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and
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Abstract 
where P~ denotes the set of polynomials which are

The linear time invariant aspects of the least nonnegative for all real arguments and vanish when
squares theory is extended in this paper to linear all arguments do. As might be expected this theory
time invariant systems with perfo rmance measures of leads to different conclusions regarding optimality,
the form in general relaxing the conditions found for the

l~ r’~(~) 
+ I u ! I

lr quadratic case . Somewhat surprisingly we f ind
dt L ( x )  O• L (O)  = 0 that  the L’ s which y ie ld  l inear optima l contro lJ o laws are necessarily homogeneo us of degree 2r.

where L is a polynomi al in the components of x .  Eve n among these , however , linear optima l control
Those L ’s which have optimal control laws which are laws are the exception and not  the rule provided
linear are character ized , and the inve rse problem , r exceeds one .
i .e .  the charac te r iza t ion  of those control lers
which are optima l relat ive to a per fo rmance measure A pa r t i cu la r  f ea tu re  of Kalman ’s ori ginal
of  this type is also solved. Our basic tools in result  was tha t  i t  was s ta ted  in such a way as to
s t u d y i n g  this problem are a new lemma on the path imp l y ,  together w i th  the circle criterion, a
independence of  ce r t a in  integrals which general izes s t rong s t ab i l i t y  proper ty  w i th  respect to t ime
the earlier result on quadratic forms and a va rying and nonl inear  gains . We f ind  that  eve n in
p o s i t i v i t y  cond i t ion  inves t iga ted  ea r l i e r  b y our more general context  this  feat ~~ e is preserved .
Jacque s Willena and the au thor .

In this paper we use for  the most par t , the
no ta t i on  D d/ d t  and wr i t e  (1) , (2 )  in hi gher
order  form as

1. In t roduc t ion p(D ) y u ; (3)
and

LE .  Kalman ’s 1963 paper 11] charac te r iz ing ,
for l inear  stationary sys tems , those linear control 

= r ~~~~~~~~~~ ~~~~~~~~~~ + u
2r

dt; L C P
+ (4)

laws which minimize time independent nonnegative
quadra tic performance me asures on an i nfi n i te time
interval, attracted considerable attention because In the last sectioO we make the connection with the
the conditions were given in terms of the Nyquist first order vector differential equation notation.
locus and confirmed , to some extent, engineering
practice . The original pape r discussed the scalar 2. Path Independence
input  problem but  it was shown subsequently that
the multivariable problem is essentially the same . In our earlier work [2—6] we showed that the
Other  papers in this vein have appeare d subsequently connection between frequency domain conditions and
but  always s t a y i n g  w i t h i n  the linear— q uadra t ic  the exis tance of q u a d r a t i c  Liapunov funct ions  and
fr amework . the connection between frequency domain conditions

and q u a d r a t i c  opt iinal i ty  could be made us ing a
In this paper we work out the corresponding lemma about  the independence of pa th  of in tegrals

>..
~ theory for linear systems cf the form

(t )  Ax(t )  + bu( t) (1) bX n - Ha (5)
____ with performance measures of the rather more general j ~~~~~~~~~~~~ ~~~
____ dt~form

L.LJ r~ L(x)  + u
2t

d t; L ~ (2) This lemma , which we will generalize below, enables
one to avoid the use of Fourier t r ans fo rms  and

/ nanipula t ions  of the Kalm an— Yacubov ic—Popov type in

3 treating these problems . )~~reover, using this
This work was supported in part b the U S Office approach we were in (5], able to bring the fre—

Electronics Program ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ by avoHin g  posit i~~ de f in i t eness  conditions and
— of Nava l Research under the Jo vices quency domain theory to a new ,eve l of  con~~l e tion

hence allowing one to establish for  the firs t time ,‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ f requency  domain instab i l i ty  condit ions .  In th i s—
~~. —
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paper we take advantage of the intrinsic sImplicity 
(1) (n—l) b

of this approach In using it as a point of depar— n v(~~,x ,. ..,x
ture to develop the theory of higher orde r problems a b

(a) (b) (c)
of the form (3), (4). — 

~a,b ,. ..c
X X ..

(a ,b ,...c)cI(n— l r ) a
The lemma of this section depends on certain 

‘ (11)
elemen tary facts about the group of all permu ta tions wi th the ~‘s being syssnetrized. This being the
of a finite set of n symbols —— the symmetric group
on n letters , S(n). Of course S(n) has n! elements; case , the derivative of n —— the integrand of the

original exp ression for n —— is j u s twe denote a typical element by ii. If  we have an
rth degree form in the variables x

1
,x2 

x we
n n (a+l) (b) (c)~

can represen t It by (a ,b ,. ..c)cI(n—l,r) a,b ,..

,x (6) (a) (b+l) (c) (a) (b) (c+l)~ ~a ,b ,...c
xa

)c
b~ c +x x ...x + x x .. .x J (12)(a,b,. . .c)cI(n,r)

where I(n,r) = {(a,b c ) :  0~a~n , 0~b~n,...Oic~n; hence if we form h using this expression we see

r ternm}. But such a representation is not unique that

unless we symme trize. (This is a generalization of h(s1,s2,. “
~ r~the syimne trization of the matrices representing (a,b ,. . .c)CI(n—l ,r)

quadratic forms.) A little though t will convince 
~~~~ .s~ ) (13)(s +s + . . . +s )(sthe reade r t h a t  f may also be expressed as a ,b ,. . .c 1 2 r 9

— 1 Hence the indicated factorization of h is a
n.

rcS(n) (a,b ,. ..c)CI(n ,r) necessary cond ition.

To es tablish s u f f i c i e n c y ,  suppose that wea~ (5) ,~r ( b )  ~~~~~~~~~~ (7) 
wri te h(s1, s2, .. .s ) ( g  +s +. . .s

r
)m(s i, s2,.

In such a representation the a’s corresponding to with m given in sy&etric form by
a specific (unordered) collection of subscripts on m(s1,s2,. 

~~~the x’s are symme tric in that the interchange of (a,b ,. ..c)eI (n—l ,r)
two subscripts in a does not change itsa, b,...c a b  cvalue. ‘

~a,b,. 
~ ~~~ (14)

..c l~~ r
(1)

In what follows we use x to den9te the ith Yorm the function
derivative of the function x ~

(a) (b) (c)
Lemma 1: If x : * j~ r. times di fferen— Y x x . . .x
______ b ,. ..c(a ,b ,...c)CI(n—1 ,r) a , (15)tiable then the in tegral

b It follows by differen tiation (as used above) that
n I ci the derivative of ~ Is ac tual ly  equal to thea,b ,...c

~a (a ,b ,...c)cI(n,r) in tegran d and so ri — ~i(a)—~i(b) and the proof is
complete.(a) (b) (c)

dt (8) 
The operation of passing from the form to the

r factors symmetric function h(s1,s2,...s ) establishes a

is expressible in terms of x(a), ~~~~~~~~~~ 
(n—i) one to one correspondence between homogeneous forms.x (a)

and x(b), X(l)(b),...X (n—l)(b) If and only if the of degree r in x,x( 1) , . . .~~(a) and symmetric poly-
nomials in s ,s., ...s . This operation is vaguelyl~~~ rpol ynomial In the indeterminates 

~l’~ 2’ ~~r analogous to the assignment of a syubol to an

h(s 1,s2,. ..a ) 
operator i~ partial differential equations and we

r will call h the sy~~ol of the form.1
Notice that In the case where p = 2 there is a

~~ ITCS(n) (a,b ,...c)cI(n,t) particular Simplification which occurs in the path

a,~(S) fl(b) ~~~ 
5a5b~~~~ c (9) independence condi tion. In this case we have in—

c) 1 2 r dependence If

can be factored as h(s1,s2,...s )(5l+52~~ ..s 
)x h(s ,s ) ~ a S

a
a
b (s

1
+s
2

)m (s ,s2
) (16)r 1 2 ab 1 2m(s

l
,s2,...sr) with m a  polynost&l. howeve r h(s 1,s2)con talns 51+52 as a fac torProof: Without loss of generality we may suppose 

If and only if h vanishes upon setting s~=—s~~.Thii the coefficients a have been symmetrlzed via 
Thus we see that(7). This does not change the value of the Integral

and means that we can express h more simply as h(a1, —s.) — 0 (17)

is equivalent to the condition which appears in [4]
~~~~~~~~~~~~~~~ and [6]. (Incidentally there are minor defects in

— ~~~~~~~ . .~~~~ ( 10) all the pr evious ly published p roofs of the p 2 case
a ,b , . . .c that I know o f .  The present proof plan may be the(a ,b , . . . c)t I ( n, r) best way to proceed even if  the case p.2 is the

Now suppose that the integral is independen t of only one of Interest . )
path In the above sense and that
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3. Sufficient Conditions for Optimality 4. The Main Theorems

As is made clear in [6], all of the convert- We now characterize those L’s which  have
tional  least squares theory can be der ived  f rom op t imal  control  laws which are l inear  and a t  the
the inequality for real n—vectors <x,x> ~ 0 via same time set the stage for the solution of the
completing the square . In the present setting a inverse problem.
key role is p layed by the inequal i ty  in real Theorem 1: The l inear  dynamics (3) and the p e r f or —
variables a , b stance measure (4) give rise to an opt imal  s t a b i l i z —

0 ~ a
2r
+2rab

2
~~~ +(2r_l)b

2r ing control law which is l i n e a r  if  and only if L
is homogeneous of degree 2r and

(a+b) 2( 
2r—2 2r 3b+3 2 r 4

b
2 

. .#(2r—l)b~~~
2
) L( , 

(1) (n—i)= a —2a y y  ...y )
(18) 2

= (2r)(q(D)y) 
r..(2r_l)p(D)y (q(D)y)2

r_ l
+;

This resu l t  is easi ly ver i f ied  by d i f f e r e n t i a t i n g  ( 2 2 )
with respect to a and seeing that  zero is the mini— for some polynomial q ( D ) — ( q  Dn l +q 2D

0 2
+. . .+q )ri—i nmuni value . Moreove r a = —b is the only condition

under which the inequa l i ty  is not s t r i c t,  and some ~~= ~~(~~,~~( I )  
~ (n— l) ) such t h a t

p ( D ) + q ( D )  has all  i ts  zeros in Re s < 0.

The above observation , together with lemma 1 Proo f :  We have already seen in Lemma 2 that thisallows us to s tate wha t looks a pr iori to be a condition is sufficient for optimality. We
rather special sufficient condition for establish its necessity here .
u=—q(D)y to be an optimal control for (3), (4). In
ac tual fact this condition turns out to be much Suppose that there is an optimal stabilizing
more general than it appears . Here and below we control law u(t) — h(U)y(t). Then since L is a
call a control law stabilizing of it makes the null polynomial , the mini m um val ue of  n corre spond ing
solution asymptotically stable in the large . to an initial value of y, ~

( l )  ~(n l)  w i l l  be

Lemma 2: Let u and y be related by (3). A suf— 
a polynomial In these variables. (This was worked H
out  in Liapuno v ’s thesis!)  Call th is  po lynomia lf ic ient  condition for a s tabi l iz ing control  law 
•. By c omp u t i n g  the de r iva t i ve  of I along s o l u —

u = —q(D)y to be optimal relative to all other tions of p(D)y = — h ( D ) y  we get
(linear or nonlinear) stabilizing control laws is
that n~ 1 

~~~~~ ( 1+1)
L( (1) (n_i)

) i—U ~~
( l )  y — 

(23)y.y y

(2r_l)(q(D)y)
2t_l

(p (D)y_ —i—- D q ( D ) y )
sn—i 

provided we set

(19) 
(n )

= _ (p y
(fl~ l)~ .~ p~ y)-(h(D)y) (24)

satisfies the condi— Moreover, and it is surprising how much this point4 wher e E E( v ,y ,.. v
tion of lemma 1. reveals , if  we exchan ge h ( D ~v for cih(0)y in these

equat ions  and rep lace I by c~( t , y , y (1) , . . .y (n 1) )P r o o f :  We wri te using the hypo thesis 
it follows from the optimality of h(D)y that

= 
~~~ 

L(y,yW . .. .y ) + ( p ( D ) y ) 2r d t  0 (25)

= r (2r—l)(q(D)y)2~~ 1(p(D)y- —i-- D q ( D )y )  We use this fact as follows . Tn (23) and (24)

~0 ~~~~~~~ replace h(D) by cih(D) and rep lace by ~~. Then use

+ 
this new ve rsion of (24)  to e l i m i n a t e  ~ (n)  in the
new version of  (23) . This y ields0r (p (D)y +9( 2 , (1) (n=l))d~ 
n~ 2 ~j__ (1+1)D)y)  ~)(y,y , . .  y

0 
. 

1-0 ~~
( i)  y - 

~~~~~~~~~~~~~~~~~~~~~~~~~

- . 

~~~~ 
(q(D)y)~~ + E~ (20)  

+ ~
2r ( h ( D ) Y) 1  - -L( (1) (n-I)

y y  ...,y )q
~_ 1 

~
2r
(h(D) r

r (26)
where ~ in the last in tegra l  is g iven by

( 1) ( n — I ) ) = (P ( D ) Y )
2r_ 2  Let 1’ indicate the derivative of ~ with respec t to

, . .  .y a. Then
2r—3 2r— 2..2(p(D)y) (q(D)y)+.. .+(2r—1)(q(D)y) n—2 - -

( 2 1 )  ~I’ (1+1) 
~~~

__

~~~ 

(n—i )

and is nonnegative in view of the first inequalIty 1 0  ~~~~ 
~ 

- 

~y U ~~~~~~~~ 
+.

of this section. This representation makes it clear
that the way to minimize n is to let p(D)y+q(D)y=0 

~~
2r (h(fl)y)1_2 2r—l ~4t

because E(’) and E(0) are fixed by the initial data 
r t

and the stabilizing assumption.
= _2rm

2
~
’_l ( h ( D ) y ) 2r (27)
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I

In order for to vanish at a = 1 it is clear sufficient condition is developed (see theorems 4
that the last term on the left must equal the term and 5 of Part II). The basic ide a is , of  course ,
on the right. But at a = 1 ~ equals ~ so we ob tain that the system
the key equat ion

p(D)y+ q( D) y  — u; ~ (t) — y
2r_l

2r 
~~~ 1) h (D ) y — 2 r ( h ( D ) y ) 2’ (28)

should be “passive” or “positive” in a special and

The first consequence we draw from (28) is strong way , na m e l y ,  in a way that is revealed by

that since 0 i ~ cannot depend linearly on ~(u1_1) 
- pol ynomial ~ and ~ functions .

it must s a t i s f y  If  we give up the requirement  on L that  i t  be

1 — ~ ( h ( D ) y ) 2r .f$ (  (1) (n_ 2)
) (29)  pol ynomial , then the class of l inear  control  laws

y,y , ..  y
which are op timal becomes wider still. The reason

where S = l/hfl_l with hn...l the coe f f i c i ent of for this is that it is best understood in the

in h(D) (necessarily nonzero), context of this theorem and stay be explained by
saying that there are positive systems which are

Us ing our new represen ta tions for ~ in (23) we not polynomial ly posi t ive . This is brought out
get forcefully by the resul ts of O’ Shea [8] .  In view
n—2 ~1t of this one may also state a related result.S. ___.2._ y ( 1 )

+2rB(h(D)y)
2r
~~ ( D h ( D ) y )

Theorem 3: Given the linear system (3) therei 0  
~
Y
~~~~ L(y y (l )

y
(fl_l)) (h ( D ) y ) 2t (30 ) exists a nonnegetive function L such that for (3),

(4) the con trol law u = —q(D)x is optimal among all
wi th the unders tanding that the h (n) terms which stabilizing control laws provided
appears in the second term on th~~?eft mus t be
eliminated using (24). This is conveniently done ~~~(p(D)y+~~~ _iq(D)y)(q(D)y)

2k
dt ~ 0 (34 )

by subtract Ing h~~ 1(p (D ) y +h(f l )y  f rom t*~(D)y y i e l d i n g
for all paths y of compact support and p (D)+q(D)

2 r ( h ( D ) y ) 2
~~~

1( h ( D ) y + p ( D ) y )  has all its zeros in Re s < 0.

— —L(y,y~~~ ,. . .y
1)
)_ (h(D)y)lr + ,~ (31) One connection with Fourier methods should be

pointed out, One sees easily (for example bywhere
l e t t i n g  y(t)=sin i~t) that a necessary condition

E ( -
~ 
+~ (h(D)Y)

2r
) (32) for the hypothesis of theorems 2 or 3 hold is thatdt o

This then yields the equation of the theorem state— Re(p(iw)+ q(iw))q(—iw) ~ 0 (35)
nant if we let q(D) = h(D).

We s t i l l  mus t  e s t ab l i sh  tha t  L is homogeneous as a consequence the Nyqu i s t  locus of the system
g(s)  — q(s)/p(s) satisfiesof degree 2 r .  This is ac tua l l y  a consequence of

the nonnegativity of L in the following way . Let 
Re[l+ (

2r_l
L0 be e i t h e r  the col lec t ion of hi ghest degree terms ~~~_ )g( s ) 1g (—s )j  0 (36 )

s~’ iwin L or the collection of lowest degree terms in L.
I f  i ts de g ree i.~ not 2r then by (24) we see that L which means g(iw) must avoid a circle centered on
does not depend on ~(l )  and hence L1, is exact In

0 
the negative real axis having a diameter the

the sense of lemma 1. Since it is exact  the high— 2r
est d e r i v a t i v e  of y present  enters  l i n e a r l y  and segment ~

— 
~~~~~~~~~ 

0]. See figure 1 where the disks

since L0 is of extreme degree in L (either the for r=l and r~~ are sketched .
hi ghest or the lowest) this is incompatible with tnt g(iz~)L t 0. Hence L,, most be of degree Zr.

an I in p f such that  u = —q (D)y is optimal for (4 )  —2
Theorem 2: Given the linear system (3) there exists 

Re
among al l  sta b i l i z i n g  con t rol laws if  and only i f

p1-,
[p(D)y+(~~~.i)q(D)y1[q(D)y]

2r_ l
dt

— 1(x) + 
b 

p(x)dt (33) Figure 1: The Forbidden Disks for r l  and r=~I s  is

wi th ~i in p+ and all zeros of p ( D ) + q ( D )  in Re ~ < o . I t is , however, to be emphasized that for r>l
this Nyqu i s t—l ike  c~~~di tIon  is only a necessary

Proo f :  Suppose such a decomposition exists. Let condition for op t ima l i ty .  Theorem 2 mus t be
Li J and apply the inequality of lemma 2 .  On the checked if the Nyquist locus passes into the r— l
other hand , suppose that —q(D)x — u is o p t i m a l,  disk but  not into the r~~ disk.
Then applying theorem I we see that we can take ~
to be L ( y ,~~,. . .~~(n”l) ) and ~ to be E. 5. Stability

Remark: Note t h a t  ~t(x) is necessarily nonnegative .
In Brockett and Willema [3] the conditions under As a direc t result of the Inequality of

Theorem 2 we can establish the following stabilitywhich a decomposition of the type called for here
are investiga ted extensively and a qui te general property of optimal systems. The special case r 1
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~- r~~~is well known . I x1
Theorem 4: If u— —(q(D)y) Is an optimal stabiliz— I r—l I
ing control law for system (3) and performance 1a 1x1 x 21
measure (4) then the null solution of the closed I r—l
loop system obtained by setting u(t)— —k (t)g(D)y(t) 1a2x1 X

31
wil l  be s table fo r  all k such tha t [r] 

~~ : (46)

2r—1 I ‘r Ik( t ) < (37) I x I H2r~~~ L n J
Proof: The closed loop equations are

where the a
1 

are chosen in such a way as to have
p(D)y (t)+k(t)q(D)y (t) — 0 (38) 

E l  E r) 2r
multiply this equation by (q(D)y)

2t’
~~ and rearrange 

< X  ,X > = I x~
it as If y — Ax then there exists A h~ such that 41

(
2 1 ) q ( D ) y 

[r] E r] Er] .2r— l — v —A x . If x = Ax there exists A such
[rJ(q(D)y) [p(D)y+ tha t

= —(k— .~~~L)(q(D)y)
Zt 

(39) d Er] frIx (47)~~~~ = A 1 1using theorem 2 we see that
See our earlier papers [9,10) for some proper ties

— — 4i—(k— -~~~~~~q ( D ) y ) 2 (40) of “super—fr]” and “sui,—[r]’ and some con trol
theoretic applications.Thus ~ Is a Liapunov function whose derivative is

negative semidefinite provided the hypothesis holds. Here we are especially concerned with quad—
ratic forest in x [r ] . It is clear that for each6. An Example
symme tric matrix Q (we write ty for transpose)

To illustrate some of these ideas we consider
the second order system 

~ (x) = 
t Er] fr ix Qx (48)

y = u; Ti — r L(y,~~)+u2”dt (41) is a form homogeneous of degree 2r. If r and di x
exceed I there are noflzero symmetric Q’s such that
t [rJ Er]According to theorem 1 we must have for linear x Qx — 0 so we see that the representations

optimality of ~ in this way is not unique . However the non—

L(y,~’) = 2r(a~+Sy)
Zr_ (2r_l)(a~+By)Zt’

_l S . . 2r—l 
uniqueness i~ easily described . If Qi and Q2

(
&
)y+yyy define the same homogeneous form then Ql—Q2 is

(42) equivalent to zero . Thus we see that give n n and
2r—1 r there is a subspace , K ( i , r ) ,  of  the space of  allbecause an exact form is of the type yyy To 

. n+r—~f ind out if L is nonnegative we introduce ~/y z symmetric ( )—order matrices such that any two

j The condition for nonnegativity is then 
— 

such matrice9
rdef ine  the same homo geoeo us form

if and only if  thei r  d i f f e rence  is in K(n ,r ) .2r (2r—l)S 5)
Zt_ l.fy ~ 0. (43)2r(az~’S) — 

a z(az+ 
The following lemma should be borne in mind

when interpreting the equations which follow .A lengthy calculat ion shows tha t  this is nonnegative
for  some y if  and only if the obvious necessary Lemma 1: The space K ( n ,r) is invarian t for oper—
condition holds on the highest power of z, a tors of the form

2r (2r—l)~ a21’
~~ ~ 0 (44) L(Q) = QA +t A Q (49)2rct - _______ (ri Er]

Moreover there exists a complementary space which -
This is equivalent to 

is also invariant.2 -
~ (45)a IL 2r Proof :  I f  ~ (x) — 

tX Lr I QX [r] then along solutions
Notice that for r l  optimal systems have damp ing of * — Ax we see that
cons tant larger than .7071 but for r = it need
only be larger than 1/2. 

d t
~~

[r]
~~~

Er] 
— 

t
X

[ ] L( Q) X
[ ]  (50)

7. The Riccati—Like Formulation but if Q is In K(n,r) then the derivative Is
clearly zero and hence L(Q) is in K(n ,r).

Fo r the sake of comp leteness we give here the 
If we re gard the space of symmetric matrices“state  space” verøion of the main conclusions. To of order (n+r— l ) as an inner  p roduce space withbegin wi th  we remind the reade r of some notat ion <M ,N~ .t r MtN !.then it makes sense to ask if thewhich wi l l  p lay a role here as it has in some other

recent work in system theory . If x is an n—tuple , 
orthogonal complement of K(n ,r) is also invariant .

(x 1,x2,... ,x ) then by xf~
’] we mean the (n+r—l ~.. To see that  it is~ let 1< belong to K(n ,r). The n

r ‘ for ali gntuple
tr [K( tA

fr)
QQA

fr)
) ]~ trt~(I~A fr]

+A
lr)

K ) ]  — 0 (51)

this las t fact coming from the fact that t A [ ]
= (t A) t r j ~ (See (10 ] . )
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Now consider the l inear sys tem (1) with the 8. R.P. O ’Shea , ‘A Cothined Frequency—Time Domain
per fo rmance  measure S tab i l i ty  Cri ter ion for  Autonomous Continuous

Systems ,” IEEE Trans. Automatic  Control ,  Vol.t Er) [r) Zr
fl x Mx +u dt (52 ) ACI1 , pp.  477 — 484 , July 1966 .

In terms of this notation equation (23) becomes 9. R.W. Brockett , “Lie Theory an- Control Systems
Defined on Spheres ” , SIAM J. on App.  M a t h . ,

Q(A+bc) +t(A+bc) [ ] Q — _ 14_ tc f r l c lr l  Vol. 25 , No.  2 , Sept .  1973 , pp.  21 3—225.(53)
Er]

10. R.W. Brocke tt , “Lie Al gebras and Lie Groups in
and (28) becomes Control  Theory, ” in Geometric Mothods in Control

2 r c cQ(bc)E l +
t
(bc)

E ]
Q = — 

t E r ]  E r ]  Theo ry , (D. Q.  Mayne and R .W.  Brockett , eds.)
Reide l , Dordretch , 1973 , pp. 43—82 .

In the case r 1  this pair of equations specializes
to the f ami l i a r  pair  from least squares theory ,

QA+ tAQ_Qb tbQ = -N ; Qb = c (55)

Assuming con trol labi lity of (A ,b ) ,  according
to theorem 1 these equations have a solution (Q,c)

ACCESSION forif  and onl y if for  some tc ~ .~~n with cb ~ O w e
have NTIS White Sectio,,t E r ]  E r ]  2 2r ) _ l

(2 2 r—l
~r Mx = r (cx) —(c b r—l) ( cx)  (cAx)+E DOC Buff Sectj~~ ~~(56) 

~J.iNM0UNCFD
(1) (n—I)

where E = E(y,y y ) is a perfect diffe r— LS gC 10.~ —~~~
entlal. That is

E = 
t [rl

(~~~~~ +
tA R ) Er] (5 7)

GJSIRI8urloNIAvAJ~~~~j~~for some R = 
tg having the proper ty  that  for all --

F(d) = It(bd) 
E k ]  + 

t (b d ) 
Ek]

R = 0 (58)

td in ‘ ‘  SP~C~A~,

(This last condition Insures that E does not depend
(n)o n y  .)

The verification of these remarks is left to
the reader.
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