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Ot~T T1~ D~TLU~~~~ OF I~~ OOVER ON INTERNAL WAVES

[Bukatov , A.!.., 0 vliyanii le&yanogo pokrova na vnutrenniye volny ,
Norakive rofisj ch~~kive jesledovaniya (Marine Hydrophysical Irweatigations),
No. 1, 1972, pp. 53-64, Russian]

rAbst~ ct.\ This stu&y deals with influence of the ice cover floating 1 [s3
~on the sur face of a two-layer fluid of finite depth , on waves generated I
~~ r periodic temporal ataospheri c disturbances. ,,..

This psper i s a  sti4.y of the influence of a thin elasti c plate
floating on the surface of a two layer fluid of fini te depth on waves
generated by periodic normal stress es. La a special case one can consider
the toe cover to be a plate . Analogous problems in the abeence of a plate
t n j  h~~ogeneous fluid were considered in [1], and in a two-layer fluid ,
in L2 ,3] . The influence of the plate on waves in a unifozin fluid were
investigated in [4] t~o [7] aM in a two-layer, infinitely deep fluid, in

1. Let an ice cover float on the surface of an incoapr essible two-
layer fluid. The thickness of the upper layer of the fl uid and its den-
sity will be denoted by Hj and pj , respectively and the thi ckness of the
lower layer and its densi ty , by H2 ~~ i 2’ respectively. We shall inves-
tigate the influence of the ice cover , considered to be a thin elastic
plate , on waves generated by a periodi c at~ioepheri c disturbance

P0 
— af(x ,y) cos ~t. (i.i)

It is aaetaed that the motion of the fluid is potential and the velocity
potentials for the motion of the upper and lower layers of the fluid axe
designated , j ,2(x,y, m ,t). Asrn ing the velocity and downwarp of the ice
to be afl, one obtains the following equations for e 1,2

d~~ 1 — 0  ( O < s < H 1). 4 c 2 0 (_}
~< z<o ) ,y...4 (1.2)

subject to the following boundary cond.ttiona s / ~ [54
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a2,
~2 atz2 

— P i + g(P2 — P 1) j~ 0, (1.3)

a~ 2 ~~~~ — wh enz O ,at a3 ‘ Iz

aq2 0 w he nz - H ,

where d — Eh~~I2(1 - v2)]~~ is the cylindrical rigidi ty of ice , E and V
are the Young’s modulus and Poisson ’s ratio of ice , h and 

~ j 
are thi ckness

and downwarp of the ice , a is the mass per unit area of the ice surface ,
~ 2 is the deviation of the fluid interface fron the equilibr&~.un posi-
tion . Let the a aids be directed vertically upward and the origin of the
coordinate system lie along the undisturbed interf ace separating layers
with different densities .

Applying the two dimensional Fourier transform in variables x and y
to Eqs. (1.2) aM the bounda ry conditions (1.3) we obta in the following
expressi on for~~j aM~~2s

- 
a ff r~,

1 2 4 1(r)? (m ,n) exp [i(mx + ny - Vidmdn , (1.4)
1,2 2iTp1g Jf

where

4- [d1~~ + r(1 - 
~i

)1 [~ tanh (r~~) 4 a2. tanh(r~~]- ~ + a2a tanh(r~~ )tanh(r~~)],

— - ,t anh(rH1) - cl2a tanh(r H2) ,  
~ 2 - - a2a tanh(rx2)coeh~~(rH1),

a2 
- rgE tanh(rH2), r (~2 + n2 )+,

€ - i -~~ , a.~~L, ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

i (a,n) is the Fourier transform of f(x,y),

In the plane and Ed-symmetrical 0SB~ 5, 
~ 

asat es the form

— 
a 

— Iv~j ~~~~~~~~~~~~ 
exp [i(rx - clt)]dr, (1.5)

~1.2 (21T)*pgJI —~~~~
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?(r) — (~~)t f 00
f(x) exp(- irx) dx, [55

— 

~~~ f
00

r2~~j ,24 ’1 (r )J 0(rB)~ (r) dr exp(- iat) ,

00 (1.6)
~(r) i

Rf(r)Jo(rR )d.R , R — (x2 + ~2)

For large values of R , Eq.(l.6) will asstnne the form

~1, 2 — pg  
(~.~3*j~ 3/2~~j2 4

_1
(r)~(r) cos (rR - ii/4)ãr exp(- iclt). (1.7)

The error introduoed ,in rewriting Eq. (1.6) in the form given by (1.7)
is on the ox~ier W 312.

Analysis of the roots of the equation

4 (r ) — 0 (1.8)
has shown that when dj ) 0, a1 < 1  the functi on under the integral sign
in Eq. (1.7) has first ord er poles at points r 1, r2 along the positive
ads. Satisfy ing the radi ation condi tion , letT s deform the initial
inte~~ation path into the path L along the positive axis passing around
pcinta rj ,2 along small eemicircles in the lower half space. At d - 0,

~ I E q. (1.8) has no real roots and integration can be performed along
the positive axis. Results of the integrati on of Eq. (1.7) show that at
dj > 0, a1 < 1  the final expression s for the type of waves generated at
the ice-water surface and the inte rface separating layers with different
densities

~1 ‘l j ~ 1~2 ~2 77 3 ~ ?74 (1.9)

~ I ,2 — 31(r1,2) ain a (r1,2), 773,4 — B2(r1,2 ) sin a (r1 2 ),

where

a /2~T \ +  *1,2 /2~Bi ,2 —~~-~-!~i-) 4(r) f(r), a— r R - a t - i y / Z i .  (i .io)

~‘ i 2 aM 4 (r) axe the same as in Eq. (i.’~) and a prime indicates dif-
fsNnt iat ion with respect to r.

In the two dii.n.icnal case analogous method can be used to solve
Eq. (1.5) to gi~i formula (1.9) for 4 ~ V where B1 2 aM a are given by
the following .xprsssions

- -
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B
11 2 

— - 
p
1
g4 ’(r) 

r~~11 2f (r) , a — - at. (i.ii )

From Eqs. (1.9) to (1.11) it follows that two systems of waves appear [.56
on the ice-water surface and the interface separating layers with different
densities when d1 > 0, a < 1 • The first system of waves corresponding
to the pole r — rj repre~ents the usual surfac e wave8, while the second
one , correspon ding to the pole r — r~ (r2 > rj ) corresponds to pure in-
ternal waves. The only differenc e between the waves arising at the inter -
face separat ing layers with different densiti es and the ice water surfac e
are their ampli tudes. When dj — 0 , a1 ~ 1, the amplitud e of surface waves
decays exponentia lly with increasing R. The velocity and wave length of
the first and second systems of waves have the following form ’

v — 1.. ~ _ _  
(1.12)

, r4 . ,
41L. 1,2

An analytical expression for the roots r1 ~ 
can be found only in special cases.

Short Waves a2HI >> ~a

From equation (1.8) we find

r2 — (i +a)o3~g. (1.13)

Then , V2 
~~ 

• — 
_ _ _ _ _ _ _  ‘ 

~~~~~~~ 

—-~~(i+ a  ) exp(r2H1) (i.14)

From this it can be seen that the velocity and length of internal waves
and also the ratio of the amplitude of the internal wave at the layer
interface with the amplitude of the same wave at the ice-water surface
are independent of the properties fo the ice cover . In the case of brnken
toe (B - 0) we ilna that for all values of a1 < 1

— 
- , V1 

— g’f~(t - a1), ~‘I 
— ~~~~-2(j - a1),

B1(r ) 
~ 

a~(1 — a )
______ — (i — a1Y — za(I — a1) exp (r1M, ) .  (1.15)

In the case of a continuous ice cover (B — 0) aM for small values of



and a1 (d 2” d1a3g~~) we get

— a2g 1 (i + a1 - d.2 ), V1 — g~~
1(1 — a1 +

— ~~~~g~~
—2

(~~ - a1 + d2), B )  — {~ +
€ 2 a1) ] exp (r 1H1). (1.16)

From formulas (1.18) it can be seen that an increase in Young’s modulus
of ice incr eases the velocity and length of surface waves , while on the [5?
other hand large forces d crease Vj ~4 ~~~~ The ratio of the aanpli-
tude of the surface wave at the ice-water *urface with the amplitude of
this wave at the layer interface also increases with increasing B but
decreases with increasing large forces. However , at small values of E
this change is of the order of €2 .

Long waves (
~ (~ ) ~~ c<~~ j

After replacing tangents with their arguments, equation (1.8) can
be written in the following form

(1 - a1 + d1r
4) [r4gE}11H2 

- r2a2(H1 +aHfl 
+ ~~

— — 0. (1.17)

From this it follows that at d 0 aM for any value s of a1 < 1  we have

— 

[gH(i — 
~ 

, V1 
— [gH(1 — a1)]~, X~ ~~~~ [gH( 1 — a1)]4 , 

(1.18)

B1(r~) ~~
B2(r2) aH2’

When 
~2 

- dj ((gM~f)  ~ << and a1 ~~ 1 We obtain

a
— 

~~~ 
[1 + 4(a~ 

- a2)], V1 
— (gH)4[1 - 4(a

~ 
-

(1.19)

— ~~
u
~~~

1(gX)k1 - *(aj + a2)],



Fr om Eqs. (1.18) and (1.19) it follows that in the case of long waves
the broken ice decreases velocity and length of the surface waves. Con-
tinuous ice at d2 > ai increases , and at d2 <a1 decreases V1 and Xj.
The ratio of amplitudes of surface waves a~ layer interfaces is indepen-
dent of the parameters of the ice cover.

For the internal waves both in the case of broken ice at arbitrary
values of a1 < j  and continuous ice at small values of d2 ~~ 

we have

r — a 
, V 1.1(gH)*H 1(€H H )t2 (~H)4 (EH1H2)+ 2 1 2

(1.20)

— ~~rf 1(gH)+H 1(EH j}j2) ~ 
B2(r2 )

Bj(r2)

From this it can be seen that the velocity V 2, the length X 2 and the rati o
B2(r2) are indep endent of d.2 and a1.
B1(r 2)

Thus , in the case of short period and long period disturbances, the
velocity , length , and the ratio of amplitudes of internal waves generated
by the pressure of the form given by (1.1) at the ice-water surfac e and
at the layer interface ar e independent of the parameters of the ice cover. [58

Numerical calculati ons were made in order to determine the infl uence
of the ice cover on the surface and internal waves. Calculations were
made using formulas (1.9), (Lu. ), (1.12 ) for f(x) in the form

f ( x )  — (1.21)

for two values of E (2 x l0~~ aM lo_2
), z — 10~ m and the values of

parameters h(m), H1 ,2(M ), a(s-l) ,  varying between the limi ts
0~~~h~~~3, 50~~~H1~~~500, 500~~~H2~~~4 x l 0 3 , 5 x 1 0 3~~~a~~~7 x l0 t . (1.22 )

The Young’s modulus , specifi c weight , and Poisson ’s ratio of ice were
taken to be

E ’.3x 107 n/m2, p 870 kg/m3 v ’ 0.34 . (1.23)

Analysis of the resul ts of the calculati ons has shown that the ice cover
has practically no effect on the velocity and length of the internal
waves (V2)2)1 The velocity and length of the surface waves (V1 ,X~j )  when
a> C~, ithere

6
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a1 — 
~ 

12(1 — v 2 ) p
1g~ 1 

1/6 
(1.24)

increase, and when a < a  decrease with increasing thickness of the con-
tinuous ice cover. Brok~n ice decreases V1 and X 1~ in comparison with the
velocity and 1en~th of surface waves in a ~wo layer fluid in the absence
of ice . When X 1(H 1 + H2)4 < 1, the influence of the ice cover on para-
meters of surface waves is less than 1 percent.

The Influence of the fluid nonunif ormi ty on the velocity and length
of surface waves is the same as that in the absence of ice . During short-
period oscillati ons , V1 and )..~ axe practi cally indepent of E. In the
case of long-period oscillations , an increas e In E results in a de crease
in the velocity and length of the surface waves . However , this change
for parameter values given by (1.22 ) does not exceed 0.1 percent. The
veloci ty and length of Internal waves increas e considerably wi th increas ing
E. Tabl e 1 shows the numerical values of V1, X~ , and V 2, X2 for H1 50 in
and H — 103 in. From this it can be seen that an increas e in € from
2 x l~~3 to 10 —2 at a 5 x l0~~ s 1 and at a = 3 x 10-1 s 1 resulted
in an appro ximately five fold increas e in V2 and X2. Thi s increase is
the same In the absence of ice (h — o) and both in the presence of con-
tinuous (E ~ 0) and br oken (B — a) Ice . As the thi ckness of continuous
ice increases from h — 0 to h 3 in , the velocity and length of surface [59
waves at a — 5 x l0 1 ~~1 for both values of ~ (2 x i o3  arid 10—2) in-
creased 13 percent for B ~ 0 and decreased 8.6 percent for B = 0. For
a — 3 x 10~ s~~ and the same values of h and E, continuous Ice Increased
V 1 and X~ 2.4 percent.

Table 2 shows the numerical values of amplitude of waves 7~j
i — 1,2 ,3, 4 (see (1.8)) , denoted correspondi ngly al’ for 1(x) of
the form given by (1.21), H1 — 50 a , }~ — 500 in , and other parameter
values of the problem shown in the table for the case of continuous ice.
The values of ai in Table 2 are given with an accuracy up to a factor

. In the case of brok en ice, the dependence is approximately the
lvp1g
same . From Table 2 it can be seen that an increase in € leads to a de-
crease in the numerical values of amplit udes aj , a~ of surface waves J7 1’
fl.~ . However, the decrease in amplib4e is pmctic~11y independent of
t(~e thickness of ice. A t a — 1 ~~2 s anda 8 x l 0 3 s~~~the amPli -
tudes of internal waves a~ , a~ increased 5.2 and 6 9  times, respectively
with increasing E~ This increase is the same both for h 0 and for h 3m.
For a — 3 x 10-1 s 1 the ampli tudes of a2, a~ axe small in comparison with
the surface wave ampli tudes.

An increaae in the thlckness of ioe from h O t o h _ 3 a t a _ 3 x l 0 1s [60
resulted in an sppro~imately 3.2 ~iaes decreas e of ~.he amplitude of ~~~~~~.

f or b o t h E 2 X l O - ’ s ME lO ’. A t a — l 0 2 s~~~a Ma 5 X 1 0 ~~~B~~
and the same values of E ,the toe cover has practi cally no influen ce on

7



Table 1

The Influence of Ice Properties and Fluid Inhounogenelty on Velocity and
Wavelength of Waves

V1, X1, V~, X2, h , E , E a ,
a/a a rn/a a a N/rn2

19.61 246.3 0. 019 0.246 0
22.27 278.5 0.019 0.246 3 X 10 2 x
18.30 229.9 0.019 0.246 3 0
19.61 246.3 0.098 1.238 0
22.17 278.5 0.098 1.238 3 3 X 1O~ io 2 ~ x 10~~
18. 30 ~~~.9 0.098 1.238 3 0
26.68 684.1 0.033 0.685 0 ‘
32.08 671.6 0.033 0.685 3 X 10 2 x 10 ’
31.~ ‘67.4 0.033 0.685 3 0 3 x 10~~84.1 0.164 3.438 0

0.164 3438 3 3 X 10~ icr2
0.164 3.438 3 0

Table 2

The Influence of Ice Properties and Fluid Inhc~nogeneIty of the Wave
Amplitude

a2 &3 
a4 h a. €

8~1

4.838 8.46 x 10~ 3.057 0 0 
~ x 10~~1.484 8.34 ~ 0.930 0 0

1.359 1.11.3 x io—2 1.235 6.154 0 iO 2 2 x
1.359 1.39 x icr2 1.235 5,994 3
0.680 6.89 X 10 1 0.618 3.997 0 

~ x 10~n.680 6.88 x 10 1 0.618 3.993 3
4 ;~~3 4.29 x 10 ’ 3.047 0 0 

, ~
1.479 7.55 x 10

_jo 
0.927 0 3

1.351 7.45 x io—2 1.228 7.983 0 
~ ~ icr

2 jo—2

1.351 7,114 x t~~2 1.228 7.979 3
0.676 1.00 X 1(0 0,615 5.837 0 

~ x icr3
0.676 1.00 x 10~ 0.615 5.837 3

8



the amplitudes aj and a, of surface waves, while the amplitudes of in-
ternal waves decrease aoun ewhtt with increasing h from 0 to 3 m. At
€ — 2 x 10-3 and a — 10-2 s , the decrease in a9 and a4 is 2.8 and 3.1
percent , respectively. However , the influence o! ice on a2 and a. decreases
with decreasing a so that the properties of ice, exert no not icab~e influenc
on the am~1jtudes of Internal waves and on their veloci ty and length at
a — 5 x 1 0

The amplitude ai~ of the internal wave 774 arising at the layer inter-
face can exceed many times the amplitud e ai of t~e surface wave v~ • For
example , for r 2 i i / a — 6 h r , H1 50 m , H2 l0-’ in , a n dE 2 x l O 3 ,
a4Ja.I — 100. It should be noted , that proper selection of the width (2)
of tFie pressure region may lead to zero values of amplitudes aj and a,
of the surface waves. However , the amplitude 54 of the internal wave will [61
not be equal to zero and. , consequently, we will have a clearl y defined
case of the “dead water” phenomenon . In an analogous manner , only sur-
face waves can appear In a two-layer flui d under the influence of atmos-
pheri c disturbances . For (1.21), this will occur at 

~~ 
— , n — 1, 2 , ...

2. Let periodically varying pressure be applied to the sur face of
the ice cover. If this pressure is of the form

P0 — ai~(x) cos (Ky - at), (2.1)

we can obtain the following expression for deviation of the ice-water
interface ~ j  and deviation of the density separating-interface ~ 2the undisturbed state

-1 —

2 / ~ r~ ’4 2~ 
(r)f(m) exp [i(mx + ky — atfl~in , (2.2)

i., ~2rrj ’p1g .‘ ..~~~ ~~~‘

where r — (a2 + x2y~, iJ, and z’~ (r) are the sane as in formul a (1.4) ,
f(m) is the Fourier trJi&~om of f(x). At large x calculation of the in-
tegral in Eq. (2.2) leads to the folløwing express1a~s for 

~ 1 2 ~~~ In
formulas (1.9) for~~112’

‘7 1,2 “ B 1(m112) a m a 112, 773,4 “B 2(m1, 2) a m a .1,2,

_ _ _ _ _ _  

_
( 

~ ( )B 1,2 
— 

p~~~~~’(~~Jm ~~~~~~~~~~~~~~~ 
2.3

‘1,2 
— (r~,2 

_ ~~~~ a12 — r112x11 2 
— at,

rj,2 are the posi tive roots of Eq. (1.8), X < r1 < r2, the direction of

9



F

°‘~i. 2 forms an angle p1,2 (tan p 1,2’ K/rn 1,2) with the x axis, and prime
indicates differentiation with respect to r.

From this it can be seen that two systems of waves arise at the
ice-water surface and the layer interface • The first system of waves ,
i1 and’73,are surface waves , while the second system , ‘72 and’74,aze
pure internal waves . The ve1ocit~ and length of surface and Internal
waves is determined by Fk~s. (1.12). “he Influence of heterogeneity of
the fiu !d and the properties of the Ice cover on V1,2, X 1, 2 and also on
the rati o of amplitudes aj(i. — 1,2,3,4) of waves is the same as in the
case of pressures of the form given by (1.1).

The direction of motion of internal waves ‘72 and 77)4. varies substa n-
tially with € and is practically independent of the thickness of Ice.,
For example, for H1 — 50 rn, H2 800 in , K — 2 x 1O~~ m 1, arid C — 1O~’ a
a change in E from 2 x 10) to icr2 resulted in an increase in the angle

~2 
fran 110241 to 25015t. For C >  Oj  (see (1.24)), continuous Ice increases

the angle ~~~~, while a.t C < C j  it decreases ~~~~~ Broken ice decçeases the 2 [62
angle ~j for all values of C. For example, for ~ = 7 x i0~~s~~, K — 2x10 m~~,
H1 — 50 in H2 500 ~~ , E — io-2, a. change in the thi cknessof ice from
h~~~0 to~~~~~3mresul ts mn an mflcrease in the ang1e 8j  fran 24°10’ to
40°10’, in the case of contInuous ice, and a decrease of ~~j  from 2~° 10’
to 200 20’ in the case of broken Ice . Variation of E from 2 x 10-’ to
10 2 has negligible effect on the angle 

~
Since the amplitudes of surfa ce waves ‘7~~, 713 are proporti onal to

F /~ \2 14 
£

11 — (j_-) j , 0 > 
~~~ 

they can be quite large when the length of

the pressure wave )~. is close to the length X~ of the surface waves. Whe n
rj  < K  < r2, surface waves ‘71 and ,7~ 

will decay exponentially with increasing
distance from the pressure region. ‘In this case, disturbances of the ice-
water surface and layer interface at a certain distance fran the pressure
region will represent pure internal waves

~i ~~~ ~2 
714.l (2.4)

ithere ’7 2 a.nd ‘74 are determined by formulas (2.3). In this case, resonance
can occur at length of the pressure wave ~ close to the wavelength of in-
ternal waves ~ —2 r2 ’

Since, when 0 >  the continuous ice cover de2reaaes the numerical
value of the root rj in comparison with its value r~ in the absence of
ice , wave numbe e K in the expression for the pressure (2 1) exist such
that rf < K < r~. This i~ttcatea t~e e2cistence of length s for,~ ressure
waves A satisfying the condition )~~ < ) . <)~~ Q~ 

— , 
~ 

— 
~~) at

which the two sy~terns of waves (surface and intern al ) arise in a two-layer

j 
-~~~~ 

10



with a free surface under the influence of pressu re of the form given by
equation (2.1). AssumIng all, condi tions remain the same, it also indicates
that only internal waves (i~ 171k) arise in a fluid covered
with continuous ice. Vhat’~ möre , if BU~ fa.C waves (~ ~ 17 ~

) were not
generated in the absence of ice, they also can not appear iT~ the absence
of Ice. Broken ice increases the value of rj in compari son with the value
r~. Consequently , if in the absence of ice {.he pressure given by (2.1)
with a fixed wavelength )~ generates surfa~~ and internal waves in a fluid
in the absence of Ice, then the waves 77 ~ (1 

— 1, 2 ,3 , 4) in a fluid covered
with broken ice at thi s )~ will not be attenuated . - }~~wever , it is pos-
sible to have wavelen gths of pressure wave (X 1 < X  <~ o). for whi ch
only inter nal waves (‘72, ’74) arise in a fluid with a free surface, while [63
both surface and Internal, waves can exist in a fluid covered with broken
ice . At r~ < K , ur iattenuated waves will not form at the ice-water
interface and the layer interface.

3. Let a periodic pressure system of the form

a cos (rx - at) (3 .1)

propagate along the Ice cover floating on a free surface of a t .io layer
fluid. In this case, a single system of waves of the form

— r iji1 2 ’~~~~’~ 
cos (rx - at)

S i 2  p1g

arises at the ice-water surface and the layer interfa ce. In this case ,

~‘1 2. and ~~(r) are determined by formula (1.4). The velocity and length
of the wave generated ar e equa l to velocity and length of the pressure
wave

Since ~ I , 2 is proportional to ~ 4(r ), resonance will take place
when the wavelength of the pressure wave coincides with the wavelength
of natural oscillati ons of the fluid • In this case , there are only two
such resonance wave 1en~ths for pressure waves • Both corresp ond to posi-
tive roots rj ,2 of Eq. (1.8). The influence of the ice cover arid inhomo-
geneity of the fluid on the values of reson’~nce wave lengths of pressure
waves is anal ogous to the influence on the wave lengths of waves created
under the influence of pressure in the form given by (1.1) and (2.1) (Tab le i) .
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