J/n (]

and the result follows.

2.2 Static Sipgle-Bus Problem

Qbservation 2.0

The single-bus static problem is NP~complete.
Proof (See Aho [1] for the notation.)

It is easy to see that the bus problem is in NP.

Given an instance of the TSP of size n, we can
transform it in polynomial time into an instance of the bus
problem of size n as follows. Let the given n points be
origins {o01,...0pn), and let all have as common destination
a point p, a distance of at least DA from every origin,

where D is a very large real number and A is the
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max{"oi-oJ", i,j=1,...n}. For D 1large enough, an optimal
bus tour will visit all origins first, and only then visit
p. Clearly, the subtour visiting all origins is an optimal

open travelling salesman tour. (]

For the proof of Lemmas 2.2 and 2.3 we require an easy

preliminary lemma.

Lemma 2.1
2m
1 S /A = 4/2 + 0(1/m)
372 i=1 3
m
Broof
Vﬂ‘
3‘

¥

Figure A2.1 Diagrom for Lemma 2.1

g A A ol Pt
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From Figure A2.1,
2m

2m 2m
Ik dx £ £ /3 2% /S Jx+1 dx
0 i=1 0

1k s 2(2m)372] ¢ ._L_.zg R £ ol 2(2m+1)372.2
3 1372 =1 23723 3

m
3/2 ¥ 3/2
. PP 4 2 £ g SR £ B EeYIR) LY.
3 3/2 1i=1 3 3/2
m 3m
2m
i.e 42 < _1 /T £ 47 + 0(1/m)
3 p3/2 1=1 3 (]
Lepma 2.2
limsup Yo < 4/Zb/a a.e
n>o /n 3
Proof
Consider the feasible bus tour T: given by Algorithnm
2%

Let o3 be the number of origins in each region ry
31 be the number of destinations in rj that are
visited on the first passage (with origins in
regions rq,ro,...rj.1)
dy be the number of destinations in ry that are
visited on the second passage through the regions.
Let 85 be the length of the shortest tour through the
04+dy points im ry visited on the first passage, and
lf be the length of the shortest tour through the 31

points visited on the second passage - these are random

variables.
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LV If Y, 4is the length of the optimal bus tour then

& e .2
Yp £ X 84 + Z s{ + 2mA(R) (A2.1)
= =

i=1 i=1
where A(R) is the diameter of R (so A(R)/V/n > 0 as
n>wm) .

Now, the law of large numbers yields, as n>m,

§1 it a.e.
n m
51 — (1-]! a.e.
n 2
o m
and 91 — n-is+1 a.e.
n 2
m

Thus, by Theorem 1 and Lemma 1.0,
1 2
J Eim BL = 8% = B 11 + Ch=%) & & B m-%F] a a.e.
i ! n»o J/n m n m m m

{ = b/a (/m=-1+1 + Jm-1+1) a.e,
372

Hence,

m 1 m 2 a2m
e 1L [ X85 + £8f) = LA [T A+ /@ - /Zn) a.e.
nPoJ/n i=1 i=1 p3/2 1=1

Inequality (A2.1) now yields
2m
limsup Yo < /A (S /) + p(1-/2) /4
o J/n p3/2 1= n
ﬁ This holds for arbitrary m, so we can let m>m, and we
obtain by Lemma 2.1,

limsup Yn < 4/Zbva a.e.
nd>o J/n 3 (]
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liminf ¥n > A4/2bJ/a a.e.
n>o Jn 3

Proof
First, some notation. In any problem instance, let
On be the set of n origins and D, be the set of n
destinations. Let T, be any optimal tour (which has
length Yn). By this we mean that T, 1is that connected
subset of R which is traversed in visiting Opn U Dy. A
tour segment through P (where P & T,p) is the minimal
connected subset of T, <that contains P.

The optimal tour T, induces a feasible ordering on
the points of Op U Dp. Let us label the origins in Op
such that

i<jJ <=> o3 proceeds ©j on the tour Tg.

Let djy be the destination corresponding to oj4.

Let m be any integer, m>1. We partition R into
m Lebesgue subregions, each of area a/m.

Let (Tn)1 be the tour segment through
{01.02....o[n/-]}. where [n/m] 4is the smallest integer
larger than n/m. (The segment (Tn)1 possibly visits some
destinations en-route.) Similarly, let (‘rn)J be the tour
segment through l°[(j-1)n/-]+1'“'°[Jn/l]}' There exist
partitions of R into m Lebesgue subregions ﬁ1....n.
each with area a/m and bounded perimeter (length of
boundary) such that the origins in iJ are precisely those

in (r,)’. for Jj=1,...m. Let Aq,...Agy form a partition

B B S0 S
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of R drawn at random from the space of such partitions(l).

We can assume that the origins in AJ are uniformly

distributed there.

Let us define '~r each subregion AJ, J51,2,...1m,

onj number .. .rigins in Ay = [n/m] or [n/m)+1

dpj = number of destinations in Aj

dnj = number of destinations in Aj which also belong
to {d1’d2""d[njlm]} - i.e. destinations in
AJ whose corresponding origins are in

Ay U A2 U ... U ay.

(1) An example of suitable Ay, J=1,...m, is provided by
the following.
Let Bj, i=1,...n, be a ball around o4 with radius
€<1/n° and with By 0 By = @8 for i#j. That is,
¢ < min{1/n%, mintllog-o4llz2, 1,321,...n, 1431}
and By = R 0 {x, "x-01"<51. {xY5 0.0,
Now partition R-1§151 randomly into m equal regions
XJ, J=1,...m, such that each XJ is a Lebesgue set with
perimeter less than a fixed, suitably large number, K.
Finally, let Ay be X together with the balls
around the origins in (Tn)J, i.e.
Ay = X3 UBres tyn/mder U oot U Bpging
The perimeter of Ay 1s less than
K+ n.27/n = K+ 2e/n

(This 41s a bounded function of n, as is to be required in

(A2.6a).)
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dpj = number of destinations in Aj 0 (tg)d - t.e.
destinations which are visited by the segment
(Tn)J in Aj.
Note that 3;3 £ EAJ.
Since the regions AJ were randomly selected, and the
destinations were uniformly distributed over R, the random

variables dpnj and daJ satisfy, by the 1law of large

numbers,
Eﬂi -y 3 a.e. as ndw
n )
-
ny —- J a.e. as ndw
-n n2
Also, °ny —> 3 as ndw
n o

Thus, given any €>0, there exists N.>0 such that,

for nzN1,
R R T T a.e. (42.2)
n m
=t
s ¢ B} w3 ¢ € a.e. (A2.3)
-n nZ
and -t < -O-n_J- -1 < € (AZ.I&)
n m

Now, the tour within Ay, viz. Ta 0 AJ, consists of
one or more connected pieces. Discard any such piece which
does not contain a point of Op U Dp. The closure of any
surviving piece will be called a j=-piece. The set of

J-pieces can be partitioned into two parts (see Figure
A2.2):

J

J

(1)
(2)

-pieces are those that belong to (Tn)J

-pieces are the remainder.
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9..: \\p /
. e N
H '6 \v/.o
d

dob
___..,.++‘.’++ d T o d “_subregion Aj,
N

\ with area a/m

Figure A2.2 The Tour T:—(i)

Part of the optimal tour T, is shown. The arrows indicate the
direction traversed.

jm-pieces are shown = = ~==~ = -

f2)-pieces are shown +++ + + +

(Tn)j- segment is the ----and path.
Thus, the 3(1)-p1ecea contain all 0on4 origins in Aj as
(2)

well as the E;J destinations. The J ' °’-pieces contain

EnJ - 333 destinations.

(1) (1)

Let sj be the length of the J -pieces
a§2) be the length of the J(Z)-pieeea.
Clearly,
e (f1) (2)
Yn 2 X (s + 85 ") (A2.5)
J=1
Let 13(1) be the 1length of an optimal travelling

salesman tour through the SnJ + 583 points of the
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3(1)-p1eces.

Let 33(2) be the 1length of an optimal travelling

salesman tour through the Enj - E;J points of the

J(Z)-pieces.

For k=1,2, Beardwood et. al. (their Lemma 2) have
(k)

shown that there exists a AJ such that
A(k)
J - 0 as nd>o (A2.6a)
Jn
satisfying
LRl L L (42.6)

This is obtained by constructing a feasible travelling
salesman tour through the points of the J(k)-pieces, each
traversed just once, together with a part of the double
circuit of the boundary of AJ. (An example is diagrammed
in Figure A2.3.)

Now, there exists an Nz such that, for all n2Np,

k)
AS &2 for k=1,2; 3=1,2,...m. (A2.7)
J/n m

0 <«

By Theorem 1, for n>Np,

i a0(1)
bla - £ < J a.e, (p2.8)
" (an & 333)1/2
and
e '9(2)
bfla - £ < J a.e. (A2.9)
dm ] (anJ v 333)1/2

From (A2.8), (A2.9), (A2.2) and (A2.4), we  get for

n>N = ll:ll1,l2}.
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Figure A2.3  The Tour Ty —(ii)

1(2)- pieces are shown +++ +++

The tour -=--- is an upper bound to the length 37‘2), an
optimal travelling salesman tour through the destinations
in the j2- pieces.

.5(1) - 83(2) > bI;[anJ 3 333]1/2 A b[:[anj ¥ 335]1/2

m m

- 5[5n3 + 3;3]1/2 - £[an3 - 353]1/2 a.
n o

2 bJ;[n-nc+3;J]1/2 bji[n-n:-aaj11/2
LI mm J
1/2 1/2

- €lnp+2ne+ - Elpe+en a.e.

i M

It is true in general that, for any a>b>y>0,

argmin {J/aex + Jb-x} = y
xe(0,y]

+

So, since dpy € [0,dns), and with (A2.3) we have
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" AL L bJZ[n-nua;,J]”? . bjz[n-ne-agj]"z
m|m mim

- £ n+2ne+niﬁ1/2 - Elp+en /e a.e.
m|m m€_ m|lm

(A2.9a)
21/2 1/2
2 blalp-2ne+ + blaln +
o] i

-l e n+2nc+néf1/2 - £|lp+€n 1/2 a.e.
mim m<_ m|m

From (A2.5),

] m
Y > bla _%. T (vo+] + vm-J) - £ % l+2£+_% 1/2
/n m g J=1 m j=1|m -
- €|l+e e a.e.
m
But, ¢ is arbitrary, and the coefficients of = are

bounded above, so

m
liminf Yo 2 b/a £ (Vm+] + /m-J) a.e.
n>o J/n p372 3=

2m
= bva [ /T - _]_]
m J=1 m

This holds for any m. Thus, by Lemma 2.1,

liminf ¥n > 4/2bva a.e.
n>o Jn 3 [1

AT -

A
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2.3 Statdic Multiple-Bus Problems

Lemma 3.1
k
lim 23 = cov/a a.e.
n>o vn
Proof wk %
Define the random variables ¢ and ¢ as follows.
- k
X « dimsup Zp
n?>® /n
k
Qk = liminf Zn
n>® Jn

Note first that it is feasible to have k-1 buses idle
and to use only one. Thus,
I £ T
(Y, 1is as in Theorem 2.)
Hence, " £ec a.e. by Theorem 2.

We now show that ¢ £ gk a.e.

With the fact that gk £ Ek, we shall have the required

result.

Define for i20,1,2;... auxilliary problems as
follows.
fProblem i': Let Y:(i) be the wminimal total distance

travelled by k buses through n random demand pairs,
allowing at most 1 transfers of passengers - Yg(i) is a

random variable.

k -
Let 1imsup Yp(d) =« 3¥(1)
n>® /n

K
1imint Yp(1) « g¥(1)
n>® /n

Now, for 4=0,1,2,... , we have




IS4 32 TEliet)

and
ey 32
So,
K1) 5 wPiest)
and also
a5y 3 oF for all 1.
Thus, the {gk(i), 180, 1,2, cued form a monotonically

decreasing sequence in i, boundedﬁpelow by gk. Thus,

A
1im eX(1) = §¥  exists, with §¥ > cX.
iY>m

It is shown in the Lemma 3.1.1 below that

e (42.10)
For any fixed 1, consider the optimal tour-length
Y:(i) - a random variable. It is possible to justify -

see Lemma 3.1.2 below - that
Y&(1) + (1) (k=12 2 ¥} (A2.11)
where YA is the optimal distance travelled by a single
bus, and A is the diameter of the region R.
Dividing (A2.11) by Jn and letting n>xm we obtain
by Theorem 2 that
k(1) 2 e a.e.

This holds for any 1i; thus,

Qk > RE - a.e.
and, by (A2.10),
nk &  © ‘o a.e,

This proves the result, modulo the two lemmas.
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Lemma 3.1.1
We need to show that §k = gk. Suppose to the contrary
that ﬁk > gk at some w€W. Let ¢ = Qk - gk > 0. Now,
there exists an I such that for 1)I,
§% . w6 < a%u)

Also, since

K
e¥(1) = 1iminr Ygtd),
n>o J/n

there exists N such that for all n2N,

K
Y1) > oKy - ¢
/n 6

- see Royden [20, page 37].

Thus, for i2>I and n2N,

Yp(d) 2 ik - €
/n 3
S n wg (A2.12)
3
Since
k Kk
liminf 25 = ¢°,
n>o J/n

there exists an h>N such that

K
2y ¢ gF . (42.13)
Jh

€

3

- again, see Royden (20, page 37].
But z§ is the 1length of an optimal tour on h

demands. This tour can have only a finite number of

transfers, so there exists an integer Ph(e) such that for

almost every problem 1nstgnco, Zﬁ requires at most pp(€)

transfers. Thus, for id>p,(€),

2k« xfcs) (A2.14)
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Hence, for n2N and i 2 max{I, pp(e)l, we have from
(A2.12) = (A2.14),

gk +u2€ £ gk +

€
3 3

This is clearly absurd and the lemma is proved.

Lemma 3.1.2

We assume that the buses start their tours from certain
fixed (but arbitrary) points in R, and that all buses
terminate their tours at a common final point in R.
Consider the following acyclic directed graph, G,
representing the tour with length Yﬁ(i) for any problem
instance.

Represent by nodes the k starting points, the
transfer points (there are at most i of them) and the
final terminal point. The tour of a particular bus i is
represented by a path through G: edges into a node
represent the buses which transfer passengers there, and the
indegree equals the outdegree at all nodes representing
transfers. An edge thus represents the path through R
taken by the corresponding bus, and G represents the given
set of tours with total length Y:(i).

An example best illustrates this definition of G. The
graph in Figure A2.4 represents a tour with 7 buses and 6
transfer points.

Suppose the k tours are executed by a single bus in
the following vay. Pass along the same routes,
'backtracking in a straight 1line from each node to a

previous one as far as is necessary, so that all incoming
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V4 \/ \/

M

Figure A24 Representation of tours and transfers by a graph

edges have been executed'. (We do not feel that it is
necessary to be more specific here. The idea is precisely
the reverse of the standard depth-first-search algorithm -
see e.g. Aho et. al. [1).) At worst we will have to
backtrack k-1 times at each of i+1 nodes (the transfer
points and the terminal point), and each backtrack will
involve a distance of at most A, the diameter of R.
This leads to a feasible single-bus tour with length
5 < YE(1) + (k-1)(4e1)A
yielding inequality (A2.11).

Lemma 3.1 is thus proven. []
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Iheorem 3
If transfers are allowed
k ez
lim !n = gva a.e.
n>o v/n k

Proof

k
by xé is the total distance travelled by the optimal tour.

i=1

If Z: is as in Lemma 3.1, then

k
% x% 2 Z:
i=1
k F od k
Now, kKfg ‘2 S % by definition of Y.

i=1

Dividing by vn and letting n>m, we obtain, by Lemma

=
k
liminft X¥p > o/ a.e. (A2.15)
n>o J/n
o
Consider the tour T: given by Algorithm 3. For this
tour let
s%(m) be the total distance travelled by bus i
hg(m) be the total length of the travelling salesman
tours covered by bus i in its regions.
Then,

s8(p) < bi(m) + ma
where A is the diameter of the region R.
Now, by Lemmas 1.0 and 2.2,

i
limsup Np(®) < mef[ifa + 0C1/m) a.e.
o vn (o]

1
limsup 3p(®) < ovF + 0(1/m) a.e.
n>wo Jn
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By the optimality of rﬁ we have

Yh £ mnx{st(m), a8, cnck) for any m.
Thus,
k
limsup g < cva + 0(1/m) a.e. for any m.
n>® /n

Letting m>wm,

limsup £ eo/a a.e. (A2.16)

n>m

b

The inequalities (A2.15) and (A2.16) prove the lemma.

(1]

Proposition 3.2
The 3-bus fixed-route scheme, described in Section

F
2.3.3 yields 2 time-to-~delivery Yg satisfying

F
lim !i_ = _1 (/3 + JZ2 « 1)b/a a.e.
n>® J/n 3/3

= .798bJ/a a.e.

Proof

We use the same notation as that wused for describing
the algorithm in the text. Our derivation will be informal,
but hopefully transparent. We need onlv consider bus 1
since the other buses have analogous tours and so distances
travelled will be the same (asymptotically a.e.).

Bus I first visits regions (ry,r2,...rp). In each ry

2

[(m=i+1)+m]ln/9m origins are collected and

[1-1]n/9l2 destinations are delivered.

s 34 Ly

So, by Lemma 1.0, there is a tour-length of b/a/3m/2n/Im

in rg.

R
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Second, the bus visits (rop,rop-1,.--me1). In each ry

[m‘(1-1)]nlsmgw,Qxigiggﬁggg collected and

[(m-1)+m]n/9m2 destinations are delivered.
The tour-length in each of these m regions is
b/a73m| (3m-1)/9me/A.
Finally, the bus visits (rq,...rp) again. In each rj
(m+1)n/9m2 destinations are delivered.
So in rj there is a tour-length of bJE73iI?;:TT73;EJH.
The total distance travelled by the bus is thus

hli%i(J? + /3577 + T+ 7/m)
3v/

= b/a/D(/Z + /3 « 1) + 0(1/m)V/n
3/3

Letting m>® we obtain the required result. []




APPENDIX I0 CHAPTER 111

This appendix collects proofs of the assertions in
Chapter III. In contrast with Appendix 1II, proofs are
informal. With additional work the results can be made
rigorous - for example, Lemma 2.2 can be used as a model for
Lemma 4.1 and Lemma 2.3 as a model for Theorem 4. However,

it is believed that this would blur their simplicity.

3.1 The Static, Single-Bus Problem

Lemma 4.1
(1) lim gnizgl = 2 [8/2 - 7) b/a + 0(1/m) a.e.
o Jn 15

= .5752bJa + 0(1/m) a.e.

(1) 1im fp(TR) = _1_ ([118/Z - 47] b/a + 0(1/m) a.e.
np>o Jn 105

S 1.1417v/2 + 0(1/m) a.e.

Broof

Label the m regions ry,r2,...rp.

Py Lemma 1.0, we can assume that, for any {,J=1,...m,
there are n/m’ demands of the form (ry,ry). Let

t;y be the time spent in ry on the first passage

ti be the time spent in ry on the second passage

B
T= X ty = time-to-completion of first passage.
is1

-127-
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For n large enough we have, with probability 1,

ty = b/n v/m+i-1 (A3.1)
3/2
m
since n/m origins and (i-1)n/m2 destinations are
collected. We can assume that the expected time at which

any of these points is visited is (tq+to+...4t5_q+t;3/2).
Similarly,

t{i = _b/n /m-1+ (A3.2)
m3/2

since (m-1+1)n/m2 destinations are visited in each region

ry. The expected time at which these points are visited is
T + t] + Bo +iivi # ti/Z.

First, let -us consider the waiting times. The sum of

the waiting times in region {1 |is

i-1
nl X tj + ty/2].
m J=1

The total average waiting time is then
i-1

m
T[Tty + ty/2)

wn('l'g) = ln
nnm 1 J=1

i
]
= b/ [ X (m-i+1/72)/m+i=T]
7/2 41=1
m
by expanding and using (A3.1).
Using a technique similar to that of Lemma 2.1, it can
be shown that this series converges and
n
1 _ I (m-i+1/72)/m*I=T = 2 [8/2Z = 7) + O(1/m)
372 1i=1 15
[ ]
= .5752 « 0(1/m)

This proves Equation (i). Equation (ii) is somewhat
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more cumbersome.

For destinations which are visited on the first

passage, the sum of delivery times is

G, = T (i-1)n (tq + ... + tg.q9 + t3/2)
i=1 2
m
nniii 1 X /u+IST (m2 R LR TR
'7/2 2 i=1

Again it can be shown that

8, . b [202%72.1) - 1(2772-1)) « ot1i/m)
372 5 7

The sum of delivery times for passengers delivered

the second passage is

m
62 = > IT + t; B o i ti_, + ti/Z] {m-i+1)n

i=1 n2

- D
& =|3/2 [ £ /a+el=-T g(m+1) +« X (l-i+1)5/2]
al/2 1= 2 is1

Once again it can be shown that

S, . b [1(237221) + 1] + 0C1/w)
3/2 3 7

Finally, the average flow time is (G1¢Gz)ln, i.e.

/n 5 7 3 7

b [118/2 = 47] « 0(1/m)
105

1.1417b « 0(1/m).

The proof of Lemma 4.2 follows easily from Lemma

and the discussion in the text of Section 3.1.

on

(]
f(Tg) . , [1(25’2-1> - 10277209y + 1(237%.1) o 1] + 0(1/m)

(]

4.1
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Iheorem 4
Let fp = inf{f,(T), TES}.
Given any €>0, there exists an M(e) such that for
m2M and for n large enough, T: is €e-optimal for
problem (3.1) a.e.

Hence,

f.
lim _D 1.1417b/a a.e.

n>o /n

Proof

Throughout this proof we assume that n 1is very large,
so results obtained are asymptotic in n. For simplicity,
we drop the parameterization on n.

For any problem instance, let the tour T; minimize

{£(T), T€8,). Thus, for all =,
£(T8) & 1Ay,

Let €>0 be given, and suppose that the hypothesis 1is

not true. Then, for a subset W' of W with non-null

measure, there exists M such that for all wm2M

1 1
£(28) « ritS) > 3es2 (43.3)

By Leama 4.3 there exists M such that for all "2"2'

2
W(TS) + £(TQ) - w* + £+ < ¢€/2 a.e. (A3.4)
So, for m > nale1,H2}.
£(TQ) + w(Tg) 2 f* «+ w* a.e.
2 w(Td) + £(T9) - €/2 a.e. by (A3.4)
2 w(T9) + £(13) + €  a.e. by (A3.3)

$.0. w(13) = wilg) 2 ¢ a.e. in W'

For any partition of R into m equal subregions we

can define a (nonfeasible) tour Sy that is similar to
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T::- visit the regions successively, as for tour T:, but
in addition visit the destinations of the form (rj,rj) in
each region rj on the first passage through the m
regions. Clearly,

w(sSg) > w(Tg).
But, by <choosing m large enough - i.e. m>M3, say - we
have(1)
wi(sg) - w(Tg) < £/2 (A3.6)

Let M = max{H1,M2,M3}. For any m>M consider the
tour T; for any problem instance. We construct another
partition of R. (This is again an extension of the method
in Theorem 2; see that proof for notation.)

Divide the tour T; into two segments: S is the

segment from the start of the tour to the delivery of the

last origin; s" is the remaining segment containing only

1
is the first segment from the first origin to the (n/m)th

destinations. Now divide S' 4into m subsegments: S

origin; S; 4is the (i)th segment from the ((i-1)n/m)th
origin to the (in/m)th origin. There exists a partition
of R into ®m subregions {rq,...rgp} such that

rg nsy+o (rf is the interior of rj)

r{n sj=0 for 14}
(Note that S' might cross itself, in which case different

segments have points in common.)

(1) Observe that this is precisely the technique used in
Theorem 2, Equation (A2.9a). The relationship (A3.6) can be
Justified in the same way; the formulas are particularly
cumbersome, and would obscure the simplicity of the
argument.
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The space of all such partitions is nonempty. Let us
draw a partition uniformly from this space, and consider the
tours 13 and Sg respectively on this partition of R.
We can assume that the origins and destinations are
uniformly distributed within each subregion.

By construction,

w(ed) < wisd).
So, by (A3.5) and (A3.6),
w(Td) + €72 > w(sd
2 w(Tg)
> w(T:) + €

which holds a.e. in W This implies that 1/2 > 1, a
contradiction.

Thus, the first part of the hypothesis 1is true. By
letting m>® we obtain, from Lemma 4.2,

1im £* = 1.1417b/a a.e.
n>o /n []

3.2 Ihe Dynamic Single-Bus Problem

Lemma 5.1
If the system is in steady-state, then with probability

1, the tour T: given by Algorithm 5 minimizes, among tours
in Sg, the average flow~time of all passengers.
kroot
Label the demand pairs as (o4,dy), i=1,2,...n,... Let
t,(1) Dbe the time of arrival of (o4,d4); 1let t(oy) be
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the time at which o3 1is visited; and let t(dy) be the
time at which dj is visited. The average flow-time of the
demands is then
n
lim 1 2 [t(dy) - t,(1)] (A3.7)
n>on i=1
Now regard the system as a queuing system (see e.g.
(1)), It is convenient to consider two arrival streams -
the origins {oj} and the destinations {dj}. The arrival
epoch of o3 is t1(i) and its departure epoch is t(oj).
The arrival epoch of d4 is t(oj) and its departure epoch
is t(djy). Thus, at any time t the 'units' to be 'served'
which are present in the system are the points whieh can
feasibly be visited at ¢t.

The average flow-time of all units is

n n
F o= lim 1L {2 [t(og) - t,(1)] + X [t(dy) - tlo3)]}

n>m2n i=1 i=1
n
= lim 1 X [t(d3) - t,(i)] (A3.8)
n>m 2n i=1

which is half the criterion we wish to minimize in (A3.7).
So, minimizing (A3.8) will also minimize (A3.7).

We seek a stationary decision rule, X:- whenever a bus
exits from a region, this rule will determine which region
is to be visited next and which points are to be visited
there. Any stationary such rule will induce a stationary
arrival pattern on the destinations.

Given any rule X, let

Nx = average number of units in the system
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Tx

average time between arrivals

F average flow-time of units.

X

If the system is in steady-state, a well-known result of
Little [13] gives that

Fx = Tx.

Note that since X is stationary, the average time

Nx a.e. . (A3.9)

between arrivals of units is constant, i.e.
Tx s 1/2q (A3.10)
(q is the constant arrival-rate of demands).

Further, if n units are visited in a region, then the
average time spent on each unit is hp/n, where hp 1is the
length of the path visiting these n points. For n large
erough, hp/n will be a decreasing function of n with
probability 1. Now, to minimize Nx, the average number of
units in the system, visit those which will take the
shortest time - i.e. minimize hp/n. Thus, choose the
region with most points and, using an optimal travelling
salesman tour, visit all points there. By (A3.9) and

(A3.10) this decision rule will also minimize Fx (&o€.).

With (A3.8) the result is proven. []

Ibeorem 5
Let Fq’. be the optimal average flow-time for tours

in Sp when the arrival rate of passengers is q. Then,

11m Fao@ = 2b2a(1+1/m) a.e.
o q

Broof
(]

By Lemma 5.1 the tour T, minimizes the average
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flow-time in Sp, so we calculate the average flow-time of
this tour.

Let 6 be the time spent in each of the m equal

areas(Z). Then, by Equation (3.3),
lim 8 = 2b23 a.e. (A3.11)
qo>® q m

Consider a time interval [o,0] during which a
particular region is visited. During this time gq@ origins
and q©® destinations are visited; we can take the average
time-of-~visitation as t = 6/2. During each of the previous

m intervals, of © wunits each, q6/m origins and q6/m
destinations arrived at this subregion - here by 'arrived'
we refer to the arrival of units or points at the queuing
system as described in Lemma 5.1. We can take the average
arrival times of these 2q6/m points as ty = -(i-1/2)6,
for i=1,2,...m. Hence, the average flow-time of all points
is

1 298 (6 + 20 + ... + m8) = (me1le
290 =m 2

By (A3.8) of Lemma 5.1, the average flow-time of passengers
is twice this, i.e.

Fq’. = (m+1)0

and
110 Foum o 202a(141/m) g.6. by (a3.11).
o q (]

(2) In the text of Section 3.2 we called this quantity eq
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3.3 Dypamic Multiple-Bus Problems

Theorem 6

The tour Tg;m described by Algorithm 6 is optimal
(asymptotically a.e.) for the k-bus minimum flow-time
problem when tours are in Sypnm and at most h transfers
are allowed per period.

Let F:;h,m be the average flow-time resulting from

this tour. Then,

k 2
1im Faih,m . b8 [2 4 3 (141/k) + 1(1=-1/k)] a.e. (a3.12)
Po q K mh h
Proof

We shall not prove the optimality of the tour T:;m. A
proof could proceed along the lines of Lemma 5.1, and the
same principle would still be valid: each time that a bus
exits from a region, visit next the region with most
feasible points, and visit all feasible points there. For

q large this will yield the tour of Algorithm 6.2.
Further, with probability 1, each bus will spend the same
time in each region, and there will be no waiting at the
transfer point.

Below, we derive (A3.12) in detail.

Each bus visits m regions between any two transfers.
Let 0 be the time spent by a bus in any subregion. The

period is then hm®. During this time there are qhm® new

demands, and so each bus must serve 2qhm®/k points. In

each region there are 2qhmé/khm = 2q8/k points visited.
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Hence,
b, = b 198 L a
k |khm
2
$£.0, ® = 2bqa (A3.13)
kzhu

Each time a region is visited q8/k origins and q6/k
destinations are visited.

Consider a bus B visiting a region that is the Jj-th

after a transfer point. Of the q6/k destinations, qe/k2

were collected (i.e. their corresponding origins were
visited) by bus B itself, and (k-1)qe/k2 were collected
by the (k-1) other buses. The qelk2 points were visited
uniformly during the last hm time intervals, of length ©
each. So the waiting-time for these points is

9% (0 + 20 + ... + hmo)
kzhl

= 98 (nhm+1)e (A3.14)
2k2

The (k-1)q0/k2 points were collected uniformly during the
hn time intervals before the 1last transfer, (3-1)
intervals previously. Thus, ¢the total waiting-time for

these points is

(k=1)98 (358 + (j+1)8 + (3J+2)8 + ... + (hm+j-1)6]
k%hm
= (k-1)90 (hme23-1)0 (A3.15)
2
Kk

The q®/k origins all arrived during the last hm time
intervals. The total waiting-time for these points is

99 (0 + 20 + ... + hme)
khe

= 9% (hm+1)e
ek (A3.16)
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The total waiting-time for all points visited during

this j-th region of bus B is the sum of (A3.14), (A3.15)
and (A3.16). This is

9% . [(hm+1)(k+1) + (hm+23-1)(k=-1)]

2k2
and 2q6/k points were visited.

Summing now for Jj=1,2,...m and dividing by 2q6m/k

we obtain the average waiting-time of all points, viz.

m
06 [m(hme1)(k+1) + 2 (hm+23-1)(k=1)])
4km J=1

= 8m [khm+k+hm+1 + khm-mhemk-m]
4km

i % = Om [2kh + (Kke1) + (k=1)7
: k ® .|

For the required average flow~time of passengers we must

multiply this by 2. Also, using (A3.13) we get

K 2
Fq;h,m = -L 2B 93 [2kh + (Kkel1) + (k-1)
% 2k kzh [ n ]
2
= b a2 [2 4 1 (1+1/k) « 1(1=-1/k)
kz [ mh h

This gives the required result. []
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