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ON THE INFLUENCE OF ICE COVER ON INTERNAL WAVES

[Bukatov, A.Ye., O vliiyanii ledyanogo pokrova na vnutrenniye volny,
(Marine Hydrophysical Investigations),
noo 1. 19'?2. ppu 53" ’ Ruﬂsim
A \ This study deals with influence of the ice cover floating [s3
on the surface of a two-layer fluid of finite depth, on waves generated
periodic temporal atmospheric disturbances. a

This paper is a study of the influence of a thin elastic plate
floating on the surface of a two layer fluid of finite depth on waves
generated by periodic normal stresses, As a special case one can conslder
the ice cover to be a plate. Analogous problems in the absence of a plate
in a homogeneous fluid were considered in [1]. and in a two-layer fluid,
in Ez.a]. The influence of the plate on waves in a uniform fluid were
investigated in [4] to (7] and in a two-layer, infinitely deep fluid,in

1. Let an ice cover float on the surface of an incompressible two-
layer fluid. The thickness of the upper layer of the fluid and its den-
sity will be denoted by Hy and p4y, respectively and the thickness of the
lower layer and its density, by H2 and p 2, respectively. We shall inves-
tigate the influence of the ice cover, considered to be a thin elastic
plate, on waves generated by a periodic atmospheric disturbance

af(x,y) cos ot. (1.1)

It is assumed that the motion of the fluld is potential and the velocity
potentials for the motion of the upper and lower layers of the fluid are
designated ¢ 1,2(x,y,8,t). Assuming the velocity and downwarp of the ice
to be small, one obtains the following equations for ¢ 4 »

aey=0 (0<s<H), d¢,=0 (-B<s<0)
subject to the following boundary conditions: J
a2 Y f

dduﬁ +u—z—€1 +Pe€1 +p -J—--P(xy.t).
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where d = EnX12(1 - v2)]™! 1s the cylindrical rigldity of ice, E and v
are the Young's modulus and Poisson's ratio of ice, h and £ 4are thickness
and downwarp of the ice, @ is the mass per unit area of the ice surface,
¢ 2 is the deviation of the fluid interface from the equilibrium posi-
tion. Let the z axis be directed vertically upward and the origin of the
coordinate system lie along the undisturbed interface separating layers
with different densities.

Applying the two dimensional Fourier transform in variables x and y
to Egs. (1.2) and the boundary conditions (1.3) we obtain the following

expression for {4 and £ s
@

i .= ———— Ty, zd-i(r)?(m.n) exp [1(mx + ny - " V]dmdn, (1.4)
1,2 271p13 .
~c0
where

A= [:dir5 +r(1 - a;)] [n tanh (rH) 4 Ca unh(rﬂz)]-gffﬂ + a tanh(rH )tanh(rH,)],
¥ - -ntanh(rﬁi) - o unn(rﬂz). Yy = - o ta.nh(rﬂz)cosh-i(rﬁi),
ne=o® - et ta.nh(rﬂz). Cr= (p?+ nz)*,
[ d o2
v el e

f(m,n) is the Fourler transform of £(x,y).
In the plane and axi-~-symmetrical cases, 51'2 assumes the fom

)
d, \=
L A7 (x) £(x) exp [1(xx - ot)lar, (1.5)
6102 (mjip"g[‘:&'z




0
f(x) = (—2#-/ f(x) exp(- irx) dx, (55
- 00
o gl a8 ) ar el 190),
6
f(r) iolgf(r)Jo(rR)dR, R= (x°+ yz)é . 5

For large values of R, Eq.(1.6) will assume the form
61’2 - ;’;(—%}%wlj/zwl.zd-i(r)f(r) cos (xR - m/4)dr exp(- 1ot). (1.7)

The error introduced in rewriting Eq. (1.6) in the form given by (1.7)
is on the order 3'3 2,

Analysis of the roots of the equation
A(x)=0 (1.8)

has shown that when d1 > 0, ay <1 the function under the integral sign
in Eq. (1.7) has first order poles at points ry, r, along the positive
axis. Satisfying the radiation condition, let's deform the initial
integration path into the path L along the positive axis passing around
paints rq >along small semicircles in the lower half space, At d = 0,

oy 21 B3, (1.8) has no real roots and integration can be performed along
f}ne positive axis. Results of the integration of Eq. (1.7) show that at
dqy > 0, a4 <1 the final expressions for the type of waves generated at
the ice-water surface and the interface separating layers with different
densities

§4 =My *1,, g =Ny * My, (1.9)
7)1'2 o Bi(rl'z) “na(ri,z)' 773’1‘ o Bz(ri,z) 31na(r1'2)0
where
ar \# V4, "
B , -é;—(-n—> TGS" 2/25(z), a=1R-at-afp (1.10)

Wq,2 and 4 (r) are the same as in Eq. (1.4) and a prime indicates dif-
ferdntiation with respect to r.

In the two dimensional case analogous method can be used to solve
B3 (1.5) to give formula (1.9) for ¢ 4,2+ “here By - and & are given by
the following expressions ’ ’
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31’2 - m rwi'zf(r). o =yx - Ot, (1.11)

From Egs. (1.9) to (1.11) it follows that two systems of waves appear [s6
on the ice-water surface and the interface separating layers with different
densities when &4 > 0, a, < 1. The first system of waves corresponding
to the pole r = 1y repre&ents the usual surface waves, while the second
one, corresponding to the pole r = r2 (r2 > 1'1) corresponds to pure in-
ternal waves. The only difference between the waves arising at the inter-
face separating layers with different densities and the ice water surface
are their amplitudes. When 44 = 0 , a4 2 1, the amplitude of surface waves
decays exponentially with increasing R, The velocity and wave length of
the first and second systems of waves have the following fomms

. o
Yi27F g™ semes (1.22)
has i O

An analytical expression for the roots :r:1 2 can be found only in special cases.
’

2
Short Waves E_gl_ >> 1

From equation (1.8) we find

r, = (1 +a)c%g. (1.13)
32(1'2)

Then, V- %Taﬁ- ' Az - %‘%)'62 ’ e - %(1“: ) exp(r,Hy) (1.14)

From this it can be seen that the velocity and length of internal waves
and also the ratio of the amplitude of the internal wave at the layer
interface with the amplitude of the same wave at the ilce-water surface
are independent of the properties fo the ice cover. In the case of tronken
1ce (E = 0) we rina that for all values of a, <1

. - - ol -2
S el Vo= e (1 -ay) M = 2med (1 -a)

B, (r,) (1-a)
i:r::’ - (1 - ai)-i - %‘(’1—:%1) exp (ril-!,‘). (1.15)

In the case of a continuous ice cover (E = 0) and for small values of d,




and a, (dz- dicBg_u) we get

B, (r,) €@, - a,)
- -2 . = —L——l— exP (r H )' (1¢16)
A = 210 21 - oy *+4,), 31;(;:7 [1 + R 1ty
From formulas (1.18) i1t can be seen that an increase in Young's modulus
of ice increases the velocity and length of surface waves, while on the [5?

other hand large forces tlecrease V4 and A,. The ratio of the ampli-
tude of the surface wave at the ice-water &urface with the amplitude of
this wave at the layer interface also increases with increasing E but
decreases with increasing large forces. However, at small values of €
this change is of the order of €2,

Long waves (c (gﬁ)« -

After replacing tangents with thelr arguments, equation (1.8) can
be written in the following fomm

L
- 4 4 - jo S
(1 - o +a,r") [rechH, oz(n1 +ar)] + & =0, (1.17)
From this it follows that at 4 = O and for any values of ai < 1 we have

b o

G [83(1"—'_ “1)] b Ny W (eH(1 - ai)]é. )‘1 - gﬂ [eH(1 - ai)]%'

(1.18)
B, (r,) H
321‘25 -&T‘;'
L
When a, = d.1<(8ﬂk> << 1 and a <« 1 we obtain
° L
Wl (1 +#ay - a))) vy = ()71 - 3o, - a,)], i
i B, (x,)
)'1 = 2no 1(Gx)t1 = i'(a-i + dz)]o iir%r -a-:‘ii- U
5
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From Eqs. (1.18) and (1.19) it follows that in the case of long waves
the broken ice decreases velocity and length of the surface waves. Con-
tinuous ice at dp > ay increases, and at dy < aq decreases V1 and ki.
The ratio of amplitudes of surface waves at layer interfaces is indepen-
dent of the parameters of the ice cover,

For the internal waves both in the case of broken ice at arbitrary
values of ai < {1 and continuous ice at! small values of d2 and a, we have

27 )t (emptizy e ol ol
1.20
B,(r,)
A, = 2o (i) Bt (et ) 3, Effzf') - -4

From this it can be seen that the velocity V,, the length Az and the ratio

B2(r2) ure independent of d, and .
Bizrzs
Thus, in the case of short period and long period disturbances, the
velocity, length, and the ratio of amplitudes of internal waves generated
by the pressure of the form given by 1,1) at the ice-water surface and
at the layer interface are independent of the parameters of the ice cover. [58

Numerical calculations were made in order to determine the influence
of the ice cover on the surface and internal waves. Calculations were
made using formulas (1.9), (1.11), (1.12) for £(x) in the fomm

£(x) = {1 :;: s ; (1.21)

for two values of € (2 x 107 and 1072), £ = 10° m and the values of
parameters h(m), Hi'z(n). o(s~1), varying between the limits

0<h<3, S0SH <500, 500<H,<bx10% 5x107<0<7x107 (L.22)

The Young's modulus, specific weight, and Polsson's ratio of ice were
taken to be

E=3x210 n/hz. p = 870 kg/h3 v =034, (1.23)

Analysis of the results of the calculations has shown that the ice cover
has practically no effect on the velocity and length of the internal
waves (V2,A2). The velocity and length of the surface waves (V4 Aq) when
0 > 0,, where 3




L 6
0,1 >, [12(1 - Vz) Py8 ] 1/ : (1.24)

Ehz

increase, and when ¢ < 0, decrease with increasing thickness of the con-
tinuous ice cover. Brok&n ice decreases V4 and Ay in comparison with the
velocity and le of surface waves in a %wo layer fluid in the absence
of ice. When ).1 H + Hz)‘i < 1, the influence of the ice cover on para-
meters of surface waves is less than 1 percent.

The influence of the fluid nonuniformity on the velocity and length
of surface waves is the same as that in the absence of ice. During short-
period oscillations, V4 and ki are practically indepent of €., In the
case of long-period oscillations, an increase in € results in a decrease
in the velocity and length of the surface waves., However, this change
for parameter values given by (1.22) does not exceed 0.1 percent. The
velocity and length of internal waves increase considerably with increasing
€, Table 1 shows the numerical values of Vq, Xi, and V2,X2 for H{ = 50 m
and H, = 103 m. From this it can be seen that an increase”in € from
2 x 163 010 2 at 0= 5 x 10-1 51 and at 0 = 3 x 101 s "1 resulted
in an approximately five fold increase in Vp and Ap. This increase is
the same in the absence of ice (h = O) and both in the presence of con-
tinuous (E ¥ 0) and broken (E = 0) ice. As the thickness of continuous
ice increases from h = 0 to h = 3 m, the velocity and length of surface (59
waves at 0 = 5 x 101 s~1 for both values of € (2 x 103 and 10-2) in-
creased 13 fercint for E ¥ 0 and decreased 8.6 percent for E = 0, For
0 =73 x 107! g~! and the same values of h and €,continuous ice increased
vi and xi Zcu perwnt.

Table 2 shows the numerical values of amplitude of waves ni
1=1,2,3,4 (see (1.8)), denoted correspondingly a4, for f(x) of
the form given by (1.215. H = 50 m, = 500 m, and other parameter
values of the problem shown in the table for the case of continuous ice.
The values of ag in Table 2 are given with an accuracy up to a factor

TU$'E' In the case of broken ice, the dependence is approximately the
1

same, From Table 2 it can be seen that an increase in € leads to a de-
crease in the numerical values of amplitudes a4, of surface waves?nq,

. However, the decrease in amplitude is practi N indfpendent of
tBe thickness of dce, At O = 10-2 s-1 and 0 = 8 x 103 5~1 the ampli-
tudes of internal waves ap, &, increased 5.2 and 6.9 times, respectively
with increasing €. This increase is the same both for h = 0 and for h = 3m.
For o= 3 x 101 &~1 the amplitudes of ay, ay are small in comparison with
the surface wave amplitudes.

An incresse in the thickness of 1ce from h = O to h = 3 at 0 = 3 x 10" 1g [60
resulted in an a ately 3.2 es decrease_ of %ho amplitude of 91.
for both € = 2 x 103 and € = 1074, At 0 =102 81 and 0= 5 x 1077 &1
and the same values of €, the ice cover has practically no influence on




Table 1

The Influence of Ice Properties and Fluid Inhomogeneity on Velocity and
Wavelength of Waves

Vi A Vo Ay h, E, € g,
n/s m n/s m n N/m2 s
19.61 246.3 0.019  0.246 0 "
22.27 278.5 0,019 0,246 3 3 x10° 5,43
ig.zs 252.2 0,019  0.246 3 0 i
61 246, 0.098  1.238 0
22.17 278.5 0,098 1.238 3 3x 107 1072 e
18,30 229.9 0,098 1,238 3 0
26.68 684.1 0.033 0.685 0 ”
32,08 671.6 0,033 0.685 3 3 X107 5 ,,-3
31,07 4674 0,033 0,685 3 0 3 x 107}
3 .1 0.164  3.438 0 ”
1.6  0.64 3438 3 3x100 -2
.1 0.164 3.438 3 0
Table 2
The Influence of Ice Properties and Fluid Inhomogeneity of the Wave
Amplitude
a a A a h g, €
1 2 i % -1
3
4,838  B8.46 x 1070 3,057 0 0 -1
-1 3 x 10
1.8 8,3 x 10 0,930 0 0
1359 143x10% 1235 6ask o0 10%  2x107
1.359 1.39x 1072 1,235 5.9% 3
0,680  6.89x 101 0.618 3.97 0 . 403
0.680 6.88x 107 0,618 3.993 3
4,823  4.29 x 1072 3,047 0 0 -1
-10 3 x10
1.479  7.55 x 10 0,927 0 3
1351 7.45x10% 1,28 7.98 0 , 2 107
1,350 7.4 x1072 1,228 7.979 3
0,676  1.00x 101 0.5 5.87 0 . o3
0,676 1.00 x 1.0'1 0.615 5.837 3




the amplitudes aj and a3 of surface waves, while the amplitudes of in-
ternal waves decrease sanewh?t with increasing h from 0 to 3 m. At

€ =2x 103 and 0 = 1072 5”1, the decrease in a, and ay is 2.8 and 3.1
percent, respectively. However, the influence of ice on ap and a decreases
with decreasing 0 so that the properties of ice, exert no noticable influenc

gn tl;e agxglitudes of internal waves and on their velocity and length at
= 5 x 104,

The amplitude aj of the internal wave 1y arising at the layer inter-
face can exceed many times the amplitude ay of the surface wave nq. For
example, for T = 21/0 = 6 hr, Hy = 50 m, Hp = 10° m, and € = 2 x 103,
aa/?he- 100. It should be noted, that proper selection of the width (2)
pressure region may lead to zero values of amplitudes aj and a3
of the surface waves. However, the amplitude a; of the internal wave will [61
not be equal to zero and, consequently, we will have a clearly defined
case of the "dead water" phenomenon. In an analogous manner, only sur-
face waves can appear in a two-layer fluld under the influence of atmos-
pheric disturbances, For (1.21), this will occur at jp = .'1.121 RS [

2. Let periodically varying pressure be applied to the surface of
the ice cover, If this pressure is of the form

: M af(x) cos (Ky ~ ot), (2.1)
we can obtain the following expression for deviation of the ice-water

interface {1 and deviation of the density separating-interface 62 from
the undisturbed state

0 -1
(1.2- mj ””1.2‘3 (r)f(n) exp [1(mx + ky - ot)]dnm, (2.2)

where r = (:n2 * KZ)‘}.‘# and A (r) are the same as in formula (1.4),
f(m) 1s the Fourler tratsform of f(x). At large x calculation of the in-
tegral in Eq. (2.2) leads to the following expressims forn, , and 1, ), in
formulas (1.9) for ¢4 ot ’ '

1

n4,2 'Bi(mi,z) sinay ,, N4, -BZ(m1,2) sina,

32
o b -
212" peatlch  ¥1,250) =
n 2 - (:‘:f'2 - ltz)%. 01.2 - r:hzxj_’2 - Ot,

ry,2 are the positive roots of Eq. (1.8), Kk < r, < rp, the direction of




oxy,» forns an angle 84,2 (tan By o= K/mj ) with the x axis, and prime
1nd.{ca.tes differentiation with respect to r.

From this it can be seen that two systems of waves arise at the
jce-water surface and the layer interface. The first system of waves,
n1 and 1 3rare surface waves, while the second system, 7o andny,are
pure intérnal waves, The velocity and length of surface and internal
waves is determined by Eqs. (1.12). The influence of heterogeneity of
the fluid and the properties of the ice cover on vi,Zv ).1,2 and also on
the ratio of amplitudes aj(i = 1,2,3,4) of wavesn; is the same as in the
case of pressures of the form given by (1.1).

The direction of motion of internal wavesr, and 1) varies substan-
tially with € and is practically independent of the thickness of ice, A
For example, for Hf = 50 m, Hp = 800 m, K = 2 x 10% n-1, and 0 = 10"3 s
a change in € from 2 x 10-3 t6 102 resulted in an increase in the angle
B2 from 11924' to 25°15'. For ¢ > 0y (see (1.24)), continuous ice increases
the angle B4, while at 0 < 0y it decreases B4. Broken ice decreases the > [62
angle B4 for all values of d, [For example, }or g=7x101s"1, k= 2x0” m"i,
Hy = 50 m, Hp = 500 m, € = 1072, a change in the thicknessof ice from
h'= 0 to h = 3 n results in an increase in the angle By from 24210 to
40°10', in the case of continuous ice, and a decrease of B4 from 24° 10'
to 20° 20' in the case of broken ice, Variation of € from 2 x 1077 to
10~2 has negligible effect on the angle By.

Since the amplitudes of surface waves 74, 73 are proportional to

A

the pressure wave N\ is close to the length A, of the surface waves. When

3 <K< Toy surface waves 74 and 773 will decay exponentially with increasing
stance from the pressure région., “In this case, disturbances of the ice-

water surface and layer interface at a certain distance from the pressure

region will represent pure internal waves

£y =Ty §o =My (2.4)

where 77, and ), are determined by formulas (2.3). In this case, resonance
can occur at length of the pressure wave % close to the wavelength of in-
ternal waves , _ 21 3
2 rz
Since, when 0 > 0y the continuous ice cover decreases the numerical
value of the root ry in comparison with its value ry in the absence of
fce, wave numbeps K in the expression for the pressiire (2,1) exist such
that r < K < ry, This ipdicates tge a{utenoe of lengths for _pressure
waves ‘A satisfying the condition Af <A <Ay (\p =2, Ay = é) at

which the two systems of waves (surface and internal) arise in a two-layer

A 2 .% -
1 ~feme , (A >1y), they can be quite large when the length of

10
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with a free surface under the influence of pressure of the form given by
equation (2.1). Assuming all conditions remain the same, it also indicates
that only internal waves (7,,n,) arise in a fluld covered

with continuous ice. What'€ mére, if suffacé waves (n1,n~) were not
generated in the absence of ice, they also can not appear 13 the absence

of ice. Broken ice increases the value of r4 in comparison with the value
ry. Consequently, if in the absence of ice %he pressure given by (2.1)
with a fixed wavelength A generates surfac¢z and internal waves in a fluid
in the absence of ice, then the waves N3 (1 = 1,2,3,4) in a fluld covered
with broken ice at this A will not be attenuated. _hcowever, it is pos-
sible to have wavelengths of pressure wave (Aq <\ <\p), for which

only internal waves (nz,nu) arise in a fluld with a free surface, while [63
both surface and internal waves can exist in a fluid covered with broken
ice, At rp <K, unattenuated waves will not fom at the ice-water
interface and the layer interface.

3. Let a periodic pressure system of the form
P = a cos (xx ~ ot) (3.1)

propagate along the ice cover floating on a free surface of a t4o layer
fluid. In this case, a single system of waves of the fomm

12 p

arises at the ice-water surface and the layer interface. In this case,

¥ 4,2, and A(r) are determined by formula (1.4). The velocity and length
of ihe wave generated are equal to velocity and length of the pressure
wave

v-% , A = &0
Since & 1,2 is proportional to 4 -1(r), resonance will take place

when the wavelength of the pressure wave coincides with the wavelength

of natural oscillations of the fluid., In this case, there are only two

such resonance wave len?ths for pressure waves, Both correspond to posi-

tive roots ry,p of Eq. (1.8). The influence of the ice cover and inhomo-

geneity of the fluid on the values of resonance wave lengths of pressure

waves is analogous to the influence on the wave lengths of waves created

under the influence of pressure in the form given by (1.1) and (2.1) (Table 1).

REFERENCES

1. Sratenskiy, L.N., "On Directed Radiation of Waves from a Region
Subjected to an External Pressure," Prikladnaya matematika i mekhanika,
Vol. 20, No. 3, 1958.

2. Voyt, 8.8., "Waves at the Interface Between Two Flulds, Generated
by a Moving Periodic Pressure System.” Trudy MGI, AN SSSR, 17, 1969.

3. Cherkesov, L.V.,"On the Development of Waves on the Free Surface
and the Interface Between Two Flulds, Under the Influence of Moving
Pressures,” Prikladnaya matematika i mekhanika, Vol. 28, No. 3, 1962.

11

— e




T S S,

4, Krylov, Yu. M., "Propagation of Long Waves Under the Ice Fieid)
Trudy GOIN, 8(20), 1948. ;

5, Kheysin, D.N., "Dynamics of the Ice Cover, " Publishing house
Gidrometeoisdat, Leningrad, 1967.

6. Bukatov, A.Ye, and L.V, Cherkesov, "Non-Steady State Oscillations
of an Elastic Plate Floating on the Surface of a Fluild," Prikladnaya
Mekhanika, Vol. 6, No. 8, 1970.

?. Bukatov, A.Ye,, "On the Influence of the Ice Cover on the Non-~
Steady State Waves,” Morskiye Gidrofizicheskiye Issledoviniya, 3(49),
Sevastopol', Publishing house "MGI AN UkrSSR", 1970,

8. Bukatov, A.Ye., "On the Influence of an Elastic Plate Floating
on a Free Surface of a Fluld on the Internal Waves," Morskiye Gidro-
fizicheskiye Issledoviniya, 1(43), Publishing house "MGI AN UkrSSR,"
Sevastopol®, 1969.




