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Abstract

The linear time invariant aspects of the least
squares theory is extended in this paper to linear
time invariant systems with performance measures of
the form

n= rL(x) + llullzrdt; L(x) >0; L) =0
0

where L is a polynomial in the components of x.
Those L's which have optimal control laws which are
linear are characterized, and the inverse problem,
i.e. the characterization of those controllers
which are optimal relative to a performance measure
of this type is also solved. Our basic tools in
studying this problem are a new lemma on the path
independence of certain integrals which generalizes
the earlier result on quadratic forms and a
positivity condition investigated earlier by
Jacques Willems and the author.

1. Introduction

R.E. Kalman's 1963 paper [1] characterizing,
for linear stationary systems, those linear control
laws which minimize time independent nonnegative
quadratic performance measures on an infinite time
interval, attracted considerable attention because
the conditions were given in terms of the Nyquist
locus and confirmed, to some extent, engineering
practice. The original paper discussed the scalar
input problem but it was shown subsequently that
the multivariable problem is essentially the same.
Other papers in this vein have appeared subsequently
but always staying within the linear-quadratic
framework .
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where P+ denotes the set of polynomials which are
nonnegative for all real arguments and vanish when
all arguments do. As might be expected this theory
leads to different conclusions regarding optimality,
in general relaxing the conditions found for the
quadratic case. Somewhat surprisingly we find
that the L's which yield linear optimal control
laws are necessarily homogeneous of degree 2r.

Even among these, however, linear optimal control
laws are the exception and not the rule provided

r exceeds one.

A particular feature of Kalman's original
result was that it was stated in such a way as to
imply, together with the circle criterion, a
strong stability property with respect to time
varying and nonlinear gains. We find that even in
our more general context this featuge is preserved.

In this paper we use for the most part, the
notation D = d/dt and write (1), (2) in higher
order form as

p(D)y = u ; (3)
and

n = rL(y.y(l),.--y(n‘l)) + ofdes L e Bt &)
0

In the last section we make the connection with the
first order vector differential equation notation.

2. Path Independence

In our earlier work [2-6] we showed that the
connection between frequency domain conditions and
the existance of quadratic Liapunov functions and
the connection between frequency domain conditions
and quadratic optimality could be made using a

approach we were in [5], able to bring the fre-

‘11 In this paper we work out the corresponding lemma about the independence of path of integrals
D==| theory for linear systems of the form

Q—o x(t) = Ax(t) + bu(t) (1) b ) 1 (4 atx (1)

with performance measures of the rather more general 7 J oz”x & g )

! Q form a dt
i /4 R + This lemma, which we will generalize below, enables ]
[ Ll L f: L(x) + u'dt; LeP @ one to avoid the use of Fourier transforms and ]
» o nanipulations of the Kalman-Yacubovic-Popov type in 4
3 T /. treating these problems. Moreover, using this "

& ]
» :
-

quency domain theory to a new .evel of completion
by avoiding positive definiteness conditions and
hence allowing one to establish for the first time,
frequency domain instability conditions. In this
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paper we take advantage of the intrinsic simplicity
of this approach in using it as a point of depar-
ture to develop the theory of higher order problems
of the form (3), (4).

The lemma of this section depends on certain
elementary facts about the group of all permutations
of a finite set of n symbols -- the symmetric group
on n letters, S(n). Of course S(n) has n! elements;
we denote a typical element by m. If we have an
rth degree form in the variables Xy aXgse o esX W
can represent it by

f = o x AT (6)
€a,b,. . .c)el (n,1) Ex0alcc a’ &
where I(n,r) = {(a,b,...,c): O<agn, O<bgn,...0<csn;
r terms}. But such a representation is not unique
unless we symmetrize. (This is a generalization of
the symmetrization of the matrices representing
quadratic forms.) A little thought will convince
the reader that f may also be expressed as
£+

n!

7€S(n) (a.b,..«c)El(n,x)

Ot'n(a),ﬂ(‘o),...,Tr(c)xaxb"'xc (7)

In such a representation the a's corresponding to

a specific (unordered) collection of subscripts on

the x's are symmetric in that the interchange of

two subscripts in a does not change its
asb,...c

value.

In what follows we use x(i) to denpte the ith
derivative of the function x : TR1 + 7',

Lemma 1: If x : wl o Rl is r times differen-

tiable then the integral
J>b

n= o
a (a,b,...c)ei(n,r) asb,...c

x(a)x(b)...x(c) dt (8)

r factors

is expressible in terms of x(a), x(l)(a),...x(n_l)(a)
and x(b), x(1)(b),...x(m=1)(b) if ana only if the
polynomial in the indeterminates 81385 8y

h(sl,sz, - .sr)

n: meS(n) (a,b,...c)el(n,r)

ab c
%n(a),m(b),...m(c)51%2" * "S5 ®

can be factored as h(s,,S,,...8 )=(s,+s,+...8 )X
m(sl.sz....sr) with m a pczslynom{al. L E

Proof: Without loss of generality we may suppose
that the coefficients o have been symmetrized via
(7). This does not change the value of the integral
and means that we can express h more simply as

h(sl,sz, <098

a_b c
= ) a sisd...8 (10)
(a,b,...c)el(n,r) BBy eere 172 &

Now suppose that the integral is independent of
path in the above sense and that

b
n= v(x,x(l) A ’x(n-l))

a

b
b Cx(a) x(b) e .x(c)
(a,b,...c)el(n-1,r) frgial ua a

(11)
with the B's being symmetrized. This being the
case, the derivative of n -- the integrand of the
original expression for n -- is just

. (a+l) _(b) )
&7, B [x R e
(a,b,...c)el(n~-1,r) a,b,..0C

+x(a) x(b+1) ¥ ..x(c)+ x(a) x(b) e 'x(c+1) I 12

hence if we form h using this expression we see
that
h(s;,8,,...8 ) =

i T (a,b,...c)el(n-1,1)

a_b <
Ba,b, X .c(51+82+' . .-isr) (5152‘ . 'Sr) (13)

Hence the indicated factorization of h is a
necessary condition.

To establish sufficiency, suppose that we
write h(s,,S,,...8 )=(s,+s,+...s_)m(s, ,5,,...5 )
with m gi\lienzin symmetric %o b§ il ke
B(8,:855.+:8.) =
ol LAY NP 5 T
ab c
Ya,b,...cslsz"'sr (14)
Form the function

Ya b Cx(a)x(b)...x(c)
(2, B gosC)EI(B=1,2) > " (15)
It follows by differentiation (as used above) that
the derivative of 1 is actually equal to the

integrand and so n = fi(a)-fi(b) and the proof is
complete.

A=

The operation of passing from the form to the
symmetric function h(s,6,s,,...s_) establishes a
one to one correspondence between homogeneous forms
of degree r in x,x(1),...x(n) and symmetric poly-
nomials in s,,s.,...s_. This operation is vaguely
analogous to thé assignment of a symbol to an
operator in partial differential equations and we
will call h the symbol of the form.

Notice that in the case where p = 2 there is a
particular simplification which occurs in the path
independence condition. In this case we have in-
dependence if

h(s,s,) = ] a sfs) = (s 4s,)n(s,,s,)  (16)

however h(s,,s,)contains s,+s, as a factor
if and only if h vanishes upon setting 8,85
Thus we see that

h(sl,-s;_) =0 (17)

is equivalent to the condition which appears in [4]
and [6]. (Incidentally there are minor defects in
all the previously published proofs of the p=2 case
that T know of., The present proof plan may be the
best way to proceed even if the case p=2 is the
only one of interest.)




3. Sufficient Conditions for Optimality

As is made clear in [6], all of the conven-
tional least squares theory can be derived from
the inequality for real n-vectors <x,x> 3 0 via
completing the square. In the present setting a
key role is played by the inequality in real
variables a, b

2r 2r-1

0 £ a“ +2rab +(2r—1)b2r
2

= (a2 (a2t T it TR e
(18)

This result is easily verified by differentiating
with respect to a and seeing that zero is the mini-
mum value. Moreover a = -b is the only condition
under which the inequality is not strict.

The above observation, together with lemma 1
allows us to state what looks a priori to be a
rather special sufficient condition for
u=-q(D)y to be an optimal control for (3), (4). In
actual fact this condition turns out to be much
more general than it appears. Here and below we
call a control law stabilizing of it makes the null
solution asymptotically stable in the large.

Lemma 2: Let u and y be related by (3). A suf-
ficient condition for a stabilizing control law
u = -q(D)y to be optimal relative to all other
(linear or nonlinear) stabilizing control laws is
that
1 -1
L(y.y( ),---,y(“ ))
= -1 @D e dy- = Da(D)y)
n-1
2 e
+2r(q(D)y)” +E (19)
. . ‘ -
where E = !'2(}'.y"1),...y(n 1)
tion of lemma 1.

) satisfies the condi-

Proof: We write using the hypothesis

r Ly,y D,y O Dy pmy Fae
0

n

r 2e-1) (a(D)y) L p(D)y- - Dq(D)y)
0 n-1

+2r(q(D)y)2r+(p(D)y?rdt + E\o

fm (p(D)y+w(D)y)2W(y.y(1).---y(n_l))dt
0

o

(q(D)y)z’ + EI (20)
0 0

2r=-1
2r

&k
qn--l
where | in the last integral is given by

w(y,y(l)..-.y(n-l) 2r~2

-2(p(D)y)

) = (p(D)y)
2830 (D)y)+. . +(2r=1) (q(D)y) *°~2
(21)

and is nonnegative in view of the first inequality
of this section. This representation makes it clear
that the way to minimize n is to let p(D)y+q(D)y=0
because E(®) and E(0) are fixed by the initial data
and the stabilizing assumption.
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4. The Main Theorems

We now characterize those L's which have
optimal control laws which are linear and at the
same time set the stage for the solution of the
inverse problem.

Theorem 1: The linear dynamics (3) and the perfor-
mance measure (4) give rise to an optimal stabiliz-
ing control law which is linear if and only if L
is homogeneous of degree 2r and

(1) 'y(n—l)

Liy,y ™", )
= (20 @DV F-Q2r-DpMya(my) T e &
(22)
for some polynomia%lg(D)s(qn‘an_l+qn_2Dn_2+...+qo)

and some &= &(y,y ,...,y(“°1)) such that
p(D)+q(D) has all its zeros in Re s < 0.

Proof: We have already seen in Lemma 2 that this
condition is sufficient for optimality. We
establish its necessity here.

Suppose that there is an optimal stabilizing
control law u(t) = h(D)y(t). Then since L is a
polynomial, the minimum value of n corresponding
to an initial value of y, y(1),...,y(n-1) will be
a polynomial in these variables. (This was worked
out in Liapunov's thesis!) Call this polynomial
¢. By computing the derivative of ¢ along solu-
tions of p(D)y = -h(D)y we get

2y Ly O D e
i=0 3y (23)

n-1

provided we set

y(n) = (n-1)

=P ¥ -+ 1P ¥)=(h(D)y) (24)
Moreover, and it is surprising how much this point
reveals, if we exchange h(D)y for ah(D)y in these
equations and replace ¢ by ¢(a,y,y 1 ,...y(“'l))
it follows from the optimality of h(D)y that
3¢
=0 (25)
%,

We use this fact as follows. In (23) and (24)
replace h(D) by ah(D) and replace ¢ by ¢. Then use
this new version of (24) to eliminate y(M) in the
new version of (23). This yields

R I C T DR T

(n-1)
i=0 ay(i) ay(n-l)

[(pn_ly st y)

+ 2T (my) ) = ~ily,y'V,. ..y

)
2T my®t (26)

Let ¢' indicate the derivative of é with respect to
a., Then

n=2 ~ *
39" (i+1) 39’ (n-1)
s Y = —lilp, 1Y +...pY)
i=0 ay(i) ay(n L) enek o

+2T (n(DYy) )-2ra?T1 —E%E:Ty(h(n)y)
ay

e ~2ra?™ (D)9 2% (27




In order for %9— to vanish at a = 1 it is clear
that the last’Ferm on the left must equal the term
on the right. But at a = 1 ¢ equals ¢ so we obtain
the key equation

o0
ay(n-l)
The first consequence we draw from (28) is

that since 0 € ¢ cannot depend linearly on y(n-1
it must satisfy
2 -2
6 = 8Dy 40 oy D, ..y D) (29)
where 8 = 1/h,_ with hy_; the ccefficient of D" '
in h(D) (necessarily nonzero).

2r h(D)y = 2r(h(D)y)?T (28)

Using our new representations for ¢ in (23) we

get

n-2 3¢ 5

I — v P a2esmmyn  onmy)
i=0 dy

= Ly D,y D)y (30)

with the understanding that the h f“)terus which
appears in the second term on the left must be
eliminated using (24). This is conveniently done
by subtractingh ,(p(D)y+h(D)y from Dh(D)y yielding

2 (h(D)y) X L (h (D) yp (D) y)

e <ty V. " Vg™ é ()
where

: 2
B =-40 6 80Oy (32)

This then yields the equation of the theorem state-
ment if we let q(D) = h(D).

We still must establish that L is homogeneous
of degree 2r. This is actually a consequence of
the nonnegativity of L in the following way. Let
Lo be either the collection of highest degree terms
in L or the collection of lowest degree terms in L.
If its degree is not 2r then by (24) we see that Lo
does not depend on y n-1) and hence L, is exact in
the sense of lemma 1. Since it is exact the high-
est derivative of y present enters linearly and
since L, is of extreme degree in L (either the
highest or the lowest) this is incompatible with
L 3 0. Hence L, must be of degree 2r.

Theorem 2: Given the linear system (3) there exists
an L in Pt such that u = -q(D)y is optimal for (4)

among all stabilizing control laws if and only if

b
f p@y+Z5Hay 1 amyy1*  ae
b

a
+ fb P(x)dt (33)
a a

= d(x)

with ¥ in P* and all zeros of p(D)+q(D) in Re s < O.

Proof: Suppose such a decomposition exists. Let
L= and apply the inequality of lemma 2. On the
other hand, suppose that -q(D)x = u is optimal.
Then applying theorem 1 we see that we can take Y
to be L(y,i,...y(“'l)) and ¢ to be -E.

Remark: Note that ¢(x) is necessarily nonnegative.
In Brockett and Willems [3] the conditions under
which a decomposition of the type called for here
are investigated extensively and a quite general

sufficient condition is developed (see theorems 4
and 5 of Part II). The basic idea is, of course,
that the system

2 2r-1

p(D)y+ ;;1 Dy = u; y(t) =y

should be "passive" or "positive" in a special and
strong way, namely, in a way that is revealed by

" polynomial ¢ and |y functions.

If we give up the requirement on L that it te
polynomial, then the class of linear control laws
which are optimal becomes wider still. The reason
for this is that it is best understood in the
context of this theorem and may be explained by
saying that there are positive systems which are
not polynomially positive. This is brought out
forcefully by the results of 0'Shea [8]. In view
of this one may also state a related result.

Theorem 3: Given the linear system (3) there
exists a nonnegative function L such that for (3),
(4) the control law u = -q(D)x is optimal among all
stabilizing control laws provided

- 2k
r (p@y+ ZLamy) (@(m)y) ae > 0 (34)
for all paths y of compact support and p(D)+q(D)
has all its zeros in Re s < 0.

One connection with Fourier methods should be
pointed out. One sees easily (for example by
letting y(t)=sin wt) that a necessary condition
for the hypothesis of theorems 2 or 3 hold is that

Re (p(1w)+ 2521 q(1w))q(-1w) 3 0 (35)
as a consequence the Nyquist locus of the system
g(s) = q(s)/p(s) satisfies

2r-1

Re [1+( 27 ) 8(s) 1g(-s) 30 (36)
s=iw

which means g(iw) must avoid a circle centered on
the negative real axis having a diameter the

segment [- 7%§T‘ 0]. See figure 1 where the disks
for r=1 and r== are sketched.
Im g(iw)
X =1 Re g(i0)
Figure 1: The Forbidden Disks for r=1 and r=«

It is, however, to be emphasized that for r>1
this Nyquist-like condition is only a necessary
condition for optimality. Theorem 2 must be
checked if the Nyquist locus passes into the r=1
disk but not into the r=» disk.

5. Stability
As a direct result of the inequality of

Theorem 2 we can establish the following stability
property of optimal systems. The special case r=1

577
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is well known.

Theorem 4: If u= -(q(D)y) is an optimal stabiliz-
ing control law for system (3) and performance
measure (4) then the null solution of the closed
loop system obtained by setting u(t)= -k(t)q(D)y(t)
will be stable for all k such that

2r-1

7y € k(t) < (37)
Proof: The closed loop equations are
P(D)y(t)+k(t)q(D)y(t) = O (38)

2r-1

multiply this equation by (q(D)y) and rearrange

it as

(q(D)y)2 [p(D)y+( 2 )q(D)yl

> -(k- (39)
using theorem 2 we see that
2 = vt Zhyamy)? (40)

Thus ¢ is a Liapunov function whose derivative is
negative semidefinite provided the hypothesis holds.

6. An Example

To illustrate some of these ideas we consider
the second order system

y=u n= r B F)+ T de (41)
a .

According to theorem 1 we must have for linear
optimality

L(y,3) = 2r(ai+8y) = (2r-1) (ageap) 1(—)y+¥' il

because an exact form is of the type Y&th_l. To

find out if L is nonnegative we introduce y/y=z.
The condition for nonnegativity is then

= Qr-l)B, (o 2+8)° " Leyz 3 0. 3

2r(az+8)
A lengthy calculation shows that this is nonnegative
for some y if and only if the obvious necessary
condition holds on the highest power of z,

2r-1)§ 2r-1 30 (44)
This is equivalent to
2r=1
a /B P (45)

Notice that for r=1 optimal systems have damping
constant larger than .7071 but for r = @ it need
only be larger than 1/2.

7. The Riccati-Like Formulation

For the sake of completeness we give here the
"state space" version of the main conclusions. To
begin with we remind the reader of some notation
which will play a role here as it has in some other
recent work in system theory. If x is an n-tuple,
(xl,xz,...,x ) then by xI[T] we mean the (P+r-1)-
tuple

578

~ xr -
1
o xr-lx
3 Vo 2
a xr-lx
[r] 251 3
x = i (46)
gl
| 5 )

where the ui are chosen in such a way as to have

<l D> o g2
If y = Ax then there exists A ¥l such that
y[r],A[r]x[rI_ 1f i

X = Ax there exists A[r] such
that

d [r] _ [r]
qc X A[r]x
See our earlier papers [9,10]) for some properties
of "super-[r]" and "sub-[r]" and some control
theoretic applications.

(47)

Here we are especially concerned with quad-
ratic forms in xlY¥J., It is clear that for each
symmetric matrix Q (we write ty for transpose)
o0 = Sx{FlgxlT) (48)
is a form homogeneous of degree 2r. If r and di x
exceed 1 there are nonzero symmetric Q's such that

tx[r]Qx[r] = 0 so we see that the representations
of ¢ in this way is not unique. However the non-
uniqueness is easily described. If Q) and Q)
define the same homogeneous form then Q;-Q; is
equivalent to zero. Thus we see that given n and
r there is a subspace, K(an,r), of the space of all

+r-1
symmetric & )-order matrices such that any two

such matrices define the same homogeneous form
if and only if their difference is in K(n,r).

The following lemma should be borne in mind
when interpreting the equations which follow.

Lemma 1: The space K(n,r) is invariant for oper-
ators of the form

t
L@@ = QA +"A[ 1Q (49)

Moreover there exists a complementary space which -
is also invariant.

Proof: 1If ¢(x) = tx[r]Qx[r] then along solutions
of X = Ax we see that

dg t [l']Qx[f] tx[r]L(Q)x[r] (50)

but if Q is in K(n,r) then the derivative is
clearly zero and hence L(Q) is in K(n,r).

If we regard the space of symmetric matrices
of order (“*"1) as an inner produce space with
<M,N>=tr MEN"then it makes sense to ask if the
orthogonal complement of K(n,r) is also invariant.
To see that it is, let K belong to K(n,r). Then
for all Q

)
tr[K( A[r]wm)1-crn(|&[r]+A[r]x)1 =0 (51)

this last fact coming from the fact that tA[r]
- (t
( A)[r]‘ (See [10].)

i
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Now consider the linear system (1) with the
performance measure

n = Jm L T T (52)
0
In terms of this notation equation (23) becomes

Q(A+bc) [r]+t(A+bc) () * -t Ir) (53)

and (28) becomes
Qtbe) [+ be) [0 = 2t Il [r] (54)

In the case r=1 this pair of equations specializes
to the familiar pair from least squares theory,
QA+TAQ-0b®bQ = -M; Qb = fc (55)
Assuming controllability of (A,b), according
to theorem 1 these equations have a solution (Q,c)
if and only if for some tc € 7R™ with cb # 0 we
have

e I e [F) o () 27 () "L (20-1) (ex) 27 L (cmy 4
(56)

where E = lzi(y,y(l),...,y(n-l)) is a perfect differ-
ential- That is
Gt s t [r]
= +
E X (RA[k] A[k]R)x (57)

for some R = t:R having the property that for all
t4 in w_
t
= + R=0
F(d) R(bd) k] (bd) (k] ; (58)

(This last condition insures that E does not depend
(n)

on y <)

The verification of these remarks is left to

the reader.
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