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ABSTRACT

/
“X

This paper presents the results of empirically testing 8 alternative
multipliers for a multiplicative congruential generator with modulus 231-1.
The LLRANDOM random number package/[l}i'ﬁies one of the multipliers, the
simulation programming language SIMSCRIPT II uses a second and the remaining
six are the best of 50 candidate multipliers studied by Hoaglin (1976) using
the theoretical spectral and lattice tests. The battery of tests fail to
detect any departures from randomness for 3 of the multipliers, even at a
0.20 significance level. This group includes the multiplier that SIMSCRIPT II

employs. However, another of the 3 superior performers, 397204094, requires

only 78 percent of the computing time that the SIMSCRIPT II multiplier does

and is the second most efficient computationally of all 8 multipliers.
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1. Introduction

This paper presents the results of empirically testing 8 multipliers
suggested in the literature for use in a multiplicative congruential pseudo-
random number generator with modulus 23]-1. Generators of this type are in
common use, although Marsaglia (1968) has shown that all such congruential
generators, whether they be of modulus 28 or of prime modulus,
possess flaws that make their theoretical properties differ from those of
an ideal source of random numbers. Since these departures from ideal properties
conceivably could cause serious errors in practice, submitting these generators

to empirical testing provides a way of evaluating their performance.

Consider the linear congruential multiplicative generator

(1) z

Azi-l (mod M)

where M = 23]-1 . In order that (1) generate all integers in [1, M-1]

before cycling, A must be a primitive root of M [ 8 ]. Although

3

{v1 = Zi/" s 1=1,...,M =1} denotes a sequence of 2~ - 2 distinct

3

fractions in (0,1), with spacing 2 and each with a finite binary

representation, this sequence is not the one encountered in practice.
Because of the need to assign a byte to the exponent of a floating point

number, a common procedure on IBM 360/370 system computers generates the

fractions {U, = (2[21/28] s 12 . 1 21,...m- 1) where [6] denotes the

t 3

integer part of 6 . Then the sequence {Ui} has 2°'-2 fractions per cycle

tSee Learmonth and Lewis (1969) and Payne, et al. (1969).




that assume 223 values in [1/2%%, 1 - 1/2%%

-6

in increments of

. Moreover, the fractions 1/224 and ]-]/224 occur 28-1
8

17223 = 0.119209... x 10
times per cycle whereas each of the other fractions occurs 2~ times per

cycle, indicating only a minute departure from uniformity. This density

of points seems sufficient for most purposes.

Although the density consideration in (0,1) is important, the issue of
randomness is paramount. Presumably one would like to choose a multiplier A
such that treating {Ui} as a sequence of i.i.d. random variables from u(0,1)
introduces incidental error. Lewis, et al. (1969) recommend A = 16807 and
fail to detect departures from the assumptions of independence and unifo: ity
in their empirical testing. Learmonth and Lewis (1973) use this multiplier
in their random number generator LLRANDOM, as do the discrete event simulation
programming language SIMPL/1 [7] and APL [9]. Payne, et al. (1969) recommend
A = 630360016 and claim that their testing shows no departures from assumptions.

Recently Hoaglin (1976) screened 50 primitive roots of M using the

spectral [3] and lattice [15] tests. These theoretical tests provide an

indication of the relative desirability of alternative multipliers for gen-

erating k-tuples. The present study reports on how the Lewis, et al. choice <
A = 16807 (multiplier I), the Payne, et al. choice A = 630360016 (multiplier II)

and the best 6 (multiplfers III through VIII) chosen from Hoaglin's study fare

when subjected to identical empirical testing.

2. Testing Procedure

Three hypotheses were tested:

H] . {Ui} is a sequence of 1.1.d. random variables.

"2 . U1 has a uniform distribution on (0,1).




Hy. Vi = (021_] ’ 021) has a uniform distribution on the unit

square.

For each multiplier the data base consisted of n = 100 nonoverlapping
samples or replications each of N = 200,000 Ui . For each of the 100
replications and each hypothesis a statistic, whose asymptotic distribution
was known, was computed from the 200,000 observations. Then the 100
statistics for a given generator and specific hypothesis were subjected to
a battery of goodness-of-fit tests designed to detect departures of their

empirical cumulative distribution functions (cdf's) from their corresponding

theoretical cdf's.

3. Runs Up and Down Test Statistic

To test H] we relied on runs up and down statistics. Let Ri denote
the number of runs up and down of length 1 for i =1,...,6 . Then under

H‘ the quantity

@ e ] R - ERDIR, - ER,)]

i,3=1
asymptotically has the chi-square distribution with 6 degrees of freedom.
Here 43 denotes the element in row i and column j of the inverse of
the covariance matrix of R],...,R6 . Levene and Wolfowitz (1944) present
expressions for this covariance matrix and for E(Ri) . For N = 200,000 one
has E(R’) = 83,320.63, E(Rz) = 36,664.49, E(R3) = 10,556.38, E(R4) = 2296.15,

E(Rs) = 411.44, E(RG) = 61.79 and E(R7+) = 9,09 . Here R denotes the number

7+
of runs of length 7 or more. Although a statistic similar to (2) that incorporates

R7’ can be constructed and asymptotically has a chi-square distribution with 7

K
b
1




degrees of freedom, the small value of E(R7+) in the present case
encouraged us to work with (2), thereby avoiding any discretization error
that inclusion of R7+ might induce.

Let the superscript (1) denote the ith replication for a given
multiplier. Also let H(i) =1 - P(R(i)) denote a probability integral

transformation so that H(i) has the uniform distribution on (0,1). Then
=1 N (1)
Fn(t) - 21=] I(O,t](“ ) st <1,

where I denotes the indicator function, is an empirical cdf. Figure 1
shows Fn(t) with n =100 for each multiplier and column 1 of Table 1
lists the Kolmogorov-Smirnov statistics 0, = sup|F (t) - t| . Notice

that the test fails to reject H] for each multiplier at the o = 0.10

level but rejects multiplier III at the a = 0.20 Tlevel.

4. Chi-Square Test Statistic
To test H

, we chose a chi-square goodness-of-fit statistic. Consider
K cells on the unit interval each of length 1/K . Let Nk denote the
number of the n observations on a given replication that fall into the
interval ( (k-1}/K, k/K ] . Then for a specified K
2

€= By (- W% = &g W - N
asymptotically has a chi-square distribution with K-1 degrees of freedom.
Choosing K = 2'2 = 4096 implded a cell width 1/K = 0.000244140625 and enabled
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6
us to test the first 12 bits of Ui .
Table 1
Kolmogorov-Smirnov Test Results D
n =100 i
Relative
Runs : Execution
Multiplier Up and Down Chi-Square Serial Time
(1) (2) (3) (4)
I 16807 0.0856 0.1008 0.0970 1
II 630260016 0.0852 0.0558 0.0884 3.03
II1 1078318381 0.1068** 0.0642 0.0850 4.42
IV 1203248318 0.0788 0.0743 0.0816 4.8
vV 397204094 0.0542 0.1052 0.0758 2.37
VI 2027812808 0.0919 0.1071** 0.0673 7.28 4
VII 1323257245 0.0903 0.0926 0.0723 5.31
VIII 764261123 0.0746 0.1033 0.1048 3.46

a = Pr(l)]oo > 0*100) : Source: Owen (1962) .
a D*

.10 .12067

.20 .10563

Figure 2 shows the empirical cdf's of C for the 8 multipliers and column 2
of Table 1 1ists the Kolmogorov-Smirnov statistics. Again, the test fails to

reject “2 for each multiplier at the o« = 0.10 level; however, it now rejects

multiplier VI at o = 0.20 .
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5. Serial Test Statistic

Hypothesis H3 is designed to detect nonuniformity when the Ui are taken
in nonoverlapping pairs or 2-tuples. One motivation for this testing arises
from the theoretical observation in Marsaglia (]968) that the randomness
of k-tuples becomes more suspect as k increases. The spectral and lattice
tests support this observation. In particular, see Hoaglin (1976) and
Marsaglia (1971). Ideally one would like to test for the uniformity in
distribution of k-tuples over the k-dimensional unit hypercube. In practice,
such testing is excessively expensive, even for k = 2.

Let us divide the unit interval into K cells, each of width 1/K .

Let Njk denote the frequency with which vi falls into the square
( (-1 i/k' ) ((k=-1)/K, k/K ]). For fixed K the quantity

o oy
(3) S N zj’k _ (Njk N/K®)
asymptotically has a chi-square distribution with K2 - 1. Suppose we had chosen

as before K = 4096. Then there would be K

= 16777216 cells. To

guarantee a mean of 5 per cell under H3 would require N > 80 million
observations per replication or over 8 billion observations per multiplier.

Since 23] -1 <4.3 billion such a sample size is not possible using this

test procedure. Because of this demonstrated excessiveness we chose K = 128

which required 16384 cells, implied a cell width of 0.0078125 and, for N = 200,000,
a mean of n/K2 = 12.21 per cell under H3. This choice of K enabled us to

study the first 7 bits of the coordinates of v1 . Figure 3 shows the empirical

cdf of S for each multiplier and column 3 of Table 1 gives the Kolmogorov-

Smirnov statistics. Notice that no significance occurs, even for a = 0.20 .
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6. An Additional K-S Type Statistic

Although the results in Table 1 raise moderate concern about multipliers

IITI and VI only, the appearance of the empirical cdf's in Figures 1, 2 and 3

raises broader concern. Since the empirical cdf is a tied-down Brownian

motion process [ 4 ], the properties of such a process may account for the

drift apparent in many of the curves. As a further check on the empirical

cdf's we studied an additional statistic for each empirical cdf:

Ry ™ f I[U.t](Fn(t) Jdt

v

This quantity denotes the proportion of Fn(t) that falls below the 45
degree line. Using results in Dwass (1958) one can show that for given n
X, has the uniform distribution on (0,1) . Presumably, values of X,
close to 0 or 1 are suspect. Table 2 lists xn in column 1 for the runs
up and down, chi-square and serial test statistics for the 8 multipliers.
raises suspicion about multipliers I, III and VI at the a = 0.05 1level
and about IV and VII at the o = 0.20 level. In particular, the results
for xn indicate that the empirical cdf's for multipliers I, III, IV, VI
and VII spend either more (or less) time above {below) the 45 degree line

than theory suggests.

7. Anderson-Darling Test

Although the supplementary statistic xn appears more discriminating

Notice xn

than the Kolmogorov-Smirnov statistic, it weighs deviations equally, regardless

of where they occur in (0,1). In an effort to assign more weight to deviations

in the tails of the distributions we subjected the 24 empirical cdf's to the
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Table 2
Additional Test Results
Multiplier X i
n n
(M) (2)
Runs Up and Down

1 I 0.2433 0.5208

11 .6811 .6278
111 .2924 1.4979%*

Iv .7399 .6693

] .5097 .4131

VI .8406 .8298

VII . 0604 ** 1.3526

h, VIII .7251 1.2748

§ Chi-Square

: I .2092 1.4235*%*

3 I 7110 .3326

’ I11 .8204 .7583

Iv .5567 . 3566

'] .1341 1.2414
g VI .9828* 1.5360**

- VII .5094 1.2628

- VII1I .7165 .7647

Serial

I .0207* .8981

I1 .6969 1.2124

111 .9786* 1.2242

Iv . 9372%* .8480

v JJ272 .8903

vl .7318 2931

V1l .2999 .7091

VIII .2443 1.2357

*Significant for two tailed test at o = 0.05 level.
**Significant for two tailed test at a = 0.20 level.

*Significance points were computed for Y_  using Anderson and Darling's
expression for the asymptotic distributioll in £V 3

AR . L35 vl B
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Anderson-Darling test (1952, 1954). The test statistic is
L 2
e [ - 0P - e
0

Since Fn(t) has mean t and variance t(1 - t)/n, Y, is the integral
of sample mean-square errors normalized by their theoretical mean-square
errors. Anderson and Darling (1952) give the asymptotic distribution of
L and indicate that this limiting form is approached rapidly. Table 2
lists the Yn and raises suspicion about multipliers I, III and VI at the

a = 0.20 level.

8. Execution Time

Although randomness considerations principally determine a multiplier's
acceptability, efficiency in execution also plays a role. This is especially
true when one regards several multipliers as equally good with regard to
Hy » HZ and H3 and must decide which to use in practice. Column & of
Table 1 lists relative execution times for the 8 multipliers, based on runs
performed at the University of North Carolina Computation Center with interrupts
due to other users eliminated. The wide disparity in execution times confirms
a similar observation in Learmonth (1975). If one plots the multiplier value
A against execution time, an approximate linear relationship appears. This
may be due to the increasing number of modulo reductions that occur per

multiplication as A 1increases.

9. Conclusions and Recommendations
Table 3 presents summary test results. They arouse serious suspicion

about multipifers III and VI and suspicion about I, IV and VII. Therefore,




a conservative user would select multiplier II, V or VIII.

13

Since II is in

relatively common use, as in the simulation programming language SIMSCRIPT II,

one may wish to rely on this choice.

However, Table 1 clearly shows that V

is the most efficient from the viewpoint of execution and statistical acceptance.

Table 3

Summary Test Results*

Multiplier Dn xn Yn
I g% c*
I1
111 R** S* R**
Iv yax
v
VI Co* c* Cow
VIl R
VIII

fR = runs statistic, C = chi-square statistic, S

serial statistic;

A single asterisk denotes significance at a = 0.05 and a double asterisk,
significance at a = 0.20 .
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