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INTRODUCTION

The idea of a semi-Markov process was proposed in 1954 (references 1 and 2). The
semi-Markov process Is similar to the Mark ov process in that both processes are de-
scrthed by a set of states whose transitions are governed by a transition probability
matrix . The semi-Markov process , however, differs from the Markov process in that
the times between transitions may be random variables . Further, the amount of time
spent in any state afte r entering it is a random variable described by a probability density
that can be a function of both the state of occupancy and the state s to which transitions can
occur.

The statistical time behavior of the semi -Markov process is described by a set of
linear integral equations. The solution of this set of equations yields the probabilities
that the process occupies the states of the system as a function of time. In many prac-
tical cases where the semi-Markov process is complex or involves many states, an
analytic solution Is difficult to obtain and numerical procedures must be used.

The purposes of this Research Contribution are (1) to acquaint the analyst with the
semi-Markov process , (2) to illustrate that use of the seml-Mark ov process is common In
systems and operations analysis, and (3) to show how numerical solution of the associated
equations can be accomplished.

The general formulation of the semi-Markov process as developed in references 3 and
4 is discussed informally. A more formal treatment, however, appears In references 5
or 6. Numerical techniques are emphasized since algorithms for analyzing sehli-Markov
processes are not well developed or well known. Algorithms for both continuous -time and
discrete-time processes are derived, and their numerical accuracies are discussed. Two
examples are worked out in detail.
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GENERAL FORMULATION OF A SEMI-MARKOV PROCESS

BASIC FEATURES
Let N be the number of states of a seml-Markov process. Let h

ij
(t)dt be the

probability of a transition to state J between t and t-fdt given that the last transition
was to state i at time zero • These holding time functions h

ij(.) are elements of the

transition matrix H( ), i.e.,

H(t) = (h~(t) ) 1 � i,J � N

and must satisfy

N
1� i � N  • (1)

0 j=l

The functions h~(.) are ~‘dishonest” density functions in that they need not integrate to

unity, although they are otherwise like density functions. Equation (1) expresses the
intuitive requirement that there is unit probability that the system will be in one of the N
states of the system at some point in the future, given start in I

When the system makes a transition from state i to state j , the transition Is said
to be real if j ~ i and virtual if j = I • Virtual transitions are represented in the transi-
tion matrix by nonzero diagonal elements. This formulation allows for both kinds of
transitions.

Let w
i
(t)dt be the probability of leaving state i between t and t-~dt . The quantity

w
i
(t) is called the unconditional waiting time density and is expressed in terms of the

h1~
(.) by:

w1(t) = 
~~ 

h1 (t) . (2)
i i

GENERATING A SEMI-MARKOV PR OCESS

There are two general types of random mechanisms that give rise to semi-Markov
processes . In the first type of mechanism, the process is envisioned, after having entered
state i , first to make a random draw to determine the successor state J , and then to
make another random draw to determine the amount of time it will stay in state I before
going to state j - The outcome of the first draw is based on the set of transition probabil-
ities p , 1 ~ i, j � N • The probability p~ is the conditional probability that the next

£3
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transition is to state j , given that the last transition was to state I • The outcome of
the second draw is based on the fu nctions f1~(.) , the holding time density functions for

duration in state i given that the next transition is to state j. Then:

Pjj = !h 1~(t) di

and

f ( t ) = h ( t ) / p
ii ii ii

It Is clear from the definition that f ( .) integrates to unity; from equation (1), it is
seen that:

l �i � N

In the second type of mechanism the process, afte r having entered state i , makes
N random draws - - one draw from each of the N holding time densities f ( , )  . It

then determines the successor state and length of time in state I from the smallest draw.
Thus, if the results of the N draws are the values t~ , 1 � J � N , and if t~~ = MJN(t jj )
then the next transition is to state k and the length of time the process holds in state i
before going to k Is

An example of the first type of mechanism Is the problem of the whimsical travelling
salesman. The salesman randomly decides which city he will visit next, given that he is
in a particular city (decision based on a random draw and the ‘a) • Then the amount

of time it takes the salesman to travel to the next city is based on a random draw from the
density of travel times to that city.

An example of the second type of mechanism is the reliability of a system. If a sys-
tem is composed of N critical subsystems, each with known failure time densities, then
the path by which the system fails and the time to failure is determined by the smallest
draw from the failure time densities.

The holding time probabilities h1 (t) for the two types of mechanisms are expressed
by:

4 
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P11 
f~1

(t) type 1 mechanism

h~1
(t) = f~ (t) fl (l-F~~(t)) type 2 mechanism (3)

k~J

where

F~~(t) = J~ f~
(t) dt

For the type 2 mechanism, H (l-F~~(t)) is the probability that the process has not made
k~j

a transition to a state other than j by time t . Further, ç1(t)dt is the probability that

the transition to J will occur in the next instant of time between t and t-fdt

It is highly important in treating a semi-Markov process that the process be correctly
identified as either type 1 or 2 • An example of Its importance is when there is a system
composed of two independent, identical subsystems each of which has an exponential failure

time density (l/r)e t
~’~ . Then the mean time between failure is r if the system is

type 1, but 1/2 r if the system Is type 2.

In certain cases, a system may be composed of some states that obey a type 1 transi-
tion mechanism, and others that obey a type 2 mechanism. There is no difficulty in model-
ing such a system, providing that h

ij
(t) is specified properly for all states.

Reflection shows that the type 2 mechanism is common and is capable of considerable
generalization, e.g., the successor state may be chosen as some function of the N draws,
not necessarily the state yielding the smallest draw. The possibility of anything but a type
1 mechanIsm is seldom mentioned in the literature, and the quantities p~ and f

11(.) are

usually treated as fundamental, with h~(.) defined in terms of these. Here, h~1
(.) has

been taken as fundamental to show that it can be expressed in various ways according to
the way in which the semi-Markov process is generated. Ckher mechanisms for choosing
time In state and successor state can be found and give rise to still other forms for

Reference 4 discusses the case in which the choice of successor state is probabilistic,
c3nditional on the value of the waiting time in the current state .

If it is not known a priori that the system under consideration is of type 1, type 2, or
otherwise, it may be possible In some cases to construct h

11
(t) directly from data . When

sufficient data Is available, a convenient representation of h~1
(t) Is w

1(t) ~ 1
(t) , where

w1(t) is the waiting time density for transition out of state I , and ~~1
(t) Is the probability

—4—



that the system will make the next transition to J , given time t and current state i
This latter probability may be easy to estimate from the data .

THE SYSTEM EQUATIONS

This subsection derives the equations obeyed by the quantities which are usually of
primary interest to an analyst . No attempt at completeness is made ; equations for other
quantities of possible interest are found in references 4, 5, and 6.

Let øij(t) be the probability that the system is in state j at time t , given that It

entered state I at time zero. The quant!ties d1~(t) are the state probabilities of the

semi-Ma rkov process . Knowing the values of these quantities for all time t is equivalent
to knowing the probabilistic time behaviour of the system. The governing equation for
these probabilities is now derived. A system starting in state I can be in state j at
time t in the following ways:

~ 1. i=j

a. System never leaves state I , or
b. System leaves state I but returns to I by time t

2. i~J

a . System leaves state I and manages to reach j by time t

The set of equations that describes these events is:

d1~(t) = 6~1
W 1(t) + 

~~ f~ dT h~ (T) ØkJ
(t_ r) (4)

where

t ~ O , 1� i,J � N , = , and W
i
(t) is

W~(t) = 1 — ,f~ w1(t)dt . (5)
0

The first term on the right-hand side of equation (4) Is nonzero when i=j , in which case
it represents the probability that the system did not leave its starting state I by time t .
In the second term, the quantity h~ (T)dT is the probability that the system will make a

transition to state k between times r and T#d 1 • This Is multiplied by Bkj(
t_T) , the

probability that the system will proceed to state J in the remaining time t-i , having
entered state k • The procbct is integrated over all i between 0 and t and summed
over all states k •

-5-



Whe n N = 1 , equation (4) reduces to a single (renewal) equation; for N > 1 , it is
called a “Mark ov renewal equation” (references 5 and 6). Many quantities of interest in
the analysis of seml-Markov processes obey a Markov renewal equation; this Research
Contribution restricts its attention to such quantities.

When the seml-Mark ov process has few states and the densities are simple functions ,
it is sometimes possible to take the Laplace or geometric transform of equation (4), in-
vert a matrix and take the inverse transform to obtain d11

(t) , as described in reference

3 • Transform techniques are usually difficult to apply and a direct numerical evaluation
of equation (4) is needed. In the continuous -time case, there is little literature about the
numerical solution of equation (4). Appendix A derives an algorithm for solving equation
(4) in this case . In the discrete -time case, the situation is somewhat improved; equation
(4) can be used almost “as is” to produce d~1

(t) in a recursive manner. This is also

discussed in reference 4 . Appendix B derives an algorithm for solving equation (4),
which has excellent numerical accuracy characteristics.

Absorbing States

How absorbing states are treated in this methodology is now discussed. An absorbing
state is a state that is never left once it is entered; all other states are called transient
states. The set of transient states is denoted T.

In brief , the effect of absorbing states is to simplify the solution of equation (4).
When I is an absorbing state, it is seen that:

Ø11
(t) =

for all t and all j . Hence, It is necessary to solve equation (4) only when i is a
transient state . Also, when J Is also a transient state, further simplification results
from noting that the summation in equation (4) must be made only over the transient states
since $.~1

(t~~r) is zero whenever k is an absorbing state . With these modifications, the

methodology for solving equation (4) remains effective regardless of the presence or ab -
sence of absorbing states.

Frequently, the analyst is particularly interested in the case where I is a transient
state and 3 Is an absorbing state • In this case, Ø~(.) Is a cumulative distribution func -

tion, obtained by solving equation (4) as written. However, when N is large, it may be
computationally advantageous to note that equation (4) can be rewritten in this case as:

(t) — J~
t dr  h1 (T) + ~~ 5 t d h~~(T) økJ

(t_ .r) (6)
0 k C T O
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whe re the summation is over just the transient states . This is of the same form as
equation (4), but the summation is over fewer states

Sometimes, the quantity of interest is the density function $* (•) corresponding to

the dist ribution function d~.(.) . While the density function can be gotten by numerically
diffe rentiating $ (.) , it vJill usually be better practice to differentiate both sides of
equation (6) and o1&ain the following equation for

= h1 (t) + ~~ ~ h~~(r)  Ø (t — T )  . (7)
1) k~T O

First Passage Time Distributions

Sometimes , the quantity of main interest is the distribution of the “first passage
time,” i.e., the time to the first visit of state j given start in state i • A straight-
forward way to calculate this distribution Is to make state j absorbing, then apply the
above methodology to calculate Ø~ (•) or d *~ ( .)

Expected Time in State

Sometimes the quantity of interest Is the expected amount of time spent in a given
state in a given time interval ro, TI . The random variable X1. is defined equal to one

if the process is in state j at time t , given start in state i at time zero, and equal to
zero otherwise. Then the total time spent in state j is:

5 Tx (t)
0

and the expected time In state j Is:

E rX i3(t) I dt = 5
T 

0 (t) dt • (8)

Hence , the desired expectation is gotten by solving equation (4) for 0. ( . )  , then inte-
grating it.

-7-



A CONTINUOUS-TIME APPLICATION

A simple stochastic process will now be discussed. Also, the equations developed
in the preceding section will be applied to produce the numerical solution of the probabil -
istic time behaviou r of the process. The numerical solution will then be compared with
the anal ytic solution .

The problem to be considered is of an aircraft searching for a submerged submarine
in the ocea n. The aircraft drops sensors to detect the submarine . The aircraft is as -
sumed to detect the submarine at a constant rate , where is the reciprocal of the

mean time to detect. After the aircraft detects the submarine , it drops additional sensors
to localize (refine the location) the submarine . Localization is assumed to take place at
a constant rate , where is then reciprocal of the mean time to localize. Once

the aircraft has localized the submarine , the mission is considered successful and the
aircraft retu rns to base.

While the aircraft is attempting localization, however, the submar irv may move out
of detection range of the sensors and the aircraft may lose contact . The airc raft is as -
sumed to lose contact on the submarine while attempting to localize it at a constant rate

where is the reciprocal of the mean time to lose contact. If the aircraft loses

contact on the submarine, additional sensors are laid to redetect the submarine • The
redetectlon rate is assumed to be equal to the detection rate • Given that the aircraft

can search for a long time and has an inexhaustible supply of sensors , the n the probabili-
tie~ of the aircraft being in the search, detection, and localization states as a function of
time must be determined.

The elementary process just described is a three -state system consisting of two
trans ient states and one absorbing state (figure 1). The arrows in the figu re indicate
the direction of transitions from each of the system.

X~e~~~2 t

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LocaIi;ation

X 3e

FIG. 1: THREE-STATE STOCHASTIC PROCESS

-8-



State 1 (localization) is the absorbing state because once entered it is never left while
states 2 and 3 (detection and search , respectively) are transient states • The holding time
densities between states of the system are exponential and are Indicated in the figure.

The system in figure 1 is assumed to make transitions according to a type 2 mechan-
ism • The localization state and the search state compete for transitions from the detection
state on a time basis. Using equation (3), the probability transition matrix Is:

1 2 3

l/6(t_o) 0 0 \
H(t) =2( X 1e 1 ~~3~ 0 X

3e
_

l~~3
)
t) (9)

3\ 0 0 /
where ~ (t-~) is a formalism to mean that state 1 is never left, once entered (except at
t=° ) . From equation (5), the W(t) matrix is given by:

1

W(t) (10)

Using equations (9) and (10) In the recursive equation (A-5) of appendix A, •(t) is
produced numerically. FIgures 2 and 3 present the solution 1(t) for X 1=1/ 24

X2 l/ 12 , = 1/18 , and ~t=0.5 • Note that l2 l3=° 
for all time because

state u s  the absorbing state . FIgure 2 displays the solution If the system Initially
started in state 3. The probability of being in the absorbing state 131 increases rapidly

and then asymptotes to 1 • The probability of being in state 3, given that the process
started there •33 b rapidly decays to zero . The probability of being In state 2 given

that the system started In state 3 •32 builds up from 0 at time zero to a maximum of

.39 at time 14 and then decays to zero. Figure 2 shows similar behaviour when the
system starts in state 2.

Table 1 compares the numerical solution of equation (A-5) for 131 and 2l • the

absorption probabilities , with a numerical evaluation of the analytic solution of the system
of differential equations:
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d1
3 I Idt ~2 3~~~3 2

dl
= 

~ i~
’3~ 

1
2 + )

~2
l3 (11)

d11
di 

\
l
I
2

which also describes the process in figure 1. Here I~ , 12 P and 13 represent the
probabilities of being in states 1, 2, and 3, respectively. The general solution of equation
(11) yIelds equations with undetermined constants. These constants are evaluating by im-
posing initial conditions, i.e., 13(0)=l P 12(0) h i(0) 0 for starting In state 3, and 12(0)=l

13(0) 11(0) 0 for starting in state 2.

TABLE 1

COMPARISON OF NUMERICAL SOLUTION WITH EXACT SOLUTION

Numerical solution Exact solutiona

Time (units) 131 121 131 121

0 0 0 0 0
5 .03264 .16792 .03261 .16786

10 .10081 .28325  . 10074 .28315
15 .17953 .37072 .17941 .37059
20 .25805 .44194 .25788 .44176
25 .33203 .5025 1 .33182 .50231
30 .39998 .55 534 .39973 .55511
35 .46162 .60203 .46133 .60177
40 .5172 1 .64358 .51688 .64329
45 .56719 .68069 .566 83 .68037
50 .61206 .71389 .61167 .71355

100 .8 7058 .90462 .86996 .90411

________

evaluation of analytic solution.

As can be seen in table 1 the difference between the rvmerlcal solution and the exact
solution is less than 1 part of ~~~ A smaller step size would have yielded better accur-

• acy but required much more computation time • The numerical error inherent In the
trapezoidal integration rule Is given by equation (A -3) as

—12—
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(M) 3 r ( ) ~~12

I • 

The relative error is given by:

3
R — 
(~x) f”()~~

l2 f ( ~)

where f is the function being Integrated. In our example the most rapidly varying func-

tion is e~~L 2t ; therefore, the relative error is:

R (.5)3X2e42t 
= 

(.5)3(1/12)2 
= 7.23 x 10~~

12 e
)

2t

or less than 1 part in ~~ .
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A DISCRETE-TIME APPLICATION

This section models a dogfight between “Snoopy” and the “Red Baron” as a semi-Markov
process in discrete time to obtain the probability that Snoopy wins as a fu nction of time.
The numerical solution is then compared with the analytIc solution.

The dogfight is thought of as being in one of five possible states at any time: (1) win
for Snoopy, (2) offensive position for Snoopy, (3) neutral , (4) defensive position for Snoopy,
and (5) loss for Snoopy . The trans itions between states are governed by the transition
matrix below:

1 2 3 4 5

1 1 0 0 0 0

2 f . o  0 .4 0 0

3 ( 0  .6 0 .4 0

4 0 .6 0 .4

5 0 0 0 0 1

Modeling the dogfight as a type 1 mechanism seems most sensible, and the holding time
densities are defined by:

f 1~(n) = p1q1~~’, n=l , 2,.,. for 1=2 , 3,4, with p2=p4= .2, p3= . 1, q1=i-p1

States 1 and 5 are absorbing states so that their holding time densities need not be speci-
fied. This choice of f1~(.) is made primarily for analytic convenience and these functions

do not represent realistic holding time distributions In actual dogfights .

Of interest here is the probabilIty that Snoopy wins , as a function of time . To make
matters concrete, It Is assumed that the Red Baron ambushes Snoopy (the engagement
starts In state 4) and also that the fight breaks off (due to fuel exhaustion) after 2 minutes
if no one wins before that time.

The discrete-time version of equation (7) is wanted; specifically, Ø~1(n) is desired

since state 1 is the absorbing state corresponding to a win by Snoopy, and the fight starts
in state 4, Also, At = 1 second, so that t = n , n 0 , ..., 120 • Then:

n 4
ø~ 1

(n) h
ii

(n) + E ~~ 
hik(1

~
) ø kl~~ T) (12)

r lk z 2
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Just as equation (B-i) in appendix B was gotten from equation (4). To get 
~~41 ~ is

necessary to solve for all , 1 2 ,3, 4 • To get the final form of the recursion

scheme, equation (12) is rewritten in matrix/vector form as:

11

~~ G(r ) f(n-~-) (13)
T 1

where Ø (n) is the 3x1 vector with components d*i1
(n) , i=2, 3, 4; h(n) is the corres -

ponding vector with components 1111(n) , and G is the 3x3 submatrlx of H , consisting

only of the transient states 2, 3, and 4. Equation (13) is a discrete form of equation (7).
Alternatively, 

~
‘41 could be gotten by solving equation (B-i) for 

~41 and “differentiating”
to get 

~~4l 
. But this way is computationally superior in the same way that equation (7)

Is superior to equation (6) when absorbing states are involved.

Equation (13) can be solved using the z-transform (reference 4), and the probability
of a win by Snoopy given the start in state 4 Is:

.27 ( 96)
11_i 

+ 
~~~ 

(,74)
n..l 

- .09(.8)
1 1 l  

, � 
~

A comparison of the exact values and the values gotten by recurs ive solution using equa-
tIon (13) is given in table 2.

There is agreement, in the table, through the first nine digits . However, it is possible
that the numerical solution is more accurate than the “exact” solution, depending on how
well the CNA computer raises numbers to large powers.

Figure 4 gIves the cumulative probability of a win for Snoopy as a fu nction of the length
of the dogfight for all three starting states, 2, 3, and 4. The probability of a loss for
Snoopy could be calculated similarly by changing the vector h(n) to the vector with com-
ponents h ~(n) . The exchange ratio as a function of time can be gotten by dividing the
probabllit4 of a win by the probability of a loss.

-15-

..A



TABLE 2

COMPARISON OF EXACT VALUES AND VALUES
FROM RECURSiVE SOLUTION

Time Numerical Exacta

(sec) solution solution

0 0
10 9 .2743 38537r 3 9 .27 t 4 3 38 54 ) ~~3
20 1 .02 18F2 002 ~~~2 i. 0 2 18F 2 0 0 2 R 2
30 7.3814697292PTh 7.384697295g 3
40 te .g R 072 3 4 3 6 1~~ 3 4 .98o7 2~3te 3q77 Th
50 3.3193I~35331’ 3 3. 3 193635351r3
60 2.207700531r 3 2 .207700533 !( 3
70 1.467R’46696J~~ 1.467R’46698/(3

9 . 7 58 82 6 6 9 7 P T h  9 .7 5 8 B 2 6 7 1 R T h
90 F . ‘e8 79 9 7 53 c JR ’4 6 , t R 7 9 q 7 5 t ~~g 4
100 ‘e.313’433694PTh 4.31 33701P~~4
110 2.R67711621)~~4 2. 8671116261’ 4
120 1.90654R29~~ 4 1.90654fl29~ 1~Th

aNumerical evaluation of analytic solution.

1.0 -

Start in stat. 2

8 
Start in state 3

I
Dogfight duration (seconds)

FIG. 4: PROBABIL ITY OF WIN FOR SNOOPY vs. DOGFIGHT DURATION
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DISCUSSION OF ALGORITHMS

In the discrete-time case, algorithms for the solution of equation (4) are easy to
write • The algorithm in appendix B is fast running and suitable for time -sharing usage .
The answers are exact except for truncation and roundoff errors , both of which accumu-
late slowly.

In the continuous -time case, the situation is not as good. An algorithm based on the
trapezoidal rule is given in appendix A. It is easy to program , but requires a small step
size for accuracy . The running time for the algorithm is proportional to n2 , where n
is the number of subdIvisions of the time axis , so that small step sizes imply long running
times . Appendix A also contains an algorithm based on Simpson’s ru le . This algorithm
gives about three more digits of accuracy than the trapezoidal algorithm for the same step
size for most applications; however, the Simpson algorithm is more complicated than the

• trapezoidal algorithm and is inherently slower running. All of the above algorithms can
• be programmed in various ways, e.g., to emphasize speed or to minimize storage.

Relatively little literature exists concerning the numerical solution to equation (4) .
Many authors suggest the use of transform methods, involving a numerical inversion of
the transform . This Is a nontrivial operation in most cases. The idea of a direct numer -
ical attack on equation (4) Is not new ; refe rence 7, for example, outlines an algorithmic
procedure very similar to that used in appendix A. although no discussion of numerical
accuracy or running time is given. Reference 8 describes a solution based on expansion
in power series, resulting in a simple recursive scheme for determining the unknown
coefficients . The technique must be tailored to the specific distributions in use, however .
Reference 9 discusses a rather elaborate scheme using spline functions and Lobatto inte-
gration to do calculations similar to those needed for equation (4). But it is not clear that
such a complex technique is needed for routine solution of equation (4).

Reference 10 gives an annotated bibliography on the computational aspects of proba -
bilistic modeling, In it will be found very few references to the computational problems

• involved in solving Markov renewal equations (equation (4)) . It seems clear that consider-
ably more algorithmic research Is needed before such equations can be routinely solved
in a fast and accurate manner.
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APPENDIX A

CONTINUOUS-TIME SOLUTION FOR THE SYSTEM EQUATIONS

In this appendix , two algorithms are derived for solving equation (4) (from main
text) by numerical integration. First, an algorithm is derived based on the trapezoidal
rule; then an algorithm is derived based on Simpson ’s rule.

TRAPEZOIDAL RULE

Equation (4) is solved by finding d1.(t) on a set of equally spaced points in time .
The time points are denoted t

0
, t

1
, ..., t • The step size, i.e., the interval between

the time points, is denoted M • The time points can be represented as:

t = A t ~n, 0~~ n~~ m

With OjJ(O) = the solution for t~ n >0 . is now desired.

For convenience, equation (4) is rewritten in matrix notation as:
tnd(t ) W(t )+J’ d r H ( r ) Ø(t -r )  (A-i)n n n

where
0(t ) =

1�i , j � N
H(tn)

and W(tn) is the diagonal matrix with elements W1(t~) down the diagonal and zeros
elsewhere . It is observed that when i 0  , the argument of 0 in the integrand is the
same as that of 0 on the left of the equation. To capitalize on this , equation (A-i) is
rewritten as follows:

ti0(t ) = W(t ) + J di- H(,- ) Ø(t -i- )
(A-2)

+f~ di- H( i -)Ø(t - T)  .

t i 
Z1

A-i



Equation (A -2) is evaluated using the trapezoidal integration rule (reference 11), i.e.,

1(y ) dy = 4~ Cf(x1) + f(x2) 1xl 3 (A-3)
(,
~ x)- 

12 f” (~ ) (x 1 <

where x
1 
and x2 are separated by an interval ~ , f(.) is the function to be inte -

grated, and the last term on the right is the error term . Applying equation (A-3) withoet
the error term produces:

0(t) = W(t ) + IH(0)O(t ) + H(t 1)d(t -t 1)]

~~ H(t~)O(t -t~) (A -4)
ksl

— ~~ tF1 (t~) 0(t t
1) + H(t )Ø(O)]

where H(0) = H(t0) has been used. Solving for 0(t ) produces:

0(t) = ~I --
~~~~ 

H(O) i~~ x rW(t ) + ~t ~~ 
H(t

~)O(t ~tk
) -.~~~~~ H(t )O(0)] . (A-5)

This equation is the basic recursive scheme used numerically to produce the solution of
equation (4) on the points t , 1 � n ~ m . The solution Is started with 0(0) = W(0) = I
and the solution for 0(t1) is gotten by applying equation (A-5), etc. In this way, the
solution of equation (4) for any finite t~ is produced.

The matrix [I - H (0) ~ in equation (A -5) need be inverted only once at the start
of the numerical scheme. If the transition matrix H(t) contains only density functions
that are zero at time zero, no inversion is required.

The transition matrix should contain only density functions that are continuous in the
time interval of iigerest, Discontinuous density functions may cause large numerical
inaccuracies in the numerical scheme.

A-2



At ea,h step, the solution of equation (A-5) must satisfy the following condition:

N
* 

~~~ Ø~1
(t~) = 1 , for 1 � I ~ N (A..6)

j l

This condition serves to check on both the numerical accuracy and stability of the solution.

The relative numerical accuracy of the iterative scheme is one order of magnitude
less than the numerical accuracy of the trapezoidal integration rule . This occurs because
of the compounding of numerical errors In the iterative scheme • The relative error for
the trapezoidal rule is given by:

R (~x)~ f” ()~~— 
12 f(~)

where f(.) is the function being integrated.

SIMPSON’S RULE

• In this subsection, Simpson rules are applied to equation (A-i). Simpson ’s rule and
Simpson ’s 3/8 rule (reference ii) are given by:

• 2 f (t)dt = ~~~~~
. (f~ + 41 1+f2) - (ot) 4

~~~) (A-7)

and (A-8)
t 5 (4)

f(t)dt = .
~.f - (f

0-I-3f1+31
2+f3) 

- 
3(t~t )f ()

~~~

respectively, where ~t is the step size and f
~ 

= f(t~) . For larger intervals of integra-

tion, equation (A -7) is applied repeatedly to obtain:

J~1 
f(t)dt ~~~~

- (f0+4f 1+2f2-s-4f 3 +. . .+4f5_ 1+f5) .

The right -hand sIde is denoted by S(t0, t~) . Equation (A-9) is also known as Simpson’s

rule , Note that n must be even and greater than or equal to two.

These rules are applied for the numerical solution of equation (A-i), and It will be
seen that the cases “n even” and “n odd” must be handled differently.
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Case I: n Even, n � 2

The integral in equation (A-i) is split at the point t2 , obtaining:

0(tn) 
= W(t n) + ~!. CH(O)O(tn) + 4L-I(t1)O(t~_1) + H(t

2)O(t 2~ ~ 
+ S(t2

, t )

or (A-lO)

0(t) = [I — 1-1(0) fW(t ) + ~~~~~
. t4H(t 1)O(t l~ 

+ H(t 2)Ø(t 
~~ 

+ S(t2
, t)}

Case II: nOdd, n � 3

The integral in equation (A-i) is split at t3 , obtaining:

0(t ) = W(t ) + rH(O)Ø(t ) + 3H(ti)O(tn i~ 
+ 3H(t 2)O(tn_2 ) + H(t3)O(t~_3

)]

+ S(t 3, t )

or 

= - ~~~ H(0)]~ flW(t) + ~~~ E3H(t1~~(t ~
) + 3H(t2)Ø(t 2)

(A-il)
+ H(t 3)0(t~ _3)] + S(t3, t))

Equations (A-ia) and (A-il) are the counterpart of equation (A-5). It should be noted tha t
there is no way to get Ø(t ) by these formulas, This value must be input independently,
if the analyst wishes to ge~ the increased accuracy that Simpson ’s rule provides over the
trapezoidal rule. Indeed, as the analyst passes to more accurate numerical integration
schemes, he will have to input Increasingly more points to begin the calculation. In
practice, this creates no problem - - the analyst might use something like the trapezoidal
rule to get these initial points, then shift to the more accurate scheme.
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APPENDIX B

DISCRETE-TIME SOLUTION FOR THE SYSTEM EQUATIONS

When the holding time variables are discrete and take their values on the lattice
points tn 

= ~t’n, 0 ~ n � m , as in appendix A, then equatIon (4) can be solved with a
simple recursive algorithm which has excellent numerical error characteristics. The
algorithm Is derived in reference 4, but is rederived here for completeness.

In the discrete case, equation (A-i) in appendix A reduces to:

t

• 0(t ) = W(t ) + ~~ H(i-) O(t - ’r)

However, it has been required that the holdIng time densities h~ (.) have no impulse

component at the origin, so that In the discrete case H(0) is the zero matrix . Then:

tn
0( t )  = W (t )  + ~~ H(i-) 0(tn

_ •l
~

) • (B-i)
r t

• 1

It is also seen that ~~( t )  has been expressed in term s of 
~
(tk), 

0 �k�n-1. Starting with

= W(t0), equation (B- i) permits the recursive computation of ( t )

Equation (B-i) is remarkably well suited to numerical computation since (1) there
are no matrix Inversions, (2) there are no subtractions or divisions , and (3) there are
no scaling problems since all the quantities Involved are probabilities and hence all
scaled between zero and one. It may therefore be anticipated that roundoff and trunca -
ton errors will accumulate very slowly, even in problems involving large dimensions .

.
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