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ABSTRACT

This paper presents the results of empirically testing 8 alternatIve I
I t.

multipliers for a multiplicat ive congruential generator with modul us 2 ‘-1.

The LLRANDOM random number package,p-1J uses one of the multipliers , the

simulation progranm~lng language SIMSCRIPT II uses a second and the remaining

six are the best of 50 candIdate mul tipliers studied by Hoaglln (1976 ) using

the theoretical spectral and lattice tests. The battery of tests fall to

detect any departures from randomness for 3 of the mul tipliers , even at a

020 signIficance level . This group Incl udes the multiplier that SDISCRIPT 11

employs. However, another of the 3 superior performers, 397204094. requi res

only 78 percent of the computing time that the SINSCRIPT II multiplier does

and Is the second most efficient computationally of all 8 mul tiplIers.
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1. Introduction

This paper presents the results of empirically testing 8 multiplIers

suggested in the literature for use in a multipl icative congruentlal pseudo—

random number generator wi th modulus 231_ l. Generators of this type are in

common use, although Marsaglia (1968 ) has shown that all such congruentlal

generators , whether they be of modulus 28 or of prime modulus,

possess flaws that make their theoretical properties di ffer from those of

an ideal source of random numbers . Since these departures from Ideal properties

conceivably coul d cause ser ious errors in prac tice , submitti ng these generators

to empirical testing provides a way of evaluating their performance.

Consider the linear congruentlal multiplicative generator

(1) Z
~ 

E A Z 1_1 (mod M)

Li 
where N ~~~~ . In order that (1) generate all integers in [1, N-i]

before cycling, A must be a primitive root of N [ 8 ]. Al though

(V Z /M ; I l,...,M — 1) denotes a sequence of 231 - 2 distinct
I I

fractions in (0.1), wIth spacing 2 and each wi th a finite binary

representation, this sequence is not the one encountered in practice.

Because of the need to assign a byte to the exponent of a floating point

number, a comeon procedure on IBM 360/370 system computers generates the

fractions (U1 
(2(Zi/28] + 1 )/224 

1 l ,...,M - 1) where (e] denotes the

Integer part of e~. Then the sequence (U1) has 231_2 fractions per cycle

Learmonth and Lewis (1969) and Payne, .t .1. (1969).
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that assume 223 values in [1/224, 1 - 1/224] In Incremen ts of
1/223 0.119209... x 10.6. Moreover, the fractions 1/224 and l_ l/2 24 occur 28_l

times per cycle whereas each of the other fractions occurs 28 times per

cycle, indicating only a minute departure from uniformi ty. This density

of points seems sufficient for most purposes.

Al though the density consideration in (0,1) Is important , the issue of

randomness is paramount. Presumably one would like to choose a mul tiplier A

such that treating (U1) as a sequence of i.i.d. random variables from U(0,1)

introduces incidental error. Lewis, et al. (1969) recommend A = 16807 and

fail to detect departures from the assumptions of independence and unifo~ ity

in their empirical testing. Learmonth and Lewis (1973) use this multipl ier

In their random number generator LLRANDOM, as do the discrete event simulation

progra iing language SINPL/1 (7] and APL [9]. Payne, et al. (1969) recommend

A • 630360016 and claim that their testing shows no departures from assumptions.

Recently Hoaglin (1976 ) screened 50 primitive roots of M using the

spectral (3] and lattice [15] tests. These theoretical tests provide an

indication of the relati ve desirability of alternative mul tipl iers for gen-

erating k-tuples. The present study reports on how the Lewis, et al. choice

A 16807 (multiplIer I), the Payne, et al. choice A 630360016 (multIplIer II)

and the best 6 (multipliers III through VIII ) chosen from Hoaglin ’s study fare

when subjected to identical empirical testing.

2. Testing Procedure

Three hypotheses were tested:

H1 . (U1) Is a sequence of I.I.d. random variabl es.

H2 . LI1 has a uniform distribution on (0,1).
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H3. V1 (U2 11 . U~~) has a uniform distri bution on the unit

square.

For each mul tipl ier the data base consisted of n = 100 nonoverlapping

samples or replications each of N = 200,000 U1 . For each of the 100

replications and each hypothesis a statistic, whose asymptotic distri bution

was known, was computed from the 200,000 observatIons. Then the 100

statistics for a given generator and specific hypothesis were subjected to

a battery of goodness-of—fit tests designed to detect departures of their

empirical cumulative distribution functions (cdf’s) from their corresponding

theoretical cdf’s.

3. Runs Up and Down Test Statistic

To test H1 we relied on runs up and down statistics. Let denote

the number of runs up and down of length I for I = l ,...,6 . Then under

H1 the quantity

(2) R c1~ (R1 
- E(R 1 )][R~ — E(R

3
)]

i,jxl

as)luptotically has the chi-square dIstributIon with 6 degrees of freedom.

Here C1j denotes the element In row I and column i of the inverse of

the covar iance matri x of R1,...,R6 . Levene and Wol fowi tz (1944) present

ex press ions for thi s covar lance matri x and for E(R 1
) . For N 200,000 one

has E(R1) 83,320.63, E(R2) • 36,664.49, E(R3) 10,556.38, E(R4) 2296.15,

E(R5) 41l.44, E(R6) 61.79 and E(R7~) 9.09 . Here R7~ denotes the number

of runs of length 7 or more. Al though a statistic similar to (2) that incorporates

can be constructed and asymptotically has a chi-square distribution with 7
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degrees of freedom, the small val ue of E(R7+) in the present case

encouraged us to work with (2), thereby avoiding any discretization error

that inclusion of R7~ might induce.

Let the superscript (1) denote the ith replication for a given

j  multiplier. Al so let W~
1
~ = 1 — P(R(1)) denote a probability integral

transformation so that has the uniform distri bution on (0,1). Then

I
. 

~ 

Fn(t) ~~
- 

~~~ I(o t)(W
U) 0 � t � 1

where I denotes the indicator functIon, is an empirical cdf. Figure 1

shows Fn(t) with n = 100 for each multipl ier and column 1 of Table 1

lists the Kolmogorov-Smirnov statistics = supIF~(t) - t i . Notice

that the test falls to reject H1 for each multiplier at the a = 0.10

level but rejects mul tiplier III at the a = 0.20 level .

4. ChI-Square Test Statistic

To test H2 we chose a chi-square goodness-of-fit statistic. Consider

K cells on the unit Interval each of length 1/K . Let Nk denote the

number of the n observations on a given repl ication that fall Into the

interval C (k-i }/K, k/K ] . Then for a specified K

C — 
~~ ~~~~~~~ 

- N/K)2 — 
~ 

I;
~.l 

N2~ - N

asymptotically has a chi-square distribution with K-i degrees of freedom. 4
Choosing K • 212 • 4096 Implied a cell width 1/K • 0.000244140625 and enabled

4
3
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us to test the first 12 bits of U,~

Tabl e 1

Kolmogorov-Smirnov Test Results D
n = 100 ‘I

Relative
Runs Execution

Multiplier Up and Down Chi-Square Serial Time
____________________ 

(1) (2) (3) (4)

1 16807 0.0856 0.1008 0.0970 1

II 630~60016 0.0852 0.0558 0.0884 3.03

III  1078318381 0.l068** 0.0642 0.0850 4.42

IV 1203248318 0.0788 0.0743 0.0816 4.82

V 397204094 0.0542 0.1052 0.0758 2.37

V I 2027812808 0.0919 0.107l ** 0.0673 7.28

VII 1323257245 0.0903 0.0926 0.0723 5.31

VIII 764261123 0.0746 0.1033 0.1048 3.46

a Pr(D100 > D*ioo ) , Source: Owen (1962 )

a
.10 .12067
.20 .10563

Figure 2 shows the empirical cdf’s of C for the 8 mul tiplIers and column 2

of Table 1 lists the Kolmogorov-Smirnov statistics. Again, the test fails to .4
reject H2 for each multipl ier at the a • 0.10 level ; however, it now rejects

multiplier VI at a - 0.20 .
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5. SerIal Test Statistic

Hypothesis H3 is designed to detect nonuniformity when the U1 are taken

In nonoverlapping pairs or 2-tupl es . One motivation for this testing arises

from the theoretical observation in Marsaglia (1968) that the randomness

of k-tuples becomes more suspect as k increases . The spectral and lattice

tests support this observation . In particular , see Hoaglln (1976 ) and

Marsaglia (1971). Ideally one would like to test for the uni formity in

distribution of k-tupl es over the k-dimensional unit hypercube. In practice,

‘ 
such testing is excessively expensive, even for k = 2.

Let us divide the unit interval into K cells , each of width 1/K

Let Nik denote the frequency wi th which V .~ falls into the square

( ( (S - 1)/K, 5/K ), C (k - 1)/K, k/K I ). For fixed K the quantity

(3~ S = — (N -N j,k = l jk

asymptotically has a chi—square distribution with K2 - 1. Suppose we had chosen

as before K = 4096. Then there would be K2 = 16777216 cells. To

guarantee a mean of 5 per cel l under H3 would require N > 80 million

observations per replication or over 8 billion observations per mul tiplier.

Since 231 — 1 < 4.3 billion such a sampl e size is not possible using this

test procedure. Because of this demonstrated excessiveness we chose K = 128

which required 16384 cells, implied a cell width of 0.0078125 and, for N = 200,000,

a mean of n/K2 
• 12.21 per cel l under H3. This choice of K enabl ed us to

study the first 7 bi ts of the coordinates of V1 . Figure 3 shows the empirical

cdf of S for each multipl ier and col umn 3 of Tabl e 1 gIves the Kolmogorov-

Smirnov statistics. Notice that no significance occurs, even for a = 0.20
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6. An Additional K-S Type Statistic

Al though the resul ts in Tabl e 1 raise moderate concern about mul tipliers

III and VI only, the appearance of the empirical cdf’s in Figures 1 , 2 and 3

raises broader concern . Since the empiri cal cdf is a tied-down Brownian

motion process [ 4 3, the properties of such a process may account for the
drift apparent in many of the curves. As a further check on the empirica l

cdf’s we studied an additional statistic for each empirical cdf:

X I[o t ) (F (t) )dt

This quantity denotes the proportion of Fn(t) that falls below the 45

degree line . Using results in ~ ass (1958) one can show that for given n

Xn has the uniform distri bution on (0,1) . Presumably, values of Xn
close to 0 or 1 are suspect. Table 2 lists in column 1 for the runs

up and down, chI-squa~e and serial test statistics for the 8 multipliers . Notice

raises suspicion about multipliers l, III and VI at the a = 0.05 level

and about IV and VU at the a = 0.20 level . In particular, the resul ts

for indicate that the empirical cdf’s for multi pliers I, III , IV, VI

and VII spend either more (or less) time above (below) the 45 degree line

than theory suggests.

7. Anderson-DarlIng Test

• Al though the supplementary statIstic X~ appears more discrimi nating

than the Kol mogorov-Sml rnov statistic , it weighs deviations equally, regardless

of where they occur in (0,1). In an effort to assign more weight to deviations

in the tails of the distri butions we subjected the 24 empirical cdf’s to the

~1
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Tabl e 2

Additional Test Results

Multiplier Xn 
___________________________

(1) (2)
Runs Up and Down

I 0.2433 0.5208
II .6811 .6278

III .2924 l.4979**
IV .7399 .6693

V .5097 .4131
VI .8406 .8298

VII .0604** 1.3526
VIII .7251 1.2748

Chi-Square

I .2092 I.4235**
II .7110 .3326
III .8204 .7583• IV .5567 .3566

V .1341 1.2414
VI .9828* l.5360~~VII .5094 1.2628

VIII .7165 .7647

Serial

I .0201* .8981
II .6969 1.2124

III .9786* 1.2242
IV .9372~~ .8480
V .7272 .8903

VI .7318 .2931
VII .2999 .7091

ViZ ! .2443 1.2357

*$Ign1fi~~nt for two tailed test at a • 0.05 level .

~~S1gn1f1cant for two tailed test at a • 0.20 level .

~S1gnif1cance points were computed for V usin g Anderson and Darling ’s
expression for the asymptotic distributloR in (1 3.
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Anderson-Darling test (1952, 1954). The test statistic Is

= n ((Fn(t) - t]
2/t(l - t)}dt -

Since F~(t) has mean t and variance t(l — t)/n, 
~n is the integral

of sampl e mean-square errors normalized by their theoretical mean-square

errors. Anderson and Darling (1952) give the asymptotic distribution of

and indicate that this limiting form is approached rapidly. Tabl e 2

lists the and raises suspicion about multipliers I, III and VI at the

a = 0.20 level .

8. Execution Time

Al though randomness considerations principall y determine a multi pl ier’s

acceptability, efficiency in execution also plays a role. This I; especially

true when one regards several multipliers as equally good with regard to

H1 . H~ and H~ and must decide which to use in practice. Column 4 of

Tabl e 1 lists relative execution times for the 8 multiplIers , based on runs

performed at the University of North Carolina Computation Center with interrupts

due to other users eliminated . The wide disparity In execution times confi rms

a similar observation in Learmonth (1975). If one plots the multiplier value

A against execution time, an approximate linear relationship appears. This

may be due to the Increasing number Of modulo reductions that occur per

multipl ication as A increases.

9. Conclusions and Recomeendations

Table 3 presents summary test resul ts . They arouse serious suspicion

about multipliers I!! and V I and suspicion about 1, IV and VII. Therefore,
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a conservative user would select multi plier II, V or VIII . Since II is in

relatively common use , as in the simulation programing language SIMSCRIPT II,

one may wish to rely on this choice. However , Tabl e 1 cl early shows that V

is the most efficient from the viewpoint of execution and statistical acceptance.

Tabl e 3

Summary Test Results~

MultIplier

I 5* C~
II

III R~~ S~ R**

IV

-• V

V I C** C* C**

VII

VII’

tR runs statistic, C • chi-square statistic, S serial statistic,

A single asterisk denotes significance at a • 0.05 and a double asterisk ,
significance at a 0.20 .

I
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