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the crater by way of the entrance lane the M577A1 and the M109 we able to exit
the crater by way of the crater wall. on the crater
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predicted by AMM-74X (Army Mobility Model) for four vehicle performance param~
eters revealed that the overall accuracy of the predictions for go-no go, draw-
bar pull, motion resistance, and speed was acceptable in every case.
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PREFACE

The study reported herein was performed by the Mobility Systems
Division (MSD), Mobility and Environmental Systems Laboratory (MESL),
U. S. Army Engineer Waterways Experiment Station (WES), under the spon-
sorship of the U. S. Army Materiel Development and Readiness Command
(DARCOM) under Intra-Army Order for Reimbursable Services No. 76N603
dated 29 October 1975, and the Office, Chief of Engineers, U. S. Army
(Project 4A762719AT40, "Effectiveness of Craters as Barriers to Ground
Mobility - DICE THROW," Task.éz, Work Unit 035 Q6.

The DICE THROW Program was conducted by the Field Command Defense
Nuclear Agency (FCDNA). The test group Director was LCDR E. W.
Edgerton, U. S. Navy, and the Technical Director was CPT T. Y. Edwards,
U. S. Air Force. The program coordinator for the mobility tests was
CPT V. A. Alvarez, U. S. Army.

The mobility field work was conducted from 6-10 October 1976 by
personnel of MESL under the direct supervision of Mr. Charles E. reen,
Projects Group, Mobility Investigations Branch, MSD. The test data was
taken by Messrs. M. Hodge, C. M. May, and L. Jackson, MSD, and B. G.
Palmertree of Instrumentation Services Division (ISD). All phases of
this study were under the direct supervision of Mr. A. A. Rula, Chief,
MSD, and the general supervision of Mr. W. G. Shockley, Chief, MESL.
This report was prepared by Mr. Green.

Acknowledgment is made to the Fort Bliss Military Reservation for
the loan of the test vehicles.

Commander and Director of WES during the conduct of this study and
the preparation of this report was COL John L. Cannon, CE, and Technical
Director was Mr. F. R. Brown.
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CONVERSION FACTORS, METRIC (SI) TO U. S. CUSTOMARY AND
U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

Units of measurement used in this report can be converted as follows:

Multiply By To Obtain
Metric (SI) to U. S. Customary
millimetres 0.03937007 inches
metres 3.280839 feet
square millimetres 0.00155 square inches
square metres 10.7607 square feet
kilograms per cubic metre 0.06242797 pounds (mass) per
cubic foot
gigajoules 0.238095 tons (nuclear energy
equivalent)
terajoules 238.095 tons (nuclear energy
equivalent)
kilometres per hour 0.6213711 miles (U. S. statute)
per hour
U. S. Customary to Metric (SI)
inches 25.4 millimetres
feet 0.3048 metres
miles (U. S. statute) 1.609344 kilometres
square inches 645.16 square millimetres
square feet 0.09290304 square metres
tons 907.1847 kilograms
kilotons 907184.7 kilograms
pounds (mass) per cubic 16.01846 kilograms per cubic
foot metre
pounds (force) 4.,4482 newtons
kips 4448,222 newtons
pounds (force) per square 6894.757 pascals
inch
miles (U. S. statute) per 1.609344 kilometres per hour
hour @
horsepower (550 foot-pounds 745.6999 watts |
per second)
degrees (angular) 0.01745329 radians
4




EVENT DICE THROW
MOBILITY EXPERIMENTS

CHAPTER 1
INTRODUCTION

The possibility of creating barriers to vehicular mobility with
surface or near-surface explosives‘;uch as the atomic demolition muni-
tion (ADM) has been a subject of military interest for several years. A
number of questions need to be answered, the most important of which
concerns the actual mobility restriction for a combat vehicle attempting
to traverse a crater field. Once a sufficient number of tests have been
conducted with tactical vehicles in a variety of sizes and shapes of
craters formed in consolidated and unconsolidated sediments, pertinent
relations will be established between craters and vehicle characteris-
tics for estimating tactical vehicle performance and engineering effort
requirements. The results will be incorporated in field manuals for use

by troops in a theater of operations.
1.1 PREVIOUS INVESTIGATIONS

Six programs have been conducted with military vehicles to deter-
mine their capability to traverse craters typical of those produced with
an ADM. In 1964, tests were conducted in conjunction with Project Tank
Trap using an M60 tank, an M113 armored personnel carrier, and an artic-
ulated two-unit, general-purpose tracked vehicle called the Polecat.
Trafficability-type tests were conducted in the SCOOTER crater, the
JANGLE U crater, and the PRE-SCHOONER BRAVO crater. The results of
these tests indicated that: (1) craters formed in dry soil by the
detonation of low-yield explosives at the surface or at very shallow
1/3.4 (20 £t/

)* do not present signigicant mobility problems to tracked

depths of burial (DOB's) down to approximately 4.0 m/TJ
1/3.4
kt

* A table of factors for converting metric (SI) to U. S. customary and
U. S. customary to metric (SI) units of measurement is given on
page 4.




1/3.4

vehicles; (2) craters formed at or near optimum DOB 32,0 m/TJ
(160 fe/ket!/3+4

vehicles; and (3) craters formed in hard rock, such as basalt, cannot be

) in dry soil are mobility obstacles to tracked tactical

negotiated by tracked tactical vehicles without major modification of
the craters and/or assistance by heavy-duty equipment.

The second military vehicle test program was conducted in July
1970 during Event Dial Pack (Reference 1). The crater was formed in a
lean clay soil by the detonation of a 2.1-TJ (500-ton) TNT sphere tan-
gent to and resting on the surface. An M37 3/4-ton cargo truck and an
M113 armored personnel carrier were used as test vehicles. Four vehicle
performance parameters (go-no go, drawbar pull (DBP), motion resistance,
and speed) were evaluated in this study. The Dial Pack crater was
divided into four units for mobility purposes--the outer lip, the inner
lip, the crater wall, and the crater floor. The units were established
on the basis of differences in type of material, strength, slope, and
size and spacing of soil clods. On the basis of go-no go performance,
it was concluded that the M37 truck could not negotiate the soft crater
floor or the crater wall, whereas the M113 armored personnel carrier
could negotiate all terrain units except the crater floor. It was esti-
mated that 3 or 4 hours of bulldozer (D7 or D8) time would be required
to make the crater passable for 100 passages of conventional military
vehicles.

The third military vehicle test program was conducted in November
1971 during Project Diamond Ore Phase IIA (Reference 2). Craters were
formed in a clay shale by the detonation of a series of 58.8-GJ (1l4-ton)
spherical charges of aluminized ammonium nitrate slurry (simulating low-
yield ADM's). The series consisted of a fully stemmed charge at a 12-
metre (39.4-foot) DOB, an unstemmed charge at a 12-metre (39.4-foot)
DOB, and a fully stemmed charge at a 6-metre (19.7-foot) DOB. An M48
was able to climb out of the first crater (unstemmed charge, l2-metre
DOB) on the 13th attempt; the total crossing time was 15 minutes. The
tank could not negotiate the other two craters. A D9 bulldozer required
a minimum of 50 minutes to make the 6-metre (19.7-foot) DOB crater

passable.




The fourth military test program was conducted in November 1972
during Event Mixed Company III (Reference 3) with an M60Al tank, an M113
armored personnel carrier, and an M561 1-1/4-ton cargo truck. The
crater was formed in a layered sandstone by the detonation of a 2.1-TJ
(500-ton) TNT spherical charge, again surface tangent. It was asym—
metrical, resulting in two predominant slope classes, i.e. shallow and
steep. The test vehicles could negctiate the shallow (31 percent)
slopes but were immobilized on the steep (66 percent) slopes. Thus, the
crater and ejecta field were not considered barriers to mobility when
the vehicles entered the crater on the steep slopes and exited the
crater on the shallow slopes. When the direction was reversed, the
crater was a barrier to mobility; however, a TD20 bulldozer required
12 minutes to make the crater passable.

The fifth military test program was conducted intermittently from
23 August to 31 October 1973 during ESSEX I, Phase I (Reference 4), with
an M60 tank, an M113Al1 armored personnel carrier, and an M715 1-1/4-ton
cargo truck. Four craters were formed in interfingering lenticular beds
of sands, silts, and clays, three by the detonation of 51.67-GJ (12.4-
ton) charges of gelled nitromethane (Reference 5) and one by the detona-
tion of a 41.25-GJ (9.9-ton) charge of gelled nitromethane at different
DOB's and stemming conditions. The series consisted of a fully stemmed
charge at a 6-metre (19.7-foot) DOB, a partially stemmed charge at a
12-metre (39.4-foot) DOB, an unstemmed charge at a 6-metre (19.7-foot)
DOB, and a fully stemmed charge at a 12-metre (39.4-foot) DOB. The test
vehicles could operate with ease in the crater ejecta area but at some
cost in performance. However, the vehicles were unable to negotiate the
crater walls. The time required for a D8 bulldozer to make the craters
passable was between 2 and 3 hours for each of the craters discussed
above. The engineering effort on the crater formed by the unstemmed
charge at the 6-metre DOB was discontinued after 1.5 hours due to rain;
therefore, the time shown (3.0 hour) was estimated from the amount done
before the rain.

The sixth military test program was conducted intermittently from

20 July to September 1974 during ESSEX I, Phase 2, (Reference 6), with




an M60 tank, an M113A1 armored personnel carrier, and an M715 1-1/4-ton
cargo truck. Four craters were formed in interfingering lenticular beds
of sands, silts, and clays, one by the detonation of a 48.3-GJ (11.5-
ton) charge of gelled nitromethane (Reference 5), one by the detonation
of a 42.0~-GJ (10-ton) charge of gelled nitromethane, one by the detona-
tion of a 37.8-GJ (9-ton) charge of gelled nitromethane, and one by the
detonation of a 33.6-GJ (8-ton) charge of gelled nitromethane at differ-
ent DOB's and stemming conditions. The series consisted of a fully
stemmed charge at a 3-metre (9.8-foot) DOB, a water-stemmed charge at a
6-metre (19.7~foot) DOB, an unstemmed charge at a 3-metre (9.8-foot)
DOB, and an unstemmed charge at a 12-metre (39.4-foot) DOB. The test
vehicles could operate with ease in the crater ejecta area but at some
cost in performance. However, the vehicles were unable to negotiate the
crater walls. The time required for an HD21 to make the craters pass-
able varied from 0.3 to 10 hour for each of the craters. The engineer-
ing effort on the crater formed by the water-stemmed charge at the
6-metre DOB was discontinued after 6 hour due to rain; therefore, the
time of 10 hour was estimated from the amount of work done before the

rain.
1.2 OBJECTIVE AND SCOPE

The objective of the mobility experiments was to determine the
degree to which craters formed in a layered natural unconsolidated
material by large surface explosions constitute a physical barrier to
the movement of military vehicles (tanks, armored personnel carriers,
and cargo carriers).

The study was limited to: describing the craters for ground mobil-
ity purposes; conducting tests with six vehicles (M60Al tank, M551
Sheridan tank, M577A1 command post carrier, M109 self-propelled howitzer,
M35A2C 2-1/2-ton cargo truck, and M715 1-1/4~ton cargo truck) to deter-
mine the degradation of vehicle performance as the vehicles traveled
from the natural, undisturbed terrain across the crater; and comparing
measured performance parameters with those predicted with the U. S.

Army Materiel Command Ground Mobility Model (AMM~74X) (Reference 7).




Also, if the crater was impassable, the amount of engineering effort

required to construct a passable route for the vehicles under considera-

tion was to be determined.
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CHAPTER 2
TEST PROGRAM

2,1 LOCATION AND DESCRIPTION OF TEST

SITE

The DICE THROW test site was the Giant Patroit Site at White Sands
Missile Range in New Mexico. This site is located 13 miles southeast of
the Stallion Range Center in the northern portion of White Sands (Fig-
ure 2.1). The site is at an elevation of 4729.46 feet above sea level

in the northern portion of the Jornada del Muerto Basin. The soil is

predominantly loose silty sand with random lenses of hard silty clay.
The topography of the area is even and the nearest mountains are approxi-
mately 8 miles to the east.

The apparent crater formed was symmetrical and circular in shape
(Figure 2.2). Generally, the cratered area was available for vehicle
tests, except for the northern 1/4 section which was used for other
experiments.

At the time of the mobility tests, the surface of the area beyond
the ejecta was fairly smooth, with a sparse grass cover. The surface in
the ejecta area was composed predominantly of loose, sandy material
Y(Figure 2.3) sprinkled with clods of the same material. These clods
were small, scattered, and golf-ball size near the outer edge of the
ejecta of the crater, increasing near the crest to baseball size.

The steepest parts of the crater slopes were smooth; the more
gentle portions near the bottoms of the slopes contained clods of the
same size as on the outer edge. Figures 2.4-2.8 show the surface condi-

tions from beyond the ejecta field to the floor of the crater.
2.2 VEHICLES TESTED

Six vehicles were furnished by Fort Bliss, Texas, for use in the
program. An M60Al tank (Figure 2.9), an M551 Sheridan tank (Fig-
ure 2.10), an M577A1 command post carrier (Figure 2.11), an M109 self-
propelled howitzer (Figure 2.12), an M35A2C 2-1/2-ton cargo truck (Fig-
ure 2.13), and an M715 1-1/4-ton cargo truck (Figure 2.14) were used as

10
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test vehicles. Vehicle characteristics pertinent to this study are
shown in Table 2.1 (Reference 8).

2.3 TESTS CONDUCTED

Go-no go and speed tests were conducted with the six test vehicles.
Also DBP and motion resistance (MR) tests were conducted with the
M577A1, the M35A2C, and the M715. The areas in which specific types of
tests were conducted are shown in Figure 2.15 and discussed in subse-
quent paragraphs. The procedures used in these tests are discussed in
the following paragraphs.
2.3.1 Go-No Go Tests

The vehicles were positioned near the outer edge of the ejecta and
driven at a slow speed in a straight line toward the center of the
crater to determine the terrain units that they could negotiate. Prior
to the start of a test, the appropriate terrain data were measured (see
section 2.4) along the intended paths of the vehicles. The terrain and
vehicle data were examined to identify the terrain units (see section
3.1) in which the vehicle(s) would definitely not go or would experience
a marginal go. If an obvious no-go condition was indicated because of
terrain conditions or for safety reasons (i.e., traveling down steep
slopes), a bulldozer was used to do the minimum amount of work required
to make the particular terrain unit passable. The time spent bulldozing
was recorded as the time required to make the crater negotiable for the
test vehicles. If a marginal go or definite go condition was indicated,
the test was conducted. If it was estimated that a vehicle could nego-
tiate all crater terrain units, the course was laid out such that the
vehicle had to negotiate the steepest wall available while exiting the
crater.
2.3.2 DBP Tests

DBP and slip were measured with the M577A1, the M715, and the M35A2C
on short segments of nearly level terrain in Terrain Units 1 and 2
(paragraphs 3.1.1 and 3.1.2). No DBP tests were conducted in Terrain
Units 3, 4, and 5 due to a lack of area in Terrain Units 3 and 5 and due

to a no-go condition in Terrain Unit 4. DBP tests were not conducted

11




with the M60Al, the M551, and the M109 due either to the short time the
vehicles were available for testing or to the mechanical conditions of
their track systems.

DBP data taken in Terrain Unit 2 were compared with DBP data
obtained in Terrain Unit 1 (i.e., the area beyond the ejecta) to deter-
mine the amount of performance degradation caused by the ejecta on the
surface. DBP was measured by a load cell attached to a 2l-metre- (70-
foot) long cable extending from the rear of the test vehicle to the
front of a load vehicle. Slip was computed from measured distances
traveled by the vehicle and by the traction elements. The test vehicle
pulled the load vehicle at a steady speed of approximately 3.2 km/hr
(2 mph), and the load vehicle driver increased the load in several stages
(by applying brakes gradually) from no load-no slip to high load-high
slip or stall out. A continuous record of DBP and of the distances the
test vehicle and the wheel or track traveled was obtained. As the
record was being made, it was examined by the test engineer for any
irregularities. Measurements were made in this manner until sufficient
data had been obtained to plot a DBP-slip curve.

2.3.3 MR Tests

Towed MR tests were conducted using the same instrumentation as was
used in the DBP tests. With the test vehicle's transmission disengaged,
the force required to tow the vehicle at a speed of approximately
3.2 km/hr (2 mph) was measured and recorded. These tests were conducted
adjacent to the DBP tests.

2.3.4 Speed Tests

Straight-line test courses 76 to 91 metres (250 to 300 feet) in
length were laid out in Terrain Units 1 and 2. A vehicle was posi-
tioned at the beginning of the test course and allowed to accelerate
until a maximum speed was achieved. The time required for the vehicle
to traverse the last 30.5 metres (100 feet) of the test course was
recorded, and the maximum average speed was calculated from distance

traveled and time elapsed.
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2.4 TERRAIN DATA OBTAINED

Terrain data were taken to describe the crater for mobility pur-
poses and to relate vehicle performance to specific terrain attributes.
Data for description purposes were taken along a line drawn through the
center of the crater. A schematic of the terrain units of the crater is
shown in plan view along with a profile sketch in Figure 2.15. Surface
composition (type of material, strength, moisture content, and density)
and surface geometry data were measured for each terrain unit. The same
terrain data also were measured in each of the areas selected for vehi-
cle tests. The test areas in Figure 2.16 are those areas in which
terrain data were measured.

2.4.1 Surface Geometry

Elevation profiles were measured along and perpendicular to crater
radii by standard surveying techniques to characterize the crater.
Microprofiles were taken roughly parallel to the crater wall in Terrain
Units 2 and 3 and along various test courses. The approximate locations
of these profiles are given in Figure 2.16.

2.4.2 Surface Composition

Specialized instrumentation and procedures used in evaluating soil

strength are described below.

1. Cone penetrometer. A hand-operated field instrument used to

obtain an index of the shear strength of soil at prescribed depths, the
cone penetrometer (Figure 2.17), consists of a 30~-degree cone with a
322.6—mm2 (1/2-in.2) base mounted on one end of a 9.5-mm (3/8-inch)
shaft and a proving ring with dial gage and handle mounted on the other.
The force per unit area required to vertically penetrate the soil is
indicated on the dial inside the proving ring and is read visually while
the cone is forced into the ground by hand at a rate of 1.83 m/min (6
ft/min).

2., Trafficability sampler. The trafficability sampler (Figure

2.18) is a piston-type sampler for obtaining soft soil samples.
3. Cone index (CI). Soil strength was measured in terms of CI,

which is a dimensionless index of the shearing resistance of soil

13




obtained with the cone penetrometer. Measurements were made at the sur-
face and at 25.4-mm (1-inch) vertical increments to a depth of 152.4 mm
(6 inch), and then at 76.2~-mm (3 inch) vertical increments to a depth

of 610 mm (24 inches), or until the soil strength exceeded the capacity
of the instrument. Approximately 20 sets of readings were made and
averaged for each terrain unit and test lane as required.

4. Moisture content and density. Three sets of samples were taken

in each terrain unit and test area to determine the moisture content and
density of the 0- to 152-mm (0- to 6-inches) and 152- to 305~mm (6- to
12-inches) depths.

5. Soil classification. Composite bulk soil samples were taken

for laboratory identification of soil type according to the Unified Soil
Classification System (USCS) (Reference 9).

14
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TABLE 2,1 (Concluded)

Vehicle

M35A2C

M577A1
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Figure 2.1. DICE THROW site location.
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Figure 2.2. Aerial photograph of DICE THROW crater.
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Figure 2. 4. Overview of area beyond the ejecta field
(Terrain Unit 1)

Figure 2.5. Overview of outer 1lip (Terrain Unit 2).

Figure 2.6. Overview of inner lip (Terrain Unit 3).
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Figure 2. 7. Overview of crater wall (Terrain Unit 4),

Figure 2.8. Overview of crater floor (Terrain

22

Unit 5).
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Figure 2.9 M60Al tank.

Figure 2.10. M551 Sheridan tank.

Figure 2.11. M577A1 command post carrier.
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Figure 2,12. M109 self-propelled howitzer.

Figure 2.13. M35A2C 2-1/2-ton cargo truck.

Figure 2.14., M715 1-1/4-ton cargo truck.

24




1 - Original Surface

2 - Outer Lip

3 - Inner Lip

4 - Crater 5 - Crater Floor

GZ

Average Distance from GZ to
Outer Edge of Terrain Unit

2 3 4 E-& 4 K 2
metres 122 48 24 303 24 48 122
feet (400) (155) (80) (10) (10) (80) (155) (400)

a. Plan View

b. Profile Sketch

Figure 2.15. Schematic of terrain units for DICE THROW crater.
GZ = ground zero.
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LEGEND
Terrain Unit Straight dashed line indicates approximate
No. Description locations of elevation profiles and go-
1 Original Surface no go vehicle tests. Arrow indicates
2 Outer Lip direction of go-no go tests. Curved dashed
3 Inner Lip line indicates locations of microprofiles.
4 Crater Wall
5 Crater Floor

m - DBP and MR test areas
@ - Speed test areas

Figure 2.16. Aerial photograph of DICE THROW crater with
terrain units and test locations identified
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CHAPTER 3

TEST RESULTS AND ANALYSES

3.1 DESCRIPTION OF THE CRATER

FOR MOBILITY PURPOSES

The crater, associated ejecta, and natural terrain areas were
divided into five terrain units offering various degrees of impedance to
vehicle mobility as a result of differences in soil strength, slope, and
surface geometry. Surface composition data taken along a line through
the center of the crater and in the test areas were identified as to
terrain unit and averaged. These data are shown in Tables 3.1 and 3.2.
The surface geometry data, microprofiles, and profiles taken in the
terrain units that exhibited significant irregular surfaces are given in
Table 3.3. The microprofile data shown graphically in Figures 3.1 and
3.2 for Terrain Units 2 and 3 were used to determine surface roughness.
The profile data shown graphically in Figure 3.3 were taken along a
radivs in Terrain Unit 4 (crater wall) that had the maximum slope in the
area available for testing. The following sections present a brief
discussion of the data shown in the tables and figures identified above.
3.1.1 Terrain Unit 1 (original surface)

The area past the limit of the ejecta field of the crater was
identified as the original surface (Terrain Unit 1). This area was
level, firm, and almost smooth, with a sparse cover of grass about 203
mm (8 inches) tall. Table 3.2 shows that the average soil strength was
greatest in this area and the average slope (approximately 1.6 percent)
was the least.

3.1.2 Terrain Unit 2 {outer 1lip)

The area of continuous shallow ejecta extending from the natural
terrain to the foot of the outer slope was identified as the outer lip
(Terrain Unit 2). The distance from GZ to the outer and inner boundaries
of this area varied along different radii of the crater. 1In this
terrain unit, the original surface was covered with ejecta ranging from

individual grain particles to clods several inches in size. The average
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soil strength in the 0- to 152.4-mm (0- to 6-inches) layer was lower in
Terrain Unit 2 than in Terrain Unit 1 as a result of a 100- to 180-mm-
(4- to 7-inches-) thick layer of soft ejecta. The soil was relatively
dry, and the ejecta clods disintegrated when pressure was applied. The
depth of the ejecta gradually increased from the outer edge of the

ejecta toward GZ, resulting in a slight average slope of approximately

3 percent. A typical microprofile of the outer lip of the crater is
shown in Figure 3.1.
3.1.3 Terrain Unit 3 (inner lip)

The area of continuous ejecta extending from the foot of the outer
slope to the crest was identified as the inner lip (Terrain Unit 3).
The distances from GZ to the outer and inner boundaries of this area
varied along different radii of the crater. The ejecta depth averaged
more than 610 mm (24 inches) in this terrain unit, resulting in a lower
average soil strength and a higher average slope (approximately 13.7 per-
cent) than in Terrain Units 1 and 2, as can be seen in Table 3.2. The
surface of the inner lip was relatively rough because of undulating
ejecta or the presence of clods. A typical microprofile of the inner
lip of the crater is shown in Figure 3.2.

3.1.4 Terrain Unit 4 (crater wall)

The sloping sides of the craters extending from the lip crest to
the toe of the slope at the edge of the crater floor were identified as
the crater wall (Terrain Unit 4). The distances from GZ to the outer
and inner boundaries of this area varied along different radii of the
crater. The loose, dry material on the slopes was greater than 610 mm
(24 in.) deep, and the average soil strength was similar to that in
Terrain Unit 3. The overall slope of the crater walls varied in magni-
tude at the upper and lower ends and along different crater radii. The
minimum and maximum slopes were 50 and 56 percent, respectivvely. An
elevation profile of the crater wall of maximum slope of the crater is
given in Figure 3.3.

3.1.5 Terrain Unit 5 (crater floor)
The area extending from the toe of the slope of the crater wall to

GZ was identified as the crater floor (Terrain Unit 5). The outer
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boundaries of this area varied along different radii of the crater. Due

to the impact of the explosion which compacted the soil, the average
soil strength was higher in this terrain unit than any other terrain

unit except Terrain Unit 1 (Table 3.2).
3.2 PERFORMANCE DEGRADATION

3.2.1 Measured Performance Data

Four first-pass vehicle performance parameters commonly measured,
shown in Table 3.4, are go-no go, DBP, MR, and speed. Of these perform-
ance parameters, only DBP and speed were considered in the analysis of
degradation of vehicle perforwmance of the various terrain units; how-
ever, all vehicle performance parameters measured in the crater and
ejecta areas are given in Table 3.4. Results of the go-no go tests and
DBP tests are discussed in the following paragraphs.

1. Go-no go. All the test vehicles could operate with ease in
Terrain Units 1, 2, 3, and 5; however, none of the vehicles could make a
safe entry into the crater because of the steep slopes (50 percent) of
Terrain Unit 4 {crater wall). A D7F bulldozer was used for 10 minutes
to do the minimum amount of work required for the vehicles to make a
safe entry into the crater. The vehicles then entered the crater,
crossed the crater floor, and attempted to exit by way of the crater
wall. A summary of the exiting test results on the crater wall (Terrain

Unit 4) is shown in the following tabulation:

Vehicle Performance No. of Attempts
M60A1 not tested 0
M551 no go 5
M577A1 god 3
M109 go 3
M35A2C no go 6
M715 no go 6

8 Go after entrance lane was constructed.

The M60Al tank was not tested in Terrain Units 4 or 5 due to the
mechanical condition of its track system. Several attempts were made
before two of the vehicles (M577A1 and M109) could negotiate Terrain
Unit 4. On the fifth attempt to exit the crater the M551 threw a

track. All the vehicles tested were able to climb onto the crater wall
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(Terrain Unit 4); however, only the M577A1 and the M109 were able to

negotiate the wall. The other vehicles were turned around on the crater
floor and driven out of the crater by way of the entrance lane. No
additional engineering effort (bulldozing) was done to ensure passage of
all the test vehicles across the crater due to the short time the test
vehicles were available and the unavailability of a bulldozer operator.
The test engineer estimated that it would take approximately the same
amount of time (10 minutes) to make an exit lane as it did the entrance
lane. The total time required by a D7F bulldozer to make the crater
passable for the test vehicles that could not negotiate the crater wall
was estimated to be 20 minutes.

2. DBP tests. As previously mentioned, DBP tests were conducted
in Terrain Units 1 and 2 with the M715, the M35A2C, and the M577Al1. DBP
tests were not conducted with the M60Al, M551, and the M109 due either
to the short time the vehicles were available for testing or to the
mechanical condition of their track systems. No DBP tests were con-
ducted in Terrain Units 3, 4, and 5 due to the small size of the area in
Terrain Units 3 and 5 and due to a no—-go condition in Terrain Unit 4.

DBP, in terms of DBP coefficient (DBP/W, where W is the vehicle
weight), was plotted versus wheel or track slip for each test, and curves
of best visual fit were drawn through the data points (Figure 3.4).

DBP/W is a performance parameter often used in evaluating the
traction capabilities of a vehicle. A high DBP/W at a low slip
indicates that a vehicle can do efficient useful work, i.e. move for-
ward and tow a load, whereas a high DBP/W at a high slip (near 100
percent) indicates that very little useful work can be done, i.e. the
vehicle can barely move itself forward. In these tests the maximum
DBP/W for the M715 and M35A2C occurred near 30 percent slip and for the
M577A1 at 100 percent slip. A more meaningful performance parameter
is the optimum DBP/W value, which is the value of DBP/W when the vehi-
cle's work output coefficient (WOC) is at a maximum (Reference 10).

WOC is an arbitrary index of efficiency defined as the ratio of work
output to work input, where work output is DBP times the distance the
vehicle travels (S) in the time interval (t), and work input is the
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weight of the vehicle (W) times the distance the wheel or tracks travel

(L) in the same time interval (t), or

o (2
wocC I

- " (%) (1) %

Since
s/t ,
s/t _ i
then
WoC = 2%2 (1 - slip)

An example of the determination of optimum DBP/W at maximum WOC for
each test vehicle in Terrain Unit 1 of the crater is shown in Figure
3.5, Figure 3.5 shows that the optimum slip was 20 percent for the
M715 and 18 percent for the M35A2C and the M577Al; the optimum DBP

coefficients for the three vehicles in Terrain Unit 1 of the crater were

0.52, 0.43, and 0.59, respectively. Past studies at the U. S. Army
Engineer Waterways Experiment Station (WES) have shown that optimum DBP
generally occurs at or near 20 percent slip, as was found in the tests
in this program.
3.2.2 Degradation of Vehicle Performance

The effectiveness of the craters as barriers to mobility is shown
as the degradation of speed and DBP. Degradation is expressed in per-

cent and is obtained from the following expression:

Percent degradation = ( --%) X 100 (2)

where

T = performance in a given terrain unit

N = performance in natural terrain
Degradation in performance in each of the terrain units tested is shown
in Table 3.5.
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The degradation in speed for the tracked vehicles (M60Al, M551,

M577A1, and M109) varied from 10 percent for the M109 to 37 percent for
the M577A1 in Terrain Unit 2. The degradation in optimum DBP coeffi-
cient in Terrain Unit 2 for the M577A1 was 8 percent. The degradation ~
in speed of the wheeled vehicles (the M35A2C and the M715) was somewhat
higher than the degradation in optimum DBP coefficient. It may be noted
that the degradation in optimum DBP coefficient of the M577A1 was about
half that of the M35A2C and the M715. This possibly is a result of the
configuration of the traction elements of the vehicles and the surface
of the terrain units. Due to the undulating surface of Terrain Unit 2,
each traction element of the wheeled vehicles encountered each undula-
tion, whereas the tracks of the M577Al1, in some cases, spanned several
undulations.
3.2.3 Areal Effectiveness

Using the dimensions given in Figure 2.15, the areas occupied by
Terrain Units 2 through 5, inclusive, are shown in the following tabula-

tion along with the speed degradation in percent.

Terrain Unit

Descrip- 2Areaz Speed Degradation, pct
No. tion m- (ft") M60A1 M551 M577A1 M109 M35A2C M715

2 Quter

Lip 39,686 (426,962) 14 19 37 10 16 19
3 Inner

Lip 5,144 ( 55,342) NM®  NM NM NM NM NM
4 Crater

Wall 1,839 ( 19,782) 100 100 100 100 100 100
5 Crater

Floor 29 ( 314) NM NM NM NM NM NM

Total 46,698 (502,400)

a
NM means not measured.

The areal extent of 100 percent degradation (i.e. complete barrier to
mobility) was approximately 1,839 m2 (19,782 ftz) for all the test
vehicles. The degraded area per gigajoule (0.24 ton) of explosive was
0.73 m2 (7.85 ftz), which indicates that large-scale surface explosives




in this type of material (silty sand) are not an efficient means of
creating barriers to the movement of military vehicles.

In a combat situation, the major concern may be the width of the
no-go area rather than the areal effectiveness, for example, how wide a
pass could be blocked with a particular charge. Using the dimensions
shown in Figure 2.15 the effective no-go width was approximately
48 metres (160 feet), which indicates that a similar charge in the same
soil conditions would be effective in combat conditions for creating
obstacles in this width range.

Although the results discussed in the previous paragraphs are, as
would be expected, for craters in this type of material, it is cautioned
that this single crater cannot be considered definitive of all craters
formed in unconsolidated materials in which the explosive material

varies in amount and depth of charge.
3.3 PREDICTION OF VEHICLE PERFORMANCE

Vehicle performance was predicted for the terrain units identified
for ground mobility purposes in the DICE THROW crater, using the Army
Mobility Model AMM-74X (Reference 7). The basic premises of AMM-74X
(Reference 10) are given in the following paragraphs.

The performance of a vehicle at any moment is the result of a
complex interplay among many different characteristics of the vehicle,
numerous features of the particular terrain in which it is operating,
its immediate past operating history, and elections and constraints
imposed on the driver. AMM-74X postulates that the maximum practical
speed of a sound vehicle at any moment, iicluding zero (no go), is an
appropriate measure of its mobility at that time and place. Accord-
ingly, ea.n of the many system parameters potentially involved must be
quantifieu in engineering terms that will permit calculation of probable
vehicle speed as limited by one or more of the number of possible
specific terrain-vehicle-driver interactions. The following tabulation

outlines off-road system attributes considered in AMM-74X.
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Terrain Vehicle Driver

Surface material Geometry Reaction time
Type Mechanical Recognition distance
Strength components V-~ride limit
Inertial Vertical acceleration limit
Surface geometry components
Slope
Discrete obstacles
Roughness
Vegetation Geometry Reaction time
Stem size and spacing Mechanical Recognition distance
Visibility components V-ride limit
Inertial Vertical acceleration limit
a
Hydrologic geometry components

Stream cross section
Water velocity and depth

These terrain attributes are necessary for linear features such as
streams. In this study, linear features were not considered.

The endless variability of real terrain can be represented by a
mosaic of pieces, each of which, to some feasible resolution, can be
considered uniform in terms of measurable factors affecting vehicle
responses. Such a subclass of terrain is called a terrain unit. An
areal terrain unit is currently characterized by the 13 measurements
listed below:

1. Surface factors

(1) Type
(2) Strength in cone index or rating cone index
(3) Slope, percent

(4) Roughness, root mean square (rms) elevation in inches.
A measure of the rms of the deviations of the terrain
elevations from the mean can be expressed as:

=2
p—— &j - %"
N (3)
j=1
where

N = number of elevation points
xj = terrain elevation
X = mean value of terrain elevation in a given

profile
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2. Obstacle factors
(5) Approach angle, deg
(6) Height, mm (in.)
(7) Base width, mm (in.)
(8) Length, m (ft)
(9) Spacing, m (ft)
(10) Type
3. Vegetation factors
(11) Stem diameter, mm (in.)
(12) Stem spacing, m (ft)
(13) Visibility, m (ft)

Maximum practical speeds for a vehicle in each areal unit within an
area, calculated from validated engineering relations, can be combined
by suitable procedures to predict the performance of the vehicle along
any given path in the real terrain and/or to accumulate a statistical
representation of vehicle performance in the area as a whole.

3.4 COMPARISON OF MEASURED AND PRE-
DICTED PERFORMANCE

The vehicle performance parameters measured and predicted in the
DICE THROW crater and ejecta areas are given in Table 3.4. Plots compar-
ing measured and predicted DBP/W and MR/W are shown in Figure 3.6 and
those comparing measuring and predicted speeds are shown in Figure 3.7.

Table 3.4 shows that the performance of the vehicles in terms of
go-no go was predicted correctly in every case. Table 3.4 and Fig-
ure 3.6 show that the predicted values of DBP/W in most cases were
slightly higher than the measured values. All predicted values for
DBP/W and MR/W were well within the acceptable limits of prediction
accuracy as the model now stands. Table 3.4 and Figure 3.7 show that
the variation in measured and predicted values of speed was somewhat
larger than for the other parameters. The relative deviations of the
predicted values for each terrain unit tested are shown in Table 3.6.

The mean absolute deviation shown in Table 3.6 varied from a

minimum of 0.2 km/hr (0.1 mph) to a maximum of 6.1 km/hr (3.8 mph)
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from the predicted to the measured values indicating that the average
absolute deviations were relatively small from the standpoint of vehi-
cle speed. The overall average relative deviation for all vehicles
tested was 6.8 percent. Based on average relative deviation, the M60Al
presented the best prediction accuracy (1.5 percent), and the M715 pre-
sented the worst prediction accuracy (14.5 percent). The average rela-
tive deviations indicated good correlation between model-predicted
speeds and field-measured speeds for all the test vehicles. The rela-
tive deviations of the predicted values from the measured values
increased from the original surface to GZ in every case. This is as
would be expected, since AMM-74X is set up to evaluate natural terrain
such as the original surface. The average deviations in the cratered
areas were well within the acceptable limits of prediction accuracy as

the model now stands.
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SURFACE GEOMETRY DATA

TABLE 3.3

Terrain Unit 2

Terrain Unit 3

Terrain Unit 4

Relative Distance Relative
Station Elevation Station Elevation from GZ Elevation
m (ft) m (ft) m (ft) m (ft) m (ft) m (ft)
0.00 ( 0.0) 0.16 (0.50) 0.00 ( 0.00) 0.26 (0.85) 3.05 (10.0) 3.99 (13.1)
0.15 ( 0.5) 0.19 (0.58) 0.10 ( 0.33) 0.27 (0.90) 4.27 (14.0) 4.33 (14.2)
0.30 ( 1.0) 0.23 (0.75) 0.15 ( 0.50) 0.24 (0.78) 5.79 (19.0) 4.76 (15.6)
0.46 ( 1.5) 0.27 (0.88) 0.24 ( 0.80) 0.21 (0.70) 6.70 (22.0) 4.91 (16.1)
0.61 ( 2.0) 0.27 (0.90) 0.37 ( 1.20) 0.20 (0.65) 7.31 (24.0) 5.21 (17.1)
0.76 ( 2.5) 0.27 (0.90) 0.41 ( 1.33) 0.23 (0.75) 8.53 (28.0) 5.55 (18.2)
0.91 ( 3.0) 0.27 (0.88) 0.51 ( 1.67) 0.18 (0.60) 9.14 (30.0) 5.55 (18.2)
1.07 ( 3.5) 0.28 (0.91) 0.61 ( 2.00) 0.21 (0.70) 10.36 (34.0) 6.19 (20.3)
1.22 ( 4.0) 0.28 (0.92) 0.71 ( 2.33) 0.23 (0.75) 12.19 (40.0) 7.35 (24.1)
1.37 ( 4.5) 0.28 (0.91) 0.81 ( 2.67) 0.26 (0.85) 14.63 (48.0) 7.56 (24.8)
1.52 ( 5.0) 0.27 (0.90) 0.91 ( 3.00) 0.24 (0.80) 15.85 (52.0) 7.74 (25.4)
1.68 ( 5.5) 0.27 (0.90) 1.07 ( 3.51) 0.24 (0.90) 16.46 (54.0) 7.96 (26.1)
1.83 ( 6.0) 0.28 (0.91) 1.27 ( 4.15) 0.27 (0.90) 17.38 (57.0) 8.48 (27.8)
1.98 ( 6.5) 0.34 (1.10) 1.41 ( 4.63) 0.30 (1.00) 18.60 (61.0) 9.06 (29.7)
2:13 ( 7.0) 0.37 (1.20) 1.56 ( 5.13) 0.29 (0.95) 19.82 (65.0) 10.09 (33.1)
2.29 ( 7.5) 0.35 (1.15) 1.72 ( 5.63) 0.27 (0.90) 21.04 (69.0) 10.76 (35.3)
2.44 ( 8.0) 0.34 (1.12) 1.87 ( 6.13) 0.34 (1.13) 21.95 (72.0) 11.04 (36.2)
2.59 ( 8.5) 0.33 (1.08) 1.95 ( 6.38) 0.30 (1.00) 22.56 (74.0) 11.52 (37.8)
2.74 ( 9.0) 0.32 (1.07) 2.01 ( 6.60) 0.32 (1.05) 23.17 (76.0) 12.23 (40.1)
2.90 ( 9.5) 0.32 (1.05) 2.06 ( 6.76) 0.33 (1.08) 24.09 (79.0) 12.90 (42.3)
3.05 (10.0) 0.38 (1.26) 2.11 ( 6.93) 0.29 (0.95) 25.00 (82.0) 13.45 (44.1)
3.20 (10.5) 0.43 (1.41) 2.27 ( 7.44) 0.42 (1.38) 26.22 (86.0) 14.12 (46.3)
3.35 (11.0) 0.43 (1.42) 2.52 ( 8.27) 0.37 (1.20) 27.13 (89.0) 14.42 (47.3)
3.51 (11.5) 0.41 (1.35) 2.67 ( 8.77) 0.40 (1.30) 28.05 (92.0) 14.48 (47.5)
3.66 (12.0) 0.40 (1.32) 2.86 ( 9.38) 0.40 (1.30)
3.81 (12.5) 0.40 (1.33) 3.15 (10.33) 0.44 (1.45)
3.96 (13.0) 0.40 (1.33) 3.25 (10.67) 0.37 (1.20)
4.12 (13.5) 0.40 (1.31) 3.35 (11.00) 0.38 (1.25)
4.27 (14.0) 0.40 (1.30) 3.45 (11.33) 0.27 (0.90)
4.42 (14.5) 0.40 (1.30) 3.76 (12.33) 0.24 (0.80)
4.57 (15.0) 0.39 (1.28) 3.87 (12.70) 0.24 (0.80)
4.73 (15.5) 0.38 (1.25) 3.99 (13.10) 0.28 (0.91)
4.88 (16.0) 0.38 (1.25) 4.15 (13.60) 0.27 (0.90)
5.00 (16.4) 0.37 (1.21) 4.30 (14.10) 0.30 (1.00)
4,45 (14.60) 0.37 (1.20)
4.63 (15.20) 0.29 (0.95)
4.82 (15.80) 0.30 (1.00)
4.88 (16.00) 0.26 (1.30)
5.00 (16.40) 0.30 (1.00)
NOTE: Terrain Units 1 and 5 were essentially smooth; therefore, profile data

not shown.
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TABLE 3.6
NUMERICAL EVALUATION PARAMETERS

& Mean Absolute Relative
Terrain Unit Deviation Deviation
No. Description km/hr (mph) pct
M60A1 Tank
1 Original Surface 0.2 (0.1) 1
2 Outer Lip 0.3 (0.2) 2
Average 1.5

M551 Sheridan Tank

1 Original Surface 0.4 (0.2) 2
2 Quter Lip 0.8 (0.5) 5
Average 3
M577A1 Command Post Carrier
1 Original Surface 0.6 (0.4) 2
2 Outer Lip 1.9 (1.2) 10
Average 6
M109 Self-Propelled Howitzer
1 Original Surface 1.0 (0.6) 4
2 Outer Lip 3.2 (2.0) 14
Average
M35A2C 2-1/2-Ton Cargo Truck
1 Original Surface 0.9 (0.5) 4
2 Outer Lip 1.9 (1.3) 9
Average 6.5
M715 1-1/4-Ton Cargo Truck
1 Original Surface 2.8 (1.7) 8
2 Outer Lip 6.1 (3.8) 21
Average 14.5

- Only the terrain units where speed tests were conducted are shown.
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Figure 3.1. Microprofile of a typical section of Terrain Unit 2
(outer 1lip) roughly parallel to crater wall,
Distance, ft
0 333 6.6 9.8 13.1 16.4
0.6 2.0
4
W
0.3 M‘N_/\\ r\ 10~§-§:~
: W™ B g 7 P S
’\’\/\_ >
()
—
(=
0 0
0 1 2 3 4 5

Figure 3.2.

Distance, m

Microprofile of typical section of Terrain Unit 3
(inner 1ip) roughly parallel to crater wall.
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Distance from GZ, ft
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Figure 3.3. Elevation profile of Terrain Unit 4, crater wall
of maximum slope.
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Drawbar-Pull Coefficient (DBP/W)

1.0

0.8
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Aro"_—-o—-—— A -DBP/W Terrain Unit 1
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c. M577A1
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Figure 3.4. Drawbar-pull coefficient (DBP/W) versus slip.
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Drawbar-Pull Coefficient (DBP/W)
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Figure 3.5. Determination of optimum DBP coefficient (DBP/W) for three
of the test vehicles in Terrain Unit 1.
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CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

The DICE THROW crater and associated ejecta areas comprised four
terrain units (2 through 5), each of which was offered various degrees
of impedance to vehicle mobility as a result of differences in soil
strength, soil moisture content, ejecta depth, and surface configuration.

The test vehicles, i.e. the M60Al tank, the M551 Sheridan tank, the
M577A1 command post carrier, the M109 self-propelled howitzer, the
M35A2C 2-1/2-ton cargo truck, and the M715 1-1/4-ton cargo truck, could
operate with ease in all terrain units except the crater walls.

The test vehicles were unable to make a safe entry into the crater
due to the steep slope (50 percent) of the crater walls (Terrain
Unit 4). A D7F bulldozer required 10 minutes to make an entrance lane.
The M109 and M577A1 were the only test vehicles that could exit the
crater by way of the crater wall. The total engineering effort (time
required by a D7F bulldozer) to make the crater passable for all the
test vehicles was estimated to be 20 minutes.

The DICE THROW crater was effective as a complete barrier to the
mobility of the vehicles tested.

Degradation of vehicle performance in Terrain Units 2 through 5, in
terms of DBP/W, ranged from 8 percent for the M577A1 for the outer lip
(Terrain Unit 2) to 100 percent for all the test vehicles on the crater
walls (Terrain Unit 4). Degradation in terms of speed ranged from
10 percent for the M109 on the outer lip (Terrain Unit 2) to 100 percent
for all the test vehicles on the crater walls (Terrain Unit 4). The
area of 100 percent performance degradation was 1,839 m2 (19,782 ftz)
for all test vehicles.

The degraded area per gigajoule (0.24 ton) of explosive was 0.73 m2
(7.85 ftz), which indicates that large-scale surface explosives in this
type of material (silty sand), although effective, are not an efficient

means of creating barriers to military vehicles.
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The effective no-go width for the crater was 48 metres (160 feet),
which indicates that a similar charge in the same soil conditions would
be effective in combat conditions for creating obstacles in this width
range.

Comparison of measured values and values predicted by AMM-74X
(Army Mobility Model) for four vehicle performance parameters revealed
that the overall accuracy of the predictions for go-no go, DBP, MR, and

speed were acceptable in every case.
4.2 RECOMMENDATIONS

It is recommended that investigations be continued in a range of
consolidated and unconsolidated layered materials to increase the cata-
log of cratered terrain information for ground mobility purposes. These
investigations should also include vehicle tests to collect data for
refining techniques for predicting vehicle performance in crater ejecta.
These techniques should include a simple and rapid solution to be incor-
porated into field manuals for predicting performance in cratered ter-
rain that will evaluate all terrain factors of significance to mobility.

The potential of small row charges or multiple detonations as a
barrier to mobility should also be investigated.

The scope of future projects should be extended to include a
barrier-counter barrier analysis, i.e. for both offensive and defensive
military operations.

It is further recommended that in all future test programs the
amount of construction effort required to remove ejecta and to bypass,
bridge, or fill craters to make them passable for ground vehicles be
determined.

It is also recommended that in all future projects involving
suface or subsurface explosives, the craters be characterized for
mobility purposes so that vehicle performance can be predicted.

Finally, sufficient data need to be gathered such that an analysis
can be made to compare obstacle effectiveness against mobility caused
by cratering various geologic media (e.g., hard and soft rock and wet

and dry soils of significantly different mineralogy).
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