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ABSTRACT

This work deals with the synthesis of feedback systems to achieve

specified performance tolerances, despite large uncertainty in a con-

strained part of the system, denoted as the ‘plant ’. Part of this work

deals with linear time—invariant (1U) plants where the ‘cost of feed-

back ’, if lti compensation is used, is primarily in the bandwidth of

the feedback loop being much larger than that of the system as a whole

— making the system very sensitive to sensor noise. Here, the objective

is to reduce the loop bandwidth by means of non-iti compensation. A

nonlinear first—order reset element (FORE ) is introduced and with it,

a quantitative synthesis procedure which permits design to specifications

despite large but bounded plant uncertainty. The result is a very

significant reduction in loop bandwidth and with it , system sensitivity

to sensor noise. Stability criteria are included which helps generalize

the useful inputs classes.

Another method of non-iti synthesis is by means of linear time-

varying compensation , applicable to a certain problem class. The

solution is not in general available analytically, but is found for

certain cases and exhibits in these reduced ‘cost of feedback ’. In the

final part of this work , the plant can be nonlinear with large unc~er-

tainty giving a set of nonlinear plants W . The concept is use of

a l t i  set P which is precisely equivalent to W providing the output

is, in both cases, a member of an acceptable output set A . A syn-

thesis procedure is presented , based on this concept , for achieving

time-domain specifications of a specified nonlinear character. All of

-he methods are illustrated by detailed design exam ples.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i1
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CHAPTER I. INT~RODUCTION.

1.1 Generalities

An immportant problem area in systems theory is to satisfy

quantitative specifications despite parameter uncertainty. It is

assumed here that there is a single-input—single-output constrained

part denoted as the ‘plant ’ and described by a linear differential

equation with fixed coefficients. (Fig. 1.1)

input~~~~~~~~~~~output y~fh +a
1
y tm ul+__4a~y_ x (x (mI +b

1
x
(m_h1 +__4~~)

Figure 1.1. Plant characterization

There exists a finite set of parameters ~~~~~~~~~~~~ such

that each coefficient is a function of those parameters , i.e.

a. — 

~~~
(k
lfk 2f....ki

) for i= 1 ,n , b . = 
~~j

(Ki~
k 2 .. ..~

k
~

) for

j 1 ,m and K 
~~~~~~~~~~~~~~ 

. Furthermore , it is assumed that

-4 each parameter k, , i= 1, 9. , is associated with a known range of

uncertainty tk~ 
,k . I which can be small or large . We want to

mm max

guarantee time domain specifications ( T . D . S . ) ,  for example unit  step

response of the type shown in Fig. 1.2, despite the uncertainty of the

plant parameters. This means that for any plant parameter combination

P . belonging to the set of possible combinations , the system

output c,(t) is to lie within some prescribed time—domain bounds

def in i ng the region (F ig . I .2 )  C

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ - ~~~~~~~~~~~~ ~~~__ ) & -  
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sy s t e m

output

time

Figure 1.2. Example of time—domain specifications.

It should be noted at this point that it is implicitly assumed

vhat we restrict 
~j  to “reasonable” signals c~~(t )  € ~~~~~.

Mathematically this means that the designer restricts himself to

d’c. (t )
signals c (t ) such that < Y. (t) for i=l,2,...,~ for

dt

some given functions y.(t) . Although the synthesis technique uses

frequency domain specifications, it was shown (H1) that frequency

domain specifications suffice for T.D.S. of even more general type.

It is assumed possible to measure the command input r ( t )  and

the plant outPut c(t) and therefore the most general structure is

that with two-degrees-of-freedom , of which one is shown in Fig. 1.3,

where F and G must be chosen by the designer.

It should be underlined that because of large plant uncertainty

that is assumed here , it is impossible in general to use an open-loop

system and therefore feedback is def ini te ly  needed . This necessitat e~’

use of ~ c~’sor , which in turn introduces sensor noise ‘-~ (Fic . 1.3)
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o J : ~ - L G F~~o R

~~ N
+

Figure 1.3. A two—degree of freedom structure

-, J 1.2 Linear time invariant desiq~~.

If the plant is minimum—phase there exists [Hi] an infinite set

A of (F
i~
G.) which satisfies the T.D.S., despite plant-uncertainty.

The reatrictions on the range of uncertainty have been discussed (H7),

[MB]. Furthermore, given a region (Fig. 1.4) of width at most c

- - 
where c > 0 is arbitrarily small, it is possible to show (Hi] that

the set of (F •~
G ) c which satisf y those T.D .S. is not empty .

system
out~~t

_

o time

Figure 1.4. Example of time domain specifications.

- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
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If a feedback loop gives us such benefits we should expect to pay

a certain price for these benefits .

- ;  1.3 Cost of feedback .

The mean square value of the noise at the plant output due to the

sensor noise of power spectrum ~~~(w) , is given by

~ 47 L(ju) 
2 

________ 
. (1.1)

—
~~ j l+L (j w)~

Assuming white sensor noise of strength and following the general

procedure for the synthesis of linear time invariant systems (L.T.I.)

derived by Horowitz dnd Sidi [H2 J we get results of the form shown in

Fig. 1.5. We can divide the domain of integration in three regions.
2

a) w << u
c , >> 1 and the integrand ~ —9 which tends

to be small over that range, and the range itself (on an arithmetic

scale) is a small part of the range in which the noise effects are

signi f ican t . In any case , in this range the contribution to the

integral is beyond the designer ’s control.

b) ~~ 
>> , then LI << 1 and 

~~~ 
2 2 

~ G I 
2

As G I << 1  in this region , the contribution to the integral

con ~o neglected .

c) w , then L I << 1 , the integrand is

ooi~iva1ent to G1
2 

. However CI >> 1 arid this is the regioi which

contributes most to the integral.

So, two members of the set ,4 d i f f e r  by : a) their spread ~ri the

time domain system-responses to a command-input or by : b) the i r

re~9ective level of sensor ’s noise re~ection at the pl-v’t - inro~t , or by:

~~~~~~~~~~~ _ -‘--~~~~~ —-~~— -- 
--

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~ 
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Figure 1.5. Typical linear time invariant design.

both a) and b ) .

Therefore in a general sense, the less sensitive we want the

output system to be to plant—parameters uncertainty, the bigger will

be the sensor noise effect at the plant input, and vice-versa, and

this is the real trade—off in any feedback system design. So a reas-

onable def ini t ion of optimum is to select (F ,G) € with minimum

G 2
I j-~~ I ~~~dw where ~~~(w) is the power spectrum of the

sensor noise. However , this is a very difficult problem, as yet

unsolved. Our definition for optimum 
~~~~~~~~~~ 

E 4 is one for

which : Mm k where as s -, ~~ , C . Is) -
~ 

— for a-priori chosen
1 es

value of the integer e . Obviously , this definition is closely

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-- ~~~~~~~~~~~~~~~~~~~~ ~

—.--
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related to minimization but it is definitely not the same thing.

Our i~ finition (besides giving a solvable problem) is quite realistic

it is closely related to L(jw) bandwidth minimization . This is

especiolly inportant for higher order (e.g., bending) modes avoidance .

It is worth noting that our definition is essentially the same as

Bode ’s in his derivation of the so-called ‘ideal Bode characteristics ’

tBlI . Using such an optimum criterion, Horowitz [H3] has proven the

existence and uniqueress of an optirum (F
0
,G
0
) € , for a certain

p rc -~ l ’m class.

1.4. Limitations in a L.T. !. design.

The nature of the optimum L is such that M~n k~ means

essentially the minimization of the frequency 
~~ 

(Fig . 1. 5) at which

L(jw) reaches its final asymptotic slope. However, for minimum—

phase L.T.I. networks 
d 2.nILJ is related through Bode Integrals to

If in L(jw) ~ P.(w)+~ 9(u) with A in nepers and B in radians

and if u ~ P-n u/u then (91]

1TB(w ) = I in coth du
x ,~~du 2

= - 

~~ 

d(wB) in coth

4 5  stability requires ~~(~ w ) > —180° for L(jw ) 1 , then ,

beca~ ”e of large uncertainty, the maximum rate of decrease of I. is

-40 -ib/decade over some frecuency range . It will be shown (section

rT .1), ~-‘~•,:‘ver , that the disturbance scecifications are trnnslatable ~nto

a - IIn r h 1~~O margin for L . ( j w )  to satisfy over so’e frequency

k

~
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range 
~ a

W b l (F i g .  1.6), thus MAGNITUDE /
- 

~~~~~~~~~~~~ / jHASE

din !L l is then at most

- (2- — ) x 40 db/decade and Wa

recalling (I.1) and Fig. I.5, the — 

0M _

level of noise at the plant in-

put is thet accordingly increased. W
b

This can be visualized as follows

(Fig. 1.7)

Figure 1.6. Typical L.T.I. design.

PER FORMAN CE
SPECIFICATIONS

,
/ LTI synthesis

procedure

LEVEL OF NOISE AT
- - I P LANT INPUT DUE TO PHASE OF

THE SENSORS L(jw)

L
Bode integrals

quation (1.1)

0~

RATE OF DECREASE

OF L ( jw ) j

Figure 1.7. Trade—off in a L.T.I. design .

One possib’e way to break this vicious circle is to concentrate on

- dZ n ’ L~
~iev1r :~-.s for which the Rod’s relationship relating phase lag to

-— - - -- -~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~ 
——- 

--
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does not hold , namely:

NON - (LINEAR TIME INVARIANT) networks .

1.5 Non — Linear Time Invariant compensation.

We will investigate here :

- NON LINEAR (N.L.) networks

- LINEAR TIME VARYING (L.T.V.) networks.

I.5a N.L. networks.

As was seen, Bode’s gain-phase relationship for LTI networks is

responsible for the large ‘cost of feedback ’ in the synthesis of

systems with large uncertainty.

It is therefore logical to seek nonlinear networks for which that

re ’ationship does not exist, and for the purpose of comparison, to

characterize then by some mathematical tool which reveals their gain-

nhase relations.

The most commonly used tool is the describing functions tG2] ,(Ml)

l’ocause i t uses the same frequency domain concepts as in LTI networks.

The not-~ t ion !N eq i and will be used to characterize respect-

ively the “equivalent” gain and phase of the nonlinear element ~~~.

I I
Ohvic isly, the equivalent gain and phase concept is just a means for

us to try to e’plain , visualize and invent nonlinear devices , whicri

are hon~ f u11y ‘~~e fu1  for our purpose . We certainly do not intend to

rely on Describing Functions to give a quantitative sythesis procedure .

Using the above notation we are then looking for N’.L. dev3 - ~i such

~hat:

d!N Ieq -m db,’decade with IN > - x 90°
du ~~~~ 20

- - --
---

~~~~~~ -- - — ---~~~~-~~~ ~~~~~~~ 
~~~~~~~~~
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(recall that for a L.T.I. system a rate of decrease of -m db/decade

is associated with an average phase lag of -m ~ 90/20°) . This

would then lead to some open loop transfer function L
eq
(S) for which :

di Ll eq 
= -k db/decade with 

~~eq 
> - x

which then implies

dl Lec~~ < ~ L .T. I with 
/~eq 

= 
(~L .T.I.

and therefore I L  ( s ) I  would be as thown in dashed limes in Fig. 1.5.
eq

The improvement to expect in terms of sensor noise rejection is then

- - 

I obvious by inspection of Fig. 1.5.

I.5b Linear time varying networks.

It is well known that time—invariant filters are optimum for

stationary processes, i.e., if all signals are stationary [P11

The fact that we concentrate on specific command inputs starting at

tine t 0  , implies non—stationary processes. Therefore we are

~4
-.

induced to think that L.T.V.  f i l ters  ( F , G) can give better perform-

ances than L.T.I. (F,G) . Physically it means that the feedback

properties are tuned to follow the time-varying sensitivity needs ,

rather than be time—invariant.

1.6 Previous work.

The above topics constitute a very broad area of investigation .

Long ago Holzmann (HlOl mentioned that “control engineers in the

chemical process industries have long recognized the possibility of

ach~eving superior responses by means of nonlinear control” . And

Chesn it ~C2) quoted John Mocre ‘that for any linear control , he could

- ~~~~~~~~~~~~~~ — 
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

-
~~~~~~~~~~

-- -- - -  -
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always build a nonlinear control which would be better” . Clegg [Cl]

and others have noted that N.L. compensation can give better gain-

• phase relations than LTI networks (from the describing function view-

point). But no quantitative synthesis techniques exploiting this idea

were reported . Recently, however, Krishnan and Horowitz (M4) proposed a

‘p.iantitative design procedure using a N.L. element.

On the other hand, it was shown that “variable structure systems”

have adaptive properties (see for example , (Eli, (till, [U21, (Kl]).

In t’-~-’se systems the LTI compensation changes when system state crosses

s switching surface. However, no quantitative synthesis technique for

sati sfying assigned spec ifj catjons over a given range of uncertainty has

appeared for this class. A search of the literature reveals that

besides (H4 1 no quantitative synthesis procedure using N.L. conpen—

s,i~- i ~on has ever been given for uncertainty plants and which is

n-:-’ntitatively related to the performance spe cifications and to the

r d 7 ~i~ ’ of uncertainty.

Much work h~ s been done on the filter problem in bo’h stationary

-‘on- - tationary processes (see, for example, (Wl ) $ [B2) , [Si] , ~!K2 ~ .

• V’~rv litt e has been done in this area for uncertain plants. F e i ~ t.’r

~F 1~ did consider th~ problem of stochastic plant-parameters and gave

a ~ .-~~th e s ’~~~ - - r~~~-~ - :r~’ t uses lt- compensation . However , boz~~~-~e

of the Iineaniz~~ ion th a t  he made in order to obtain a solvable

r rnb~~r’ , his -~y th=s~~s tech”i~ue is approxi~iately valid , at best, for

‘- ‘ - )  ~
- tv” 1 y 1~ arameter uncerta~nty.

S ~ —~ rv we can say that the field of quantitative synthesis uf

‘ ~~ck ~~~-~~~~~~
- -

~~ -sin- , N I.. or L. •
~.V. n.’~ works hoc b~ n-~ly been i nv o ~-

-~~~ -~f — -~
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CHAPTER II. BASIC PREJ.$IMINA~RIES

The work presented in this dissertation rests on the following

foundations :

a) The synthesis procedure for L.T.I. systems to satisfy T.D.S.

despite large plant ignorance, devised by Horowitz and Sidi [H2].

— b) The derivation of optimum linear time varying filters for

non-stationary processes due to Booton (B2 ] .

c) The concept of set—Equivalent- Plant—Linear Time Invariant

(E.P.L.T.I.) used to characterize a large class of non—linear—time-

varying plants, introduced by Horowitz [Hl].

4 We shall now briefly review those topics:

11.1 Synthesis procedure for L.T.I. systems.

The method presented in (H21 is restricted to minimum phase

plants, but has recently been extended to non-minimum phase plants

(Horowitz and Sidi, [H9] ) . In a first step, the T.D.S. are

translated into frequency domain specifications (F.D.S.). Although

no general rigorous translation between the two domains is known,

there is, in practice, little difficulty in effecting one which is

• satisfactory for practical engineering purposes . Thus, for example

tS21 , the T.D.S. of Fig. 1.2 are translated in the F.D.S. of Fic . 11.1

and therefore at each frequency u € ~2 = ( 0 ,=] , the maximum

tolerable variation ~ ln~T ( j w ) ~ on the system overall transfer

function T ~ ‘see Fig . 1.3) is def i ned . The synthesis technique

is —othematically rigorous ~or such u—domain specifications.

Tecor~~ y, a t each € ~ , P .(jw ,) denotes a point in the 

~~~~--~~~~~I~~~~~_ --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~ -- - - _ _ _ _ _ _ _  _ _
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1 10 100

RD/S

Figure 11.1. Bounds on in IT (jw)

cornplev plane which is associated with the plant-parameter condition

i . As i ranges over the uncertainty range the point P.(jw i)

describes a region in the complex plane denoted as the “template ”

of the plant PIju) at frequency w~

Using steps 1 and 2 , ( ‘ rd step) for each € (I , a bound

F ( O çi ) (Fin . 11.2) on the nominal open ioop transfer function L (jw)

~ooi~~tr ’d with the nominal plant condition P~~(ju) (i.e.,

L (i-~) = CP (jw) $ Fig. 1.3) is derived such that :

L
n (jw i) -

~ 1~ l~ L (ju~ ) ~ 
~ In T( 1u z

)
~ 

permitted

when A ln L (ju ,) ~ in P (jw )  (2.2)H fl

Sooner or later there must exist a frequency range in which

sensitivity increases rather than decreases , because in any Tr a :t i c a i

feedback system ~~~
d T TI in - S d-~ = 0 , whe re S = ~~

-
~~

—-
~~ (2.3)

— ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
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is the sensitivity of T(jw) to uncertainty in P . This is some-

times denoted as the ‘equality of positive and negative feedback areas ’ .

Hence, if SI  < 1 over some range (the primary objective z~ a feedback

system ) ,  it must be bala nced by another in which 51 > 1 . It is

easy to live with this constraint in the two—degree—of-freedom system ,

because at sufficiently large u , T is negligibly small, so that

large relative changes Ln T ’ are inconsequential. This means that

at large w , it is essential that the response tolerances ~ in T(jw),

exceed the range of the P (j w )  template in order that L (j w )  nay go

to zero as w - ~- = . S >>l is tolerable in this high—frequency range,

as f ar as its ef fec t  on T (j w )  is concerned , because the pref i l ter  F

in Fig. 1.3 attenuates the resulting high peaking in L/(1+L)

However , the disturbance response Td • C/D = (l+L’ 1 
= S of (2.3),

is then also very large, which is generally not tolerable because there

is no equivalent filter available. Although the parameter ignorance

-~ - problem is assumed to dominate, it is necessary to consider the

disturbance response, at least to the extent of adding the constraint

3 T~ 1 ~ 
= I(l+L)~~~i ~~ , Vu (2.4)

The value of y may be related to the damping f actor C of a second-

order response function by the relation

1. 1r f l ~ax — 
- I

1-u
2
+j2C~ 2C/(l-C

2
) 

- 
-

The above leads to the boundary r~ of Fig. 11.2 with a function

of -,‘ $ e.g. e = 50° if v • 2 3  dB . At low frequencies the

parameter factor dominates for in Fig. 11.2 ,’ so these boundaries

cor.to~ n r.o -art cf ‘
~ 

. There is an intermediate frequency rer ion in

- -~~~~~~~~~~~~~~~ — - -~~~~~~~
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -—_________________ j.t.SS
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which part of the boundary contains a portion of , e.g. (u 4)

in Fig. 11.2. At sufficiently large u (w
~
w
b
) . becomes the

complete boundary .

In a fourth step, using the optimum criteria of 1.3, i . e . ,
I- i

i
Mm k~, , where as s-’ , C , ( s)  -

~ 
— for some given integer e

the optimum L (j u )  was proven to be the one which lies exactly or. its

bound ~ (w~ ) at each € (2 . (see [H2 ] , tH?-1 and (H91).

G(ju) only guarantees that ~ lnl~ ’ju I is satisfied. The pre-

- FLf i l t e r  F is needed in order for — to lie in between T -

l+L Miri

and T!lax
- . L iF is thus derived , for e~ amp1e , by matching F~ with

Max
the specified IT M (jW )  for all w € (2

MAGN ITUDE \ 
(u
1
)

‘ (u
3

>

FiQure 11.2. Typical bounds on L n (
~~~

) at different. freque?~~ies.

Ii ~.:_; 
~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~
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11.2 Design example.

The p lant is P ( s )  2 
k 

2 with k € [1, 1000)
s +2C up p  p

€ [—5 , 3 1 , €

the parameter being independant. It is required that the system step

response lie within given T.D. bounds over the entire range of plant

parameter values. This problem was solved by Horowitz and Sidi tH23

and [S2] and the resulting F.D.S. are shown on Fig. 11.1. A peaking

= 2 dB was tolerated which corresponds (Appendix Al) to C = .44 and

to a tolerable overshoot of 21% in the step-disturbance response.

Using the procedure described above ,

47.l9l015(s+ .905) (s+ .92) (s+l7.3) (s+26.l) (s+200) (s+2220)Lz(s) 2 2~~s(s+5l2)(s+5,28) (s+6,l) (s+37.8) (s+50)(s+l000)(s +lO500s+(l5000)

associated with the nominal plant P Is) = 5non
s(s

2
4-2s+5)

Li
(s) is plotted in both Figs. 111.13 and 111.14, The prefilter

9 (s+.94)(s+2.4)is then calculated to be F(s )  = 
2 C orresponding

4 (s+l.5) (s2+4.2s+9)

command outputs and step-disturbance responses are plotted in Fig. 111.18

and Fig. 111.19 respectively for different plant parameter values.

11.3 Optimum L .T .V .  filter for non-stationary inputs.

Given r x1
} a set of input signals that are to be applied to

a system characterized by its impulse response h(t,T) , i.e.

(Fig . 2~~.3 ) :

z Ct) = . h (t,~~) x (C) dCR 0

Furthermore let us assume that any input signal r1
(t )  € {x 1} is the

_____ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-~~~~
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sum of a signal component 1 (t) and a noise component I
N
(t)

x1 (t) = 1 (t) +1 (t) with ~x }  
‘ given .

Let:

y
11
(t
1
,t
2
) ~ x

1
(t
1
) X

1
(t
2
)

~ x1 (t 1) 1(t
2
)

where the bar denotes the average over the ensemble of input functions .

Note that ~~1
(t

1
,t

2
) = y

1
(t
2
,t
1
) . ‘

~sN 
y~~ are

defined similarly. It can be shown that:

y
lI 

‘
~
‘ + + 

~
‘Ns + ‘

~
‘

Let q(t,~~) be a given ideal system impulse response which ,operating

on the signal component 1( t ) , gives the desired ideal output

signal :
t

x It) = / g ( t , C )  I ( C )  dCD 0
If e(t) 

~ 
XD

(t) - XR (t ) , how should h(t,t) be chosen so as to

min imize  T(t) for all t ? It can be shown [32] that:

2 t tt
e (t) = Y DD

(t
~~

t)  — 2 1 h ( t ,C) Y ID
(C

~
T) dC + ff  h ( t ,T

1
) h (t,T

2
)

~y11
(T
1,
T
2
)dT 1dT

2

A variational argument leads to the optimum h(t,T) to be the solution

s r 0 (~, T )
e ( - )

1N + 4 ‘p 
+

L h (t,—)

Figure 11.3. Linear time varying optimum filter. 

~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~i-~~~
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of the integral equation:

t

~ ID (t,t) = / h (t ,ç) y (~~r) dC for t > 1 (2.5)
0 II

Given the deterministic signal sIt) , how can one approximate

• the autocorrelatia’~function y (t
1
,t
2
) for practical pu1~poses? We

f i rs t  note that y (t
1
,t2

) is a symmetric function , continuous if

Is is continuous. Let us consider signals existing on (C4 ,T] where

T can be as large as desired . We can consider y
55

(t 11t 2
) as a

definite symmetric kernel and by application of Mercer ’s theorem tC3),

(C4)

(P(t)W (t )
~ 

= 
r 1 r 2 

(2.6) for all t1
,t2 

€ (Q ,T)
II r=I. r

where A and W (~ ) are respectively eigenvalues and corresponding

eigenfunctjons of $ i.e., non trivial solutions of:

~p (s) = / -y11
(s,ç) (p (C) dC (2.7)

r r r

For practical purposes, we can certainly approximate (2.6) by:

~‘Z (p(t )(p (t )
= 

r=l 

r 2 
(2.8) for all t

1
,t
2 € [0,TJ

where N is such that the norm on the space I.
2 

tO ,T1 of the error

is less than a given tolerated error £ , i . e . ,
TT 

p (t )(p (t)! 2 21 1
11 (t

1
,t
2
) — 

r 1 r 2 
dt1dt

2 
= 7 < c (2.9)

* 00 1 r r=N+1 X
r

11.4 Concept of set—Equivalent—plant-linear time invariant.

It was suggested long ago to replace non—linear or linear time

va rying networks by an approximate equivalent linear time invariant

ct es,for convenience in analysis and synthesis. The Describing function

~ 2 1 is a well known example of such a substitution . However, it was 

-
-
- 

~~~~~~~~~~~~~~~~~~ I
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definitely not used as a tool for quantitative synthesis in uncerta in

systems. The concept of Equivalent rlan t Linear Time Invariant

(E.P.L.T.I.) set which can be properly used for quantitative synthesis

was recently introduced by Horowitz (Hi, H6]. This concept is now

briefly reviewed. Given ~‘ig . 11.4) R={r} and D= (d} — two finite

sets of deterministic command and di.;turbance inputs.

Let I = {i t),c~=l , . . . N } be the given set of system inputs for which

the design is to be executed , where may consist of a command , a

disturbance, or a combination of any two of these. Given the set

C~~[t1 =~~~~(t)} of acceptable system output signals associated with

it is possible to find the corresponding set Z~~tt)  =

of acceptable plant output signals and thus the set 7 (s] = w-~z (t)L.

Let the plant be characterized by a set W = ~~ (because of plant

uncertainty) of nonlinear time invariant (the latter for the

sake of simplicity - the extension to nonlinear time vary ing is

straighforward ) continuous mappings w : 1(t) ~~z(t) , with uni que

continuous inverse w~~ (Bi). Then for any plant w . € W there

ex ists a plant input signal x~ . (t) which produces the plant output

signal z~~(t) € Z
°t tl and we can define :

P .~~(s) 
~~~z~~(t) ] z~ (s)

* ~~ [x .(t)] I (s)
* as the a . — equivalent plant linear time invari-tnt (~~.P . L . T . .)

transfer function , in the sense that the input x~ . (t )  into the li near

P
t
(s)- gives the same output as the input X~ . (t) intq the non-linear

plant w . . Thus the method is restricted to nonlinear w for w~~~~ch

the set X is Laplace transformable. Restriction is made in t h e  mean-

t~ ne to design orocedure for w such that ~~a (5) is minimum c h ap ”- iv -

: — _ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _
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D:{d(t)}

Figure 11.4. Feedback structure with nonlinear uncertain
plant set W

(B2 ) fo r all a , i , V

As i ranges over all w . € W and V ranges over all

z~ (t) € ~
a

t~ 1 describes the set:

= {P.~~(s) , z~~(t) € Z
a
(~ l $ w . € w }

which is defined as the a —E.P.L.T.I. transfer function set associated

with the input signal ~
a
(~) over the output set C

a
(~ ) and the non-

linear plant set W

Once this is done, the quantitative design procedure used for

L.T.I. systems [H2] can be applied to the E.P.L.T.I. problem where the

specifications on the acceptable output are those assigned to the non—

• linear em blem . P~~[s) becomes the uncertain L.T.I. plant set in this

equivalent L.T.I. problem. Schauder ’s fixed point theorem is used to

prove that the solution to the latter problem is valid for the nonlinear

nlant set. The synthesis procedure of Paragraph 11.1 can be easily

exte~~ ’- ’ to nonlinear tine varying plants.

- ~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i::i
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c~.~PTFP III. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

111.1 INTRODUCTION.

The Clegg Integrator (C.I.) is a linear integrator (L.I.) whose

output y is reset to zero whenever the input x crosses zero ( C i ] ,

see Fig. 111.1). If it is properly inserted in a feedback loop system ,

it can reduce considerably the system step response overshoot.

The C.I. response y(t) to a sinusoidal excitation x(t) ~s

shown on Fig. 111.2 and its describing function N for sinusoidal

inputs is plotted on Fig . 111.3. It is seen that the rate of decrease

- - of NI and of the L.I. are the same. However, L.~= -3~° compared

to -90° for the L.I .  Therefore the phase margin associated

with the “non—linear ” open loop transfer function L
q
(S) containing a

C.I. is bigger (by 52°) than the one associated with LLTI (s) contain-

ing a L.I. in place of the C.I. As we know phase margin is closely

r lated to the overshoot in the system step response. This explains

cmal itnt i v-~ly the differences mentioned earlier noted by Clegg . However ,

quantitative synthesis can not rely on Describing Function Theory (as

• 
* 

a lready stated ) and in any realistic design one has to overcome a big

- * instability problem if one wants to use a C.I. (see Chapter IV). To a

large ex~nn~ the ‘Fi rst order reset element ’ (FORZ ) (which is the

l inea r  e l e me nt  1/s+b whose output y is reset to zero whenever the

input x crosses zero (Fig. 111.4)) overcomes the instability

problem mentioned before , and this will be explained in detail in

Chanter IV.

It is worth noting ~~~~~~~~~~~ 211.2 , r:I.~~), t h at  I’-~Pr 1 - ~~-~r~



1(1)  
~~ ( t )

C .$_r. (‘ ~~~( t )  C ..y. ~~R (
~ 

v,(’)

Figure 111.1. C.I. Ficrure 111.4. FORE.

(ces. b.w)

.~E~~ __”T~, 
‘

~~~~

2 b/u .01 .1 1. 2. 3. 7.

~~~~~~ 
No rmalized

-
~~ 

~ reset value j .98 .86 .26 .10 .05 .01
reset value)

Figure 111.2. C.I. response to Figure 111.5. FORE r-~sponse tc a sine
a sine wave, wave.

Figure 111.3. Normalized describing functions of C.I. & FORE.

as a linear element to slow-varying signal and as a non-linear element

to fast-varying signals,because the value of the reset (Fig. 111.5) is

definitely a function of the input signal frequency. This gives a flex—

ibility , not available in the C.I.

Furthermore the frontier between the two characters can 1 -

adjusted to a particular design.

111.2 Analysis: Characterization of ‘FORE ’.

Some tools are first derived that are used to solve the synthesis

problem.

____________________  - —,--\ - - - 
~~~~~~~~~~~~~~~
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III.2a. Equivalent linear representation.

Let ~ = ~t . , i=l ,2... be the set of zero—crossings of the

* 

input signal x (t) to a FORE (Fig. 111.4), i.e. t. € ~ is such that:

lIt.) = Yf
(t .) = 0

Then for t
N~ 

t< tN+l where tN • tN+l € 9 , we have :

yf
(t) f X ( C ) e b ( t

~~~ dC

If u (t_t
K
) ~ 1 for t~~t~ denotes the Heaviside function

0 for t~~t~

- 
I t i

then : Yf
(t> = [u(t—t

0
)—u (t—t

1
)] 1 .1 X ( C ) e  b ( t  C 

dC ! +

:uIt-t 1 )-~’(t-t2
)] X e ~~~

t C
~~~ 

0 ~

, +

K+ 1
t u (t_tK

) 
~
u(t

~
t
~< 1

)] I X (~~)e d~ + .. +

u (t-t~) / X ( C ) e b (t
~~~ dC = u(t-t

0
) I ~~C)e~~~

t
~~~dC -

- 

t 
t
N 

to

fX(~ )e
(t
~~~dC u(t_ t

K)j 
(3.Oa)

K-~.

Let ~ .~ X(~~)e~~~
(t
K~~~dC (3.0) and notice that

* 
tK l

yQ (t) I X(C)e~~
(t_

~~dC is the output signal of the linear elemant
4 t

0
l/s+b for ~~~~~~ same input x(t) .

N
Then y

f
L) = y,(t) -

~~~~ 

i e ~~~
(t
~~~ ~(~~ t )dT X

K
*] u (t_t

k
) ~~~~

where ~ It) is the unit impulse f’JnctLon.

At this stage several comments are necessary .

-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~
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a) .  Note that I~~ repres.°nts the reset value that occurs at time t t~.

Thus the nonlinear aspect of FORE is represented (3.1) by a train of

impulses of value at t~ E 0 $ added to the input, i.e. FORE can

be replaced (Fig. 111.6) by l/s+b and adding to the input the train of

impulses - ~ j~ ~ (t- t~ ) for tN f t < t~~,], . B). we also learn from

(3.1) that if 1(t) produces yf (t ) , then k ’I(t) (where k is some

real constant) gives the output k’y
f
(t) and therefore the linear chara-

cter is preserved in the multiplication by a constant. This is quite an

* 
important feature because it is them sufficient to characterize FORE for

unit signal, command or disturbance, in order to know its behaviour for

the non unit one . y ) .  From (3.1) one notes that FORE is nonlinear

f rom the additive point of view . If 11
( t) , y~ ( t ) $ and X

2
(t )

y~ (t )  are respectively paired , then in general , X3 (t) = X
1

(t )  + X
2

( t )

gives rise to an output signal y~ (t ) ~‘y~ ( t) +y ~ (t ) . The equality

y~ ( t) = y~’(t ) + y~ It)  occurs if and only if the sets of reset instants

and 0
2 associated with X1

(t) and X
2
(t) are equal. Thus FORE

is a linear element over the class X of input—signals 1(t) that have

the same zero-crossings. However , even when FORE acts on X , it has not
-
~~~~ 

I

the commutativity property with linear elements , i.e. FORE * LTI ~ LTI * FORE .

A~l these, then , legitimize as a notation, the use of (_~~~) *  to chara—

cterize FORE. From now on, any FORE will be followed (even if not

specifically mentioned) by the element ‘s+b) (Fig. 111.7) and we define

~~ ~ L~ I 
~“

~~~~ 
x.~~(t—t ~) tK € 8

rigure_ 111.6. Equivalent representation of FORE.

.
~4

~~~~~ J:~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~
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the t-qu v~ lent open l~~- -~ transfer function L
eq
(S) ~ G(s) P Is). Note that

L Is) = 
~ .. -- (s) -~i no recet occurs . In a similar manner the equivalent

eq - - 1

overall tr~ n-~~e!- f-~~ct:en is defined as T Is) ~ F(s) L (s)/(l~L Cs)).
eq eq eq

By using ~he ~-:~ ival ent representation of FORE shown on Fig . 111.6 and

by application of the superposition theorem , Fig. 111.7 becomes equiva-

lent to Fig. 111.8 from the output signals point of view . Thus the non-

‘meat o-j t -  ut C
NL

(t) is the combination of the linear system output

C . (t) and the train of impulse responses C
T
It)

For -xv- ’nle , in Fig . 111.7, let R(s) = 1/s , D= N = C  • F(s) = 1

L,,q ( S )  = 
~~ 

/(s(s+2-.vN
)) with C < 1 . T

eq
(5) =w

2
/(s

2
+2Cu

N
s+u

~
) . So,

- - I C. ~~) = l — ~~~~~ sin (u ,~t+cos
1
C)/ ir 2 with w

0 ~
‘N 

~~—~2 . The

f~~r~~t rc”- - t ~~e -~,nt t
1 

is such that C
i
(t
i
) =1 (becalIse lIt ) =0)

e ] - i C 1  ~~, (~~
_ cos 

1
C)/~30 

. Uning (3.0),

~‘-,~ -( - - r )/
-
~ 

* * /W N 
and for t

1 
f t < t

2

~ Y) = -x ,~ ~~~( t— t
1

) = e~~~ Nt sin(u 0t+cos 
1C ) /  . Therefore for

the nonlinear system output CNL
(t) C~ (t) 4CT

(t) 1 .

~~~~re 111.7. System block diagram.

I. / ( l + L  ) c~ ~~~ CT I. /(l~ L
RQ  

F> ~~~q > e~~~~l ~ >
l
~~~~ ~l 0~~~

eq 0 eq

-i I 
— ~~~ ~ L- — t ~~)

N O ~~ > t V l  - -

l/l~~L 1 ~ e b (t
~~~~x~~~~~ ,1 F.~~ - .,-

~o~ ~~~~~ )
Figu re 111.8. Ec-.2 iva l- ~- system block ding r-im .

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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In sussnary :

C (t) for t~~~t1CNL
(t) = 

for t ~ t2
This result is very interesting because the steady state is reached

in a finite time t
1 , which is impossible to acheive with L.T .I .

systems and because the result (0% overshoot in the system step response)

is independant of C and . However , it is of little practical

use because of the pure 2nd order system considered here.

Physically the above is easily explained. After the first re—

set occured, the steady state (1= 0 Yf = O  , c — l )  is reached which

eliminates the dynamics for t ) t1 , despite possible ignorance in

* Iii
- ‘ N

III.2b . Non-linear step response overshoot.

Using some of the results of the previous section , it is poss-

ible to calculate the nonlinear overshoot that occurs in the step

disturbance response of the system shown in Fig . 111.7. For practical

purposes because of the universal character of the ‘optimum ’ L.T.I.

open ioop transfer function L (j w )  in problems with large parameter

uncertainty, it is possible to approximate the resulting high order

e’~~d~
L/(l+L) by a delayed second order function TM,p(s) 2 2s

* C linear system

/ \

l~~,rt— \ ..
.‘

/ linear ‘.,. ....‘
system

Fi~~~ e 111.9. Linear and nonlinear system step responses.
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This approximation is justified in Appendix Al. In the second—order

-C~/VT~~
2

syster’ the overshoot is related to C by OViin 
= e (3.lb)

and to the magnitude peaking by “~—(jW) = 
1 

For the
-

. 

- 
l+L max 2ç/i~~

2

remaining of this paragraph, t~ is assumed to be zero. Therefore the

following results will only be applied to those systems for which the

time delay can be neglected (see Appendix 1).

Consider the system of Fig. 111.7, where r = n = O  and d ( t )  is

e
_
~~Nt —1

a step. Then in Fig. 111.8 : Cict) = 
—2 

sin (u 0t+COs C) with

W
O

= Ir:•
~~~~

WN

* The first reset instant occurs at t ~~~~ C~~~ therefore
- 

1

the first reset value is: (~~ = —Ci
)

t t

= - f C i
(C) e b (t l-C) dC = + e~~~ l + 

e~~
tl f  e~~ c~(c) ac af ter

0 —Cu t 0
N

integrating by parts. As Ci(t) = sinw0t , we have

1
1* = + 

e bti 
— 

b
2 

l’-2C~~~+ (
WN ) 2 ( e )

N
tl + ! e

_I
~
ti ) (3 . 2 ~

The nonlinear system step disturbance response is therefore:

r Ci(t) for t~~~~t1
CNL

(t )  = 1
i CL

(t)_1 1 *CZ
Ct_t

l) for t
1~~

t~~t2

with t1 , t 2 E 0

There exists at least one extremW’~ at t
0 

€ tt1
,t
2
] at which ,

~NL
(tO* = it

0
) — ~~~~ * ~~~(t~~~~t )  = 0 (3.3a)

P- -p lacing each term by its respective value gives:

— (,‘a t
N 

sinw
0
t

0 
- * (JFr2 cos’,~~ t0-t1) - Csinu0 Ct~

_ t ,))e~~
! l

~ 0

~cing sin~~ t, ~ ~~~~ and cos~ t -
~~ we have :o].

~~~~~~~~~~~~~~~~~~~~
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— C u t
w e  N ON I l — I  *e~~N

t
lu ) sinu t,, = 0 (3 .4a )1 N O~~.

~s to € (t1,t2) $ there is only one extrernum at t 0~~-~-- (3.4b ) which

corresponds to the instant at which C
t (t) has its first minimum .

The value of the extremum is:

OV
NL 

= C
NL

(t
O)f c~(t0) — I

l~C~ (t0—t1) I ~~ 
OV

IN 
— ~~ (3.5)

with ~ 
R 

(M 2
e~~~ — M  (1—2CM ) e~~

’Ml) (3.6)
1—2CM +M 2 ~ 1 1

i i

R = e~~~~5 C ’
~~ M~ = 

~~~~~ /2C2+v’~~
4
+l , u = 

_c~~~ ~
(3.7) (3.8) (3.9)

and ~a denoting the crossover frequency of L
eq
(S) i.e., w

such that IL (ju ) I  = 1
eq c

Using (3.5) and (3.6) , charts are presented in Fig. 111.10,

giving the net overshoot or undershoot in the step disturbance

response , for the non-linear design , with M -
~~~~ as a parameter.

It is reasonable to hypothesize that for values of t~ very

small relative to t
1 

and t0 , Fig. 111.10 can be used with good

accuracy. Experimental results support this and will be given later.

III.2.c When is it possible to consider FORE as a linear element?

Assume FORE is located as thown in Fig. 111.7. and let d ( t )  be

a step-disturbance and r=O. Let C~ (t) (Fig. 111.8.) be as shown in

in Fig. 111.11, then for t < t
1 

we have:

1(t) = xt (t) = -C~ (t). Al so 1
1
* - f  C~ (t)e~~

(t_t l)dt . (3.10)

If b = O  (C.I. case) , 1
1
* is the area under C~ from t=0 to t

1

in Fi g. 111.11. With b~~O , is the area under curve

B = C (t)e
b(tlt ) . If bt 1 1 by a factor of 3 or more , B is very

~~~~~~~~— --~~~~~~~~~~~
‘--*

~ ~~~~~~~~~~~
— 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~
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small over (O, t
1
) , so ~~~~~ for all t . Using previous res’:lts

—l
we have: t ~ s~~°s C so It > — ~~~) if b > 3w (3.11) is

1 
w
N
/i:

~
2 1 2w~ N

20

0

~~ :::
1DB)

-60 -
14. 6.3 2.5 0 -184
I I I I

IBO ‘ 160 140 120 100
-A rg I.. C J~ c ) I degrees )

Figure_II .lO. Net overshoot in nonlinear design with M = u / b
* 

as parameter.

H

c ~~~~~~~~~~~~~~~~~~~~~~ -~x 0)

Figure 111.11. Derivation of non— ~~~~~~~~~~~~~~~~
linear disturbance response from linear
respon~e.

-- 
-

~~~~~
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satisfied it implies that ‘FORE’ can be considered as behaving like

l/s+b from a practical point of view.

111.3. Synthesis.

III .3a . Phil osophy of the design procedure.

We use the two degree of freedom structure of Fig. 111.7. The

open loop transfer function LLTI(s) has to satisf y bounds (H23 at

each frequency w € (O,=) (Fig. 111.12). In general in the low-

frequency range (w <w
b
) L

LTI
(jw) lies on bounds due to the specifi—

cations on the command input responses and in W > W
b 

L
LTI

(s) is

determined by the maximum tolerable overshoot in the step disturbance

response. This merely means that for W 2 > W > W b , the bound

imposes a certain phase margin 8
M 

for L
LTI

(ju)

*çq(.)

Figure 111.12. Typical linear and nonlinear designs.
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Recall that the smaller the phase margin, the bigger is the

tendency to ‘-n stab i ii ty  characterized by a larger overshoot. The N . L .

character of the FORE in this higher frequency range (w ‘u )  , will

permit a smaller phase margin °A on L (s) for acheivj ng the sane

specified maxinuin tolerable overshoot in the step disturbance response.

This allows a faster decrease of L~q (iu)~~Fig. 111.12) and is accom-

panied by the reduction of the sensor noise effect at the plant input.

We can adjust  the value “b” of FORE such that in the lower frequency

r— ’nae (u
~~

ub
) FORE acts like a linear element , so that the bounds

on L I s) due to the command input are unchanged. Consequently theeq

prefi]ter F remains L.T.I. which is certainly an interesting feature

and one o~’ the important advantages of FORE over the C.I. Therefore a new

set of bounds on L
eq

(S) ha s only to be derived in the higher frequency

range (w>u
b
) . This is done by using Chart 111.10 as will be

explained in Pa rt I. For high plant gains, an undershoot problem arises

which is treated later in Part II.

III.3.b. Nonlinear Design Details — Part I.

Without loss of generality, the design details are better presented

by means of an example. We will take the example of section 11.2

tr=eted in [H2 1 . The bounds 7 ( w )  due to command response specifications

* and the bound $ due to the disturbance response specifications ,

are plotted in Fig. 111.13. To simplify the design with little loss in

exploitation of the benefits of nonlinearization , the parameter b of

FORE is chosen approximatel y at the f i rs t  w value (denoted by u
b

at which ryjw) lion on in Fig. 111.13 • i .e .  at which the

disturh ]nre response dominates, in the present case at 60 rpS (Fig .I1t .13.).

Th~S definitely assures that the (nonlinear response to r ) ( : i n~~ r

________ 

_____________________ — ~~~~~~~~~~~~~~~ ..-,—. —---- —— -- —w
-— — --—-—-—- . - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 

. -..- .---~~~~ *— -  — . - ~~~~~~~~~~~~~~~~~~ *
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f f 2 )

60

/ —UItMDCSIGN

- —- I— 
~~~~~~~~~~~~

~ 24O.50L ~___2 fi
t528

j~.~~ 28 1160

— 3c00
/

.180 .90
OE G~~E ~ S

Fig ure 111.13. Linear and nonlinear designs on Nichols chart (at K— 1).
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response to r ) . From Fig. 11.1. the maximum bandwidth of

2 2 4 - ½T(jw) ~ 7 rps . From the relation BW = un (l—2C ~
(2—4C 

~~ 
)

2~~ , L

is certainly less tha1 14, so (3.11) is easily sa t i s f ied .  The above

choice for b considerably simplifies the design details, because

only the disturbance response need be considered , meaning that only

is changed into ; the other 7 ( ce . )  boundaries need not ~e

recalculated . In general, in problems with large parameter uncerta inty ,

this method of choosing b will have (3.11) easily satisfied which then *

assures that the (nonlinear response to r ) = (linear response to r

It is for such problems that the added complexity and resulting

bandwidth saving of a nonlinear design are justified .

How is obtained? Of the total ensemble of plants, consider

t’~at subset whose loop transmission LPG has crossover frequency

~~nce there may be an infinite number of plants in this sub-

set, pick the one with the largest value of L/(l+L) 
jGO 

Fr om

Fig.  I I T . l O  at M = 1  , 20% overshoot gives 8 = 180—155=25°  . We

position the plant template at w 6 O  (shown shaded in F ig .  111.13),

such that one extreme point Cx) at which it cuts the zero db line

is at 9 = 25° . Another extreme position is at Y at which 9=-~~3-~~,

for which the overshoot is about 3% , from Fig. 111.10. Because of ~-he

shape of the template , it is seen in Fig . 111.13 that the correspon~~~r.q

extreme oosition of L (nominal) is on the vertical line i~=—l44° *

i .e . ,  in the nonlinear design at w =6O , L . may lie on or to( nonunal)
the right of (60) , the latter being the vertical )ine 9 — l 4 4 ° .
The procedure is i l lustrated again , at u— lOU . Consider that plant
value whose loop transr’issjon has w =100 and gives the largest

val ue ~f 1 L /( 14L) I .,~~~ . From Fig .  111.10 , at M = l O O /6o, 20 % over—

chl-’Ot ~i~ ve~ ~ = 180-16c . 5  = 14.5~ . We position the w = l O O  D1an ~

1*~ 

— -- - —~~~~~~ --
~JL _ J ~~~~~~~~~~~~~ ~~~~~~~~
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template such that the extreme point at which it cuts the zero db line

is at 8 = 14.5 . The corresponding positions of L (nominal) is on

the vertical line 8 -160° , which becomes (100)

Some of the experimental results are given in Figs. III.l4,

111.15 at thi s point to support the above . Fig . 111.14 presents

Bode plots of three nonlinear designs whose differences , significant

only for u>l000 , will be explained later. Consider the response

for k=lO in Fig. 111.15. In Figs. III.l3, 111.14, the corresponding

W
c 

is obtained by raising the nonlinear L~~ (iw) by 20 log 10=20 db

or alternatively by lowering the zero db line by -20db , which cuts

L
5
(jw) very close to 60 rps and -140° Hence M =  1 and from

Fig. 111.10 at 140° on the M=l curve, the net overshoot predicted

is 5% , almost precisely that obtained. Similarly, consider k = 2 5  in

Figs. 111.13, III . l4 , III.15. The corresponding W
c 

is obtained by

examining the —20 log 25=—28 db line which cuts L~~ (j w) close to

w=l000 at _1600 . In Fig. 111.10, on the curve M=lOO/6O

(extrapolated from M=l,2) predicts 10% overshoot compared to 9.1%

obtained . At k = 100 , on the corresponding —40 db line : w 200
1,

O=-172° and in Fig. 111.10 the corresponding extrapolated M 200/60

curve predicts about 12% overshoot, compared to 11.4% obtained in

Fig. 111.15.

* 
III.3.c. Nonlinear design — Part II.

Suppose the above approach based on a second-order model , is

pursued over the entire w range , and the resulting nonlinear design

implemented , as was in fact originally done in this research. It is

found that the results are as predicted for command inputs r(t) for

all plant conditions , and for disturbance inputs corresponding to the

- -— —- 
- 

-
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smaller plant gain factor values, from k 1  up to approximately

k=100 . As the plant gain factor is further incresed , there is a

transition from the second—order type response, in the manner indicated

in Fig . 111.15.

There are two important phenomena to be noted . One is the local

maximum marked A in Fig. 111.15, which gradually increases as k is

increased, until k>100 approximately, it becomes the major maximum ,

as it clearly is for the case k—b OO . The second phenomenon is the

local minimum immediately following A , which eventually (at k=100)

leads to an undershoot, growing by the time k—b OO , to 31% under-

shoot; both phenomena not at all as predicted by the second—order model.

III.3.d. Explanation of divergence from second-order model.

The second-order model is satis factory for all plant parameter

combinations P~ such that the effective important part of L. has

relatively few poles and zeros, even though L has exactly the same

number of poles and zeros over all P parameter combinations.

Consider L
1 with say 7 zeros and 12 poles, such that most of the pole

and zero corner frequencies occur at L
1
(jw)~ very small. Thus in

Fig . 111.14, the loop transmission at k=25 is obtained by letting

the present -28 db line be the zero db line. L.K 2 5
(Jw) can be

reasonably approximated by apure second order system for almost a decade

beyond this point . The value of L
25(jl000) is approximately

—70+28 = —44 db and so is 1L25
/ (l+L

25)!~~1000 , since l+L 25 (j1000 )~~l

Therefore , the large number of poles and zeros introduced in the

w (1000,3000) range are com~aritively far-off, and therefore the tire

delay td can be neglected in our approximation.

However, at larger k values these corner frequencies become

- -‘~~ ~~~~~
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less far-off and have a decided influence on the response , because

they occur in a frequency range where L/ (l+L) is no longer very

small. As k increases, the corresponding L/(l+~ ) is a hich-orc~er

system , and t
d 

can no longer be neglected . The response of a time-

delayed second order system is compared in Fig . III.l6a with the actual
L

linear step response of . Note how well the two agree ,
1000

despite the fact that L
1000

(jc4 ) is a very high—order system . The

~nnl~ n~~ r step response is obtained from the linear step response , by

- 
~ns o’~ Ea.(3.1). The first reset is at t

1 $ at which the impulse

resocnse due to an input _x
1
*~~(t_t 1

) must be added to find the e f f e c t

r~~~ F0P1~. Benause of the time—’ielay t
d 

the effect of the impulse

~n n 
-
- felt ‘~ntil t > t

l
+t

d $ thus explaining the local maximum ,

wh i ch are~’s with the time delay, which in turn grows with k

~y-crease of the time delay by postponing the fast change in L magnitude

~~~ ~~~~~~~ now at (1,000-3,000) to a higher frequency , would be very

warteful in terms of L bandwidth. Actually, it is found that a small

incre~ c-n of phase-margin by a few degrees, suffices to satisfy the

~-v-~rnhoot L!oitation.

The second important phenomenon which does not agree wi th  tb-~

a second—order model , is the large undershoot in the step response of

* L/(~+L) ~t large k , as in Fig. 111.15 at k=1000 . This is assoc-

j ei t r’ i with the approximately horizontal character of L
1
(~u) (ses

Fifls. ~~~~~~~ I::.14) in the range w-(1S00,3000) . The frecuencv

of ‘ L./(14L
1
)’ at k=l000 , can be obtained by shi fting h~

‘ore db L ine to —60 db in Figs. 111.13, 111.14 and is shown in Fic .

111.14 . Posides the crincinal peak at , there is a minor peak

(or t horizontal se000nt) at ~~. •  It has been noted ~S2~ nh.~s

- - 
-~ -~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _
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T
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the inverse transform of L
1
/(l+L

1
) can be approximately and qualit-

atively predicted from a sketch of L1
(j W ) / ( l+L1( j W ) l  vs ~ , by

reflecting the latter about the vertical axis. The shape of

at M
2 predicts an increase in the slope of the inverse transform

followed by a decrease, as compared with the time response i f  M 2
was not present. This prediction is borne out in Fig. III.l6b, which

gives the derivatives (impulse responses) of the two curves in

so,- . 
- -

:/ ‘  
400
J
2?\~~

(a) (b)

I I I I ~J .101 I I L
o oflOm p.oCs ., 0004 0

IIM( TIMC

~‘i9ure III.16. The two significant phenomena of Part 2 o~ design.

* I

J~~~~~~~~~~~~~~~~

1

~~~~~~~~~~~~~~~ T

F~g~ire 111.17. Comparison of the three different designs system
step responses at k — b O O .
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Fig. III.b6a . has a minor effect on the step responses in Fic .

1IT .J~ a, but a malor effect on their derivatives in Fig. III.l6.b. The

~~re~ r oee}~ing in the impulse response (due to M
2
), gives the unde’--

shoot observed in Fig. 111.15 at k=l000 . If one uses these imp ’.~lse

response curves together with Eq.(3.l), it is found that the nonlinear

.~.tep response obtained is precisely as predicted by Eq.(3.l) .

The above explanation sugae hat the minor peak in Fig .

IT I .1”- ~bou1d be eliminated , by using a characteristic such as L2 or

in ~~ cs. 111.13, 111.14. The larger undershoot in the step response

was thereby, in fact, considerably decreased as can be seen on Fig .

IIT .17 . We have gone into this matter in great detail , because of ~he

univ~~ -~a1 nature of these results: Use of nonlinear compensation is

just~ f~ed and highly worthwhile when large high-frequency plant gain

factor u’~~ rtainty leads to a large frequency range over which

(in ~~~~~— de~ jc~) must decrease relatively slowly. Nonlinear design 

- a sir;nificantly larger rate of decrease. The loop character—

istics h~ive a universal nature in the high—frequency region , so it is

irpnrnr- to thoroughly understand their properties in the nonlinear

dosi--n .

* III.3.e. Detailed Design — Part II .

- - While the preceding explain the results obtained , they do not by

* ~h~ -- - elves --rc--vide the data needed , (equivalent to Fig. II.lC for h’

fi r - -b par t of t1’e design) , for quantitative design to specificatic’re .

For ‘-h~~s n~rpece a model is used to represent as accurately as possible

the ~-~-~i ten step disturbance response and to provide the mass of data

th-,’- is n.-’eded in order to permit the designer to systematically find

- 1 t ~~sf 11 - - tory desien parametr’-s for hi~ specific prOblem . Dcpen~~:~- -:

~~~~~~
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upon the nature (odd or even) of the excess of poles over zero e~

use can then be made of:

III 4n(s-~z)  2. -— 8 — jf e is odd2 2 22n z Ls (s +2~~~~ s+w

(3.12 )  L (5) =A w 4n+l - -( s+z) 2. if e L is even.
S2 (S+W 2. ) ( S 2

+2

~
2.w 2.S+w 2.

2 ) 2n z

8 being such that 8 = w 2 where o is the crossoverCmax cmax

frequency of the Leq(S) which corresponds to

In this ‘part II’ frequency range, it suffices to obtain a

satisfactory design at k=km x  corresponding to the zero db line

shifted downward by 60 dbs (Fig. 111.13 , 111.14). This is because the

two phenomena previously noted have their maximum effects at k
4 maX

It is upto the designer to make sure that his actual L (S) (at

k= k ) approximates L
A
(s) quite closely for a decade or so on

each side of the crossover frequency w . If this is not so , thecmax

model L
A
(s) should be changed accordingly. Without loss of ‘~ener-

~ 
ality, following (H2] we select e

L =S , i.e. n = 2  . From Fig .

111.13, 8 = 

~
‘cmax~

2 
~~ 32.b0~ . The design parameters are presented in

* Tables 111.1, 111.2. (1) The C. parameter is related to the peaking in

L , i.e. as i changes from 1 to 4, the nature of L changes in the manner in

Fig. 111.14 for L . , ~ = l to 3. (2) G is the gain margin of L.

at k— k  . (3) D is the phase margin at the point at which

Arg 
~ 

begins to rapidly decrease. There are three data values given

for each combination of the above parameters. These are (a) OV, being

the first peak overshoot value as well as the second and third, when

the latter two are also significant (b) tN , the first peak undershoot

_ _ _  

•
~~~~~-r  
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Table 111.1.

Cl C2 C3 C4

= 10 dB,~ =2.5°

- 
- ov 40, 77 ,90 30 ,44 29 ,32 27

:.‘: 62,66,70 42 29 20
GF 0.39 0.68 1.04 1.6

G — 1 2 dB ~ =2.5°m

nV 23 ,48,50 25,33 23,24 24
42 , 35 28 22 8
0.65 1.07 1.55 2.2

G = 14 dB , t — 2 .5°
Tn

DV 26,42,38 26,27 24 18
26 18 12.5 3.5

GF 1.06 1.80 3.17 9.20

G — 1C dB ,~i 5 °
Tn

DV 28,64,79 35 ,57,58 31,38 30
1~N 61,61 ,62 52 42 22
C-F ‘1.68 0.72 1.02 2.00
-_ 

= 12 dB, ~ — 5 °

OV 18,43,46 22,37 27,28 21
40 38 28 13

GF 1.07 1.16 1.60 4.80

C = 14 dB , ~ — 5
m

Cv 26 ,40 21, 28 21 20
28 28 21 4

CF 1.67 2.00 2.92 12.3

C 10 dB , ~~~10°I -
~~ m

OV 15,39,44 27,36 26
43,34 SO 20

GF 2.12 1.63 4.61

C = 12 dB , -
~ 10°

DV 15,33 ,33 22,22 19
40 34 14

CF 2.38 2 .72  10.4

C = l4 d8,~~ = 10°

OV 2fl ,29 17 13
37 30 10

CF 5.01 4.74 28.8

-- — - - - -‘ 
~~~~~~~~ ~~~~~~~~~ ~-c-.~~ ..=-- - 
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as well as the second and third when significant (c) CT, the normal—

zed hig h frequency gain factor of Leq ( iw )  . (Multiplication by 8

gives the real ga in .)  The ‘maller GF , the more economical is the

design.

It is necesssary to relate the design parameters of Table 111.1

to design numbers , e .g .  poles and zeros of LA whi ch correspond to any

entry in Table 111.1. This information is available from Table 111.2

which relates the entries and parameters of Table 111.1 to those of the

loop transmission of (3.12).

For our design example let us assume that in addition to 20% over-

shoot, (design ) ,  a maximum of 30% undershoot is tolerable , in the

system step-disturbance response. Using Table 111.1, a phase margin

‘-P = 2.5° is then first considered. A satisfactory design can be obtain-

ed with the combination C and G = 14 db , however there is an4 to

overdesign with respect to undershoot specifications. At ~P = 5° , it

is seen that the combination C3 wi th  G = 14 db slightly violates

the overshoot specification , but the undershoot is here too onl y

2 1% < 30% max. The last design is certainly more economic because its

GF .,3.10
16 

, compared to 9.10
16 

at ‘-0 = 2.5° . If ‘.p = 10° , it is

• seen that combination C3 for G = 12 db , is almost satisfactory .

It corresponds (Table 111.2) to the parameters = .29 , z = 1500

1.13 10~ . By cut and try it is found that the design L1 
for

which = .29 , z = 1750 , = 1.15 lO~ satisfies exactly the

specifications , as shown on Fig. 111.17, (curve 1).

If only a very small undershoot (~0%) (design 1,2 
) is tolerable ,it

ran be found , followina the same procedure , that the best design lies around

nb~ nat i n n  C , with ‘O = 2.50 ~nd C — 14 db , corresponding to
4

-1

—

~

- 
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— .50 , — 2.4  ~~~ and z — 2000 . By cut and try the design

is then obtained with — .53 , — 2.25 l0~ , z — 1750

for which the step disturbance response satisfy 20% overshoot and 0%

undershoot specifications , as can be seen in F’g. 111.17. If we want

an r.3 desi gn for which the step disturbance response is s imilar  to

the one shown in Fig. 111.17 , the same procedure gives 
~ 

— .65

= 2.5 l0~ , z — 1750

The th ree d i f fe ren t  designs tha t were obtained (Fig. 111.13,

111.14) are:

k ( s+ .9O5 ) ( s+ .92) ( s+l7.) ( s+l7.3 )  (s+26. l) (s+200) (s+l750)
2

s(s+3l2) (s+5 .28) (g+6 .09) (s+23 ) (s+37.8) (s+50) (s+1 3O) ( 2+2~~~~~ + 2 )

wi th?

k = 2.42 io13 , — 11.5 10
6 

, — 1950 when i — i

k = 9.2 1013 , — 22 .5  106 
, — 5000 when i = 2

k — 11.4 io13 , — 2 5. io6 2C 2.w 2. — 6500 when i= 3

The prefi l ter  for all three designs is , not unexpectedly, the same

as the one used in the linear time invariant design (see 11.2 for

details)

111.4. Design results.

The responses to coosriand inputs for different plant parameter

combinations are shown in Fig. 111.18 for the non1~~near design. Not

unexpectedly, thr se hardly differ from those obtained in the L.T.I.

design (see (H2 , S2fl. Recalling 11.2, let F(s) _2_. 
, 0= 3 rc’s as

a crude approximation . U sing a delayed second order approximation

(Appendix Al)  for th e closed loop , we get (Fig.  111.7) :
Std

C
2.
(~ ) 2 

n e 
2 ~~~~~ 

when the coo-m end is a unit step.
s -4 -2 r ’~ ç-~y0 5 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--

~~
- -
~~~~~~~~~~~~ 

- -~~~~~~~
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Table 111.2.

C
1 

C
2 C

3 
C
4

G 
= 10 dB, •=2.5°

z10 3 :4 3 2 .5  2.0
2 Z_ 7.O.l1 0.175 0.23 0.315

w
2.l0 :0.7 0.8 0.9 1.0

G
m 

= 12 dB, t’=2.5°

z10 3 :4 3 2 . 5  2
0.195 0.255 0.398

w2.l0 :0.9 1.0 1.1 1.55

C = 14 dB , ~ =2.5°m

zlO 3 :4 3 2.5 2
2~~~7

.l4 0.222 0.308 0.50
w2.lO :1.75 1.3 1.57 2.4

G = 10 dB, ~ =5°

aiD
3 :3 2.5 2.0 1.5

2~2._7.0.12 
0.165 0.23 0.37

w
2.1Q :0.8 0.75 0.8 0.97

G = 12 dB, t’=5°m

zlO 3 :3 2.5 2.0 1.5
2~2._ 7*0~~

.4 0.185 0.26 0.462
w
2.10 :1.0 0.95 1.0 1.5

G = 14 dE, ~ =5°

zlO 3 
:3.0 2.5 2.0 1.5

2 Z_ 7 0
~~

55 0.2]. 0.3 0.59
w2.lO :1.25 1.25 1.35 2.4

G — 10 dB, ~‘=  10°

zlO 3 :2.0  1.5 1.0
0.25 0.53

u9 lO :1.15 0.875 1.2

C = 12 dB, ~~=lO°To

z10
3 
:2.0 1.5 1.0

0.29 0.65

~2.10 :1.22 1.13 1.8

G 14 dB , t’ =lO°to

z10 3 :2.0 1.5 1.0
0.325 0.835

UJ z lO :0.77 1.49 3.0

~~~~~~~~~~~~~ 
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Fiqure 111.18. Response to command step inputs.

Let t TI~~ — td 
then for t > 0 ,

C (t)= 1—--~~- n e~~
t + 

a 1 e~~
t
~~
tsin(w v’

2 
t+9 )

+ 
2 ~~—~2 / 2 2

n n a -2a~w+ c~ (3.12a)

with 8 such that C
2.
(O) =0 .

At gain factors k’~.50 we have 
~
‘
~n
> 100 rd/s (Fig. 111.13) and

< .15 (Appendix Al). As w >‘ a ,

C
2.
(t) ~ 1— e — e ~~~

tsin (~~ /i~ C
2
t) (3.13) because 9 ~

i~ this case, and for O < t < t
1 , the input to FORE is then :

o —~w t  -1(t) ~ e n sin (w 11—c t) . Therefore , (1) 1(t) 15 very
n

n

small and (2)  the zero crossings are practically determined by the

feedback loop, i.e., T ~ r/w /1 E
2 

• Therefore, the first reset value

T 2a ) sin(w /i::~: t)dt — 
2a 

and (Flo. III.’-- ’
1 ,,ri

_ 2  
0 

n 2 (].~~ 2) 
- 

-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
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for t , ’ t~~~t 2 
,

C (t) -~~~~~ C (t-t ) = - 
2~ 1 e n (t_t

l
)
sin(~ V~~ l

2
(t-t ))T 1 - - 1 

~
j— 2  

~~~~~ 
n 1

= 
2a 

3/~ 
e
_ 1
~ 5

(t_ t
1 )
sin~~ v~~~~

2
t)

1—c ) - - -

Therefore, the nonlinear system response is, for t
1 

< t < t
2 

:

CNL
(t)

~~~
l_e + -

~~~ sin(-~-~~~~ c
2
t) (3.14) because ~ is very small .

Noting now tha t fo r K~~2,3 ,..., it is seen that the nonlinear

system response is C
NL

(t) ~~1_e
0t for  t not too small , i.e., when

a,w can be neglected in comparison of l_e at 
. For instance at

k = 1000 
‘ 
~n 

~ 600 r~~ and s,’i~ ~~ 1/200 - Therefore when t > .04

seconds (compared to a set tlir .g time of approximately 1 second) ,

i_ e at 
> .1 = 20 cz/w and the sinusoidal component can be neglected .

However for small t ( < .04 seconds) this is not true and the nonlinear

and linear system responses differ one from another. Fortunately, this

cannot be noticed because all the quantities involved are then very

small.

For intermediate values of the gain factor (S~~k f l 0 O ) we

- , have 30 rps <W
n 

< 100 rps and .5 < b/w <1.66 giving (Fig. 111.5)

at most a reset value of 30% of the reset value obtained with a C.I.

in place of FORE , wh ich can once more be neglected because here too

~ > >  0 -
n

For small gain factors (k <5) the linear system is similar to

the nonlinear one because w~ ‘30 ros and therefore b/w > 2 giving

~Fio. 111.5) a reset value which is very small ( <5%) and can

therefore be neqiected .

-
~~~~~ k~~~ ---- ~~-_-- - ---
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Assume now that a command input is applied whose bandwidth is

- smaller than the band’iidth of the prefilter . At small aain factors

gi’iing b/~~~> 2 the reset value <5% of the C .. reset (F!c.I: .5))

can certainly be neglected . At large gain factors giving bandwidth of

loop ‘> bandwidth of p r e f il ter , we have by anology wi th (3 . l 2a ) and
I 

(3.13) C
~
(t)

~~~
command input + A sin(c, /i~~

2t + 9 ) where the residue

- F ( j w ) R ( j~
A is 2 

2 
~~ Therefore A is very small as before , 

J
and the arguments ma&previously are easily extended here.

At intermediate gain values, it might happen for some problems

that the corresponding range w is not big enough compared to the

bandwidth of the prefilter, preventing us therefore from making general

- 
statements. However , for these problems (as in the present case) where

>> bandwidth of the prefilter, even in the intermediate ranoe cf plant

-- 
gain fac tor values , the previous assertions can be extended .

We can therefore conclude that the superposition theorem holds

effec t ive ly,  at all gain factors for corrmand inputs , provided that the
- 

bandwidth of the command signal ~ bandwidth of the prefilter. It ~s

probabi—’ unlikely , in most cases, that the system will be subjected ~o-

command inputs whose bandwidth exceeds 3 times the bandwidth w~ of t h e
I ~I

prefilter , there 3 ~ 10 rps) because the amplitude of the corcnan~

- . signals at t he  outpu t of the prefilter would then be ’very small C < 1/10

of the ~r.oot con~ and a~np1itude in the present case because (s ee TI.

~ .1 )

The step disturbance responses are shown on Fig. III.19.a & b at

different plant parameter values for the L.T.I. design and in Fig. ~~T .

20. a — c  for all N.L. desians. 
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!icure 111 .19. Response to step disturbance (linear design) . 
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In all cases, the overshoot is ~ to the maximu~ tolerable 20%.

Comparing Figs. III.l9.a and III.20.a, one notes that besides the

case, th.?rIj exi-~ts only slic~ht differences . This is expected h’~- :- i-~se ~~r

small ga i n fac tor values , giving b/oi > 2 , FORE acts like a linear

element (No . 111.5) . It is then easily understood why there exists

on ly minor  d i f f e rences  between the , L
2 

and L
3 

designs of Fig. 111.

13 and 14 for those plant conditions . Therefore we can say , that super-

position holds for small gain factor values for disturbance inputs whose

bandwidth is smaller than the bandwidth of the loop . When the latter is

untrue , C~~(t)~~~d (t) because the feedback is ineffective. Therefore

x ( t )  ~~-d (t) aod the first reset is determined by the first zero cross—

ing of d (t) . Let d(t) =Asine
d
t with C

d
>> 1

~n 
by assumption .

Therefore : x~ 
— P dcc)d-c ~ - (where r~ is the reset value

1 o 
Cd

percentage given in Fig. 111.5 as a function of b/w ) ,  and

C . (t) ~~d (t) 2An e ~~~
t
sin(e V’i~~

2 t + 9  ) ,  or eouivalently,
n

cNI
S. . ) 

~~d (t) ~~
C
z
(t) because C

d 
> > l .~ - Therefore superposition also

holds at  small  gain factors when the bandwidth of disturbance > > b and-

width of th e  loop. The d i f fe rences  that  exist for high gain fac tors

‘~tweon ~‘iq. II I . 13 .b , Fig. III.2O.b and c have already been explained ,

and were- therefore expected , so the designer need only consider the non-

l i n e a r  response at high gain factors for disturbances other tha-’ steps .

For in s t a nc e , Fig . 111.21 presents responses at large k to a set of

d is turbances  d ( t )  = e ~d
t
cosCdt rg~ = 30 ,300,1200 ,6000 rps.

Using the apprcxirnation 0(s) 
~ 2 2 we have :

5

Q(s) j-
~

-
~
- ~~~ wn

2
s e 5td/~(s

2+wd
2)(s2+2~wn

s+w
fl

2 ) )  wi th ~ < .15 for

hic:h ga in fac tors as m ’~ntioned above . Therefore : (t TI’~E - t 1 )

~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~ 
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Figure 111.20. Response to step d is:urbance (nonlinear design L
1
).
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~~gure 111.20. Response to step disturbance (nonlinear design L2).

= +A e ~
t
sin (C /i~~

2t + 8  ) Bsin (w~t+B

with A = C /(,r~~~ ( ( C
fl

_w
d

) +4c w
fl

ud
) ½ )

B = C
fl
/(((w

fl
_w
d

) + 4
~~

w
n

w
d
))’

~ 
and C0~~

(t) = 0(t) + q(t )

If e
d
<<w A~~l/(l-~

2
) , B~~~1 and as , 8~~ cos~~~ , we have :

c~, ~ (t )  = P~ e~~~ n
t
sin (C Ii~~

2
t + cos~~~ ) which is the L.T.I. system

step disturbance response when using a second order approximation .

ThrreFore , not unexpectedly at C
d 

= 30 rps (compared with w = 6000 rps

C at k=l000) the system response is very similar to the system step

dic turbanc-e (compare Figs. III.21.d and III.20.b , case f
1
). Therefore

~~~ re.idr- r notes ‘h.it when the bandwidth of the loop >> bandwidth of d.st-

urbance the reset instants are determined by the loop. Hence, for such

inputs the superposition theorem holds even for large plant gains. Of

course , the disturbance attenuation capability decreases as Cd

increases, as is seen in Fi g. I I I . 2 1 .b — c .  If C
d 

6000 rps ‘- >  C 
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C

- . . 1 n 2  n 2then the feedback is ineffective (Ac ’s (—) , B ~ ( )  ) and
,p~~~ 2 C

d 
W

d

C0 1
(t )~~ D(t) = cos~d

t . Therefore x
~~
(t) = _CO

~
U
d
t and the f i r s t

reset is determined by the first zero crossing of 0(t). Therefore,

and X* C
z(t-t i

) 

~~~ 
~ 

Cw n(t t1)sirl(w
n 

2
(t t )) . This is

obviously a very small quantity which can be fleglected in general.

Fig. 111.22 presents the system output for simultaneous command

(unit step) and the disturbance and white sensor noise inputs shown.

It is seen to be satisfactory. Indeed one notes that superposition holds

here, in a general sense, due to the fact that the bandwidth of the

disturbance signal << bandwidth of the loop.

In summary we can say that the superposition theorem holds in a

general sense for command inputs and disturbance inputs provided the

bandwidth of the signals is smaller than the bandwidth of the loop.

Furthermore it should be underlined (as stated many times) that

the reset instants are primarily determined by the loop capabilities

when bandwidth loop >> bandwidth signal , while there are determined

by the signal (command or disturbance) when the converse is true.

Fig. III.23.a,b present the responses due to a truncated ramp

disturbance , and to a unit ramp, respectively . One notes that

(Fig. III.23.b) for some plant conditions a limit cycle occurs in

presence of a ramp disturbance. Much attention will be devoted in

chapter IV to the stability of feedback systems which include reset

eleme nts , and it will be shown how such instabil i ty can be el iminated .
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111.5. Noise Response of FORE.

C III.5a. Open Loop Characterization.

If in the input X to FORE , the forced oomponent due to r(t)

is large compared to a random component n and/or d in Fig. 111. 7

such that the zero crossings are primarily determined by the former ,

then FORE behaves as a linear element l/(s+b) to the latter signal

component. The case now considered is when a ‘:andom stationary zero

mean process is the only input to FORE, which implies that the interval

of time T(t) between reset instants is also a stationary random

process. In principle , the statistics of T(t) may be determined

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.:~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . -
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from those of the FORE input 1(t) , but even if the statistics of

T(t) are known, calculating those of the FORE output Yf (t) would

require computation of the exp’~cted values of a stochastic integral ,

one of whose limits is a random process whose statistics, in turn ,

depend on the integrated process, obviously a~~ernendous task. lising

the fact that for a zero—mean Gaussian—Markov process 1(t ) , the

mean and variance of T tend to zero as the process becomes more

uncorrelated , following references (P1), T is approximated by its

mean value Tm giving :

yf
(t) f  1(C) e~~~

t
~~~dC ~ x c  e~~~

t
~~~d~

t—T(t) t—T

The cross—correlation of 1(t) and y(t) is

t+t —b (t+t—C)
w (r) = E{y~ (t+r)I(t)} — E{ f  X(C)e X (t)dC}
yX t+T-T

T 
8)

= f  ~ (p+r-T )e
m dP . Taking Pourier Transform gives (Gl~

xx in

i 
-T

15
(b+jw) ~

~
I
y1
(C) = 

~~~
(C) ~~

- -
~

— (1—c ) ~I (u)N(w ,t~)

The normalized random—input describing function is therefore

N(w,T ) -T (b+jw)m in
N
n
(C
~
T
m
) 

Cl/(b-4jC)1 
= 1—c (3.15)

4 = ;

so that N J >1 over some C and <1 over others.
n

If the input I to FORE is a stationary white noise process of

power spectrum •11(C) — , then the root mean square value of the

noise output Yf 
is given by:

~~f~rms [~~~~~ 

/ I N (w,T)l 
2 

0
2
dwJ

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _________
_ I
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e bTm/2

f (t) = { e~~t_ ~~ ~
0 elsewhere

e~~~~~

Tm/2 0 Tn/ 2
Figure 111.24. Representation of the filter f(t) .

(y) 
[ 

~~~~~ _
j
:~~

l+e
_bTm) — ~ e

_bTm cos
2 

~~~~ 
b~+w

2 dC 
~ N

= ~ ~
-j (l+e~~

’
~”)

2 
— 27T 2 2 e~~

Tm cos
2 
~~~ du 

] 

0N (3.16)b+w

Let us consider the signal f(t) of Fig. 111.24, we have

F(jw) = —~~~~~ (e (5
~~~

Tn/2 _ e — ( 5+b ) Tm/2 ) = 
s+b 

sinh(s+b)

Using Paseval ’s relation: !f  (t )d t  I F(ju) F(—ju)dw

=

~~~~~ ..;~: -~~+b
2 

si!t(b_:C) ~~~~~~ —
~~~ dw

= 2 2 [co sh —~~~~~~ — cos
2 

—j~ j dw
~~~C+b

bT -I-- ° 2 CT
= ~~. GOsh — 

2 C05 -
~~~~~

- dw (3.lGa)
-~~~ C i-a

-
‘ 2 e

bTm - bTm bT
But I f (t)dt 2b 

= sinh —s— (3.l6b)

Using (3.16a) and (3.l6b) in (3.16) we get :

(y ) 
- =[ L. (l+e~

bTm)2 + (sinh b’r -2cosh2 ~~~~~~ ) ~~~~ 
] 

N
f rins 2b in 

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-.-- --

~~~~ j
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and therefore :

1
1(l+e

}
~
Tm)2 2e~~

Tm
ly ) = I + (sinh bT - cosh bT - 1) If rrns j 2b b in in N

or (Y f
) = 

~N 
“
~g (l_e .bT!n) (3.17)

For the linear element l/s+b , it can be shown that:

iT
~
‘1in 1 rms = 0N ~~ 

(3.18)

It can then be seen from Fig. 111.25 that in this case the noise

level at the output of FORE is always smaller than the noise level at

the output of the linear element.

The theoretical results are in accordance with those obtained

experimentally by controlling the interval between resets. It is noted

that when T b ’  1 by a factor of 3 or more, i.e. when the noise signal

is re’atively slow varying, then there is practically no difference

between FORE and 1/si-b - However, the difference becomes tremendous

as T b << 1 . Here too we can say that FORE can discriminate betweenin

f ’ n t-va r y i n g  n o i s e  signals and slow-varying ones.

(y)f r n s

(yN 
~~~~ 1in~~ifls 

—
~~~~

C — 
- . ..— —

- 
, i i

• —~~~~~~~
- .0

4 
~~~~~~~~~ /

/

4°N2b  /
iT ’•2° N~~~~~ I I I I I I I I I

0 . .15 .5 .75 1. 1.25 1.5 1.75 2. 2.25 2 .5

Fi~~~ e TTL~~~. R.M .S. values of the noise at the output of FORE
5. 1/s-’-b in the oresence of wh it e  noise  inrut.
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III. Sb. Effect at the plant input (closed loop characterization).

The e f f ect of whi te sensor noise , in the closed loop system , at

~ (C)  2
- . . zz L/Pthe plant input Z is given by 

~ ~~ 
j-
~~ 

and the m.s. noise
nn

2 dw
at z is a = I ~~ (C) — , where the ~ are the power spectra .

z _~., zz 2i~

I f L N  ( w , T ) L  ( s)  of (3.15) is used , then at some T , the aboven m eq

becomes i n f in i t e ,  as shown in Fig. 111.26. However , experimental

determina tion of o2(T) gave not unexpectedly finite results for

all T , as shown in Fig. 111.26. In this run T was controlled

by having FORE reset determined externally at period T , rather than

by the zero crossing s of FORE.

When the actual nonlinear system was simulated , the experimental 
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Figure 111.26. Effect of sensor noise at plant input versus
Tm at k=10 3-
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result was ~~
2 (normalized ) value :f 0.37 , corresponding to

T
n 

(2 .5) l0~~ sec. - in Fig. 111.26. The linear design of tH2) for

the same problem resulted in ~ (normalized) = (1.66) ~~~ , both

theoretically and experimentally . Thus, the nonlinear design which

achieves the same system output tolerances to command and disturbance

inputs as the linear design , does so with m s  sensor noise effect

4smaller by a factor of 0.37/(1.66)10 = .0c47. The improvement is

very spectacular in this specific numerical example because of (1) the

large uncertainty in the plant high-frequency gain factor k , which

g-sve the nonlinear design a large freqency range in which to exploit

its advantaqe of larger phase lag, and (2) the great difference

between tL I and 1 PI in the high-frequency range, which leads to

serious noise effect at the plant input. The advantage of non .inear

over linear design will be less to the extent that these two factors

are lessened .

- ~ —- — — ——-—-~~~~~ 
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CHAPTE R IV. STABiLITY OF FEEDBACK SYSTEt~,

~~~TAINING RESET ELE~~NTS.

IV.1. Introduction.

General stability criteria are known for only a small class of non-

linear and time varying feedback systems. The circle criteri— -n , for

example , does not apply to the C.I., FORE or the more general reset

elements. It was necessary therefore, to develop our own criteria for

these elements .

In chapter III we implicitely restricted ourselves to stable open

loop t ransfer  funct ion L
eq

(s) (Fig. IV . l . a)  and will therefore derive

suff ic ient conditions for Bounded Input Bounded Output s tab i l i ty  of

the nonlinear feedback system of Fig. IV .l . a .  We will  then invest igate

possible limit-cycles in the nonlinear feedback system of Fig IV.’.a.

containing the element (l/s+b)* whose output y is r.’set to zero

whenever the input I equals the real value 
~ 
; = 0 , b ~ 0 corres-

ponding to FORE and n=0 , b=0 to C.I. Only stable limit-cycles with

at most two reset instants per cycle will be considered . More general

limit cycles can be considered , however todate, limit—cycles with more

- 
C than 2 resets/cycle were never encountered experimentally.

Our primary object ive will  be to ensure stability when FORE is

used , because of its usefulness, demonstrated in chapter III. In the

fol lowing,  intensive use of the z—tr ans fo rm is made with the usual

notations . * (~~) , .* ( ) , z (- )  . Note that introduced in

chapter III is a number. In this chapter , 9 will denote the set of

reset instants, i.e., 9 = {t
K 

3 x (t
~
) =

~

1

~

_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ,



~ - -~~~~~~

(s+b)
J

~‘i gure IV.l.a. System Block niaaram . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure IV.l.b. Ecu~ v a len t
rerresertat~ on.

‘V.2. Bounded Input Bounded Output (B.I.B.O.) stability

sufficient conditions for a class of nonlinear feed~ :- --,~

systems .

Lemma 1: Consider the nonlinear feedback system of Fig. IV. 1.a ,

where L C s) denotes the open loop transfer function of the L .T .1.eq

system obtained in absence of resets. If the L.T.I. feedback system

in  . tot~ c~ l ly  stable and if the sequence

tK —b (t —ç)
(Ix

K* I x~ç)e 
K dç , t

~~ l~
t
K € 9} of the nonlinear system

tK l

hounded , then the nonlinear feedback system considered when resets

-
~~- -rui . is r ’ 3b 1e in the B . I .B . O .  sense .

Proof : It was shown (equivalence of Fig. III .?  and 111.8) t~at

Fio. IV .l.a. is equivalent to Fig. IV.l.b.

Theri-i ”r~ C ( t )  = C
i
(t) +C~~ (t) = Ct

(t )  — 
~~~~ <

*C (t_t ) -~~~~

I-

~,herr’ C~ (t) denotes the L.T.I. system impulse response. By assunrt ion

~~~

- - -‘ LT~ ~yrt~n is asymptot ical ly  stable. So: V t , 3 n € IR r~.ch

~~~~ c~~~t
1 
~ 

e~~~ (Al) and (B.I.B.O. of the LTI design

which f”llowc from asymptotical  s t ab i l i t y )  YR such that  R(t) 
~

3 M such tha t  C~~( t )  ~ N (A 2) (see F ig .  IV .1 .b ) .

Let -
~~~~ f~ r~ t assume that the set Cl of reset instants is ~~:rI

The n , if sun X a-’~ ‘.~~~‘n ( A l)  WO ?- - v e , f~ r ~~‘t ..
v

_ 
Y~

____ 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_
~~
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:
NT

( t)  = 

K=l
K 

C
6

(t_ t
K

)
~ ~ ~~~ Co

(t -t ~ ) ! 
~u N M

1
e~~~tt&

~ :ven c ‘0 arbitrarily small , 2 t~ such that for t > t~ C ( t ) ~< c

Using (4.0) and (A2) , C(t) � C,(t) + C
NL

(t • ~ M + c . Thus the

lemma i5 proven if ~ is f i n i t e .

Assume now that 0 is in f in i t e  but countable. By assumption

(x K ’} is bounded , so let J~~ sup x~*I . Let 
~ 

t
K t l

wi th  9 . V K , °<
~~K

< , for if 0
K 

for some K

0 would be f in ite , while if a
~~~

O for some K , 8 would not be

countable. Therefoie 
~ A inf o > 0 . We have then:

K K

= 

~~~~ 
C6

(t_t
~ ) I  

K=l~~~~~~~
K

~~ ‘ ~ ~N t
N l  

€ 8 such that t € E t ~ tN+l ) . Therefore YK, (using

Al) !c
~
(t_ t

KH ~~~i 
e °~~~~~~ = M

1 
e
_ t—t~ ) e~~~

(t
~~

t
~~

However: t
N

t
K 

(t
N
_t

N l
) + (t

N l t
N 2~ 

i-

~~ 
•
~~~ 

(tK+l
_t

K
) < (N—K) c

So: C
~
(t_t

K)i ~ M1 
e al t—tN

) 
e

0(
~~

1
~ . Therefore for t

N
< t < t

N+l

¶C NL (t)kuM l 
e
_ t _ t

(l+e +...+e
_
~~~

_U0
)

~~~M1 
(l+e~~

0
+...+e~~~~~~~~~) 

UM
and as N -~~ - C (t)~~ u M (l+e

in0+e_2~
0+...+e~~~

0+... ~~
= 1

NL - I -cxc
uM , l—e

Using then (4 . 0 )  and (A . 2 )  C( t ) ~ ~ Mi- < and 3.1.3.0.
l-e

Stability is therefore proven when 0 is countable.

Assume now that S is not countable. It means that there exists

at least one instant t € 9 and that t + c  € e for arbitarily small

c > 0 . In other terms, there exists at least one interval

~~~ 
(t~ , t~~+CI ] >0 , on which x(t) ~ O . By de f in i t ion,

t
-b’t -~ )= f e P x(~ )d~ and therefore

-) 
t

-

~~~~~~~ 
p-i

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
~~~~ 
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t +~-

b(t
= u n  f X(~ ) e  P ~‘d’~ =0 . The contribution to C ,~ Ct)p 1 r=0 t

p

(Fig. IV.l.b) of the interval ~t , t i -n ]  is therefore nu l l  and the
p p

con t r ibut ion to C
NL

(t) of Q is therefore the same as a single

reset occuring at time t = t . A new equivalent set ~ is then

obtained by removing all the possible intervals 
~ 

from S and by

replacing the”’ by the time instant t . Obviously 9 is coun table

i f and on ly  if  ~Q }  is countable. Given two intervals 0 and

we havc-: Q (1 = 0 for all s , t and ~i Q. C . Using the

fact that between two real numbers there always exists a rational

number , each Q is associated with one rational number. The rational

“embers being countable, so is {Q } . The lemma being true for the

countable set 8 we have proven the lemma for an uncountable set S

Lemma 1 rests on the assumption of a bounded sequence {I1
K*

I * and t are defined by the set of equa tions :
m in

1~ 
rn-i

I x(t = 1 (t ) + ~ x * C ( t _t ) = 0
m ~- ~ K=l K ~ in k

1 t

= 

tp~~ 

~~~~~~~~~~~~~~~~ + 

K=l

with  X
~
(t) £IR(t)_C

i
(t) . In absence of a rigorous proof we con’eo-

ture tha t ~HX ~* ! )  is bounded if the LTI feedback system is asymp-

totically stable. It should be emphasized that once the above is

rigorously established , fruitful results on stability will follow such

as: a) generalization of lemma 1 to any reset element g* (defined

in chapter V) , because g* wi l l  be seen to be a finite combination of

element (l/s+b)* . b) asymptotic stability of the nonlinear feed—

back sy s~ en .

I

~~~~~~ ~~~~JL4~ ~~~~~~~~~~~~~ 
\“~~~ I’~.k -~~ 

- ____
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IV.3. Investigation of limit cycles with one resetjcycle.

Sections IV.3 ,4 are exclusively devoted to such limit cycles,

even when not explicitely so stated. Recalling (3.Oa) the system of

• , Fig, IV.2.a is described by:

t t
K

y (t )  = I e~~~( t) x~~)d~ - I e
_b (t )x(~ )ac] 

u(t_t
K
) (4.1)

K 1  tK i

with t
K 

€ 0 = 
~
tK :X(tK

) =

Equivalently:

t 
t~(

y (t)  = I e~~
(t
~~~x(~ )dc — 

~ I fe b (t  
X (r)d~1 u (t_tK

)
to k=1

- - = 
tK l

+ 

K=l 1 c e t
x(~~}d~]:

(t_t
K (4.2)

y(t) = I e~~
(t
~~~x(c)dc - 

~ I I e
_ t_ 

XUad~1 [u (t_t K
) _u(t_t

K+l)]
t K l l t J L  I0 0 

(4.3)

y(t) I e~~
(t x~~ a~ - e (t-t& 

fe
_b (tk_ x(~ )d~Iu

t_ t
K

_u t_t ,) 1
0 tK 

— 
0 (4.4)

Let yi (t
K
) ~ I e~~~

tK~~~ X ( C ) d ~ (4 .5 a) , i.e., yt (t
K) is the

to
output at t t K 

of (1/s+b) due to the input 1(t) (rig . IV.2.b).

Therefore : =

y(t) = y~~(t) — ~ ~~b (t tK)y (~~~) Iu (t_tK
) _u(t_t

K+l
)
~ 

(4.Sb)
K]. [ J

Note that Yz
(t
K
) (u(t_t

K
) _u(t-t

K+l
)] can be considered as the output

of a sampler f ollowed by a ze~~ order hold , with sampling times corresponding

10
K _ _

Figure IV.2.a. ~ - FORE . ~~~~~~~~ B (s)

Figure IV.2.b.

Foujvalent representation of an cx — FORE.

TT~
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to the reset—instants t
K 
€ 0 , when the input is y% (t) , (Fig. IV.2.b)

The output of the hold is then multiplied by e~~~
t_tK) which is the

impulse response of 1/si-b . Therefore by taking Laplace transform ,

- 
- we have :

B
e
(S) 

~~ 
£ F u t _ t

K 
- u (t _ t

K+l ) 1  e
_ b ( t _ t

K )] 
(B

0
( s )  * _.L.

1_e 50 K
where B0

(s) = , i.e., B
0(s) is the Laplace tra~’sform of a

zero order hold and 
~

i ~~~ ~~~~~~~~~~ 1Therefore: B
e
(S) = 

~

— - ? -
~~

—
~~

- d~ (4.6)
c -

l_e~~~~~~°
K

and B Cs) = (4.7 )e si-b

Relation (4.Sb) can therefore be considered as the sum of two signals

as in Fig. IV.2.~~, which is equivalent to Fig. IV.2.a from the input—

output point of view.

If a limit cycle with one reset per cycle occurs , then as

T , a constant period . Therefore in the stead y state , the

nonlinear feedback system of ‘ig. IV.3.a becomes equivalent to the

_ _ _ _  [

~~+b)L (s) 

~ 

C

Figure IV.3.a. Feedback system containing an ~~~
— FORE.

G(s) j ~ H 
~~~~~~~~

B
e 1  

~~~~~~~~~
5+b

~
Leq~~~ ~

ri-~~r~- JV .Lh. rcuivalent representation when a limit cycle

with one r-’sot/--yole occurs . 
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linear samplec. data feedback system shown in Fig . IV.3.b. The real

number X
K
* was defined in chapter III as: X~ ~~~e

t1c~~~x(~ )d~

Under the assumption of a limit cycle of period T

XK* 
= 

K~ 
e
_b ( KT_

~
)
x(~~)dC ( 4 . 8 ) .  Recalling the equivalent

(K—l)T

representation of Fig. 111.6, x~ represents the strength of an

t’tpuise who~~ effect is the same as the reset. Therefore, if a limit

cycle sustains, all the reset values are equal and:

X
~K~l = ... = .i (4.9), where U is independant of K

What relation then exists between and c(kT) ? We have :

c *(z) ~ z( ~ c (kT) S (t—KTH (4.10). However, from (4.5a)
K=l

c ( k T) y
~
(kT) by definition. Replacing (4.5a) in (4.10) gives :

c*(z) = z{~~ ~~e
b 

~~x(~)dc 1 6(t—KT) 
]

= ( ~e~~~
T
~~~x(~ )dC e

_b
~~~

l)T 
+ 

2T 
+

e b ) T  
+...+

yT (K-l)T

(4.11). Using (4.9) in (4.11) gives:

1~~~~~~~~.bT ..b(K l)T

= ~ ue
_
~~

m
~ fl~ ~ (t - K T )j (4 . l 2 b )  and: C*(z) = 

-biK l  rnt l (z—l) (z—e

(4.13)
Let us now consider the system of Fig. IV.3.b. We have :

(l+L
eq

(S)) C(s) = R ( s ) G ( s )  + 8
e~

s
~ 

Leq (5) c*(s)

or equivalently:

C (s) = 
(l+L :q (S))(5+b) 

+ 

~~~~ 1+1, Cs ) 
C* (s) (4.14) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 
~~~~~~~~~~~~~~~~~~~~~~~~ i~~~~~i _

-
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Taking the z—trans~’orm gives:

( RG \* / L
= 

\(li-L
eq
)(S+b) ) + (~B l+L

:q 
) c*(s) (4.l4a)

— (s+b)T B L  
* ( L \*

As 
~~~~~ 

= 
s+b 

1 - 
(l:L:: ) 

= i~ ~~~~~~~~~ 
~ (s+b) (1+~~~~)

-l —bT ( 1 1 ‘~% * — —l —bT ( 1 ~ *= 1— (1—z e 
~~~~~ 

( l+L
eq

) (si-b ) )  
— (1—z e ) 

~
(1+L

eq
) (s+b))

and (4.l4a) becomes :

( i ~~
= 

~bT ~‘~(l+L ) (si-b) )
z—e (4.15)1

(1+Leq (si-b ) )
E*(s) 

—bT 
A*(s) (4.16)

z—e

with : I RG \*

A ~~l+L )(s+b) )
= eq (4.17)

-

~~~~~~ ( 
1 \*

I (l+L ) (si-b)
\ eq

As I(s) = (s-I-b) c ( s )  , (4.14) gives then :

L Cs ) (si-b)
= 

G(:) 
+ 

~e
1
~~ i+Leq(s) 

c*(s)
eq

Taking the z-transform gives:

~~(z) (l+~~ ) 
(z) + A*(Z) (i+~~

q 
) * (z) (4.18)

Comparing (4.16) and (4.13) we can conclude that A*(z) represents

the train of impulses due to the resets, and therefore if a limit

—ycle exists, A *(z) = f(z) + 

~

-

~~~~

- where f(z) has all its poles ~~~~~~

i n side the unit circle , and equivalently at the steady state A*(z) = 
~

-
~
-j
~ 

-

Conversely if , as t • , th- - reset values terd toward a conn~~I1t

~~~O with periodicity T, j .
~~(z) • as z~~1 , and thin occurs

when the input z tends toward ~ w i t h  the same per iodici ty ,  i . e . ,

-~ — as z -~ l , then we can conclude to a sustained liinitz-l

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - IITT~~TJ
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cycle of period T . We have thus proven:

Theorem 2: A nonlinear feedback system which contains an

element (_
~~T 

whose output y is reset to zero whenever the input

x crosses cx , for a given a , sustains a limit cycle of period

T with one reset per cycle if and only if there exists some finite

nonzero ‘F , U € ~ such that in the neighborhood of t= , we

satisfy:

I lim (z 1) A*(z) = ii (4.19a)
2=1

II ljm (z—l) x’(z) = cx (4.l9b)
z=1

Qualitative statements about possible limit cycles can be made by

inspection of (4.17). From (4.l9a) a limit cycle exists if

-~ 
~~~~~~~~ 

as z-’- l . However, the number of poles at z l  of

A*(z) is only related to the number of poles at s=0 of ~*(~ )( RGor in other words, to the excess e of poles at s=0 of \(+b ) (li-U)
/ 

~over 
~.,(s+b)(l+L) ) . If e 0  no limit cycle can sustain, while

if e=l a limit cycle is predicted. 4.l9a and b give then the two

unknowns u , T which characterize the limit cycle. Furthermore, as

can be seen from (4.17) the value of e is only a function of the

number of poles at s = 0 of R and number of poles at s = 0 of L

under the assumption that 0 has no such pole. It is therefore ~~~~

striking how for such a nonlinear feedback system the stability problem

is related to the “type” of input R applied and “type”of L , where

by “type” we mean the number of integrations. (Type “0” R corresponds

to a signal R without integration , type “1” to one integration,

etc . . .)

— —_ -~~~. — - —-—h—--— — ~~~- - - .=—.-
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IV.4. Examples of applications of Theorem 2.

It will be assumed that L Cs) has one integration.
eq

- 1
Therefore, in both cases (b=0 , b~~0) S+b

~~
l+Leq I’ 

(which is

the denominator of A*(s)) has no pole at z= l

IV.4.a. Type “0” inputs.

In this case. e=0 and theorem 2 predicts that no limit cycle

can sustain .

IV.4.b. Type “1” inputs.

If b #O (Cs+b )~~ i-Leq
) ) has no pole at s=0, therefore e 0

and theorem 2 predicts no limit cycle. However , if b= 0 , then

e = 1 and a limit cycle can be sustained .

ft 1In ~r~e latter, let G 1  , L (5)  = , R = —
eq s (s+20 )

r 1 s+20
We have, from (4.17): Z 1~ 2

= s +2054-A

z r 2
s+20

s +~c,~ +ft

Suppose that 
2 

-f~<0 and let UI
0 

~~ ,,~~~2 , then:

2a -aT -aT A 
5inw

0
T 

—2aT —aT A 
______-~

--[z(l—e cosw0T—e (a— ~~ -) ~ , 
)+e —e cosw0T+(a—-~—)e ~,

- -
-‘ —CT c —CT -(z—1) (z — e cosw~T + 

— e sinw
0
T)

and 
(z(z_e

_0’F
cosw0

Ti- .~
_ e

_O’Fsinw0
T ) z —~~— e OT

sinw0T A*(s)

= +
2 —aT -20T 2 -aT —2cT- 

- 
z - 2z e cosw0

T + e z —2z e cosw
0
T+e

According to theorem 2 , a l imi t  cycle exists i.f and only if, 3 T~ 0

such that: [condition II)
-aT -e srnw,~T

- 2a 
____________________________Li-rn (z—l) X0(s) — = a

w -aT a -aTZ l  ‘~ 1-c cosu Ti-— e sinw TO w
0 0

In the case of a C.I. (a= 0) , it is easily found that:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T~~~~~~~~~~~~ .
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w T r  or T =—
0 u

0 ,,—~--~2
—20T —201

l—~~ cosw
0
l + e

and ~~ = lim (z—l) A*(z) = 
— ‘F 

l+e~~~
’

z=l 1-c a cosw T+~E_sinw ‘F0 w
0

If ~2 - A > 0 , no reset occurs, and the system is stable if

a > 0 , and unstable if a <0 - The reader should note that if a > 0, a

reset occurs at t== and therefore a ‘limit cycle ’ then occurs of period

T= . These limit cycles were not predicted by using the Dual input

describing functions (G]J . As mentioned before, if b~~O , no limit cycle

cam sustain. Thus the regions of stability with respect to a step

input can be compared in the a - A plane on Fig. IV.4.a,b,c for the

L.T.I., the C.I. and the FORE case respectively. This proves then that

FORE is superior to the C.I. from the stability point of view (at

least for type “1” inputs) as already stated many times in chapter

III. Furthermore for the C.I. (b= 0) , the criterion suggests to

introduce a zero at 5=0 in G(s) in order to stabilize the non1inear~

A A A
I , A

~; - ,  ,
~ “-I

STABLE ~~MIT / A STABLE
- A / /
REGION CYCLE / RE~ ION

- / A i
UNSTABLE ._) / ‘A /

,~~STABLE \
~~~ _,• G

~~~~~_a “i> ~~~~~~~~~~~~
PlC ON UNSTAB E REGION (JNSTABL REGION

(a) :~ TI (b): C.I. Cc) : FORE

ZV.4. Compar~ son cf the stability reqicns .

~~~~~~~~~~ 
.
~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~
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feedback system of Fig. IV.3.a. Another alternative is to in troduce

two poles at s=O in the open loop transfer function Leq
(S)

Those results can be physically easily understood. Indeed,consider

a L.T.I. feedback system containing a linear integrator (L.I.) in its

loop, whose input is I and output y. When a type ‘O” input R

is applied to such a system, as t -
~~~~ , R-~ O , X - 0  and y-~ O

If the L.I. is replaced by a C.I., one motes that the steady state

(1= 0 , y O )  is compatible and thus no limit cycle can sustain. :f

now R is type “1” , then as t-~~ , R-~k , X4~0 and y4- k for

+h~ L.T.I. system. Unfortunately the steady state (X0 , y k )  us

impossible to sustain in the nonlinear mode with a C.I. in place of the

L.I. and therefore a limit cycle occurs. (Note that this mode is comp-

atible with FORE, thus explaining the difference fran the stability

i’oirt of view.) To place some derivative in C (fig. IV.3.a) as is

a’- --- -;--’sted by the criterion implies to place another integration in the

1oG~ (because of the factor 1/0 ) and therefore the state (1=0 ,

-

~ 
- 

y= O ) for the C . I .  becomes a compatible one and a limit cycle is

tho~efore avoided .

IV.4.c. Type “2” inputs.

In this case, e = 2  when b = O  and e = l  when b#0 .

su’:qests that a limit cycle only sustains when b ~O . If b = ~~ , a~~-l it

of osc i l la t ions  would increase with time . For example , if  G l  ,

L (s)  
s s~~2a 

, R(s) —
~~~ , th~ n for b � O , we have :

1 ~
~ s

2-i.2as+A j

I. 5
Z~~ 2

S ~~ -‘c- ’- .-\ j

~ 

I 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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If a2 — A <0 and using = ~~~~ , we have:

-aT a —aT . -aT —aT a -
z(l-e cosw T- ----e 5 m w  ‘F) +e (e -cosw Ti-— 5 m w  T)0 w 0 0 w~ 0

=
a -CT . -aT(z—l) (z—— e smnw 0T - e cosw

0
T)

0

and:
2c 4a2 A z e~~

’1’
sinw T

1(z) = — 

—~— s +  —
~~

--- — 1 
+ ~~~ 2 —aT —2aTs +2as+A z —2ze cosw

0
T i- e

so, as z-~1

2o —aT —aT 2a~—A 2
— (1—c cosw T - e sinw ‘F)

X(z~ 
0 2awp

—CT -aT .(z—1)(l—e cosw0
l - ,.ej— 2 e smnw0

T)

and with C , A = w~ and ~ = cos~~~ we know that a limit

cycle exists if:

~~~(~l_e~~~N
T sin(w

0
T+2~ ‘~

3 ‘F such that lim (z—l)X(z) = 
N 
~ 

sin2$ 
~ a

z 1  ~CwNT 
smn (wpT-’-~~)

1—c smn4~

Let c x a O  (FORE) then we have to satisfy :

sin2~ a e~~~N
’Fsin(w

0
T+2~~) and 9 ‘X’~~O , if - l< C � .19

for which case a limit cycle exis’s. Region of stability with respect

~~~ LIMI\ 

CYCLIN: 

~~ 

STABL/

REGION

Figure IV.5. Stability regions of FORE with ramp inputs.
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to a ramp input are then shown on Fig. IV.5 for the FORE. In order

to overcome the unstabi l i ty  problem noted here, the criterion sucgests

here too, to place a zero at s= 0 in the filter G . An element

like G = —a---- seems then to be reasonable in order to avoid possibles+o

limit cycles in the nonlinear ramp input response and more generally

in the response to type “2” inputs. Indeed ,

1 1  1
Z Ls +cx 2 js +2asi-ftA * t s) = and thus e = 0
z I  2

~ s +2as+A J

We should underline here that theorem 2 only predicts limit cycle

with one reset/cycle. This type of cycle usually only occurs with

ideal 2nd order systems. Therefore, if conditions I and II of theorem

2 are not satisfied , as it does usually for high order systems, one

should investigate possible limit cycles with 2 resets/cycle which is

the most coixuixonly found experimentally.

IV.5. Investigation of limit cycles with two resets/cycle.

If a l imit cycle of period ‘F with two resets/cycle sustain , it

means that the set of reset—instants is composed of two susbsets

where O<A< 1 and where e2 ~
deduced from by a time shift AT . Therefore, the signal

sequence y~~(t) = {y,(o) y~ (AT ) , y~ (T) , y~ (l+A)T) ,...,~~ of

Fig. IV.2.b can be considered as the sum of two sequences

y~~1
(t )  , y * 2

(t )  , each of them of period T • and

y~~(t) = ~~y~ (nT) ~(t-nT) + 

n~0~~~~~~~~
T) ~(t-(n+A)T) ~ y~~1

(t) ~ y~~2
(t)

50:

y (z) = ~ y2(nT)z 
nT 

+ ~ y2
((ni-A)T)z 

n+A)T 
= y~~1

(z) + y~~2
(z)

n=O n=O 
(4.2 )

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Figure IV.6. Equivalent representation of FORE when a limit cycle
with two resets per cycle occurs.

Therefore Fig. IV.2.b is equivalent to Fig. IV.6, with

1 
(s+b) 0

Be
(5) = 

—e 
s+b 

K (recall 4.7) where 0
K 

= t
K tK l  

. When such

a limit cycle sustains, t tK — t~~1 
has two distinct limits

a (n+A)T - nT AT (4.22) and = (n+l)T- (n+A)T = (l—A)T (4.23).

Therefore (recall 4.7 and the definition of y~ ( t ) ) ,  B (s) 8
1
(s) =

1— 
—(s+b)a~e 

si-b 
(4.24) when acting on the sequence y 1(t) while

2
— (s+b)a

B (S) = B
2
(s) = 

l—e 
si-b 

K 
(4.25) when acting on y~ 2

(t) - There-

fore the nonlinear feedback system of Fig. IV.3.a becomes then equiv-

alent to the linear sampled data feedback system shown on Fig. IV.7

from the input output point of view.

— 

~~~~~~~~ 

~~~~~~~Leg
C

B
2
( )=

l_e 
s+b 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure IV.7. Equivalent representation of the nonlinear feedback

when a limit cycle with two resets/cycle sustains.
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We have then:

(1+L (s))X(s)=R(s)G(s)~4~c*(s)8 (s)L (s)(s+b)i-c *(s)B (s)L (s)(s+b)e
ATS

eo 1 1 ej 2 2 eq

(4.26)

Let us denote P 
(s+b)(l+L) A l+L

eq 
A
1

let then Z [K(s) e
ATS

1 = K(z ,m) with m + A  = 1 denote the so—called

modified ~— transforin (see [Li], [31), f s3 1) .  (4.26) becomes :

(s) = (s+b)P+c ~~(s)B1
(s)A(s) (si-b) 4r~~(s)B

2
(s)A(s) (s4-b)e

_ATS 
(4.27)

and :

1(c) ATS
c
1
(s) = ~~~~~

— = P + c ~~(s)B1
(s)A(s) +c *(s)B

2
(s)A(s)e (4.28a)

~ Cs) = c (s)e ATS 
= P

ATS 
*~~~3 (s)A (s)e

XT5
+~~*(s)B (s)A(s) (4.28b)2 1 £ 1 2 2

~~r’r.~~ore after taking the Z—transform:

= p* + c~ (B
1
A)* +(B

2
Ae ATS

)* C*

= (Pe~~~~~+ c~ (B
1
AeATS)* + (B

2
A)

or oquivaientl”:

-

- 
P* (l..AB )* + CAB e~~

T5)* (PeATS) *
= 

2 2 (4.2Q)
A

(Pe ATS ) *  ( 1—PB ) *  + (AB eATS
)* p*

.~~. = 
1 1 (4.30)

2 
A

- 
~

- w it h  A = (l_AB
2
)* (l_AB

1
)* - (AB

1
e
XT5

)*(A?
2
e

AT5)* (4.31)

1~oting thit:

e
AT
~~ Z [ K (s)e T5

e
T5
e

XT
~~ = z z[K(s e~~~~~~

’F
~ z K(~ ,A )

w
~ 

can writo:

(AB
1
e
ATS

)* — z AB
1
*(z,X) , (AB

2
e

AT S
)* a AB

2~~
Cz ,A ) (Pe ATS ) *  = z p (z , \ )

—- —- - - — - . - - —
‘ 

- - 
— 

~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~ 
- — ---

~~~~~~~~~~~~~~~~~~~~~~~~ -- ____________ - -  -
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75- — (s-I-b)A T
As : AB~ = a ~~ 1 = A~~(z) — e A~~(z ,m)

— (s4-b) (1—A)T
AB~ Z IA 1—e 

s+b 1 A~~(z) — e
_
~~~

T
A~~(z.~~)

AB~~(z ,A )  = Z [~ 
i_ e S+~ ) AT 

e (1~~ )sT 1 = A~ (z ,A )  — z e
_
~~
TA*(z)

-(s+b)mT
AB~ (Z,m) = ~ IA 

1—c 
s+b e~~~~

T 1 = A~~(z , m) _ z
_ l
e
_
~~
T
A~~z)

(4.29) , (4.30) are rewritten as: r~~(z) =

-rrtbT - -mbti~(z)(l—A 1
)z) fe A

1
(z.A )) + P(z )zA (z.m)—e A

1
(z)) (4 32)

=
2 

—~bT — \bT (4.33)
ZP (z,A ) (1—A

1
(z)+e A

1
(zjn))+P ( Z)(zA

1
)z,A) — A

1
)z)e I

Taking the ?-transform of (4.27) and usino

—A T (s-’-b)(B
1
A (s+b) )~ = Z 

[A 
(1—e ) 

j = A (s) —A (z,m)e - -

(B
2
A(s+b)) = Z [A (l-e~~~~~~)1 A (z) _A (z,l)e~~~

T

ylves : (4.34a)

Z ( z I  ( (s+b) P) + (A (z)_ e
_
~~~

T
A(z ,m~ c (2) + ) A ( z ,m)~~z e~~~~

TA ( z)~~ (z)
1 2

and by taking the z—transform (*s)e ~~
’
~ ) *  (4.34b)

I (z .A)_ ((s+b )p)* (z,A)#( A(z .A)_ e ~~
ThA(z) )r

1
(z)4( A( z)_ e~~

bTA(z ,A) )c
2
(z) -

- 
- If a 1i~iit cycle w i t h  two resets per cycle sustains, then t h- -  - equence

of reset values defined in -h~ rtn r III
tx-I

is cotsposed of two suhseq~iences

- - - ~~~~~~~~~~~~~~~~~~~~~~

.
~4

~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ _~::-i. ~~~~
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~~~l) —~~( ‘~~~~ ‘ T — - ’= = - = X
(~~~~]~) 

= 
-
. X ( ’ e d~ = = -

(n-~A)T 
-

with and u
2 

independant of K

Therefore , by anology with (4.10) t~ (4.13), at the steady rtate :

u z  V Z
c~~(z) = 

1 
—bT 

(4.35) c~ (z) = 
2 (4.36)

(z—l) (z—e ) (z—l) (z—e

Conversely, if it exists ~ ~2 
, T such that, for the system of

Fig. IV.7, (4.35) and (4.36) are Satisfied , it implies that as t~~~ ,

the reset values have two distinct limits , and therefore a

limit cycle of period ‘P with two resets per cycle sustains.

Therefore we have proven :

Theorem 3: A nonlinear feedback system which contains the r.on—

1 *
F linea r element (~~~~- )~ whose output y is reset to zero whenever

the input I crosses a , for a given a , sustains a limit cycle of

period ‘F with  two resets per cycle, if and only if , there exists

finite nonzero ‘F , 
~2 

€ ~ and A € )0,l[ such that in the

neighbourhood of t~~~ we have:

(z—l) (z_e bT)c
1
(z) = U

1 
(4.37a)

I lim (z—l) (z_e bT )c (z) = (4.37b)
2 2L

1 n  (z—l)I(z) — (4 .3 8a )

~~~~~ ~ Z — ~~~)1I~~ Z , \ )  = (4. 3 11b)
7 —

-
‘ 

- i.d ‘.~~~ - i 0  ~‘.~ rø comp~~~cated than th~ se ‘~f

~,1bt.. ~~ r~’ --‘~ as S’~~-Wn b-~low . t- -

- - ‘ - - .  ~‘e 1* .0 . -
~~~- ~ ~~ -v ~ 1e ~~~~~~

- 

~—d 4 !~~
) 

~ ‘ 
- - - . -s 

- -
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riot interested in the precise value ~if ‘F and A .

L (-b)
As A1 = = 

~~~~~~~ 
l+L~q

(~ b) + E(g )  
;~~~~

- + Z (s) where

i(s) denotes the remaining part of the fractional expansion of A1
(s)

and where it is impl ici t ly assumed that L q
(S) has one pole at

5=- b
-AbT -mbT

Then: l—A
1
(z) +e

_)
~
T
A
1
(z,m) = l_ Z

_bT 
- Z*(Z)+ e 

z—e~~
’F 

+e Z ( z ,m)

~PbT
= e E*(z ,m) — t*(z) (because mi -A =1 )

and l—A 1
(z) +e~~

bTA1 z,A) = e~~~
’F Z*(z,A ) — Z*(z) (by anology)

-mbT — 1 -mbT
A
1
(z,m) — z~~e

_
~~
TP1

(z) = 

z_e
_)
~
T 

+ E*(z,m) — 

z~e~~
’
~
’ 

- z 1 I*(z)

-l -mbT
= E*(z ,m) — z Z* (z) e

and zA1
(z,A ) - e

_
~~
TA1

(z) = z E*(z,A ) —

So in (4.32) and (4.33) the denominator

A — (e
_
~~
TE*(z,m) — r*(z)) (e~~~

’FZ~ (z,A ) _Z* (z)) —

- 
- 

(E *(z,m) _ z~~E*(z)e~~~
’F) (zZ*(z X) _1* (z) e

_
~~
T)

or A = (e bT_z) Z*(z,m)Z*(z,A ) + Z*(z)2(l_z l
e bT)

A a (z_e bT
) (z l:*(z)2 — Z*(z,m) ~*(z,A ))

(4.32~ and (4.33) are then written as:

= 
P(z) (e~~~

’F E*(z,A)_ Z*(z))+P(z,X) (zI*(z,m)_e~~~
’FZ*(z))

1 (z_ e bT) (z 1E*(z)
2 

— ~~(z ,m) E*(z,X))

~ ~(z)

z..e~~
T

= 
zP (z,A) Ce AbTZ*(z m) _E* (z)) +P(z)(zE*(z,A) _ e

_
~~
TZ*(zfl

2 (s~c 
bT)(z

_1
~ *(z)

2 
— Z*(z,m) Z*(z,A ))

— ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~ 2
= —bT (4.40)(z—e )

Two cases are now investigated .

a). b = 0  and , as it is implicitely assumed that t
eq

(S) has only

one pole at s= 0 , ~ (s) has no pole at s=0 , and therefore all

have no pole at z = l  . As lim (e IbT
~*(z,A ) - ~*(z)) � 0 (4.41)

-mbTlim (.~~*(z,m) -- e E*(z)) ~‘ 0 (4.42) , u n  Ce ~~I* (z,m )_ *(z))�0 (4.43)
z=1 z=l

lim (ZZ* (z,A) — e~~~
T
E*(z)) #0 (4.44) and list (z

1Z*(z)
2 _ *(z,m)Z*’z,A) )

z=l z=l

• ~ 0 (4.45) , we conclude that the number of pcies of A~ , A~ at ~ =l

are exactly equal to the number of poles at z=l of P(z) (which has

the same poles as P(z,A ))

b). b � 0  and then E(s) has one pole at s=0 , whose residue is

1/b . The inequalities (4.41 to 4.45) are here too satisfied . Further-

more , al l  terms )~~‘ in the numeration of both and have one

pole at z = 1 which is cancelled out by the one pole at z = 1 of

—1 2
z ~*(z) — 1* (z ,m) )*(z,A) -

Indeed, one notes that the latt:r has no 

::h 

term as 
( 1 )

2 with

y C i )  #0 because y(z) = z —i — —~~
- —i and therefore y(z) ~as

b b b

one zero at z=l  • implying then that z
1
~~*(z)

2 
— (z,A) *(z, n)

has only one pole at z = l  . Therefore we can conlcude here , too,

hat the number of poles at z=1 of A~ ,A is exactly equal to the

number of poles at zal of P(z)

Therefore in all cases (b=0 , b # 0 ) condit ion I of Theorem 3

is satisfied if P(s) has one pole at s— 0  , imolying then that a

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-~-~~~-~~~~~~~~~~~~
-: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i- 

-
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limit cycle with two resets per cycle may sustain. The reader has

certainly noted that P ( s )  is exactly the same quantity than the

numerator of A*(s) in (4.17) (Theorem 2). Therefore the qualitative

- 

_ 
discussion made in section IV.4 for Theorem 2 is easily extended here

and it is seen that the occurence of a limit cycle is entirely deter—

mined by the number of integrations ( type ) of the system—input , while

the limit cycle itself is mainly characterized by the loop transfer

function L (s) . If G has no zeros at s=O , we can conclude then,
eq

that a nonlinear feedback system containing a C.I. sustains in general,

a limit cycle with “type 1” inputs but such limit cycle does not occur

when the C.I. is replaced by FORE. However a nonlinear feedback system

containing FORE sustains a limit cycle, in general, with “type 2”

inputs.
-0

It remains to show that condition II of Theorem 3 is a consequence

of condition I. This is now established.

Replacing (4.39), (4.40) in (4.34a) we get:

1(z) — ((s+b)P)* + A ( z) [z e  Z (z,A ) _ z *(z)) + P(z,A ) (z)*(z,m)

_e~~
bTE*(z)) _z i

e
mbT(zP(z,A)(e~~~

TE*(z,m) _Z* (z)) i-zP(z)(E*(z ,A )

- 
- 

_l _AbT * 1 
A 1 -

—2 e ~~(z))) I
I.

, 
j

~A(z,m) 
[zP z.A te~~~

TZ*(z,m) _E* (z)) + P(z) [z~*(z,A ) _ e~~
bTZ*Cz) ]

~e~~~
’Fu’(z) (e~

mbTZ*(z,A) — E*(z) I + P(z,A ) [z)*(z ,m) — e
tTthT

Z*(z) I)

or 1(z) = ((s+b)P)* + 
A(z)(_P(z)E*(z)z 1 +P (z,A)Z*(z,m))(z_e~~

’F)

(z E*Cz)~ — E*(z,m)E*(z,A))(z_e

+ 
(P(z)E*(z ,A ) — P(z,A)Z*(z))(z_e bT)A(z,m) 

— l 2 -bT (4.46)
(~ ~*(z) — :*(z,m)z*(z,A)) (z_e

- 

—
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Equivalently from (4.34b) we have:

X(z,A) = ((s.i~b)p)*(z,X) +

A (z)(P(z)Z(z,A) — PCz ,A)E(z)) + A ( z ,A ) ( P ( z , A ) E ( z ,m) — P ( z ) z ( z ) )

z 1E(z)2 — Z(~ ,m)Z(z,A )
(4.47)

Defining n = his (sP(s)) we have then:

~ (T ,A ) ~ l~~ (z-l) =~~ A*(1)(E*(1,m) - Z*(l)) +A* (1,m)(E*(1 ,A )_Z*(1~

z=l Z*(l) — E*(l,m)Z*(l,A )
(4.48a)

and limx(z,A )(z—l) ~,,~~
A*(l)(E*(1.A) — E*(1)) + A*(l3A)(E* (l,m) — Z*(1))

z=l E*(i) — Z*(1,m)Z*(1,A )
(4.48b)

— —~ (T ,l—A ) (by definition of ~

~
‘-‘c

~
iling that condition I is satisfied if P(s) has one pole at s=O ,

w-’ r-oj~clude (in that case n#0 ) that condition II of Theorem 3 is

a consequence of condition I.

IV.6. Example of application of Theorem 3.

Let L (s) 2 
and G= l  . Consider R(s) = 

~~
- .

eq 5(9+1)2

Then A(s) = 
2 
2 and thus it can be seen tha t the L.T.I.system

- 
- (s+2) (s +1)

t-i ff~~rd is unstable (oscillatory) . The corresponding system response is

(It tt.c.~I on Fig . IV.9.
Suppoec’ that b = O  , a=0 (C.I.) then:

2(s +l) - 1
= 

2 ~~ ~~ list sP(s) — -
~~

s(s+2) Cs +1) ~ aQ

2 1. . .2 .4(2s+1)
A Cs) = = — + z(s) with Z(s) = — — ________

1 s(s-’-2) (2+1) s si-2 s
2+l

and thus:

E(z) — — 
.2z 

— ~~~ 
2z(z—cosT)+ZsinT

-2T 2z—e z —2zcosT + 1

Z(Z,A ) = 
_ .2e

2)T 
— •~~ 

2(z cosAT—cosmT)+zsinATi-sinmT

— 2zcosT + 1

.‘4
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~J :~

_ _
~~~~~~~ ‘ 

~~~~~~~~~~~ T-------~~ 
-----

~ 
-- - - . 

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
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Besides:

A(z) — 
2 z 

- 
z(z—cos’r) - 2zsinT

5 —2T 2z—e z — 2zcos’F + 1

,-2mT2 ~e (zcosmT-cosAT) — 2(sxnm’F+sinAT)
Atz,m, 5 2T 

— 
2‘z—e z — 2zcosT + 1

~(T,A ) of (4.48a) and (4.48b) is thor. plotted on Fig. IV.8.a 
Cor

different values of T and A . (The reader should remember that

m ~ 1— A  so relations (4.48a ) at A = .2 say corresponds also to

relation (4.48b) at m = .8
- - 

Condition II of Theorem 3 implies that we should satisfy:

— ~ T,A such that ~~‘F,X) r,( D, h — A ) = 0 (4.49)

From Fig. IV.8.a (4.49) is satisfied for: 3< T < 5  and

.l<X .2 , and therefore this region is magnified on Fig. IV.8.b.

.4—

C (X,T) I I
. 3 —  ~!.7 I I

/ 1  I I
(a) II 18 1

.2- 
~~~~~~~~ ,“~/ I

I -

- .9\\\ ~~ ~ I I
C I ‘~~~~— II 2 3 ~ t~ -~~ 5~~~/ 6  7

..3L 

____

- ,CO4 .  - 

Cb)

-1

Fiiure IV .8. Plot of ~(A , T) versus T, 
for the characterization of a

limit cycle with two resets per cycle.
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Figure IV.9. Comparison of the three system step responses.

Thus Theorem 3 predicts a l imit  cycle of period T such that

4.02< T< 4.03 with A such that .176 < A ’  .177 . This is then

confirmed by an analog simulation of the nonlinear system inc ludira a

C.I. as shown on r ig .  IV. 9.

If now b # 0 , ~ — 0 (FORE) it was already mentioned that no

1ir ~~ t cycle can ~ is tain be- ause P(s) does no longer have a pole at

s = 0 ir ’p 1 y ing then that and A~ do not have ~ ‘v pole at - = 1

- 
- This is confirmed by an anolog simulation of the non l inea r  system

- -
~~~ inclwiinq FORE as shown on Fig. IV. 9, with b — 1

One should be aware that the Dual Input Describing ~unc~~ rvis ~c’
’

J
cnvo , hr- r i- too, wrong results , except for the period of the limi t cyc -’

sustainina in the NL system including the C.I. Indeed , it can r’e

- - shown that when b = 0  , the D.I.D.F. predicts a Unit -ycle of

frequency -c~~ 1.5 rd/s (T~~4s) with ratio .7<A /B < .75 (instead of

.5) whe’e the assumed input is I-s B+Asin~0
t

For b # 0  , the D.I.D.F. predicts either a l imit cycle or

instability (compare with above) and for instance with b = l  , a

limit cycle is predicted , character ized by 1. <w
0 ’l.l 

and a ratio

.8<A/B < .9

—v- ~~~~~~~~~~~~~~~~ - — ~:‘~~~
—:

~~
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V.). Introduction .

The C.!. has been generalized nt~ FOR!. It is therefore nat - r

to think about possible generalizations of FORE . ~~~~ wa- - ~s by

resetting ths output y ~~~~~~~~ the input I .i~~ 
- . ~- -

~w 

nothing is qained by doing ‘- -- is when - posi iv€- ~n-~ negative -
~~,rv~-

inputs are to be a~-p 1 ied to the cyS!C? . ResC ’t in -I f r  I - 1 ~ 3 is

conceivable but the performances ~rjr ~wo input si~ nai~ 1 .)  ~~n

k- I Ct ) , with k real ~ 0 , would s-to ff r -nq e r be : -rr- I-c ’ r’ iona~ wi f~

ratio k and this is ce rtain ly a big weakness ~f ~~~- ob’e-:’~ ve is

gllara’ltee T.~~~S.  ‘-! a Uni -ir t y~-e .

Another way - -~~
.
~- eri1ize . is to extend FOR.F t - -  L.LPE (:~~~1- T-j -:

c+ b * 1
.)  — —— ) , SORE second—order . . ) • ( __— - _______

Cs~b) (5~~*)

(thir-1— ord--r • . ~~~~ — j,~~ 
r-t~~~. . . .  and a r r y  -“ .-

manner to g(e)’ where g(s) is any rational tran~ ’er -in ion

whose output y is reset whenever the input I ~s zero. (Fia. V .1)

• 
V.?. First e uiv ale nt repre sentation of ~ *

Let 8 — : x
~
t
~
) - 0~ be the set of reset instants. -

a 
t~

y(t) — . r(~~) t - ~~)~~ . - ~ ‘r( )q (t-~ )d~ 
u(t_t

~
)

0 M=l 
tK.- i

Reset when x = 0

1~ uro V.1. General reset element (Eauivalent notation) .

a- ---- ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~: - ~~~~ =~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~-
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~u~”-o=-o we 
rps t rLct G to - -~ c’m-i-nt~ w t h  rn real poles. so

~~~~ 
• h~~~(t~ ~ 1 A .e

Thus:
t a t 

-

y e ’- ) — / ‘ , )q(t-~ )1 - / A~ fr ( )e~~~~
tk~~~~ -

. e i1 - - 

~~~
( - -t - -

0 i—I K—I 
~~~~~~~~ 

0

tK
- - — s  (t  —~~~~

or -f r - 
v x(~ ) d~ with t

K ~ 
8

t
v--i

— :r 
~~~~~~~~~~~~~~~~~~ ~~~~ 

-
, e 

T (= _t
V~

d_

~~~~ -ni - s-b.-. equivalen t represen tation shown on F’.c. V.2.

If : is imb dded :r r t s -  feedback system ~ t ic. V .3.a, ~~‘-

11 be -eplaced by it s equivalent repr esentation of Fig. V .2. The’e-

fore , by 4~~~t~~i ~~~~~~~ of •be superposi’ior theorem to all the q n i ’ -~~.

‘~~~‘ - ‘~~~~ s- c(~ ) -a~ be computed by usinc •-e equiva~or ‘ -

• • .— - - - - - —- - — —.0-—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

~E~~~~

E1---

~\

Figure V.2. Equivalent representation of g*

- ~~~~~~~~~~~~~~~~~~~~ — -  - - --— — - ~M*. . - -______ - 
- -
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of Fig. V.3.b. Using such a representation it is possible to derive

charts similar to Fig.III.1O for any specific g . If one is then

to choose csj , i = l ,...m such that g(s)*~~g(s) from the cossnand

input point of view, the design philosophy used with FORE can then be

applied here too. This was used for instance with LLRE, but no

improvement over FORE could be noticed.

V.3. Second equivalent representation: stability criterion.

If we restrict ourselves to elements C(s) such that:

g(t) — ~ A .e °~~ then :
i—i t
t N Ut X 

- -
y(t) — I XR)g(t—i )dC — ~ I A

1
e 
01(t 

~~IR)dC 
u (t_t

K
) (5.0)

t
0 

K—i i—l

tK 
t~( t

K l

using : -
r 

f 
— J we have :

tK h  0 0

t m N
y(t )  - I X(~ )g (t-~ )dc - 7 ~ e °i~~~~~ I Ai e

(tK X(~ )d~
i—i K—l 0

tu (t_t
K
) -u(t- t

v-~~1
)) (5.1)

and therefore, by anology with the previous chapter,(section iv.3) the

system of Fig. V.1 is equivalent to that of Fig. V.4, where

Li  0 = t -t and B (s) —
r K K K-i s+~~ ~~~

— ~ x* -~ (t-t I
K ,i K

F 
Leq/(1+Leq

) K

gure V.3.a.

Figure V.3.b. Equivalent representation of two

degree of freedom structure. 

_ _ _ _ _ _ _   
_ _ _ _  

_ _ _ _

-
-

~

—,i — — — —M--—’1-~ •~~~~~a~: ~~~~~~~~~~~~~~~~ — 
— 

~ Ms.- . ~~~~~~~~~~~~~~~~
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As before , this equivalent representation is very suitable for stability

analysis. Let us now consider the closed loop nonlinear feedback

cy st— --’ of Fig. V.3.a (with F-si) in which g(s)* is irribedded. If, a~ t-÷~

a U-~it cy’~le with one reset per cycle sustains, it means that a K~
s
~
T

-~ constant number and there’ore , using Fig. V.4 , the N.L. feedback

nyi tem of Fig. V.3.a becomes, at the steady state , equivalent to the

purely linear ~~mp led data sy~stem shown on Fig. V.5.

It can be easily seen that (4.10) can be generalized , giving :

e’(z) = —

~~~~

- (5.2) for i = l , 2...m

where p, = 1im X
~ - u r n  e~~~ K X(r)d~. we can then write~ tr K-i

~~~~ 
V . 5 )  I = + t~~ 

-
~~~~ j~j -  (5.3)

hg (s) ] 
_ _ _ _  

~~~~~~~~~~

-I -~JII ~ -
~

• ~
.- — — — - -  — —- -- - — --- - --.J

L J A mI ~
t E15

~

~~~~re V.4. Second equivalent representation of G*

- -- ~~~~~~~~~~~~ ~~~~~~~~U ~~~~~~~~~~~~ - - -- ~~~~~~~~~~~~~~~~~~~~~~~ ;1~~~~L:::: i. 
- 

-

~~~~~~~~~~
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A . Rq Ut B .g
If 

~ ~~~~~~

— , then = Xg~ + 

i=l 
~ ~! .k.

for t = 1 ,2...m . So:
- 

S 
r1 (B191 L \)

* 
J~~i!~~. \ * 

(
B~~~ L \~ff ~1 ~(Rg~\* 1

~~~g 1+L1 ‘. g l+L I . . . • 
- 

~~~~~~~~ j
~~)

(5.4) i- (~~~i 
~~~~ 

(~~
9~ ~~~ ~~ (

~~fl*
\, g 14.L/ • • • ~ g 1+L/ . . .
,Bg ,Be ~~* 

-

— 
(_i!’_.i ~~~~~ ‘I ~~

_ 1.!L.!~. j :_ ’) 
*g l+LJ g l+L) ~~~ ~l+LJ

L ~~~ J L

and:

~~~~~~(
R)*  

j=~~~ i (g  
L )* (5.5)

If a limit cycle of period T with one reset/cycle exists, then X~~~.

has a constant value u~ and in virtue of (5.2),

cf (z) — 
1 Z for i a 1,2.. .m . The converse is obvious.(z— l)

z—e

p____ 
~~~ g 15) 

-

+ y 

L~

-

~
:

~~ 

—

— — — — — i_ e 5
~~~~

T

L 
~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~ 

B. ) — 

~~~~~~

ti jro ;. 5 .  Ecuivalent system when the nonlinear feedback system sustains
a limit c cli- with one reset/cycle.

- _
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— : ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— 
— — —
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By anology with Theorem 2 we can state:

If in the neighborhood of t= , there exists , for the system

of Fig. V.5, some finite nonzero numbers T , U
1 ‘~~~~ rn 

E’R such that:

- -cs-T .
I fin (z—e 1 ) (z—1) c*(z) = - for i = 1,2 . .  .n (- 4)

1 1
z=l

II u n  (z—l) x*(z) = 0 (5.6a ’
z=l

then a limit cycle with one reset/cycle exists.

V.4. Application: ‘LL FORE ’.

In general it is not necessary, as previously , to solve (5.61

and (5.6a) algebraically if one is less interested in the specific

value of T than in the existence of a limit cycle.

‘ This will now be illustrated by considering the simple example ,

m = 2  , i.e., g(s) = + 

~~~2 
— 1 2  • (5.4) is used in order to get :

- - R * R * B2g1 ~ * * B2g2 L *

F * = 
(j-

~ 
g)~ + (~—~ g2) 

(—.—— -i--) — (
~~

-
~~ 

g1) (—

1 ~~l
9l L * ~~~~ L )*~ 

B
1
g1 L 

B2g2 1. ~ L 1 2
g l+L g 11 g 1+1. g l+L l+L g 1+L

= 

(~~~ g7
)*4(~~~~

1
)*(~~~~ L )

*
(
R

2 B
1
g1 L * 1 1  L * ~~~~~ L * ~~~~~~ L *  ~~~~~~~~ *

g l+L g l+L g l+L q i+L g l-~-1s 
- q

L (c) is assumed to have only one pole at the origin , and L
1 

is such-. :- L
1
(s)

that L(s) 
~ 

• So L/l+L has no pole at s=0 while l/l~ L

has one zero at s = 0

If a2A 1~~~1
A2 ~ 0 , then ~~~~~~~~~ (for i = l ,2, j — 1,2) has no pole

at the origin. As there is no term in the denominator of both and

containing the factor 1/s , there is no such factor as l/z-l

in the denominators of both ~~~~ and . According to the crit-rion 

- 
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there exists a limit cycle if and contain the factor 1/z—l

Therefore, this can only occur here if the numerators of both and

ontain such a factor , i.e. for “type 2” inputs R , and especially

— with ramp inputs. Indeed , R/l+L has then a pole at the origin and the
A .

residue at z =l  of the number c~ is 1 ( i = l , 2) which is
1 ci.L (0)1 1

f ini te non zero.

The sta~sility criterion then implicitely suggests the insertion

of a zero at s=0 in G , i.e. to choose A
1 

, A~ , 
‘ such

that A
1
cz
2
+A

2
a
1 

= 0 (5.7) if one is to avoid limit cycles with

“type 2” inputs. Indeed we have then:

B
1
g
1 

-
~~~~

—- a (l~z e ~~~
’
~
’
) 

~A~~A 
_—~_a Q(s) ) • with Q(s) 

~ 1+L(s)

- I A 
~ 
a
2

Q( 0 )
= (l_z le~~1

T) 
A
1
+A2 . 

+ .~ .
(s)] (after fractional expansion).

B2g2 
= (l_z

_i
e
_a2T) 

A1
+A
2 Vi2~ 

+ Z
2
(s) 1

2g1 
= (l_z

_l
e
_a2T) 

A1
+A

2 
f~a ?i + E

1
(s)

L = (l_z l
e~~~

T
) 

A1
+A

2 
1a

1
2..c21 + Z2

(s)

The denominator of both c~ and is then:

-l -n T 
A
1 

a2Q (o , 
-1 -aPT 

A
2 

a 1Q ( o )
l— (l—z e 1 ) A +A —l 

— (l—z e A +A —l- - 
. 1 2 l—z 1 2 1—z

-1 -a ? -i -~2T
+ 

Q(0) (1—z e l )(l—z e ~ (Z1
(z)A

2a1
+E

2
(z)A

1
a2 —~~1 z A

2
a1

(A
1
+A

2
) (l—z )

- 
- Z

2 
A
1
a2 )

(1-2 ’e 
I1T) (l-z 

1
e a2T)A A  Q(0)

* —i 2 
— (a

1a2 
— o

1n .,) -‘- P(z)

~~l
”’2~ 

(1—z )

- - - - - -— — -~~~~~~~~~



ArAO*b 012 cOt.ORADQ t*IIV 104&Pfl SYSTEMS EN5 INECRIN5 LA B F/s 12/2
REDUCTION OF THE COST OF FEEDBACK IN SYSTEMS WITH LARGE PA*AItT—ETC u
AUG 77 P ROSENUAUN . I HOROWITZ AFOSR—76—29fl

UNCLASSIFIED AFOcR—Tn— 77~~I2,li It_ 
nr•.ntrnnrii~~ _r

!DLri~~!~ flQflrn_DOE 
_ _  

_0fl19
_ _

OUE~~flF_ _L i: unro



• I 1~
•
~ ~ ~~ 

LII2_~

~ ~: IIII~
2

1 ’  ~ 1~~
8

11(11’ .25 
~~ ~~

MICROCOPY RESOLUTION TEST CH&RT
NATIONAL BUNLA U UT 5TAN DARDS - I~ f T -~



90

~ I ~ l )  / ~~ . So the denominator contains now the factor l/l-z~~

w~~ h a r~sidue ~~~ ~~1
n2
e ~~~ + cl

1
A
2e~~

2T) ~ 0 because by

assumption A
1
n
2
+u

1
A
2 

= 0

It is easily seen that the numerators of both and have

such term as l/(l—z 1)2 . Therefore, the numerators of both

a~~ have at most , a term in l/l—z 1 
and therefore if

= 0 both and do not contain such a factor as

l/1-z 1 
, preventing then the system from limit cycling in presence ~ f

typo 2” inputs , and in particular with ramp—inputs. Relation (5.7) is

~l _____for in’~tance satisfied by choosing A
1 

- and 
~2 ~ -~~2 1  2 1

le.-~ding to the element G(s)* = ((~~~~~)) 
that is referred to

as a Lead - Lag - and - First- Order - Reset - Element (LLFORE).

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

(S l ’1*• V.5. Synthesis procedure with LLFORE v—-- 
~~i

Using the results of section V.2 (Fig. V.3.a and b) the nonlinear

feedback system of Fig. V.6.a is equivalent from the output signals

pOj! ~ t of view to the linear system of Fig. V.6.b with :

t t

~ e
_ t _

x c a ~ = 
2 = f e t x(~ )d~

~ t~(~~ FORE ‘ t~~1

R O T ~~~~~~~~~~~
J
~~~~
\( S 1 ‘\* (s+a ) (s+b)

p ~~ j L~q
(5) 

- 
+ c
+

rinure_V.6.~~. System block 1+L b—n s
diagram with Figure V.6.b. Equiva ent rroresentation ~-~f aLLF ORE .

feedback ~v~~i c’r~ cc ’pt a i r :p c  ~~
L C ~~~.

4
4 _ 

-  - -~~~~-~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
-.-- --- ~~~~~~~~~~~~~~~~~ —~~ ~~~~~~~~~~~~~ -•~~~~~~~~~~~~ —~~~~~~~~~~~~~~~~ -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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If is so chosen as to satisfy a<< Bandwidth of the open loop

transfer function for all possible plant parameter, then obviously

cz”b , therefore we can consider that:

~ 1 and j~
— 

~~~ ~ 0 and thernfore LLFORE

behaves practically like FORE. This is in accordance with experimental

results: the design L
1 

of chapter III wae used and on Fig. V.7 it is

shown, for the maximum plant gain factor, the non linear step dist-

urbance response for different values of a • As expected, for

a . 1 rps. (compared to a bandwidth of 600 rps.) there is hardly

-

• I any difference from the result obtained with FORE (see Fig. III.20.b

(f 1)), while as a increases up to 10,000 rps., the nonlinear system

response tends to be like the one obtained with a purely linear system.

• Therefore the design procedure derived with FORE needs only to be

completed here by a suitable choice of a . Since (Fig . 111.13) the

minimum bandwidth of Leq
(S) is roughly 6 rps., one can choose for

example a = .01. rps.

0

~~
0 10

• Signal
Amplitude . •

. S

• ~~~ 100
• + 1000
• 

• • : .  X 10000
• C -

• -

~ ~~~~~~~~~~~~ 
•‘ 

.—,

•‘II 
• 

• -

• .
• -

F~gur e V . 7 . System step disturban ce response of the nonlinear feedback
system at k 1000 for  d i f f e r e n t  va lues  of t h r ~ parameter

- ~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _____
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As expected, one notes from Fig. V.B.a,b,c that no l imit  cycle

is sustained in presence of a ramp input for all values of a , but it

is seen that the transient gets bigger and bigger as a decreases,

• which is reminiscent of the limit cycle that existed with FORE.

• V.6. Serial and multiplicative combination of C’s.

It is worthwhile to mention that g* can itself be generalized

by considering a system of the type shown on Fig. V.9.a or of the type

shown on Fig. V.9.b, or any system which combines both types.

V.6.a. Serial Combination (Fig. V.9.a).

If = {t
~ . yi(tK ) o} denotes the set of reset instants

-‘ associated wi th  the input y. , it is then obvious that 
~~~ 

r
1
C

C~ ~~~~~~~ . If we assume that each g
~ 

has m
~ 

real poles, then

for i = 1 ,2,...p
m . N

y.(t) = I y. 1
(C )g.(t-~)dC - iA.. ~~~~~~~~ ~ e

_0
ij(t

(~
_t
~~)d~

• 0 j=l K~~l i 0
tK

1
= I y.(~ )e

auj (t K.~~~ d~1 1.
Ki -l

and m.

g~ (t )  ~
hoi6(t, + A .. e

nijt

‘I
) ~=l ~

The equivalent representation of Fig. V.9.~ is plotted on Fig . V.10.

V.6.b. Multiplicative Combination (Fig. 9.b).

T = t~ such t h a t  y
o

( t
~~

) = 0) denotes the set of reset instants.
• It should be f i r s t  note d that if in a), = = ... = T =  r , class

a) degenerates then in the class b) studied here.

Therefore the equivalent representation of Fig.V .9.b is qiven by

Fig. V.10 where the substitution t
~ 

t~ should be made for all
i

i = 1,2,... p 

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~
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Signal
Amplitude

(a)

Signal
Amplitude ( r )

~• #~~ e ‘
• 

~~~, ~~~~~~~~~~~~~+4

!i ‘:.: ~ :... • * 0.~~
• 1!SE

Amplitude (c)

T t M r

Figure V.8. Nonlinear system response to ramp disturbanc e for
different values of the parameter a .

a) a 100 rps , b) a = 10 rps • c) a = 1 rps

-..
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~~~~~~~~~~~~ 2 i

4 Figure V.9.a. Serial Combination.

• ‘
~0~~ g~ 

1~

Yl L F2 ~
‘i-Li ~ 

_~~~ 4gp

Figure V.9.b. Multiplicative Combination .

* y0 
h 

~
‘l ~

‘i—i h0. ~
‘j 

~
. h~~

• I ~ x~ 5 (t—t )
‘~ 
x 
~ x.=1 x~i X 

~ i
I5( t t

~I K
1

— 1. K.~,=l P p
I II I I
I I I

• 
~~~~

i. ~~ t- t~ 
) 7 x~~ ~

(t_ t
~ 

) 7 x* v ~
1 1. 

~~~~~~ 

‘ i i i 
~r.-1 

-

Fi~~ rp Y.1O. ~ rjiva1ent r~pr’sentat :ofl.

-
. 

- - — -

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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CONCLUSIONS O CHAPT~RS III • IV ~~~~

A systematic engineering design procedure for drastically reduc—

• ing the ‘cost of feedback ’ of linear feedback systems has been pres-

ented and illustrated in chapter III. It is clear that the nonlinear

compensation (FORE) introduced is justified in problems of large para-

meter uncertainty, and that the design procedure is a general one for

this problem class. The nonlinear design permits the attainment of the

same command and disturbance performance tolerances as a linear design ,

but with significantly smaller loop transmission bandwidth. An import-

ant feature of the design procedure is that it permits design to

quantitative specifications, a property generally lacking in present

nonlinear feedback synthesis techniques, for systems with significant

parameter uncertainty.

It is important to note the inherent assumption in that chapter.

that the primary design problem is that of satisfying the response

tolerances to command inputs. However , realistically, consideration is

also given to disturbance inputs in the form of steps at the output ,

with assigned restrictions on the damping of the resulting output.

Since the disturbance response is nonlinear (in contrast to the command

response which is essentially linear), one cannot in general guarantee

acceptable response to all possible disturbance inputs.

Therefore emphasis was then placed (chapter IV) on the stability

problem for this class of nonlirear systems. Suff - conditions were

derived for B.I.B.O. stability and it was conjectured that the nonlinear

eveter possesses B.!.B.O. stability, if the equivalent L.T.I. system

~~‘~~~~~ -‘tic~ lly  stable.

- ~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Furthermore, necessary and sufficient conditions were derived for

the existence of a limit cycle.

The results of chapters III & IV were then used in chapter V to

derive the new element LLFORE which can be considered a generalization of

FORE. Indeed , the latter improves the performances of FORE with respect

to ramp disturbances (and more generally with respect to “type 2” dist-

urbance inputs) , without harming any of the quantitative benefits obtained

with FORE . The design procedure derived in chapter III is therefore

easily extended ~o this nonlinear element.

The philosophy and motivation prompting the nonlinear compensation ,

is based on linear frequency concepts , coupled with linear feedback

design techniques for guaranteeing performance tolerances despite large

parameter uncertainty. This philosophy has thus proven itself as at

least one approach worthy of pursuing . One might search for other non-

linear elements with even greater phase advantages than FORE , over linear

elements with the same magnitude characteristic. As an example the non-

+ f x ( 1) d C  if X X > 0 .linear element such that: y = 
- f x (~ ) d c  if .~~ ± < ~ 

is a “0 phase

lag integrator” from the describing function point of view . With FORE , the

equivalent linear phase lag useable was shown to be almost 180°. Non-

linear elements can undoubtedly be found which in a describing func t ion

charaterization, would permit even greater phase lag . However, as w i tt  the 00

phase lag integrator, the more difficult challenge is to find a charac-

terization of the nonlinear element useable for the useful system control

signals , and so permitting design to quantitative specifications.

It will certainly be worthwhile in the future to extend this

research to multivariable systems, once a rigorous synthesis prr -~—3ur~

is available for L.T.I. multivariable systems with large plant ignorance .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-

~~~~~
-

~~~~•
• ~~~~~~~~~~~~~~~~~~~~~~~~ • i~ ~~~~~~~~~~~~~ •~~~~~~~~__-
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CHAPTER VI .  LINEAR TIME VARYING COMPENSATION OF FEEDBACK

SYSTEMS WITH NONSTATI ONAR Y INPUTS .

VI.l Introduction

It was noted (section 11.3) that the typical set of conur and inpu t s

to a system can often be imbedded in the set of non-stationary processes.

Therefore , it is expected that L.T.V. compensation in a feedback system

will result in better performances than L.T.I. compensation, with respect

to sensor noise effects. It is implied that the instant of input (R)

application is known . Given (F ,G) (Fig. VI.l), we get different

output responses c .(t) for the same command input, due to different

plant parameter combinations P. € ~~ , as shown in Fig. V I .2 .  At each

instant of tire t0 , the maximum spread is then characterized by

~c(t
0

) (Fig.  VI.2). The L.T.V. networks F,G can be associated (S5]

with L.T.V. operators f ,g , i.e. (Fig. V I . l ) :

t t
v ( t )  = f f ( t ,~~) r (c)d~ and x(t) = f g(t,~ ) e (~ )d~ can be written in

the s~~ bolic notations :

v = f~r and x = g’e

* Therefore, the effect of the noise n(t) at the plant input x (assum —

ing R = O  ) is given by: (Fig. VI.l)

V X
RO  C (~ P C

Figure V I . l .  System Block Diagram N 

•~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Figure VI.2. System Output Response for Different Plant Parameters

x = —g~ n -g~ p~ x

x — ( l +g p)~~~~g~n if (l+g p)~~ exists.

x O~ n (6.1.a)

~ih’~re 0 is a L.T.V. operator, i.e. x (t) = f O(t ,~ ) n (C)d~
0

The mean square value of the noise at the plant input defined as

c~~ 1 (t) = <x (t)2 > , where the bracket sign stands for the ensemble—

average, is therefore :

2 t
• Ct) ~ f O ( t ,C 1) n (i

1
)d~1 

f 9(t,~ 2
) n (~ 2

)d~2 
>

0 0

= f f O ( t ,ç 1) 8 (t ,~~2 ) <n(~ 1) n ~~~ 
>d~ 1

d~ 2

By definition , the autocorrelation function of the noise, is

n 
‘

Ct) • 
‘ I 8 ( t ,~~, ) 

~ 
(t ,:) N

(
~~~

,
~~2

)d
~ j

d
~ �

- * ~- ~~~~— 
______ , • .  • • ~~~~~~~
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Using arguments anaingous to those used for L..T.I. systems, it can be

shown that the spread Ac (t) is a conflicting factor with c~ It)

• namely, the bigger t c  the smaller , and vice versa. The

•1 challenge then is to solve:

V t Mm {~ c
2
(t) + W2(t)c~ (t)} (6.2)

(f,g) L.T.V. 
.1.

- with W(t) some given weighting function.

Because of the complexity of P in general , solving (6.2) over

the range of plant—uncertainty is a difficult task for which no

techniques exist at present. Let c~ (t) be the system response to

input r when P=P . . It is tempting in order to have a solvable

problem, to pretend that the maximum range t~c(t) in (6.2) consists

of the differences (c1 
— c2 ) and this for all t , in the system

response due to 2 ‘extreme ’ plant conditions P 1(s) and P 2 (s) , to

the same input r , i . e . ,

Vt , ~c(t)
2 = (c 1

(t )  — c 2(t))
2 

(6.3)

In practice the extreme points of the spread Ac (t) in Fig . VI.2 do

- 
• 

not necessarily correspond to the outputs (Vt) for any 2 plant

‘I, conditions chosen as ‘extreme ’ . The weighting function W (t) in (6.2)

is then an extra degree of freedom , to help contend with the fact that

the upper and lower bounds (Fig. VI.2) of the system responses for

p . € ? , do not , in general , correspond for all t , to the two

‘extreme ’ plants P
1
(s) . P2

(s) • i.e. (6.3) usually does not hold in

a realistic problem.

_____ 
• 

.-- • •- ~~~~~~~~~~~~~ 
• • - 
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VI.2 An idealized problem.

VI.2.a Statement of the problem.

Let P(s) (Fig. VI.l) be a binary plant 1~ 
= or ~2

}

Following (H7] we show that ~c
2(t) has a simple physical meaning .

When P=P
2 

we have (Fig. VI.l):

x2 = g.f.r - g.p
2

.x
2 

— g•n (6.4)

Let :

x2 
x
1

+ ~ x (6 .4.a )  x1 ~ g.f.r — g.p
1
.x
1 (6.4.b)

Ac = c2 —c 1 , c
1 = p1.x1 (6.4.c) , giving ~ x =— g •~ c — g.n (6.4.d)

(6.4.a) and (6.4) give: x
1
+ ~ x = g.f~r — g .p 2 . (x

1+ 1~x) — g.n (6.5)

tJs~ng (6.4.b) : ~ x = - g . (p
2

— p
1

) . x
1 

— g.p 2
.~ x — g.n (6.6)

and (6.4.d) in (6.6) gives: g•~ c g.(p
2
— p

1
).x

1
+g.p

2
.
~~x (6.7)

Using (6.4.c) : t%c = (p2 — p 1
) .p ~~ .c1+ p 2

.~ x (6.8)

Therefore Fig. VI.l becomes equivalent to Fig. VI.3 and ~c(t) can be

considered as the system response (when P=P 2) to the equivalent

disturbance: (when N = O

—l
d2 = (p 2 — p 1)~ p1 •c1 (6.9)

(The subscript 2 in d is kept in order to recall that d2 is

associated with P
2 

) .

f g x
1 

p c

0 
1
: 

I

l 

-l
g ~~ ~2 

2~~ l ’
~~~l

N

Figure VT.3 . Ec,uivalent Representation .

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
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Using (6.4.d) and (6.9) in (6.8),

Ac = d2 - p2~g~
Ac - p2 g~n (6.9.a)

Let

A

2 = p2 g (6.9.b)

then (6.9.a) is rewritten as:

(l+Z
2
)Ac = d2 

— Z
2~
n

or

* Ac = (l+i
2
)~~~~d2 

- (l+L
2

)~~~~9- 2~ n (6.9.c)

if (1+9
2
) has an inverse.

• Let d
2 
EO , then Ac = — (1+9-2

) 3 9-2~n which together with (6.4.d)

gives:

Ax = g [1+9-
2

1.9-
2 

- 1 ]

AX
n = g (j+Z 2)

l. £~ - (l+t~)]

AX = - g (l+9-
2
)~~~~n

* 

which can be rewritten, (recalling (6.9.b)), as:

Ax = - p
2

t
2~ 

(l+Z
2
)~~~ n = p2

1. (l+t
2
)~~~~~2

n

because 9-2 
and (1+9- 2)

_i 
commute .

Note (6.9.b) that — p2 ~~9-2~~(l+9- 2
)
1 

= -g~~(l+p 2~
g)~~ = — (l+g~p2

) 1
g

so from (6.l.a), 8 = — P2~~~ 9-f(l+L2
)~~ (6.9.d) when P=P

2

Hence , for the plant P=P 2 , the minimization problem of (6.2) becomes

• (under the above assumption of a binary plant) equivalent to:

• Vt , Mm ( A c ( t ) 2 + W2(t)0
2 

~ 
(t)} (6.10)

f,g

where Ac (t) is the component due only to d2 , and 8 of (6.9.d) is

* 2used in (6.l.b) for o~

— 
.

~~~~~~~

—

~

-——-- --
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VI.2.b E~~rivation of the Optimum Filter.

Let h
2
(t,*r) be the closed loop impulse response of the lower

r)~ rt of Fig. VI.3 when an impulse is applied at W at t = T  , i.e.,

Ac = p2~ g~~ — p2~
g•Ac or Ac = (1+9- 2)~~~~

9-2~~
1

• 
if (1+9-2

)
_i 

exists and therefore (by definition Ac = h 2
•W

h2 = (l+9-
2
)

l
~ 9-2 = 9-2~~~~

9-2~ 
(6.ll.a)

ef fec t  of d
2 

is given by letting n = O  in (6.9.c) , so in (6.10)

Ac = + (l+9-2
)~~~~d2 = — (1+9-

2)
1(i+Z).d + d

2 
(l+ l

2
)~~

1.d
2

= d2 + (1+9-
2
)
_i 

t i  — (1+9-
2
) ]d

2 
= d

2 
—

• - i.e.,
t

Ac(t) = d2
(t) — f h

2
(t,~~)d

2
(~ )dC . (6.l l .b)

By def in ition :

• Ac(t)
2 

= <  td
2
(t)  - f h

2
(t ,C )d

2
(~ )d~)

2 > (6.l2.a)

where the bracket indicates the ensemble—average over the set of command

inputs r. (t) . From (2.6)
1

N

~ <d~~(t)d~~(T)> ~~1
Dj~

t
~~ i

1T) ~ ~~2
(t) ~~~~(r ) T 

(6.12.b)

where 
~~~~~ 

is an N-dimensional vector.

(~~. 1 2 . a )  is then

- 2 f h
2
(t,~~)y

00
(~~, t ) d~ +

+ f  f ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (6.12.c)

rf the plant P=k , with k € (k • ,k a pure gain factor andmm max

WIt) = 1  , then from (6.9.d , 6.ll.a) ,9 = — . h 2 ( 6 . 12 . d )  and

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~

•_
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using (6.12.c) , (6.l.b) and (6.l2.d) , (6.10) becomes:

Vt , Mm ( y~~~(t,t) - 2 f h
2

(t
~~

)YDfl
(
~~
,t )d

~ 
+ f f  h

2
(t,~~1

)h
2
(t,~~2

)

~D D l ’
~ 2~ 

+ ~~ Y~~4 (c 1~ c 2 ) ]  d~1
d~ 2 ) . (6.13)

2

By using instead of in (2.5), we conclude that the optimum

solution h2 of (6.13) is the solution of the integral equation :

V t~~~t , f h2 (t ,
~~)(Y DD

(
~~

,T) + ~~ ~~(~~ T)) d~ = YDD(t ,T)

2 (6.14)

We restrict ourselves, without loss of generality to white sensor noise

of strength , with resulting Y~~ (~,T) = ~~~ - r )  . Therefore

(6.14) becomes:

V t~~t ,~~h2(t,t) + f h
2

( t , C )~~~2
( C )  ~~~~(r ) T

dc =

2 2 
(6.15)

A °N A cMwith U = -
~
-

~~
- . (Note that ~ = —i- W(t) for W(t) ~~l .)

• Ic 2 Ic 2

(6.15) has a solution if:

h
2
(t ,*r) = ~~(t)..~~2

(T)
T
u (t_ ~~) where is a N—dimensional

vector , and the heaviside unit function u(t_
~~)={0 

t~~~ is intro-

* 
1 t~~~T

duced ro give a causal h
2 

. ( 6.15) becomes:

t ~ , U ~~(t) 
~~~2 

(r ) T 
+ ~~(t) ~ 

D2 ~~~~~~ 
(~ )d C~ ~~2 

~~~T 
=

= ~~ 2
( t ) ,~~~~( T ) T (6.16)

(6.16) implies that:

= ~~ 2
(t )  ~~~~ + f ~~~~~~~~~~~~~~~~~~~~~ (6.17)

k 
_ _ _
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h~~~ if

lr (t )  
~ 

[ lJ ’~ + ~~~~~~~~~ 
— l 

(6.19)

• h2(t,
t) = ~~ 2

( t)  1T l (t)~~~~2
(t)

Tu(t _ .r) (6.18)

Note that s is an N X N matrix.

From (6.ll.a) one gets (Appendix A 3.1) the open loop impulse response

associated with P = P2

£
2

(t ,~r) = ~~ 2
(t )  ~I

] ( r ) .~~~2
(T )

Tu (t _ r )  ( 6 .20)

• The open loop impulse response 9- (t-t ) for any P=k € ‘~~~ is

(Append ix A3.2)

£ (t ,T) = A t
2 (t,t) (6.21) with A ~ ~~ (6.2l.a)

2
nnd the corresponding closed loop impulse response (Appendix A3.2) :

h(t,T) = A ~~2
(t) A

1
(t)A

1 (T)~~
l (T ),~~ 2

(T)Tu (t_ T ) (6.22)

where A
1 

is a M X N matrix solution of :

A
1 ‘

~l 
+ A ~T 0 (6 .23 )

it is shown (Appendix A3.3) that the system response to a command

input r , when P=k € P is:

( k—k 1 ( 
~ (O) \ ~c( t )  = c1(t)~~ 

1 + -j-—— 
~ 

-
~

-
~
-
~ j -) 

~ 
(6.24)

where c1(t) is the system response to the same input r at

V I . 2 . c  Example.

Let ( r ( t ) }  be a set of step command inputs of ampli tude ~

wi th average mean square value < a 2 > . 1 ; P k  € t k  • ,k I is
* mm max

a real gain factor and c ,, (t) is the system response to r(t) =u (t)

(k —k )
~-hen P=k . From (6.9), at P= k , and r= o u (t), d = ~ a c -1 2 2 ,c

1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ • •~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _
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From (6.l2.b), the autocorrelation function associated with

d
2
(t) is YDD

(t T) = < 
k 2 -k 1 a c1

(t )  
k 2 -k 1 a c1(t )  >

_____ 

k 2 —k 1 A
= k 

c
1
(t) —k— c1

(T ) = D
2

(t )~~D2
(r) . (6 .25)

1 1
• I - Therefore N = l  , arid from (6.19),

k t
~T ( t)  = i + f D~~(~ )~~d~ . (6 .26)

From (6.22), the closed loop impulse response at P= k is:

h ( t ,’) = A D~~(t) 
5 ( T ) 

D2
( T ) u ( t - T )  (6.27)

• 11( t)

• with A = k/k2 
(from 6.21.a), and the system response to step command

of amplitude a is given by (6.24), i.e.

( k—k 1 A —A \
c(t) = ~ C (t )  1 + — P 5 (t)  

) (6.28)1 . k1

noting in (6.26) that ~T (O) = U . The effect of white sensor noise

at the plant input is (see Appendix A3.4):

2 2D2 (t )  0N ( 1 U
1 \ . k 1ç 2A—l k~ 

~‘ “It ) 
— 

s ( t ) 
2A ) if A = — ~i

~~~1~
( t )  _ 4 ~I 

2 
(6.29)

D (t ) 2 N 9-n ( s (t ) / p )  
if A _ J~. — I

2 2 ‘r ( t )  k 2
Ic 2

The reader has probably noted that, as yet , nothing has been said

as how to select P = k  , P = k  , given (k - ,k ) . This is
• 1 1 2 2 mm max

one of the malor issues if one is interested in a synthesis procedure.

Let us assume in the meantime, that k1 arid Ic2 have somehow been

selected . Let the relative change m(k , t
0

) at a given time t
0 , in

the system response at P=k € tIc - ,k 3 , be defined as:m m  max

_ : 
~~~~~~~~~~~~~~

-• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~-~~—-• -• ~~~~~~~~~~ -- -• •
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A c (t 0 ) —ac
1

(t 0
)

mn (k , t ) = . Using (6.28),0 ac 1
(t

0
)

• 
rn(k,t

0
) = ~~~~~~~~ ( 

~~~~~ 

~ 
k/k 2 ( 6 . 3 C )

1~s an i l lustration , m(k,t0
) is plotted versus Ic , for t 0 .2 ,1 

in Fig. VI.4.a for the ease k
1
= 100>k 2

1 , and in Fig. VI.4.b for

the case Ic
1 

= 1 < Ic2 
= 100 . The spread in the overall system response

to a command input r , at time t
0 , is obtained from these curves

as follows:

SPREAD = c
1
(t
0
) * { (m ( k ,t0) )  — (m( k ,t0) ) .  ] where r-i~x

and MIN are taken over all possible values of k € (kmin~
kma )

~ ‘ r  instance in Fig. VI.4.a, when k - = .1 and Ic = 10.,mm max

• [m ( k , t  ) J  = m (k ,t ) ,o max max 0

• tm (k,t H . = m (k • ,t )0 mm mm 0

md therefore it is easily seen that:

p SPREAD = c
1
(2.) * (.99— .24) = .72* c

1
(2.) at to = 2 seconds

= c1
(9.) * (.76 — 0) = .76 * c

1
(9.) at t

0 
= 9 seconds, etc.

Consider the case k1
<k 2 , shown in Fig .  V I . 4 . b .  If

then very poor results may be expected for kmin
< k < kl , since th-

settl i ng t i m e i s  seen to be very large. For the same reason ,

k < Ic < k is not a better choice. However , if k <Ic < Ic • < I c
1 mm 2 1 2 r’u n ~ax

then we get a reasonable spread in the system command responses. for

large changes in kE t Ic  , k . If Ic = l < k  = 100 ar e ~e1e~-~ ec~mm max 2 1

~~“. VI.4.a) then , on the one hand k * ~~~ should be sa t i s f i ed , if

L —~~ -~~~~~ -~~ - - - - - - -  -—--- . — : ~~~~ .z~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ • ~~~~~~~~~~~~~~~~~~~~ 
•
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io~~ k~ =l 10 k 1= 10 2 io~ 
lr-4 Ic io _ 2 1~~~ k 1=1 io ~~ =io 2 ~~~ Ic

Figure VI.4 Plot of m (k,t0
) for k

1
>k

2 (a) and k 2
> k

1 
(b ) .

one is to avoid a long “tail” in the system response to command inputs ,

and on the other hand, k ~ Ic should be used to avoid tremendous• 1 max

overshoot at small to . Note that all those results are independent

of the nominal choice of c1(t 0
) , and of the actual values of

k - ,k and are therefore very general.nun max
To summarize , we have found that from the system command response

point of view , two reasonable choices are:

k < I c  < < I c  < k  ( 6 . 3 1 )1 2 miii max
• or k ~C Ic • < I c  ~~k ( 6 . 3 2 )

The curves o~~1
(t
0,k) (curve A obtained by -isin~ (6.23)) are

plotted versus Ic (see Appendix A3.4 for details), with parameter t0

in Fiq.  V I . 5 . a  for

k
2
=l <k

1
= 100 (6.33)

and in ?ia. VI.5.b for

= 1 < I c 2 = 100 (6.34 )

in o rd ’r  to evaluate choices for , Ic 2 from the noise response

~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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viewpoint. The curves (B) in dashed lines were ontairied by takincr

the binary plant ‘~~~~ * (Ic or k 11 (instead of ~~ (Ic 2 or Ic1
) ) .

Obviously, B passes through (k=k
1,
0.) for all t0 , and curves

A and B intersect at Ic = Ic2 , since when k Ic2 in tl-.e

latter case, and the noise effect is zero when no uncertainty (k=k
1
)

is present in the first case.

One sees from Fig. VI.5.a, that when kmax
)k

l , there is a

tremendous noise level at the plant input for all Ic
1 

< k

Therefore, k2 fkmin
<kmax fki is once again more satisfactory. From

Fig. VI.5.b, it is obvious that (6.32) is also highly satisfactory.

Discussion.

The choice (6.32) seems a better one than (6.31), especially if

k and k are taken much smaller than the prescribed k , k1 2 m m  max
However , such a choice is very poor as far as stability is concerned ,

when hi gher order systems (obtained when dealing with more realistic

4 (a)

~~~~~~~~~~~~~ I 10

- 
• j , — curve A ~, l0~ 

-
* I 

j : 
~~~~~~~~~~~~~~ curve B 

~; 
::2 z

‘(1.)

_ _ _ _ _

~ 

;
~~~~~~J 

I:

io
_2 

1O~~ k 2 = 1 10 k ,=10 1O 3 Ic 10 10 k
1

n l  10 k 7 l0 10 Ic

Figiure V I . 5  Mean square value of the noise at the plant input for diff-
c- r-~nt  g~~j n  f ac to r  values of Ic and at d4fferent time instant t~ w ” n

L > Ic 2 (a)  a rid k2
> Ic

1 
(b).

~~~~ • • ~~~~~~
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plants) are considered. Indeed, it will be shown (section VI .4 .c)  that

for high order systems, k / k 2 should be made smaller than some real

number, preventing (6.32) from being used. This result is not obvious

here, because a first order system is stable for all values of gain

• factor Ic . Therefore, one has to use the other possibility (6.31)

• which is more compatible with stability problems. Noting (Fig. VI.4.a),

that Ic ./k2 should be as large as possible to guarantee satisfactory

spread (i.e., T.D.S.), we will therefore use for the remaining of this

chapter:

k = k
~ 1 max

(6.35)
~~k < I c .

4 2 mm

VI.2.d Results and Some Preliminary Conclusions.

We can now complete the above example (beginning of section VI.2.c).

In addition to the assumptions already made, we take :

c (t) 1_e t 
, k . = 1 , Ic = 100 and w(t) 1

• 1 main max

Following (6.35), k1 — 100 , k 2 =l  are selected. The design has thus 1’~~n

completed [Appendix A3.8.a for details],and the overall system responses to

unit step input are shown on Fig. VI.6.a for different values of P= k
‘I

The mean square value of the noise at the plant input is shown iii

4 Fig. VI.6.c where it is compared with the results obtained in a L.T.I .

* design (Appendix A3.8.b) which acheives roughly the same time domain

specifications (shown on Fig. VI.6.b) as the L.T.V. system. Thee’

results confirm that much may be gained in reduction of sensor noise

effects at the plant input , by using L.T.V. compensation.

Several comments are appropriate at this stage:

a) It is seen that Ac(t) of (6.2) is indeed equal to

4

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Figure VI.6 System Response to a unit step coammand (a) LTV design ,

(b) LTI design. Cc ) Comparison of sensor noise rejection
at the plant input between the LII and LTV designs.
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Ck 
( t )  — c, (t) , but t h i s  is true only for the simple first order

max ‘
~nin

system, and not in general for more realistic systems , even in the case

where there is no un cer ta inty in the dynamics of the plant .

8) Note that (6.18) and (6.22) do not have h (t,t) = 0 , Yk

Vt , imply ing that  our optimum design is a first order one , which is

of course not realistic. Therefore the above should be considered only

as an academic excercise , giving us , however , insight as to how k
1 

, k~

should be chosen , given the uncertainty range (k • , Ic 3 .mm max

y) Note that h (t , T )  is a stable design for k € 10 ,

which will no longer be true (as already noted) in high order systems .

V I . 3  Some Approaches to the More Realistic Problem.

VI .3.a Generalities.

It is noted that when the plant is a pure gain factor ( as in the

previous section), the minimization of the sensor noise (of strength

e f fect at the plant input, is equivalent to the minimization of

sensor noise (of strength u = a~/Ic
2 ) effect at the plant output

(which is also the system output) . Therefore , the derivation in V I . 2

- 

1 
can be considered as a direct extension of Wiener filter theory to

linear nonstat ionary problems . As is well known , the derivation of

the optimum filter in such cases, is always done on the closed loop

impulse response h ( t , T )  , which does not explicit ly feature  the

complexity of ~he plant and there fore  a f i r s t  order optimum solution

is usually obtained (with  white sensor noise), which is unsatisfactory

if the excess of poles over zeros of the plant e ~ 2 . (Indeed, as

h is first order , so is the open loop 9. , implying in the latter case

that g possesses at least one derivative — which is impossible to

~mp1~ r~nt precisel y). 

~~~—*---.* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— -

~~ 

~~ T=—
~ 

- ___________
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In L.T.I. systems , P(s) and G(s) commute , so:

~ 2
1 ~ G 2 1 

~
‘ Ce • 2 t  nn

~ ~~~~ ~~~~~~~~ 
= - j—~ 

—p---- du

= 
~~~ L

~~~
2 

~~~~~~~~ 
with ~ - P 

(6.36)

* 
This means that the mean square value of the noise effect at the plant—

inpu t 
~~~ ~ 

(w) is equal to the mean square value , at the system

output , due to a distorted sensor noise power spectrum 
~~~~~~~ 

. It

is therefore seen that H then emerges with the proper excess of poles

over zeros , provided the sensor noise is distorted by P
1 . This

reveals that  the problem posed jim (6.2) is a very realistic one, if it

can be solved in general .

VI.3.b The Problem Posed by the Solution of (6.2).

It is assumed in the remainder of this section , that the input

r is determin i s t i c, implying tha t D
2 (t) is also deterministic

(N= l) , and P(s) = k/s with k € (k - , k I . Under such assump—nun max
t ions :

• ~~
2 

t 1~~ h 2

— 

(6.1) becomes = L -
~~~~~~ (t , c ) }  d~ (6.37)

and (6.2) becomes (using (6.12) and u ~ 0
2
/k

2 )~

Vt , Mm 
{ 
(D~~(t) - f h

2
(t ,~~) D

2
(~ )d~)

2 + u ~~~ (t,~~fl
2 
d~

(6. 3~ )

Note: If P ( s )  is more complicated , then only the second pa r t of the

bracketed term would be modified , becoming iii general a combination of

3h
2 ~

2
h
2 ~~h2terms in —

~~~~
- , —i-- . . .—~~

— where n is the order of the plant , rius
at ~t “h, ~h,

some cross-product terms, ~~~~~~ h, , ~~~~~~~~~~~ h
2 

—~~~•- -   
-
~~ ~t 

—

= - •  — • -—;
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J smnq  a v a r ia t i o n a l  argument , i . e . ,  let t ing h
2 = h~, + f , where

h~~(t , T )  represents the opt imal  solution of (6.38)  and f(t,T) is an

arbitrary small impulse response belonging to the admissible class of

solutions, i.e., satisfying h (t,t )  = 0 , it can be shown (the deriva-

• tion omitted here , as the results are net ‘ised , but they are similar to

those of Appendix A3 .5), that the optimum h
2
(t ,t) is the solution

of :

Yf , Vt , , 

~~ 
( [ f h ( t ,

~~
)Y

DD (c l
,
~~2

)d
~ 

-

f ( t ,~~2
) + -

~~
-
~~~ (t,~ 2

) 
~f 

(t~~ 2)) dc~ 
= 0 (6 .39 )

Mathematically,  (6 .40)  is equivalent to:

f 
~~~~~~~~~~~~~~~~~~~ = Y DD

(t , T ) , Vt , for r~~~t (6. 39 .a) :

1

(t,-r) 0 Vt~~T (6.39.b)

which is unrealizable. This can be understood as follows. For t=T

with I fixed , the cptimuin solution exists and since (6.39.b) should

be sat isf ied at t = T , the optim um solution is dependent on T . Therefore

at t = T ’  > 1  , the optimums solution is a funt ion  of T’ , and unless

• (6.39.a) happens to be sat isf ied (which can only occur by chance),

• 
• this optimum solution for t=T’ is no longer oPtimum for t=T

and therefore there does not exist a solution to problem (6.38) and in

general to ( 6 . 2 ) .  The reader may note that  when ah/ at  is replaced

by h in ( 6 . 3 8 ) ,  i . e . ,  when the noise effect is considered at the

system—output (rather than at the ~1ant input), then (6.2) has a unique

~olution (der ived  in VI .2). This may be sur~risinq at first glance ,

_ _ _ _ _ _ _ _ _ _
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but note that  in the lat ter  case, (6 . 3 9 . a )  does not need to be sati~-

fied, thus explaining the uniqueness of the solution.

One alternative, therefore , is to modify the original ~rob1em of

(6.2) and solve: (for a given fixed T

M m f (A c ~~(t) + W ( t ) 2e~ 
~ 

(t)]dt (6.40)
h 2 0 . .

It is shown (Appendix A 3.5) that (6.aO) has a solution given by an

- - Euler-Lagrange differential equation . Another alternative is to distort

the noise characteristics in such a way that the resulting h 2
(t ,T )

will have the proper excess of poles over zeros. For this purpose, we

introduce artificially an equivalent autocorrelation function of the

noise:

- e 2 e
y~~~(t,r) = (— 1)  0

N 
6 ( t — ’t) (6 .41 )

where e ~ 1 is an integer.

By analogy with the L.T.I. case (recall ( 6 . 3 6 ) ) ,  we then try to

minimize :

= f f ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
( 6 . 4 2 )

in place of (6.1). Under this assumption , (6.2) becomes:

Vt , Mm C A c~~(t) + W ( t ) 20
2 

} (6.43)
• h 

out

which has a unique solution as shown below . It should be recalled

that in L.T.V. systems, g and p do not commute and therefore

The weighting function W (t) might then be used to t ry  t

par t ia l ly  compensate for this. The remainder of t h i s  chapter is

devoted to a detailed discussion of the above two approaches.

• ~~~~~~~~~~~~ 
_____
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‘11.4 Solution to the Filter Problem by Distortion of the

Noise Charac te r i s t i c s .

VI .4 . a  Statement  of the Problem.

The min imiza t ion  of ( 6 . 4 3 )  was solved in ( 2 . 5 ) ,  giving for the

• optimum solution h
2
(t,r)

t~~~T 
~~~~~~~~~ 

= h
2
(t,

~~
)[y

DD
(c,

~~
) +~~~~(~~,i )]d~ (6.44)

Jsing (6.41) and recalling (6.9) that D
2 = (P2— P1).p1~~

.c
1 

is

deterministic because the input signals are assumed to be deterministic ,

* we get:

t t
D
2
(t)D

2
(T) = f h 2

(t , C ) D 2
(~~)D

2
( t ) d~ + (.l)eO

2
W (~ ) f h

2
(t,c)6

e (c_T)d ~

(6 .45 )

or:

D
2
(t)D

2
(t) = f h

2
(t,c )D2

(~~)D2
(t)d~ + 

(_l) eO~W (~ )~~~ h2
(t , T)

(6.46)

-
• 

A necessary condition is therefore :

-~~~ I e
( t , - r )  = — y (t)D (T)u(t—~ ) (6.47)

2 2

Integrat ing wi th  respect to t , and requir ing that e—l h 2
(t ,T ) ~ = 0

C 3-r

-
~~~ 

• we get:

- 
e-l

e-l 
h
2~

t ,t) = ‘ct) t D~~(t) - D~~(T) 3 u(t-t) ( 6 . 42 )

• - aT 
t

- 
where the notation D~~(t) ~ 

f D
2
(C)d~ is used .

Let D~~(t~ ~ f D~~
1 (~ )d~ and integrating (6.48) with respect to T

gives:

_____ 
2 2 1• - h ‘t , r )  = ‘~- (t) 

[ D (t) — D  (i) — (t—’)D (t) I u(t—t ) .

~~e—~ 2 - 2 2 2

-
~~
-

~
—------- --;:----- 

~~~~~~~~~~~ 
•
—

~~~~~
.—— - - - - -  -

.— ~~-~~—•4--• — — ~~~ —• _*___ie. 
~ ~-~~~~.—- ~ • ~~~~~~ —• ~~~~~~~~~~~~~~~~~~~~~~~~ — — -~~ ~~~~~~~~~ - - -  -~~~~~~~
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After (e—2) more integrat ions wi th  respect to r , we have :

h
2
(t,T) ~ (t)[D (t) -D~~(T) - (t-T)D~~

1(t) + 

~~~~2 
D~~~

2 ( t ) +..

~~~~~
, 0

2
(t)Ju(t_r) ~ y (t)Q (t ,T)u(t-T)

-
- • 

(6.49-
Insert ing (6 .49)  into (6.45) gives:

~ (t) = D2
(t)/ ((_l)e-1~~W ( t ) + f Q( t ,~~) D

2
(ç ) d ç  

) 
(6.49.a)

with

f Q ( t ,~~) D
2

(~~)d ~ = ~(D~~t -D ~~(c) - :t-~ )n ~~
1(t )  + .. .+

( e— 1 ) !  D~~(t)) D2
(~~)d ~ (6.49.b)

Integrating by parts,

= {
(t_c)D~~(c)] ~ + fD~~(~ )d~ = D~ (t) because D~ (O)=Q

= 
{
(t_ 2 ]  ~ + J (t-c)D~~(c)dc = D~~(t)

_ _ _ _  = D ~~( t )

Therefore (6 .49 .b )  becomes:

t tf Q(t ,~~)D
2

(~~)d~ D~~( t ) D~~( t)  f D (C)D
2
(C)d~~— D~~

1
(t)D~~(t) +D

e 2
(~~)D

3
(~ )

+ ... + (l)kD
e_k

(~ )D
k+l

(~ ) + ...+

(6 .50)

Noting that:

~ 

~~~~~~~~~~~ _ _ _ _  -



117

- f D~~(~~) D
2

(~~)d ~ = - D (t)D~~(t) + f D~~
1( C ) D ~~(~~)d~

= - D~~(t)D~~(t) + D 1
(t)D~ (t) - J D

2
(~ )D~~(~ )dç

= - D~~(t)D~~(t) + D~~~~(t)D~~(t) - D~~
2 (t)D~~(t) + ...

+ (_l)e-2D~~(~ )D~~(~ ) + (1)
e_l f D

2
(~ )D~~~ )d~

(6.51)

(6.50)  becomes:

I 
-

f Q(t,C)D
2
(C)d~ = (_ 1) e l  

j  D2
(~ )D~~(~ )d~ 

* 
(6 .52 )

so f i nally : 
- -

- 

~ (t) = D
2
(t) 

~ ( 
(l)

e_l
O
2
W(~ ) + (1)

e_ l 
f D

2
(c)D~~(c)d~ )

— and -

h
2
(t,r) =

(l)
e_l

D Ct) (D~ (t)-D (T) - (t-T)D~~~ (t)+ ~H~~
D
~~

2 
(t)+. - ~ (1)

e_l 1 
(t )

- 
¶ u ( t — t )

c~ W ( t)  + f D
2

(~~)D ~~( C ) d ~
0

-: (6.53)

(6 .53) holds for e = 1,2.3..., and it can be checked that :

ah a 2 ’- ______h(t ,t) = ~
— (t,t )  = —(t ,t) = . ..  = h ( t , t )  = 0

~t
2

imply ing that the system obtained is of order e + 1 ( e + 1 poles and

no zeros) .

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~ -~~_ . IA
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VI.4.b. Analysis for different values of e

VI.4.b.a e=l

When e=l , (6.53) becomes

2~~~~~2h2
(t ,r) = 2 2

~ W (t)  +D~~(t) /2

If W(t)c~ = ~ is a :omstant , (6.54) is associated (Appendix A3.6)

with the Differential Equation (D.E.):

(h
2 1 : + [2D ~ g -3 

~~~~

- 
1~~~ 

+ 
[~~ 2

g - 2  ~~~ g + 3( 2) — ~a]y = D 2gx

y + a
1 

y+ a
2 y = D 2gX

(6.55)

where
~ 
_ _ _ _ _

1 2  
(6.56)

/2

Recalling that h = t (1+t) 1 with ~ p•g , we have : 9. = p •p ;
1
~~9~2

and :
—l —1 —l

h = p~p2 ‘9.2
(l+p~p2 •9. )

p•p
1•9. •Cl+9. )1 ((l+L

2
) 1) (l+P P;~~ t

2
)
1

=

= p~p2~~h2
•((1+9.

2
) 1 +

: As (1+9.
2
) 1 1 — h

2

h P~P;
1•h

2
• (l+h

2(P•p;
1_l)) 1 (6.5r)

As we know from L.T.I. systems, the problem of sensor noise rejection

at the plant input becomes crucial in the region where P(s) has its

asymptotic behavior, k/5
e
P , so we can restrict ourselves to gain

factor uncertainty with p.p~~ = k/k 2 ~ 
A - The differential equation

- 
-

~~~~~~~~
--- - * 

~~
-
~~i~- -~~~ 

~~~~~

—
= .  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :i~~~ 
- 

_ _ _ _•

~~~~~~ 

- .
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associated with h = A h
2

(l+h
2
(A—U )~~ is obtained as follows:

[(A—1)h 2] : 9 + + a
2
y = (A—l)D 2gx

[l+(A—l )h
2
] : 9 + a1

y + a
2y = ((A—l)D 2g+a2

)X+a
1
X+X

[l+ (A—l)h
23

1 : 9 + a1~’ 
+[cz

2
+ (A—l)D

2
g]y  = X+a

1
X+a

2x

[h
2
(l+(X-l)h

2]

~~~

I: 9 + a1~ + [a
2

+ ( A - l ) D
2g J y  =

• (6.57.a)

[hI : 7 + cl
1

y + [a
2
+(A—l )D

2g~y = D2gX
(6.58)

In a practical problem: 
1
D
2
(t)

lim D2
(t )  = K , u r n  D2

(t )  = 0 , lim = K and
t== t== t==

lim g ( t) ~ Kt 2 
= 2

Therefore the asymptotic behavior of the D.E. (6.58) is:

X (6 .59 )

This is a Cauchy-Euler type of D.E. Through the change of

variable t = e ’~ , (6 .59)  becomes :

9 + 3y +2Ay = 2AX (6.60)

8.1.8.0. stability • guaranteed for (6.60) and therefore for (6.59).

We can then apply a theorem by Cesari ( [C 5 I , p .3 8 )  which states that if

(6.55) tends asymptotically to (6.59), as t -’- ’ , and if (6.59) has

bounded solutions, so has (6.55). Therefore, we conclude that *

• V X > 0 , (6.55) secures B.I.B.O. stability.

VI.4.b.8 e=2

D
2

(t ) (o~~(t) — D~ (t) + ( t — r ) D ~~(t ) I
( 6 .5 3 )  qives:  h

2
(t,r) = u ( t — -r )

c~ W ( t )  + f D
2

(~~) D ~~(~~)d~
0 (6.6 1)

— —  -----j ~ ———--—— -~~ ~~~~~~~~~ ~~~~~~~~~~~ .• ~ i ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~— --— - - -—~~~~~~~~
.-—----
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-
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Followina the same procedure as above h(t ,r) is associated

with the D . E . :

[h I  : + a
1
(t)9 + a

2
(t)y + ci~~(t)y = A D

2
( t ) g ( t ) x  ~6 .6 2 )

with
D
2

• a 1 = 3D2g — 5  ~~~
—

D
2
(t) 2

g(t) =

~ D2 (c ) D~~( c ) d c  
a

2 ~ 3D~ g — 7  
D2 

D~g-4 ~~-+l2(~~.)
2

a 3 = A D 2g + l 2 ( D ~ g) 3 - 6 D~ D~ g2 - D2 
(30 (D~ g) 2 -3 D~ g) + 2lD~ g ( ~~~) 2

- l2(~ ?.)~ - (
~~) +~~o~g ~~ + ~ ID

2 
ID2 

-

As t -~-= , (6.62 ) is equivalent to:

= ~~~~
. IC (6 .63 )

Using (t eu) this Cauchy—Euler D.E. becomes:

~~~ ( 9 +  l l y  + 6Xy = 6XX (6.64)

(6.64) has bounded solutions, if all minors ~ . (Routh criteria) of:m

6 1 0
- ‘ = 6A 11 6 ~ 0 , i.e. ‘

~
0 0 6A ~~A < l l

Therefore , 8.1.9.0. stability is secured for (6 .62 )  if 0 <A  < 11

This imp les that Ic ~ 11 k 2 , and the refore if we have to cope wit~-

u n c e r t a i n t y  such that  Ic >11 k , B.I .B.O.  stabili ty is securedmax mm

when k . <k
2 , which is a very poor choice, as far as the system

response is concerned, (recall (6.35 )  and the discussion in section

VI.2.c).

-4

t. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—- 0~~ ~~~~~~~~~~~~~~~~~~~~~~~ •~~ 
* 
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VI .4.b .’y e = 3

(6.35) gives:

D 2
( t ) ( D ~~( t) - D~~(T) - ( t - T ) D ~~(t )  + 

( t -i) 2 
D~~( t ))

h 2
(t , r )  = u(t—t )

a~ W ( t )  + f D
2
(C)D~~~ )dC (6.65)

h Ct ,t) is then associated with a D.E. whose asymptotical behavior is

given by:

[hI : y
E4) 

+~~~~~~~~~~~ +~~~
-
~~

- y + 2~- ~
‘ + -

~~-~~~~- 
~ = x (6.66)

wh ich is equivalent, after the change of variable t= e ’
~ , to:

~ (41 
~~~ +3S ~ +50 ~ #24Xy = 24AX (6.67)

A sufficient condition for stability is then given by:

~~10 1 0 0

50 35 10 1 25
> 0  —

0 24X 50 35

0 0 0 24A

- 

- . 
- Note that the uncertainty range one can cope with efficiently in such

a case is only 25/3 (recall ( 6 . 3 5 ) ) .

VI .4 .b . 6 Analysis for e> 3 and Conclusions

As e increases, we can develop similar relations. To secure

* B.I.B.O. stability , one gets sufficient condition

0 < A <  K (6.68)

w i t h  u r n  < =1. It becomes once more clear that stability is conflict—

in g  wi~~h the s e n s i t i v i t y  of the system response to parameter uncertainty.

Met e t h a t  our f i l t e r  is an “ a l l  pole ” filter and a big improvement

m iq ht b. ~btoined by ~nsertinq proper “zeros” . We have not pursued

_~
4~~~~~~~~~~ 

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ --• -
~
-
~~~~~~~~~

-- 
-—- -~~ — - -- -



____________

122

t h i s  direction , since the f i l t e r  is L.T. V . ,  and it is rather difficult

to introduce those zeros in a systematic way .

As for a > 2 , the s tab i l i ty  problem prevents us from coping

with large uncertainty , the corresponding systems are not so useful .

I{owever, for e 1  , no stability problem occurs, and therefore the idea

arises to use the “second order system” obtained with e= 1 , and to

doctor the “equivalent t r ans f e r  func t ion ” by insert ing a L . T . I .  f a r—of f

zero-pole package in order to come out with the desired excess of poles

C over zeros. Without loss of generality , we used a package similar to:

- 

I 
K(s+z) (6.69)

(
2
+2C I~)p p  p

wh~~re n , z , , c. are to be suitably chosen by the designer.

VI . 4 .c .  Synthesis for Large Gain Uncertainty.

VI .4 . c . c*  Philosophy of the Synthesis Procedure

Let the uncertainty range , (Ic . ,k I and the T . D . S .  be given.mmn max

it is found experimentally that if k
1
=k (recall (6.35)) is used ,

then the nominal response c
1(t) is best chosen close to the prescribed

~~
time domain upper bound .

a ‘~ Using (6 .35 )  k 2 = k min is first chosen. This leads, in general ,

to the slowest possible response signal , which may or may not be

satisfactory. If not satisfactory, k2
< Ic

mi (6.35) is adjusted until

the respon’~o signal for k=k . is satisfactory. This can be under—

stood physically from the fact that specifying a larger uncertainty

range [Ic , Ic J than the actual 1k - , k I means that t(t ,r)2 1 nun max

handles a bigger burden due to uncertainty, which then leads to an

increase in i ts “Bandwid th” and thus a smaller spread ‘~c (t) for the

- -  •- •—J-- 
- -~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
~~~~ 
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considered range 1k • ,k I C Ik , k I .nun max 2 1

As a consequence , the sensor noise e f fec t  at the ~ 1ant input  is

increased , but there is still preserved a certain improvement over

L.T.I. design , as seen from the examples below. Note that the factor

W ( t )  in  ( 6 . 1 )  can also be used; however this is , in general , Only

e f f i c i e n t  at small t -

In a general sense k = k~~ does correspond to the lower Time

Domain Bound but k k  does not correspond to the upper one ,

because as k -.- k , corresponding signals have the tendency to

oscillate around the nominal signal c
1

( t )  (see for example Fig. ‘11.8

and VL1O). Therefore , if one is to achei ve T.D.S. this can certainly

ie done by cut and try, i.e., once k2 has been selected , to correct

the nominal signal c1 (t) in order to satisfy those T.D.S. and then

derive a new k
2 to satisfy the lower bound and so on. The above

‘cut and try ’ is always inevitable whenever a ‘trade—off’ optimization

criterion is used as the basis of design , whereas the primary specifi-

cations are in the form of performance bounds. We are at least finding

a systematic cut and try procedure .

In order to determine the L.T.I. pole zeros package , the concept

of ~‘frozen-time open loop transmission” is used. This means that for

each fixed time t0 , the L.T.V. differential equation becomes a L.T.I.

one and thus one can define the associated L.T.I. open loop transfer

f u n c tion A (s ,t
0
) (Fig. VI.7). We are aware of the fact that L,T.V.

- ystem c-an be unstable although each of its associated A (s,t
0
) leads

•i ~t mh1. cI~”.iqn , w h i c h  means that  the tool used here is ce r t a in ly

Tt ’t •~ very -Ic cur,ite one. However , it turns out that this concepts can

i- - a p j  jed ~;u~~ecsfu1ly here and therefore we did not investigate more

...

*4
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accurati methods like the application of the EPLTI concept (see

~~~~~~~ v i i )  .

The package is chosen to give a very small contribution to

(s,t
0
) in the low frequency range . Therefore, it suffices to consider

the worst case, i.e., the A
M
(s
~
to
) with the biggest bandwidth

(Fig. VI.7). Thus it is conceivable that a ‘time—varying far—off pole

zero package ’ may be better.

VI.4.c.~ Example and Results.

Assume a set of step command inputs of amplitude a , with

<a
2

> - 1 , ana let the T.D.S. be as shown in
i Average over ~

Fig. VI.8.c. The plant P(s) = k/s is considered with I c E  (1 , 100, .

Furthermore , it is assumed that the strength of the white sensor noise

is = 1 . Following the above procedure , the nominal system response

c1
(t) = (l_ e t ) 2 is selected and pai red with k 1= k =100 -

= I c .  = 1 and WIt) = 1 are then first chosen. The corresponding

system response to a step command are then shown in Fig. VI.8.a for

different values of the gain factor , and it is seen that the T~D.S. are

not satisfied. The sensitivity of the system response to plant

uncertainty can be decreased by decreasing W(t) , giving then less

emphasis to the noise performances. For instance with W(t) = .01 (Fig.

• VI.8.b) over-design is acheived. By cut and try W(t) .1 is found

- • 

- 

•~~t i sf ac t o ry  and the system response to a step command are then shown in

i-’~~;. 7T~~ .c for different value s of the qain factor Ic

N o t  tCh, t the pC.~nt is f i r s t  order , the refore a far off  zero pole

I -
~ not  needed in the  pre sent  case since the closed loop tra ns —

~“ i ! ; , ; l I , di’scribed by (f~.5 H) with all terms in DID and D/D dropped ,

n - ; ’ - ’ ’ n~ I order , j - * - -

- ~~~~ 
-—

~~ •~~~~
-

~~~~~~. 
- •• — -•
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time

VI.8.a (W(t) =1 .) VI.8.b (WIt) = .0l)

Figure VI .8 .a  LTV system response to a Figure VI .B.b  LTV system response
command input for different plant gain to a command input for different
factors when W(t) =1. EP(s) = Ic/si. plant gain factors when Wit) = .01

[P (s) = k/s).

- - -- t i m e
C) 1 2 3 4 5

F!~~~re V T . )1.c LTV system response to a command input for different
p l a n t  q d in  f ac to rs  when W I t )  .1 [ P ( c )  = k/ sJ  .
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2D~ D
2 r ‘ (D 2)

2 
2D~D2 ~ 

_________[hi : y + 
1 ~ ~

‘ + 
[ 

- 
1 2 j ~

‘ 1 2 X
_ -s- (D~ ) /2 .~+(D2

) /2 )i+(D
2
) /2

(6.69.a)

where here : D
2
(t) 

k
�
_k

1 c
1
(t) , D~~(t) =

= W(t)c~ /k~ = .1 and A = k/k 2 -

From (6.69 .a) and recalling that ~ = h(1-h)
1 

, we get:

2D~D2 2D~D2 (D
2
)
2

( E J  : y +
1 2  

‘ 
1 2  1 2  X

/2 I.’~~(D2
) /2 p+ (D

2
) /2

The plant is [pI :~ kx , so [p~~ ] : ky = c and as g = p~~~ t

we have :

2D 1D 2D 1D A(D )
2

(gI : + — _______ = X (6.69.b)
u+(D

2
) /2 I’#(D

2
) /2 2 W

2
) ~~~

As c1
(s)  = s( s+ 1) (s+2) (s+3) we have : ( ~ t1 r

• T
1
(s) = (s+1) (s+2) s+3) and T1

( s) is therefore associated with the

D.E .

(t
1
) : + 6~i + ll y + 6y = 6X (6.69.c)

By def in i t ion, h
1 

(obtained with Ic = k
1 

) is associated with

therefore, the prefil ter f  is such that:

h
1~

f ~ t
1

or (6.69.d)
f~~~ h1 

‘t
1

Using (6.69.a) and (6.69.c) we get:

k
1 

ID2)
2 

-- . r 2D~D2If) : 
i~~ 

(y+ 6y+lly + 6y ) 6 X + 
1—~-—— XIc 2 u + ( D 2

) /2 ~ p + ( D
2

) /2

+ ~ 
( k~ (D

2
)2 

- 
~~2

D
2 

~ 1\ k
7 u+(D~ )

2
/2 u+(D~ )

2
/2 /

N

.

~

i 1iIIIiL . II

~

f lr . . . ‘tIui’4ITh ..~~~~~ 
_ ‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - --~-~~~~ ~~~~~~~~~~~~~~~~ -~~~~~~~~~~ ‘~~ ----- — - - -



~ - - ---~~~~~~~~ -~~ r—-’ - . - ~~~~~~ •,  ~~~~~~~•

128

The mean square values of the sensor noise effect at the plant—

input are shown on Fig. VI.9 for different plant conditions. The results

are also given for the L.T.I. design [Appendix A 3.8b 1 which achieves the

1.8T

L.T.I. Results

2 
~~~ 4.5 4.8 5.7

‘
i.
~~
— k 1 5 20 40

o 
2 

time

Figure VI.9 Mean square value of the Noise at the Plant Input for the

* 
L.T.V. and L . T .I .  design ( P ( s )  = k/s) .

4-
.

same T.D.S. shown in Fig. VI.8.b.

There is clearly a big improvement in the noise level at the plant

input. Note that (t) -‘.0 as t-’. and for t-’.O . This can

be understood from the fact that as t~~ , the L.T.V. network behaves

l i k e  an open c i r c u i t and as t~~ O the signal a I t )  (F i g.  V I . l ) which

is fed into e is very small and slow-varvin~~, so a large bandwidth

for C is not r -- t : i r - -~. It is very interestina to note that

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
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Figure ‘11.10 LTV system response to step command inputs for different
plant gain values (P(s) k/s2)

1.

10 ,~~~~ •~~~~

- • •~~~~~~~~~~~ 

• 
0 1 2 3 4 5 6 7 t ime

F i gu r e_ VI .1 l  LTI system resoonse to step command inputs for different
plant qain values (P(s) = k/s2) -

( l - ’i ’1. V l . 7 )  tin- bandwidth of our system has a maximum , leading to an

-xtremum in he noise level, both occurinq roughly at the same time as

m a x i m u m  of ~~~~ . Th~ trad r---ul f between noise level and bandwidth

k~- ~~~~~~~~~~~~~~~~~

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

~~~~
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L.T.I. Design (k=100)

L 
k=100

‘~ 00

300 
/\ T.V

.

I \ L.T.I. (k=l) 
—200 

~~~

- / 
k=l \

~~~~~~~

‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

time

- I 
Figure VI.12 Mean square value of the sensor noise effect at

the plant input for different values of the gain
value [P(s) = k/s21

Is

of a system needed to handle fast varying signals is once more very

c C (‘ Ir .

Let- us now consider the plant P15) = k/s
2 

with Ic E [1 • 1OC I

.:

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______________
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= with the same set of command inputs as before.  The T.D.S. are shown on

Fig. VI.l0 for this case . The nominal output c
1

(t )  = (l..e
t
)
3 is

once ~ore selected and associated with k = k = k = 100 - Using the1 max

above nrocedure , Ic2 k .  = 1 is taken , and by cut and try W(t) = .1

is found satisfactory for the T.D.S. to be matched . However, as the

plant is second order , we need here a far-off pole—zero package in order

to be able to realize the compensation G - n 1  is selected in
2

(6.69) and the package used is: 
z 2 2 The addition of

(S +2ç w s+w
p p  p

such a package should not a f f ect too much the signal responses obtained

with the “second order system”. Therefore , we took as a criterion , a

phase lag of at most 50 at the maximum crossover frequency

= 20 rps. (Fig. VI . 7 ) in the fami l y of A (s,t
0
) dep icted on that

C

f i gure .  The ‘best ’ package is then found to be the one for which

z = 70 rps. 
~ 

= .4 , w = .75 ~ z . In a similar way to the previous

example (equations 6.69.a-e) the D.E. for f and g can be obtained ;

this step is skipped here to avoid lengthy derivations. System output

- -~ responses are plotted in Fig. VI.lO for different plant conditions.

Using then the T .D .S .  shown on Fig. VI.l0 , a L.T.I. system was designed ,

for which the system responses to command are shown in Fig. VI.ll.

4” For both des igns ,  the mean square value of the sensor ’s noise at the

plant input  is plotted in Fi’ . V I . 12  for the two extreme cases

Improvement  is seen for  a l l  k € [ 1  , 1001 -

~ 

~i• ~~~~~~ ~ii. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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VI.5 Solution to the filter_problem by means of the Euler-

-; Lagrange differential ~~~~~~~~~

V I . 5 . a  Statement of the problem.

It was explained in section VI.3.a , that the minimization problem

of ( 6 . 2 )  has no solution and r’~ight be replaced by that given in (6.40) ,

w~i i ch  has a s o l u t i o n  (Appendix A 3 . 5 ) .

Let P(s) = —b—- with uncertainty in both ~ and in Ic -

Let P
1 

= k1
/(s+a

1
) be paired with output signal c

1
(t) -

For P
2 

= k2
/(s+c 2

) we want to:

T~~ t 1
Mm f 

~ 

(D(t) — f h
2
(t ,~~)D(c)d~ )

2 
wit ) 

~ 
( t ) j  dt (6. 70)

h 2 0 0

where  o~ I t )  is de f ined  in ( 6 . 1) ,  wi th (6.la )

0 ( t , r~) = ~~~ (-z ~
- h

2
(t,c ) +a

2
h
2
(t,~~)) and 

N l ’~~2
1 =

A(6 .70)  becomes I = —
~~

-—

T t t
• Mis 

~~ 
{(D(t) - f h

2
(t,~~)D(~~)d~ )

2
W (t) +u  f ( h

2
(t ,ç) +a

2
h
2
(t,~~))

2
d~

J 
dt

2 (6.71)

As shown in Appendix A3.5, if a
2
=0 , (6.71) is equivalent to

the Euler—Lagrange D . E .
2

‘ 

—4 (t , t )  + D(r) (D(t) - f h 2 (t , ç ) d ~ J = 0 . (6.72)

No closed form solution exists , in general , and (6.72) must be solved

by numer ica l  methods . This is certainly a direction to pursue in some

future resea’- h , but as we want to avoid numerical methods, we assume

h 2
(t , t )  has the form : 

-~~~~~~~~~ ~~~~~~~ :~
_
~~1i~•_ ~~— - - -_  •
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h 2 C t , t )  = A lt) (~~(t) — ~ (T))u (t— -r) (6.73)

w~ - rr- A f t )  is unknown and e c t )  is given .

V I .5 .b  Solution to the filter problem and outline of the

synthesis procedure .

As shown in Appendix A3.7, when (6.73) is inserted into  (6 .70) ,

the Euler—Lagrange differential equation is:

A ( t 0
2 (t )  - 20(t)0

1
(t) + f e 2 (~~)d ~ ) + 2 A e ( t )  ( t e ( t )  _ 9

1(t ) )

+ A ( e ( t ) ( t e ( t )  - e 1
( t ) )  - a~~(t e

2
(t) -28(t)0

1
(t) + ~~ ~~~~~~~~ - 

W ( t)  
J
2
(t))

— 
D t w C t J t

— — 
(6.74)

where J(t) = f (0(t) 0(C ))D(~~)d~ and 0
1
(t) 

~ 
f 0(~~)d~

(6.74) is a singular differential equation which has in general at least

- 
- 

one unstable solution , because the coefficient in A is always negative ,

while those in A and A are both positive. To extract the stable

solution involves here too, numerical  methods, which we want to avoid.

- 
~
- However, it seems that  by a proper choice of A (0) and A (0) , we

can obtain quasi—stable solutions of (6.74), that is, solutions which

can be considered as stable over some finite interval (0,Tl , big

enough for our purposes.

4 The synthesis procedure is then very similar to that described

in sec t ion  V I . 4 . d . u .  c 1
( t )  is chosen to lie within the prescribed

- . , r lose to the upper bound and is paired w i t h  P 1 corresponding

- - t h - - t i ’ - - ; t  ;-~ i n  va l i .- Ic = k - We then t r y  f i r s t  k = Ic
ma x 1 max

kmi . - A ;  h-. - f r r - , - I  ~ut •-jnd try procedure is then used to find

~ •j n ’J -~ ( t )  - i ’  t h a r  th’~ ou tpu t  siqnals corresponding to

-i - . —_- — —---— - — —5- 
- _

. . - —- . 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- — -- - 
~~~~~~~
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1’ ~ [k ,k 3 l ie  w i t h i n  the T.D.S.
mrs rr-t x

VI.5.c ~~~~ples of atpp l ication and results.

VI.5.c.ct 
!~~~~)_ k/s

The plant P(s) = k/s with uncertainty in the gain factor

k € [1,1003 is considered here. This example was already considered

in section VI.4.d.B. The T.D.S. shown c~ ?ig. VI.13 are to be satis-

fied for system step command inputs. The nominal output response to a

; ;n i t  n $-r- ; comma nd is taken as c
1
(t) = (l_e t

)
3 and is paired with

-k =100 - k =k - =1 is then selected, 8(t) in (6.73)v~~’~ 2 nun
Ic 2

—k
1

i s  taken as 0(t) =D
1
(t) , (0(t) =D(t)) , whe re: D ( t )  = Ic 

c1
(t)

* I
- 2 - 2 2

;*nd it is assumed that O
N l , implying that p = oN/k 2 = 1 . In

~ manner similar to the procedure described in VI.4.d.$. W(t) = 1 is

~~~~~ chosen and by cut and try , W(t) = .1 is found to be satisfactory.

~-refore the ‘optimum ’ system (under the present assumption) is

- - - e d  f ro n (6 . 7 3 )  as h 2
(t , i)  = A(t) (D

1
(t) —D

1
(r))u(t—r) with

- - ) the solution of: (recall 6.74)

(t D ~~~- - 2 D
1

( t ) D
2

(t )  + f D~~(~~) dC )  + 2A D ( t ) ( t D 1
( t )  _ D

2
( t ) )

-
~~ 

D~~(t )  
~ 

D ( t ) D ~~(t )
+ A ~,,

D ( t ) (tD
1

( t )  — D
2
(t)) — .1 

~ 
= — .1

1 ’ - m g  Appendix (A3.6), the differential equation associated with h2

i n :

h
~~21 

~‘ 
- 

~ ~ 
— 

~~~
)+  y [24)

2 
+ 

~~ 
] = ADX

and therefore 
~~2 

= h
2
(l—h

2
)

- 
~~ 

~ 
— 

~~ 
) + y [2(~~)

2 + — — ] = ADX 

--~~
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so g = p
2
1 .Z

2 is associated wi th the d i f f e r ential equation :

Igi : - 
~~ (4 - 

~~ 
) + y 

(

~~~

4

~~2 
+ - - 

~~~ 
) =

The prefilter f is obtained by satisfying

~l 
( l+i

1
) 1

-f = t
1

or:

f = (l+Z
1
)-i

1
1
-t
1 

=

where t
1 

is the specified overall transfer function associated with

- 
C
1
(s) 

8 -P = P • i.e., T (s) = in the present case.
1 1 R(s) (s+1) (s+2) (s+4)

The system response to step coninand inputs are shown on Fig . VI.13

for different plant gain factors. It should be noted, as stated above,

that all these solutions are “unstable” at inf in i te  t , but can be

regarded as “stable” over some finite interval of time. This is not

inconvenient if one has to satisfy T.D.S. over a finite interval t0,T)

as is often the case with L..T.V. designs (recall that L.T.V. designs

do not give identical results for b I T) and Ia , T+al ).

The effect of white sensor noise (of power spectrum o~~” l .

is shown on Fig. VI.14 for different plant gain factors, and is coin—

pared with the results given by a L . T . I .  network which achieves the

same T.D.S.

VI.5.c.B P (s) =

Consider the plant P(s) k/(s+ci) with uncertainty in

- i  € [.1 •L 1 and with no uncertainty in the gain factor. Let us

• . j - -~ k
2 

= 1 . 2  , Ic 2 = 1. , and assume that c
1
(t) = ( 1_e t ) 3 is paired

w ith P
1
(s) = k

1
/s+l - Let e~~= l  and let the T.D.S. to step coninand

~~~~~~~~~~~ 
l~~- i-  1 ’wr in Fig . VI.15 . Pr,.-r .- nw re , by cut and try , W(t) .1

- 
‘• - -  

~~~~~~
‘ -.

~~~~~~~~~~~~ f . .~~S. ats . - - 
.L. - - -• - -5
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Figure V I .l 3 LTV system response to a step input command for

~
2 d i f fe ren t  plamt gain values.
p -I. __________________
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VI.14 Mean square value of the noise at the plant input due
to white sensor noise for the LTV and LTI design .

is found satisfactory giving, for different values of a • the responses

to a step command shown in Fig. VI.15~ g and f can be obtained as

in the above section . (The details are therefore skipped here.)

It should be underlined that our synthesis technique cannot cope

w i t h  large u n c e r t a i n t y  in both the gain factor Ic and the pole a

(Note that this w e  ~ l -;o tr o - with t i e  f i r s t  approach.)

- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~~~ -~~~ 5-~~---— - ~~~~~~~~~ --5—~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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Figure VI.l5 LTV system response to a step input command for

c(t) 
different values of the pole a

‘I.
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- 

I (K ,p )  / \
1

:8 

~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure ‘11.16 Typical LTV system response to step command impute
for different plant conditions. P(s) = k/(s+p)

This is due to the fact that our optimum design is very sensitive .

Ic
because it is “tuned” to the two extreme cases , P

1
(s) — and

max

= —
~~~

-
~~~

— (interchange of and a
mjn 

does not help) .
m m

i’his means that both approaches give correct system responses [Fig. VX . 1 6 1

!c, r thi - q a i i  factor values k € (Ic - , k when a — a  - . However,
nun max nun

-- ~~
-

~~
-

~
--

~~ 
-: 

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -- 5
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at k = k  , it is seen [Fig. vI .161 that an intolerable undershoot
nun

occurs for some a € (a - ,ri ) which increases w it h  a . This is
mm max

due to the fact that the “equivalent open loop transfer function ” needs

more “gain factor” when a a  than when a=a . , in the timemax mm
interval where undershoot occurs. Suppose that by means of the

weighting functions W(t) , the “gain factor ” of the “open loop

transfer function ” is increased to handle the undershoot problem . We

then have a L.T.V. system which no longer has better noise performances

than a L.T.I. design which achieves the same T.D.S.

VI.6. Conclusions

This chapter has presented a first attempt at using optimum

filter techniques to handle the uncertainty problem by means of L’rV

compensation. While the problem has not been fully solved , iii the

sense of providing systematic design procedures for systems with large

p lan t  uncertainty , a respectable beginning has been made for achieving

TOS despite large gain factor uncertainty. It was emphasized that the

m in i m i z a t i o n  problem :

MinUic(t) + W(t)a~ 1
(t)) , Vt

h2

had no analytical solution for realistic plants (of order n ~ 1 ) .

Two alternatives were then presented , leading to realistic

solutions with substantial improvements over LTI design in terms of

sensor noise rejection at the plant input. We can conclude that this

chapte r gave us a better understanding of the achievements and the

l imi t a t ions  that can be expected from LTV networks , when used to cope

- ‘ fl t ~~‘- unc e r t a in t y  problems . ‘ons -i~- r-ih1e work has ye~ to he don,-

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~� ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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to arrive at a comprehensive synthesis theory for large and general

plant uncertainty . A possible direction is try numerical methods,

inasmuch it was noted that no closed form solution can in general be

expected.

It is seen that the improvements were much more spectacular with

N.L. compensations (recall FORE), as might have been expected. One

price paid is obviously in terms of stability, since the stability

problem is usually more difficult in non-linear systems than in LTV

systems. Also, one must design for specific input classes in non—

linear systems and must carefully check for the system response to the

occasional signal belonging to other classes. While, here , we also

tailor the design to a specific class of inputs , one can much more

easily determine its response to other input classes . However , it

should be mentioned that a significant restriction of LTV systems is

that one must know precisely when a specific input (of a certain class)

begins in time.

_ _ _ _  -
~ —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --5- .
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CHAPTER VII . Not-lLINEA_P~ FE~ DSBA~~ LS~~~~~ $YSTEMS WITH

LARG E PLA~~T -~~O \ N  TF r -~-R PF~E CPJ .ftFSP FT

DOM IN ~Y~ C~~~IC I~~~~~~O~~~& ~~~~~~NPM ~-X1~ -- -

VII .l. Introduction.

VII .l.a Generalities.

It was shown in chapter II (section 4) that some classes of N.L.T.V.

plant W can be characterized by a set P~~[S) , denoted as the EPLTI ,

w~~i c’h is associated wi th  the system input  ‘
5(t) and defined over a

set of acceptable system output C
a

I~~I - This equivalent character—

• i?ation of the plant  (t h a t  was proven by application of Schauder ’s fixed

po int theorem) lends itself very easily to quantitative specifications

,nd is therefore a powerful tool in the synthesis of nonlinear feedback

systems. This technique has been applied successfully to the quantitative

synthesis of feedback systems that included L.T.V. or static nonlinear

u f l cur~ -’1n s l an t s .  This chapter presents the first application of the

EPLTI set concept to dynamic nonlinearities.

The synthesis technique for L.T.I. plants that was reviewed in

• hapter II (section 1) implicitely assumes T.D.S. of a linear “type ” ,

• i . e . ,  if r • denotes a command input app lied to the system of Fig .  V I I . l

o : { d ( t ) }
{u} {c}  (x (t )) 

_______

p ~~ Ei1
~
.I_c1 ..._f~

j__..o._{w={W}I-_o.

VII - I - r - ~-di - -o - k s~ U s : t U l  e -
~~ 1 n non i ‘-- -i r uncertain

I -  I -* i ~’ - - -  •~

- ~~~~~~~~ -- 5-—~~~~~~~~~~~ 5--~~~~~-— ~~~~ 
- 
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and c. its corresponding output , then : Vr
1 

Ar
2 

I. c
1

(t )  =A c
2
(t) (7.1).

However , it is conceivable that the T.D.S. are of a different nature,

i.e., linear time varying (L.T.V.), nonlinear time invariant (N.L.) or

nonlinear time varying (N.L.T.V .).

a). T.D.S. of a “L.T.V. type” means that the T.D.S. on the system

impulse response are different for different instant of application of

the impulse. This problem has been discussed elsewhere [1381, [H61 .

B). T.D.S. of a “nonlinear type” means for example that the specifi-

cations are different for different signal amplitudes or the T.D.S. for

a ramp input are not necessarily the integral of those for a step, or

more generally given (T.D.S.). for r . and r . = g*r . , then

(T.D.S.).~~ g*(T.D.S.). . This problem is considered here

‘.‘) . T.D.S. of a”nonlinear time varying type”combines cx) and 8) -

The solution to this problem is therefore a combination of the solutions

to a) and B) -

VII.1.b Nonlinear time domain specifications (N.L.T.D.S.).

~‘ig . VII .2  shows the acceptable response tolerances for a

c ( t )  TOLERANC ES FOR INPUT u(t )

~~~~~~~~~~~~~~~ OLE RA NC~ES . INPUT 1/ 2 u ( t )

~~~ TOL ERANCES . INPUT 1/2 u(t )
(LIN EARLY RELATED TO uO) TOLERANCES )

~~1uro V I I . 2 .  “Linear ” and “nonlinear ” tolerances on stes response.

5( 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~~
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u ni t  step response r(t) =u(t) . In a linear system , those for r(t)

.- i u l t )  are one ha l f  of the former , as shown . In  a nonl inear  system

they  may be as shown icr Fia . V I I . 2 , of the k ind u s u a l l y  associa ted with

t ime opti~~~1 response. It is conceivable,  for examp le , that one might

want the un i t  ramp response to d i f f e r  s ign i f icant ly  from the integral

of the u n i t  step response , which is impossible in a linear system. One

should note at t h i s  point  that  there is considerable ambiguity with

N . L . T . D . S .  so def ined . Indeed , wi th  L . T . I .  system the response specif i—

c tions are the  same when the command input jumps from 0 to 1

1 to 2 or from 5.2 to 6.2

This is, however , no longer trra for N.L.T.D.S. and therefore all

the specifications that will be considered here are relative to the

re ference r = 0  . Obviously, one can also incorporate other references

~ han zero by adding some other contraints which then increase the

comp lexi ty of the problem .

It is shown that it is possible to achieve N.L.T.D.S. of the type

- - f  Fi g .  V I I . 3 , by us ing a L . T .I .  compensation G(s) (Fig. VII.l) and a

/~i._.___..~4 E” ’~ P: K1y 2 + K 2y ~
2 - ~2” ,/ ‘ ~~~~~~~~~~ K 1, K? € (1 ,10)

b’:= 

STEP DISTURB. ( 1-4 ) .  MAX. 30% OV.

— I I
5 tO

Fi gure V I I . 3 .  P reh ier ,  st r t e r r e n t

—

~

-— --—— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :I~~~

”
~~~~ -
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nonl inear  Fr n fj l t e r  F

V I I . l .c  Nonl inear  p r e f i l t e r .

The problem raised by the synthesis of such a nonlinear prefilter

F introduces us to the research area of “open loop nonlinear synthesis” ,

for which only primitive solutions exist up to now. The problem is:

given a finite set of input signals R = (r}, des ign F such that to

each inpu t r . there corresponds a specified output u. (t) (Fig. VII,l).

One obvious necessary condi t ion for the existence of such an F is tha t:

if r . (t) r.(t) for t E [O ,t
1
) then u (t) u . (t) for the same

interval.

VII.2. Synthesis procedure.

VII.2.a Philosophy of the design procedure.

Following section 11.4, the a — EPLT I transfer  function set

associated wi th input ~
a
(~~) € I over the admissible output set

and the nonlinear plan t set W , is

= (P~ (s) , z~
’ € ~

cx
iti , w . € w} , which is well defined

V

for all frequencies € D = (O,”( . It  was shown (H2 )  tha t frequency

domain specifications suffice to guarantee T.D.S., therefore the

synthesis technique uses frequency domain concepts.

In the frequency doma in , there is associated with each system

• input  i~it) € I a set Q(w) of permissible equivalent overall transfer

f u n c t i o n  Ta ( j W )  r see ( S 2 [ ] .  The synthesis technique for L.T.I. systems

that was discussed in chapter II  (section 1) can now be applied and

Ecuations (2.1) and (2.2) are rewritten here as

a

~
(j w )  P .(jw)

V - € - ~~~~ 
‘-in ~ 1n~T0 ( j w ) I  ( 7 . 2 )

- 1 - l + G (j ~1 ) P ~~(j - a )
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where i ranges over all possible plant parameters , and z over all

possible corrimand inputs.

Satisfaction of ( 7 . 2 )  5~ t some frr-~ uerr-y , leads to a bound

B (u  ) on the compensation G(jw) , due to the input i°(t) - This

is repeated for each system input i
0
(t) El , leading at each to N

hounds b(w~ ) (Fig. VII.4). G(j~~) should satisfy all these N

bounds and therefore the f i nal bound B(w~ ) (ir dashed lines in Fig.

VII.4) on G(jw) is such that :

81w ) = U sup B (w
e
) with 9 = 

- 
G ( jw 1

) ( 7 . 3 ) .
° e

- 

- 
Th is is conceptual ly  done at each w

~ 
€ I? , and one the n obtains the

• o ptimum L.T.I. C(s) in the same manner as in [H2), i . e . , as the one

wh i ch l ies  e xa c t l y  on i ts bound at  each €

Once C ( s )  is determined , the set {u }  (Fi g .  V I I . l )  which is

to be paired with (r} can then be obtained . The nonlinear pref liter

F must produce u (t) € {u) when the input is r . (t) € {r} . Some

p r i m i t i v e  solut ions  are given in (Hl1 and in Appendix A2 .

VII.2.b Details of the design procedure.

These are best understood through an exai~ple.
db

a 
~~~ure VII.4. Bounds on G (jw) due to system

input  i0 at  f requency

L 

‘B(w~ )

— 
.~~~

~~ B
1
( I

!~~~( .  1 B
3

(S 
-

-



--— - - . 5-- ~~~~~~~-——~~~~— .--~~~~ — -
~~~~~~

—-,--—- --
~~ 

I I - ~~~~~~ I ,J - -  - - - - w (r 1)
5 -3 ~~

- 
.33

L_~~~ I - 1 I - - . i r ~~ w (r=2)
2 :0 23 30 230

I I _i_ I I ~~~~._ .  I I - u i  w ( r = 4 )
4 20 6:) ‘ 233 430

Figure V1I.5. Frequency domain specifications due to command inputs.

VII.2.b.~ Specifications.

SET OF SYSTEM INPUTS It consists of:

1) Step inputs ru(t) , r~ € (1,4] for which we want to ac-hir-~’e tire

N.L.T.D.S. given below.

2) 0— 4 step disturbances for which the maximum tolerable overshoot ‘ i i

the system response is to be 30 percent.

Therefore we will  take here : I ~ {~
a (~ ) ,a = l ,. . . , l2)  =

(r = ± 1 , ± 2 , ± 4 , d = ± 1 , ± 2  , ± 4)  and expect tha t specifications

will also be met for intermediate values. If the latter turns out

untrue , then the design specifications would be enlarged to include those

system inputs for which the specifications are violated .

N.L.T.D.S. They are shown on Fig. VII.3 for step commands.

‘those are chosen such that, given the tolerances on c~ (t )  , those on

( ( ~~~~) as ociated with input r (t) A r . (t) have quite closely the

r r r ,: - r t 1 C.(.rt ) AC (t) - Consequently:

C ( s )  JC . ( U ) C u dU = ~fC.(~ )e ’
~
5du )2 :~c.1o e

_0As
do = A 2 

C . ( A s )  (7 .4 )
I

- 

5 - —  -~~~~~~~~~::;~
---- 
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The inputs considered are steps , so R .(s) = A 2
R . ( A s )  and

C (s) A
2
C (As)

T . ( s) ~ = , = T. (As) (7.5)
) R ( s) A ’R . (As )

Thus it is only necessary here to concentrate on the T.D.S. of a

particular step command (say r . = 1) and translate then into frequency

domain speciFications (Fig. VII.5).

The frequency domain specifications associated with r .(t) Ar ,(t)

can then be deduced from (7.5) , (Fig. VII .5,

PLANT W - is given by:

2
W u -~z k

1
z + k

2
z u (7.6)

with uncerta in ty k
1 , k2 

€ (1,10] independently.

VII.2.b .B Characterization of the EPLTI set.

The acceptable system output C (t) is represented here by a

second order system step response , in order to obtain an analyt ic

expression for pa 151 For step inputs of amplitude r

C (t) = r - 
e 

~~~ ( 
~ + cos~~ c ))r ~ n n n

n

Our T.D.S. translate into :

2.2<~ w <4. and .5<w < 2 . (7.7)
n n  n fl

If w ~~w /iT2 , then:
0 n n

C 
2 (t ) = r

2 ( i+ e 2c
~~~n

t 
+ 

n e
2
~n

Wflt cos2w t
r 2(l—~ 

2) 2(l—~ 
2) 0

n fl

— 2e~~0
b0t (c,osw ~~ + - n sinw t) + n e~~ n~~

tsin2w t) (7.8)
0 /i—~—2 0 jj—

~
--2 0 /

- r
22w 4(3~~4~

and -
, 

[C 
2

( t ) I ~ ~ 
2

1~~ 
n n n

r r 
s(s+2~ w 

) (s2+2~ sr s+w 2) ( 2~~~ 5+4w 2)
n n  n n  n n n  n

~ 

-
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i T ning (7.6)
2 2

rum r r2w k (3s+4~ w )
u(s) = 

2 
k S + 

T1 ~~ n 
2

s(s +2)~ w s+w 
2
) - 

2 (s+2~ um ) (S +4~ um s+4w I

a C (s) 

n 

(s+2~~w) (s
2
+4~~w s:4w 2

)
and p (s] =U ( s )  

k s ( s+ 2 C  rIm ) (
2
+4c um s+4w 

2
)4-2w 

2
k r(3s+4C r,m

ol 2 n n  n o  n n 1 o n

(7.10)

with ç , w given by (7 .7) and for ~z = 1, 2 , . .  5,6. EPLTI sets are shown in

Fig. VII 6.a for various um and cx . Note that for small a the

EPr’rI set is composed of two dis jo in t  regions ( for 4- r  and - r )

bc~- .i-j se of the term in z
2 in W (see 7.6). Such phenomena does

obv iousl y no t occur wi th L . T . I .  plan ts. At very high frequencies.

P’- .’- !- r , the equivalent templates (Fig. VII.6.a) tend toward a straight

l i n e similar to L.T.I. plants , due to the high frequency gain factor

uncertainty.

In order to characterize the plant W for d = ±1 , ± 2 , ± 4

we used a second order model system step disturbance response .

leading , for , to an identical formula as (7.10), with sub—

sc r ip t  d in place of r , and with r~~ -d

-
~~~ 

— , How are 1
d and W d then chosen ?

The specification on the maximum tolerable overshoot is trans-

l a t  -1 , -is irs u rl (see Appendix A l )  j i t o  a m~ n i mu r ,  t o l e r a b l e  damp ing

- ‘ 
‘ va~~’~~ . Per i n~~tance , here  

~d -: .36 ~cr 3C~ maximum overshoo t , or

C - J . I  V - I l - -nt ly to:

- a .sup G~~ w ) P . ( ) - I )
i 

1 

~ 3. 4 db (7 .11)

whore i ranges over a ll  possible plants and 7 , 8 . . .  , 12.

~ 
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PL~.NT TE’~’PLAT ES
/1

~~~ure VII.6.a, Templates at -a= .5 , 2 , 10 rps . I

due to step command inputs

r = c l  , , ~4 - w.uo \ //
Unfortunately, ‘

~d 
cannot be known beforehand , leading to an unavoid—

able cut and try procedure that will be discussed later.

This  spec if ic problem is easier , in the above sense , if there a~~.

.pecific bounds on the disturbance response, for a class of ic~put

~rsturha— s:e-,,when disturbance attenuation imposes a bigger feedback

burden than ~.jt- isfy irrq command re sponse speci f i c a t i o n s .

k 
.~-~

-:=- 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -
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V I I . 2 . b .y  Derivation of the bounds on C (j w )

- Bounds on C due to command inputs.

As explained in section VII.2.a, for a - l ,2 6 , each

(p CI 
, T I determines a bound B (um ) on G(jw) at w € Il by

a a 9. 2

- 
- 

s a t i s f ac t i on  of ( 7 . 2 )  - Using (7 .3) one gets the final bound 8(w 9.
)

due to command inputs, whi ch is plotted (hard lines) on Fig.  V II .7  for

lodeL~ç/
/

______ 
(5 ,400]

- — — — (lI
d 

€ (20,400)

w = IO
I-.

I- r -jtrro ViT.f~.b. Terni’lates at I = 2 . , 10 . , 4 0 . , 200 rps. due to 5t e-

(Ij sr . o r i ), rII - (- . ; ~l € ( 0 .41 -

~ 

\~~~~~~~~ T-~~~~~~~~ - _ _ _ __ _ _  _ _ _



Bounds due to coruunaym .
inputs

\ 
- - - Bound s due to disturbance—

G ( j w )

24 L_ — ‘
~~ —‘ /

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

/
/

I )\ ) ~~~— 

B(~9)~~~~ 
~~~

__

~
_
~~j ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

8. Bd(4Q~~
.
~ I . ,

/ / f

Bd(lC/
’ / (Bd (2)

— 
I I I I i 8 ’~ i~-16C -~~20 -80 --40 0 40 60

~j~~~re VI I . 7 .  Derivation of the bounds on G (jw) -

coo frequencies.

- Bounds on C due to disturbances.

I f  one is to derive C(s) that satisfies the bounds on G due to

‘-orrcrand inputs only, one ends up with a final design for which the cross-

over frequency of the equivalent open loop transfer function ~ E 14 ,801.

Therefore for such a design , one guesses tha t w
d~~~~ 

4 rps and

-

~~~~ 
~ 80 rps for the disturbance response approximation. It is obvious

SaX

t h-i~~ those value -:, represent approximate minimum bounds for both

-~~~~ and 
~d 

, because any G (jw) which will also take care of the
max

idd i~~i onal disturbance specifications can only be more conservative , and

- - r -~~~re c-an only be biaaer . So, one guesses some range for

- - - m v (5 , 401 ) 1 ) and de r ives  cor respond ing  templates P° isl  for

- - 7, 1’ ‘~. !Imcil ar e  i - l o t t e d  on F i g .  V I I . 6 .b  for cor ’o um

— 
~~~~~~~~~

—5--- ,J —~~- -:  :T_ 
_
~~
:_
~~~~
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~~~=~~ - 
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~‘--o-r’- -r ’ - ndina bounds B
d
(w

9.
) due to disturbances are then derived and

- t r - ’  ‘d- o ’ - d  l i nes)  in Fi g. V I I . 7 . A new G can be derived , as w i l l

P- ex:.~ ai:ied later , and therefore one ends up wi th a set of possible

-.‘a i - : e ’  for  1) . Conceptually this is repeated until the real range of

corresponds to the one predicted .

VII.2.b.6 Derivation of G(jw)

Using (7 .3), the final bounds B (w) on G due to the set I of

i npu t s ,  ~i.e. for cz= l, 2 12) are then obtained and plotted on

p - i . V~ I .8  for some um - The optimum G ( j u m )  ~i~ s on its bound at each

- i  ar~~ -n  approximation (Fig. VII.8) obtained is:

c;(s) = 
14. 10

10 
(s+1.25) (s+2)(s+120)

2

s(s+5) (s+60) (s+300) (s+400) (
2
+800 10

6
)

I \o.2 I

\ 8(0.5)

0.5~~— G (jw )  20 —

/400 \ ~~~

H 400 “

20 - 

8O0
~ (2 00) 

-( I )

10
~ .- 2O ~r~5)J

- T O O  -50 0 50
DEGREES

- i l l Ir V 1 I . R .  Final bounds on G and derivation of C, -

~ 
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for an excess of 3 poles over zeros.

The equivalent open loop transfer functions corresponding to the

nominal plant Kl=l , K2=1 are then plotted on Fig. VII.9 for the

values r 1 ,2,4 of the command step inputs. We have (Fig. VII.9)

um
d ~ 

(20 , 400) which is wi th in  the predicted ra nge [5 ,4001 , implying

some overdesign , and therefore one should begin again the design with

a new prediction , say (10,400 ) .  However , in the present examp le ,

removing the points corresponding to € 15 ,20) leads to new templates

(Fig. VII.6.b in dashed lines) which , in turn , leave the final bounds

B(oa) unchanged . Therefore G(jum) derived previously remains unchanged

too , and the final design is giverm by (7.12).

Note that at high frequency all three loop transfer functions

(Fig. VII.9) are identical. This is due to the fact that pCI (5) is

independent of r at high frequency, as seen from (7.10).

VII.2.b.r Derivation of the nonlinear prefilter.

Conceptua l l y, one can derive 3 different prefilters corresponding

to the 3 different linear time invariant designs that were obtained .

The method presented in (Hi] and in (A2 1 can then be used to actually

build the nonlinear prefilter.

• However , the relat ion ( 7 . 5 )  in T suggests that one can use a

sim ilar relation for F , namely :

F (s) = F . ( A s )  w i th  A such t h a t :  r . ( t ) = Ar . I t )  (7 .13)
I 1 3 1

m d - e n  in  a t y p i cal  L .T .I .  design , L ( j w )  copes with plant  uncer ta inty ;

t h o r - - t o re , at least  for l m i q h  gain factors , L/1+L~~1 from the command

‘uirmt -- f view , and therefore T(s) F(s) - If the reference is

taken as the unit step, then (7.13) is rewritten as:

F (S) = F 1(rs) (7.14)

_ _ _ _ _ _  
- —
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Such a nonlinear prefilter F contains L.T.I. networks with time

constants proportionnal. to input magnitudes. In an analog computer

realization, this is done by letting r~ control the potentiometers

and it has the great advantage of avoiding interpolation.

Following (H2] the prefilters ~~~(s) . ~~~(s) , ~~~(s) are then

derived for the three different command inputs considered . In order to

derive F
1
(s) , we normalize all three 3-~ , i = l ,2 , 3 by using

(7.14), i.e.,

~

‘
l,N

~~~ 

A~~~(s) , 
~~~~~~~ ~~~~~~ and 

~~~~~~~ 
~~~~~~~~~~~~~ - These are

plotted on Fig. VII.10.

Recall from chapter II (section 1) that 5
’ (s) is obtained by :

G( s)P ~~(s)
inf (s) = Mm T (s) (7.15)

r 
l+G(s)P (s) 

r

where j  ranges over all possible plants and r = 1 , 2,4

(7.15) is then rewritten as:

p-PS

0 1 . .  
I . ,= ,,,,, p

H. ::~

Figure VII.l0 . Normalized needed prefilters 
E N

(s) . r = l ,2,4.
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G(s)P~~(s)
inf - 

~~~ ~~~~~ 
= Mm T

1
(rs) (7.16)

J I 
‘ l+G( s )P .(s)

3
Taking into account that the inequality sign > in place of = in

(7 .16) implies overdesign , F1
(s)  is thus chosen as to satisf y:

F (s) = Mm (s) (7.17) for r = 1 ,2,4
1 r ,N

r
It is found :

F ( )  = 
6 .25  x 60 (7.18)

1 (s+60) (s +4 .75s+6 .25 )

which is plotted in Fig. VII.10.

One needs now to check that for all w , and for r= l ,2,4

G(s)P~~(s)
sup F (s) ~ Max T (s)  (7 .19)r 2+ G ( s) P ~ (s)  r

when j  ranges over all possible plants, which, in the present case,

is easily satisfied . If this were untrue, i.e., if ~ some frequency

range (1 on which (7.19) is violated for some r , then one must
CI

use a smaller tolerable variation ~ T (jw ) over that range and modify

the design accordingly. - This procedure is certainly convergent, but

nay lead to some overdesign , the price that has to be paid in return for

such a simp le nonlinear  p re f i l t e r .

* VII.3. Results.

VII.3.a. Command inputs.

As shown in Fig. VII.ll.a.&b., the nonlinear feedback system

satisfies the :— .L.T.D .S. for rI = 1, 2 , 4 . Because of the smoothness

of the non l inea r i ty  it can reasonably be expected that the N.L.T.D.S.

w i l l  he sa t i s f i ed  for  all  r i  € [1, 4] . For example, the system

response to a step r = 3  is plotted in Fig . VII.12.

However, nothing can be said for r > 4 and r ~ 1 - The

-

~ 

: : - ~ -- - -
~~~~~~~~ i. ~~~~~~~~~~~~ -: -
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TIME (SECONDS)

0 3.5 7
-

-

- I
’

~2 -2 - ~~~~~~~~~~ 
_ _ _ _ _ _ _

-, Ib) 
1,2

\\

N -

- i q i i - - V I L II .  N , n l i i u - a r  -; ys~ em responses to step command inputs
r i ,~~,4 . (-i) -esitive commands (b) negative 
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3.5 -

// (SECONDS )
I i I i I i I I I I I I I i

0 1.0 2D 30 40 5.0 6.0 7.0 6.0
TIME

~~ 9~ re V I I . l2 .  Nonlinear system response to step cosr’~and
input  r = 3

-2.3
- 

\ \ \
\ \.\

—4 .8 \ —

\

z:: : ~S
\
\
\

ç

~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I I I I I ~‘I~~ (SECONDS)
U 4 .6 92 13.8 184

Figure VTI.13. Nonlinear system response to truncated ramps.
2 : response to command input 1 when Kl lO , V~2=l
4 : response to command input 3 when K 1 1 , 1(2= 10.

.4
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~\ 
~a)

- I-:, :
~ ~~~~~~~~~~~~~~ .

~~~~ ‘~~ 1

.. 
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~~‘
1

-

- 

Ib)

~(I)

TIME (X l O )

Figure VII.14. Nonlinear system response to sinusoidal commands.
A sinw 0t .  (1 is inpu t , 2 is output)  . a ) w

0 
1 rps

b) t~ = 10 ros. In both cases A 5, K 1 l , K2 1.
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Ki d

1 .23 1 10 4
I 2 1 4

3 10 — 4

4 1 —4
- l  .6_ 

5 10 —2
6 1 —2
7 10 2

/ 8 1 2— .03 — 
~~~~ ________ 2—.

~

— . 66 —

(a)

I I I I
-1 .29 0 .024 .048 .072 .096

TIME (SECONDS)

1(1 d

0 0.44 0.88 1.32 [ .76
TIME (SECONDS )

Fiqure VII.lS. Nonlinear system step disturbance response for
different plant parameter conditions. d 1 = 4 -
(a) K2= l
(b) K2 = l0
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Scale for 1 i Scale for 2 &  3

::: ~~
3.6 - \J f 2:1(1= 10 

,
/

“
x2r l 

- ..53
\ 1 3:K1 1 K 2 l
‘I • .84

• 0
LI Z
z C))
-~

2.4 - •l.15

U)

0 1.8 . - -1.46

1.2 - •l.77

.6 -

i i I I I TIME (SECONDS)
0 .23 .46 .69 .32 Ll5 1.38 1.61 l.P4

Figure VII.16.Nonlinear system response to truncated ramp disturbances.

system response to truncated ramp and sinusoidal command inputs are

shown in Fig. VII.13 and VII.l4. a & b respectively. They are seen to

be quite reasonable , although the amplitude of the sine wave for

- 
- example, varies between - 5  and + 5.

VII.3.b. Disturbance inputs.

5-
1 From Pig . VII.lS. a and b it can be seen that the specifications

* of 30% maximum overshoot for the step disturbance responses , is satis-

fied over the range of plant uncertainty.

For step disturbance greater than 6 , however, the system becomes

unstable for some plant parameter values. This result is expected

because the resulting equivalent linear plant representation predicted

instabili ty for the design used .

Fig. VII.16 and VII.17.a to d present the system responses to 

- . 
~~~~~~~~~~~~~~~ :~~~~~ _ 

- - - - -  -
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truncated ramp and sinusoidal disturbances respectively. They are seen

to be reasonable , although the amplitude of the input signal varies

between — S and + 5 . (Recall that the design was guaranteed for

step disturbancas d € [- 4 , 4] ).
2 - 1

:-
~ f\ f\ f\ / I4

.1 / j  / .01

.1.5 1 I i -- I I - I
I I  I I I  I I  I- I I

-2 .9 1  \ ~ ~ I I t I -23
- I l  ]

~ I ~ I I l  1 -
-4.3 \ / \\j ~/ ~/ ~ 

-32

- V  
~ \s1 ¶

~
( ly

0 .72 144 2.16 2.88

TIME (xI 0) .~2

Figure VII.l7. Nonlinear system response to a sinusoidal disturbance
d = 5 s i n w 0 t for kl = lO, k 2 = l .  (a )  w 0 = l  rps,
(b) w0 = lO rps, (c) w0 l00 rps , ( d )  u o =  1000 rps.

3. 2 ,_ 
___________________

-2413.841 
- 

2 
- 

.3

- .8•3.3~ :
2

5- , -L36 2.8a ‘I

~~ -I .9~~ 24O - 

:
0

~26 52~~~~~~i~~~~~ I04~~
T I M E  ( x I O )

Fi~ ure vii ~8 
Nonlinear system response (3) tn a combination of a

step command (1) and step disturbance (2) for the plant

condi t ion  1(1 = 10 , 1(2 1 -

-- -- ~~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 
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VII.3.c. Other system inputs.

A combination of a step command and a step disturbance leads to

satisfactory results , although the superposition theorem does not hold

here.

For instance , Pig. VII.18 contains plots (for k1 = 10 , k
2 

= 1)

of the system response to a command input r — - 4  and a step disturbance

~~~~~~ I~ ~~ 1~1~ ~ ~ ~ ~ ~~‘

gO~1 ~~~~~~~~~~~~~~~~~~~~~~~~~ 6 7

MI ~~~~~~~~~ 
4-3

I ~~I~~liL_ _

IH 1LL - ‘ .~~

~1~~~~~ J1JJ~ ~.5 (a)

f~IJJffl~ IJ ~~i~ ~~~~~~~ 
_ _ _2 T I M E  (~ io)~ . 1

H !~ -L73~~~~~~~~~~~~~~~~ 2 ,
~~~ 

(b)

-2.49~ I - -.1 .

~~
:__

_ _  

_
0 .12 .24 .36 .48 .60 .72 .84 .96

T I M E  Cx 10)

Figure VII . l9 .  C a )  white sensor noise (system input) .
(b) nonlinear system response (2) for 1(1 — 10 , = 1

to a step command (1) r=- 4 in presence of (a).
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72 1 .44 2.16 2 88 

-

4 9

(a) - 
-

48 72\ / TIME ( x I O ) ’

.10.5
‘ I 

(b)

.I2. Sj

4 

~
‘
~

-
~O .24 

- 
.48 72 .96

TIME (~IO )l

Figure VII.20. (a) Disturbance input
(b ) Nonlinear system response (2) for 1(1 = 1, 1(2 = 10 to

a step canmand r • -4 in presence of (a)
(c) Nonlinear system response (3) for 1(1 = 10, 1(2 = 1 to

a step c~ nmand r = 1 (1) and the disturbance (2).
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d=+4 occuring 1.5 seconds later. Fig. VII.19 represents the system

command step response in presence of tremendous (the amplitude of the

noise input (Fig. VII.19.a) varies between —10 and + 10) uniform

white sensor noise. Fig. VII.20.a—c shows the nonlinear system response

to a step input command r = - 4  in presence of some disturbances which

varies on E-4 , +4] leading once more to satisfactory results.

Finally, Fig. VII.21 differs from the previous case by the fact

that uniform white sensor noise (of strength =1) has been intro-

duced , in order to show a realistic case.

~~ I I I I I I I I I

r ~~~~~~~
.14 - —

~~~~~~~~ 
~

—

-c,E~~-— 

~~~~ . 

-

-2. -i 3 — 
~~~~~~~~~~ 
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H
I
; -:~ TJ COM

~~~
\f 

~\ 
f .~z-‘I

I 
.24 .48 .72 96

TI ME (xIO

!i jur~~~~~~.2j . Nonlinear system response for 1 (1— 1, 1 (2= 10 to a command
r—- 4 in  presence of disturbance and sensor noise. 
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V I I .4 .  Conclusions .

The EPLT I concept was used successfully in the design of a non-

linear feedback system to achieve N.L.T.D.S. It was shown that a L.T.I.

compensation G and a nonlinear prefilter F handle this nonlinear problem

and achieve quantitative specifications both on the command and on the

disturbance signals.

Nonlinear specification On the disturbance was not emphasized

here but this could easily be handled by our design technique .

Applications of the synthesis procedure to L.T.I. plants is straight-

forward , leading to the synthesis of L.T.I. loops with nonlinear

prefilters, to ach ’eve N.L.T.D.S.

The problem of a nonlinear prefilter has widely opened and supolied

considerable motivation in the research area of nonlinear open loop

synthesis. Some primitive solutions are presented in Appendix A2

where it is shown , when possible, (i.e., for a large class of problems),

how to use the same relationship on the set {F0} that characterizes

the set of { Tm}  , where Tm is a representative nominal T from

the set of acceptable transfer functions for r~ . This approcah

has the advantage of simplicity in both the derivation and implement-

ation of F , although it might sometimes lead to some overdesign, a

- . price that may have to be paid.

In our desi gn , a L.T.I. G(s) was used which also accounts for

the simplicity of the design procedure. This obviously leads to over-

design in the bandwidth of the effective L.T.I. open loop transfer

func t ion  for some inputs. Certainly a nonlin~ ar C would be much

better in this sense and this should definitely be one research direction

~o pursue . Such a nonl inear  G should present a different “transfer

~ 

.
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-. ——5-— -
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function~ for each command input and disturbance considered .

In such a case, let be the set of inputs to G when

I 1
- 

i~ -~ = r
1 

. There is a set because of the set W , i.e. each w in

W gives a different z . It is necessary that the nonlinear C acts

l ike G
01(s) a fixed transfer function to the set (c} , like G~

2 (s)

- 

— —

to the set (c }  , etc.
—

If disturbances are also to be considered , then the problem

- becom es even more difficult.

Therefore , one should be aware that if the problem of a nonlinear

I prefilter is a tough one , the problem of a nonlinear C is definitely

a very difficult one for which even primitive solutions do no exist.

~
.
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APPENDIX Al: ~ ~~~~~~~~~~~~~~~~~~ L.~~~ I... f~ EDBACK~~ Y$I~~~~~I~ P RESPONSE

BY ~~ ANS OF A~~ ECOND O~~D~~R~~~~~~~L WITH ~~~~~~~~~~~

A justi f icat ion is presented here for the use in chapters III &
w
nVII of a delayed second order model TA

( S) 
2 2 as a means

s +2Cw s+w
n n

of predicting the overshoot in the L.T.I. system step response. Since

mathematical equivalence can obviously not be made, some examples will

be considered. We will show that if T
A
(S) ~5 used , the predicted

overshoot is the same as that obtained experimentally. Using Equation

(3.la) and (3 . lb ) , Fig. A l . l  is f i r s t  derived which gives the well

known relations that exist between the damping ~‘actor ~ , the over-

shoot and the peaking in T
A 

(j u) I of a delayed second order system.
Peaking inovershoot 

— 20. db of
1. -o
.9 \ 18. 

l+LA I

.8 — — 16.

7 — 14.
‘ S  I

.6 — — 12.

— 10.

4 _  8.

a — 6..3 —

.2 — -••• — 4.

.1 —  — 2.

I I I I b- ... ~~~ damping
0. .1 .2 .3 .4 .5 .6 .7 .8

Figure A 1.1 Overshoot in the step response and peaking of T L/l+LI
versus damping for a second order system .
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Consider the high order open loop transfer function L
1
(s)

(7 zeros — 12 poles) used in chapter III, Fig. 111.13, corresponding

to minimum gain factor k 1 - As k increases from 1 to k = 1000 ,max
the corresponding L

l, k
( s )  is obtained by shifting the 0 db line in

Fig. 111.13 by the amount - 20 log k - Table A1.2 gives the peaking

of F L  / l+L [ versus k . Fig . Al .l  is then used to give the
- l,k l ,k db

TABLE A l . 2

k peaking in { predicted overshoot actual overshoot~
- 

I - l,k ’  L _________________  ______________

1 0. T - -
2 0. — —

3 0. — —

5 .3 .09 .09

7 1.35 .17 .17

10 2.93 .27 .26

20 6.63 .46 .44

30 9.1 .56 .53

50 12.4 .68 .64

70 14.6 .73 .70

- 100 17 . .78 .75

200 20. .86 .82

300 21. .86 .84

- - 
500 21. .86 .86

-
~~~~ 

-

- 700 21. .86

1000 20. .86 .89

predicted overshoot in Table Al .2, which is then compared with the

experimental values (Fig. Al .3.a—c) . Note the good agreement,

despite the shape of L
1
(jw ) (Fio. 111.13). Indeed , L

1
(j L I )  has

many corner frequencies in the low frequency range and its shape in

the high frequence range (w~~6O0 rps) is far from resembling a second

-
~~ -~~--- -- 

~~~~~~~~~~
_ J I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_
- _ 
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order system-. Desp ite those two fac ts, it is seen that the prediction,

as far as the step response overshoot is concerned , is good .

This can be understood by considering the root locus of l+Ll k

as k varies, which is plot ted on Fig. Al.4. At small k , the

dominant pair of closed loop poles are located on arc 2 (the poles of

arc 1 are very close to the zeros , even at k l , so their effect can

be neglected, while those of arc 3 are fa r ,relative to those on arc 2~~.

The pa ir located on arc 3 becomes dOminant at intermediate and high

gain values of k , the poles of arc 2 being then very close to the

zeros. The effect of the two far—off pole pairs on arcs 4 and 5 can

be neglected. ~ee ~H7]). Therefore a second order model for T (s) can

be used here and this wi ll remain true in general for systems with large

uncertainty, because of the universal character of the resulting

optimal loop functions ((H2), (S2)) for plants with large high frequency

gain factor uncer ta inty , to which this work is devoted . Ncte that it

is implicitely assumed that the two following cases do not appear , as

c
d

- 1
1+L ~~~~~

(I~
w I w

fl O~5,
. I

—‘I
/

/
/

‘. timea)

(b)~ /

/
L

—

1 s - srs- A l. - t . Fiqure Al .5.b.
1. x . . n l j - 1 - - ;  of -S I - I - r I  loop corresponding system respcnses

- - r  t u , t I ~ t . I ( r l - . c to a step disturbance.d
--I
.4 
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d iscussed below.

1st case: I L/L+lI  ‘~uali ta t ive1y as shown (see L
a 

) in Fig. A l . 5 .a

imp lying the system step disturbance response c
d
(t) of Fig. Al.5.}.

In such a case it is obvious tha t the overshoot cannot be characterized

by the above formula. Note that for such a system we would have a root

locus for l+L qualitatively as shown on Fig. Al .5.c. Such a phenomena

_ _ _ _  

zl \~~ l~~~~
Figure A l .5 .c .  Root locus of 1 + Ll,k(s) -

can occur at k = k  , if the designer takes a very small damping

1 ‘-r in his far—off pole—zero package [F~2J in order to descrease ‘ L I

v. -; fr s;~~. S u f f i c e  i t  to say that (1) the L.T I. system response

i n  Fig. Al.5.b. is certainly not desirable in general , (2) such

minor peakings in L/l+LI should be avoided , especially if there are

~ ~ I bending modes present , (3) minimization of k does not necessarily

mean minimization of the sensor’s noise effect at the plant input, sc

a reasonable compromise is to use characteristics like Lb (jw)

(Fig .  A l . 5 .a )  rather than L (j w )

2nd_case : L(jw) is qualitatively as shown in Fig. Al.6.a . Such

L - shaping can occur in designs where the plant template at >

becomes “fatter ” than at , causing the bound on L (i~ 2) to be

n I I f r I i f i I 5 ” ) n t.l y h igher  t 1tan on ~ ( ~
I .I~~) - The e f f e c t  of such a loop in

- -- — -- - — - — — -  - - ;-
~~~~~~~~~ 

- - - - - -
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- l+L

_ _

_ _

Figure Al.6.a Example of Figure Al.6.b Corresponding
open loop transfer Bode plot of —~.—I 

.
function L(jw) - l+L

Fig. Al.6.a gives rise to two peaks in I L/l+L I as shown in Fig. Al.6.b,

; and is usually achieved by a pair of complex zeros and complex poles in

L(jw) as shown in Fig. Al.6.c. It should be recalled that such pheno-

mena is less likely at high frequency because P(s) -~ k/5e . Therefore

at such frequencies, at least, the poles of L/ l+L on arc 1 are practic—

ally cancelled out by the complex zeros of L , and therefore the complex

pair lying on the arc 2 can be considered as dominant and a second order

approximation is then legitimated. In those cases where , at low

frequencies, the loop A - B  prevents the designer to use a second order

approximation , a more complex model must be derived unless overdesign

.r. 
can be tolerated.

, !~~ure Al.6.c Root locus of l+Ll k  ~~
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~~~~~~IX A2: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The problem considered here is to design a system which achi-~ves

N dist inct output signals u
l
(t)...u

N
(t) when it is excited respect-

ively, by N different signals R
l
(t)...R

N
(t)

A2 . l  The Input signals are “qualitatively identical”.

By “qualitatively similar” signal set , it is meant that

V i,j 7 K such that R .(t) = KR.(t) (A2.l),V t - This case was consid-

c-red in chapter VII where the input signals were steps of amplitude r -

Pecause some empirical formula U (t) = ru
1
(t/r) could then be found

on the output signals, there existed a very simple prefilter whose

transfer function had the simple expression :

U
1
(s) 

1F (s) F
1
(rs) with F

1
(s)  

~ R~ (5) 
and R

1
(s) = - This

-o ncept will now be extended.

As another example, assume that the set of inputs consis~~ of impulse

R . (t) = r .~~(t-T ) , r . € R , which are to produce the set of outcuts
1 1 3.

ii hown on Fig. A2 .l.a where V rj the maximum value is ‘r occuring at

I
U ( t )

= 

~4 

~~~~~ ~
l/r

3a 
l/r

2a h r
10 

t

r- 3urE-’ A2 .l.a. Time domain specifications as a function of
the amp l itude r . -1

_E~~~~~~
_JJ

~~~ ~~~~~~~~~~~~~~~~~~~~~~
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A2— 2

a time t
o 

inversely proportional to the amplitude of the input signal .

Suppose that : U (t) = Brt e~~~
t (A2 .2 .a) , for which

1 8 r8t = — and y = — - Therefore U Cs) = and as R ( s )  = r0 ra ae r (s+ro ) 2

I we have : F C s)  = - (A 2 .2 .b ) .
- r 2- (s+rci )
- 

. — f ( r ) t  g(r )/ r- More generally, if U
r
(t) = g(r)t e then F

r
(S) = 

2- (s + f(r ) )

This transfer function is easily implemented (Fig. A2 .l.b) on an anolog

computer , the amplitude r being obtained in this case, by integrating
t

the input , i.e., r = I R(~ )dC . F
0

I As a third illustration, let the set ~u} of desired outputs in

response to step—inputs be as shown on Fig. A 2 . 2 . a .

I R ( t ) = r & t _ t) O

[

~~~~~~~~~~~~~~~~~~~~~ 

~ 7r) 

g (r ) / r

Figure A2.l.b Block diagram.

~~ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

f~~~ure A 2 . 2 . a .  Tim ’-  domain srx:cificatirtns as -i function of the
am p l i tude r j

I—-.. 
~~�~~~~~~~~~~ - -

~~i - ~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~
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A2-3

Sa y,

u
i
(tt~ i s~~n

) = 1_ e
2 

sin (
~~n

/i
~~~~

t cos~~~~1
) (A 2 . 3 . a )  and

u Ct ~ ,w ) = u (t,~ g(r),w f(r)) .Therefore:
r r n 1 1 fl

r 1
w 2 w 2 2
n n f(r)r 1

F C s) = 2 2 (A 2 . 3 . b )
r 5

2
+2~ ~ 

2 s’+21 w f(r)g (r)s+u f(r)
r n  n l r ~ nr r

which is also easily implemented as shown in Fig. A2.2 .b

R (t) = r jJ~~~~~~~~~~~~~ f(r)
2

2r~~-~j f(r)g(r)

H

2 2
wn 1

f(r) Figure A2 .2.b Block diagram .

These s i r r o i c  examples suggest that when there exists a relation—

r- the n --~ 
1 u (.-)} , i .e . , u Ct) = f(u (t),r) then

which can be wr i t t en  in the general fo~~~:

p Cr ) 5
m~2 (r)s

m l
+ +z Cr)

F Cs ) = 
n 1 (A2 .4)

r z (r)

F Cs) is easily implemented , as shown in Fig.A2.3 provided the
r

a”-rIl j tu—f -- r is known , i.e. F is ‘~tuned” to this input set, so the

jn: rits mu st  hr. restricted to this set.

r :  to now we only considered steps or impulses for which the

--rr ’isstt ion of r was s t r a i g h t f o r w a r d . In the general case, let

t~ - - ~ fq:ril R(t) of amplitude r be described by the differential

C— - rl.I tj Ofl :

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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A2-4

d~ d~~
1 1

— R(t) +a R(t) + , . .. , + a R ( t )  = ~~~~~~ ~~~~~ Ct) + , . . . , -~-B 6 (t))

dt~ 
1
dt~~~ 

p 1 q

with p > q  - (A2 5)

In tegra t ing  ( A 2 . 5 )  p t imes g ives:

R(t) +a
1 

f  R (~~)dC + .. +a~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

P times tt r t p ( t )  - 
(A2 .6 )

f f R  f f . .  .fR

-r

a
1 

cx
2

i

p—l B

t
P-2 -1 

r

p-q

I ’j q u r( , A 7 . 3  flock diagram for the Nonlinear prefilter.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ - -~~~~~~i-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



T~s -- left-hsnd side of CA2 .6) is easily obtained , as it only involves

j-It r - - :r -s ~~~- - ’ - of the input  signals , and so is ‘P(t )  too . Therefore

V t > 0 , r can be estimated and its value is then used to compute

all 7 . C r )  , p .Cr) of CA2.4) . It is important to recall that the
3. 1

above is restricted to ‘qualitatively similar ’ input sets.

A2 .2 The input signals are linearly independent.

Here , consider the more general case of n independent input

si gna ls  R ,. ..,R , i.e.,
1 n

X R Ct) +X R Ct) + ... -i- A R ( t )  = 0  ~ A A = . . .  = 0 - (A2 .7)

Consider the system of Fig . A2 .4 where the sampling period T is

supposed to be very small. We have: (cf the modified Z transform in

S 
chapter IV)

u * C z)  = A~ (z)R*(z
N) +A~ (z)R*(z~~9.) +

+ - - -  +A*R* (z
N
, ~ ) - (A2.8)

fl-ic h an e- j -1a~ ion can be written for each of the N pairs (R ~~.U1
) giv ing  I -

N °OU-itiOnS with N unknowns (of course , if N is small there isn ’t

T/N _______

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J ~+! T
_i— , 

~~~~~~~ 
~~~~~~~~~~~~~~~ -~~~

~~~~~~~~~~~~~~~
Y

~~~~~~~~
N
~~
l)H 

~N] 

I 
-

f-’i - i r s r - -  A A .  Syst em ronfinuration .

: -
~~~~~~~~~~~~ ~-~H ~~~~~~~~~~~~~~~~~~~~ -
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- A2-6
- enough f lexibi l i ty  for good matching — but one can use ( N + M )  terms

and choose M of these arbitrarily to suit the approximation , solving

for the remaining N ) -

R1
(z N ) R 1C z

N ,~~~~) .. R
1
(zN,~~~ ) .. R~(z

N
,~~~ 

~ 
A~~(z) I U

1
(z )

- 
R
2
(z
N
) R

2
Cz
N
~~~~.) .. R~~(z

N ,~~~.~ ) .. R2 Cz N ,~~) A2 C z )  U 2
(z )

- — 
— = 

— 
(A 2 .9 )

-
. 

- R.~<
Cz ~~ RK

(z
~~~~~~

) .. R
<

C z N,~~~~) - . R
K

(z N ,~~) A
~ +1

( z )  U
~~

(z)

- 

- 

R
N
(z
N
) R

N
(z
~~~~~

) .. R~~(z
N ,~~~~) .. zN ,~~) 

- 

AN
(z)  j L U~ (z)

]

C Usi ng (A2 .7 )  the rows are independent and (A2 .9 ) has a unique solution

- 
j which then solves the problem for the case considered

.*
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A3—l

A P P E N D I X  A3: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A3 .l Derivation of Q.
2
(t,r) from h 2

(t ,T)

In any realistic L.T.V. system , the closed loop impulse response

h
2

(t ,t) is the solution of a l inear d i f f e r e ntial equation of order N

with variable coefficients, where the input x to be considered is a

unit impulse occuring at t= T - This implies (S51 that

h
2

(t ,t) ~ A(t).B (t)
TuCt_T) (A3. 1)

with 1~~~) and B( ) two N-dimensional vectors. By anology with

L.T.T. systr-r”s, if h
2 Ct, -r ) is of order N , so is the open loop

r- --nn - -rrl- ;c (t ,T) , and therefore

aCt) .B(T)
Tu(t_T) (A3.2)

‘.~~th a( ) and BC-) two N-dimensional vectors.

and h
2 are related through C6.ll ), i.e.,

f (Q (+ ,~~~) +~~ ( t-~~) ) h
2

(~~, t ) dC = ~2
(t,t) (A3.3)

N~-t i n - s  i I ) t  T < ~ t due to the causality of h
2 

and , and

‘I u - i n q  (A3.l), 1A3.2) in (A3.3) gives:

T < t  A(t).B(T)T + a (t )  I B ( ~~)TA (~~)d~ BC T)
T
=aCt) .ECT )

T 
~~3 4 )

t-(
~~
) = ~( r ) T~~( r ) d~ an N X N  array - CA 3.~~)

‘ r u t - n  (-\~ .4) om e n :  j A Ct) +a (t )A (t )J .RCT ) T

s i - - f  j f - l  i fy itrti term s in t and in I

{ 
-z (t) - A ( t )  f l - ~~C t ) i 1 (A L(~a)

= R (t) (1-11(t) 1
T (A ~~JIi )

—

~ 

~~~~~~~~~ 

- 

~~~~~~~~~~~~~ - -.-—-- - 

~~~~~~~~~~~~~~~~~~ s - -
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A3 .2

Using (A3.6b) in CA3 .5) and differentiating with respect to time gives :

AC t) = (1—A (t)]B(t)TA(t) (A3.7)

A particular solution is A Ct) = 1 -

In section V I .2 . b  it was found that

h
2

(t ,T) = D
2

( t ) m l ( t ) .D
2

( T ) Tu ( t _ T ) with m (t) 
~ ~+f D2 ( c ) TD2 (~ )d~

0

(recall 6.19) so, from (A 3 .1) , A C t )  ~~D 2
( t ) m ~~~C t )  and B ( t )  ~~D2

( t )

The homogenous part of C A 3 . 7 )  becomes:

A C t)  + A C t )  t D 2 C t ) rD
2

( t ) m l C t fl = ACt) + A ( t) 1 T  Ct)m
1
(t) = 0

which implies that the homogenous solution is:

A 0 Ct )  = O(.ir~~~ ti where is a non—singular matrix

independent of time. Therefore, (A3.7) gives A Ct) = +

and replacing in CA3.6):

a (t) = A Ct) C- th~~ 
m 1 

Ct)) 
-l

BCt) = B ( t )  (_ _ l
C t ) ) T

Therefore from A3 .2, A3 .l ,

i
2
(t ,t) = D 2 Ct ) 1(t ) ( - m ( t ) ~~~~~ ) ( - ~~~~m 1C T ) ) D

2
( r ) Tu C t - T )

= D (t)m
1
(t)-D ~~~

T
(t )  (A3.8)

z~~~ r 2 2

A 3 .2  Derivation of h ( t , t )  from t ( t ,T )

Let

h (t,t) ~ A 1
(t).B

1
(T)

T
u(t~ r) (~ 39)

and

Q ( t , T )  ~ t ( t ) . f ~~~(T )
T

u ( t . .T )  (A3. lO)

w lsr ’r ’ in th,- prs-- . - r it case A
1 

and B
1 

are the unknown s , while

art- srjv”n. (A3 .3) to CA1 .f,a s b) can then be rederived with

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 



~‘~~•1~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-- ------- ‘--- — —,----- w- ~~~~~~~~~ --.--~~~~. - .----- —,--.- - . - ~-‘, -- ~~~~~~~~~ —

A3. 3

~.uhscript 1 -

Therefore , (A3.6a) and (A3.6o) are rewritten as:

1 A 1 
(t) = a

1 
(t) [‘~ —ACt) ) (A3.lla)

B1
( t ) T 

= E~~ —A Ct) ]
1
B
1

(t ) T (A3 .llb)

and (A3.5 )  become s A C t )  
~ 

f B
1
(~ )

T
A
1
(C) d~ = f B

1
(c)~~a1

(~ )V1 -A (ç)) d~

or by d i f f e r entiating :

A Ct) = B
1
Ct ) a

1
Ct~~~~~~~ tfl (A3 .l2a)

A narticular solution is ACt) = Ii -

The open loop impulse response t(t,T) associated with pC

is (Eq .  6.9.b) L = p p
2 
1•t

2 = 
~~ 

at p = k  - So

9(t ,-r ) = At
2
(t , r ) = AD2 (t)-m(-r )

1
•D
2
(t)

T
u(t—t) by using (A 3.8 )  and

d e f i n i n g  A ~ k/k 2 - By identif ication with (A3 .lO) , a 1
(t ) ~ AD 2

(t )

arid u~1
(t)T = l T( t )

l
D C t)

T 
and therefore the homogenous part of

(A3 ,1 2a) becomes:

ii Ct) + ~1
Ct ) T

cl1
( t ) A C t )  = ACt) + Xm(t)

l
0
2
(t)

T
D
2
(t)A(t)

= ACt) +Am(t) 
1
s Ct)A(t) = 0 (A3.l2b)

from (6.19) .

i~5, 
(A3.12b) has no closed—form solution , in general , so let A

1
(t)

denote the solution to (A3.12h) . Then: ACt ) = 1+A
1

(t )  ~~~ where

is a nonsingular matrix. From (A3.lla & b) and using the above

-te fir iiti on s of  
~1 

and ‘

r 
A

1
R) = X D

2
(t) (—11

1
(t) J ( )

~ R (t)
T 

- 
~~ 

111
1
(t) 

1 n ( t )~~~D2(t)
T 

-

fk ’f lro , f rom (A1 .~~), t~he , 1 osed loop impulse  response associated w i t h

— —i. — ..—.~~~~~-— —. -
~~

— 
—. 

~~~~~~~~~~~~~~~ 
— -e ~~~~~~~~~~~~~ 

— _—.--.-—.~~~ .-—-—- ---5- —
-- ~~~~~~~ SS~~~ - ~~~~ S & A ~-~~~~S~~~~ ~~~j
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A3.4

is:

h(t,-r ) = AD
2
(t) (—A

1
(t)~~ ) C—

— 
= AD

2
(t)A

1
(t)A

1
(T)~~~m (T)~~~D (T)

T
u(t-T) CA3.13)

where A
l 

is such that :

= — A- 1
(t)1TCt)11

1
(t) (A3.l3a)

In the special case where the input R is deterministic , or when

D
2(t) is a one dimensional vector w (t) becomes a number and so is

A
1 C t) (instead of a matrix). Then the solution to (A3.l3a) is

A
1
(t) = +,T (t)

A 
and CA3.l3 ) becomes, in this special case:

- .

h (t,-r) = XD
2
(t ) D

2
(-r ) 

m Cr ) 
u (t—-r) (A3.13b)

S ii(t)

A3 .3 Derivation of the system response c(t )  associa~ ed with p = k  -

Let c(t) be the system response to a command r , when p = k

From Fig. VI.3,

c( t )  = c1Ct )  + A c ( t )  C A 3 . l 4 )

• 
- 

For the sake of simplicity , let N = 1 this imples that the closed

loop impulse response of the bottom part of Fig. VI.j is given by

CA3.l3b). Under the above assumption ,, (Fig. VI.3):
-n -

t
- . 

- 
t i c ( t )  = D C t )  — f h (t,~~)D(~ )d~ (A3.1S)

~ k-k 0
wit h ~.(t) = ~~~~~~~~~~ c

1
( t )  (A 3 . 1 5 a )

1

(recalling the definition of D from (6.9)).

Rt—p lacinq (AL11b) in 1A3 .lS) gives:
0 (t ) t 

A—hAc(t) — 0(t) — 
2 

A f XD2 Cc)’(c) D(C)d~ (A3.16)
n (t) 0

k -k
whr- re D2 k 

1 
c
1
(t) -

1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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A3.5

(A 3 . 1 6)  ~:an be r . ritter, ~s:

Ac (t) = D ( t )  - 
D ( t )  

~ A~~(~~)
X_ l

D ( ~~) 2d~ (A3. 17)
~v C t )  0

r” calling (6.19) we have D
2

(~~) 2 
= 7 T ( ~~) so

~c ( t)  = 0 (t )  - 0(t )  [ (~~f ) A ] = D ( t )  (
~ f) (A3.18)

‘Jsing (A3 .lSa), (A3.l4) becomes

c(t) = c
1

(t )  ~ c
1

(t )  (
~~o) ) A

c(t) = c
1

(t )  [~+ ~ ~~ J (A3 .19)

A3.4 Effect of white noise at plant input.

Under the above assumption that N= l , we can use (6.l.b) and

(~ .l2.d) to obtain the mean square value of the noise at the plant

input  when P = P
2 , namely:

= 

~ 5 5 h2
(t

~ cl
)h

2 (t .
~~2

)y
NN (c

I
,~~2

)d
~ ldc2 (A3.20)

By anology with (6.12.d) ,

e = — • h (A3.21)

wh ’n the plant is any P = k E , associated with the closed loop

i ’’ t ’ 1~ e response h of (A3.13b). Therefore, the mean square value of the

nni’~ ~it  th~ plant input , becomes in this case: (from (6.l.b) and (A3.2l))

= 

~4 5 5 h ( t .c l
) h (t ,c 2

) y
NN

(
~~l

,
~~2

)d
~ ld~ 2 (A3.22)

t the unnsor noise be a white stationary process of strength

i . .  Y~~~(~~1
,r,
2
) 0

N~~
C l~~~2 ;o (A 3 .2 2 )  becomes:

i_~~~——.. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~-...— 

___ 
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A3.6
2

~~~~ = -4j 5 h(t,~ )
2
dc . Using (A3.13b) ,

or 

ci~~ 1~ 
=

~~~~~~ 

D (t ) 2 t 

dC

N 2 
2A s ,y(C)2 A 2 ;(C)dC , because (6.19) ,T ( t )  =D

2
(t)

2

k2 
iT (t) 0

and (6.2la) A = k/k
2

Finally:

c~~ D
2
(t)

2 
1 1 w(O)2A~~ 1

1k
2 2A—i I. ~it5 — 

‘iit)
2
~
’ .1 if ~ ½

(t) =~ 

2 
(A3.23)

t. c~~ D
2

(t) 2 

~j!_i~i~
’) jf ~ — ½2 w (t)

2

As A = k/k 2 , for any t t 0 , a~~1
(t
0
) is a function of k

Let , then for A~~½ , i.e. u#1

• ~~•~~~
(t) • D

2
(t)2 (~ 

- 

~~~~~~

‘ )
Therefore ,

2 2 2
~~P .I .  2 ~~~~~~ 2 aN 2 dJ (u)

= 
au ~~~~~~D2

(t )

where

J ( u) L (~~ - 
w(O)~~

1 )~ all derivatives being taken at
u-i \ 7 T (t )  

~~(t ) ’
~

fixed t0

dJ i r w(O)’~~1 1 (u—i) ( i,(O) \u 
~ 

(ir(O)
du 

(u—i)
2 

~~( t
0

) ’~ 

— 
lil t0

) — 
“(0) \ i i (t

0
) 
~ 

n \,ilt
0
)

(A3.23a )

which can hc’ wri tten as:

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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A3.7

1 ~ (0) U~l f (li (t
0
) \ (~~

(t
0
) ~~~

— 

( u — i ) 2 
~~( t

0
)
U ~ ~ ~~~~~ 

) + f l~~~~~( 0 )  ) J
to ~(t)Since 1T( t

0
) ~ illO) + 

~~ 

D
2(C)

2
dC (recall 6.19), we have x =

Noting that 1 — xU
~~ + log xU~~ < 0 for all x> 0 , we conclude that

< 0 for all u and therefore <0 for all k , which

imples that o~~1
(t
0,k) is a decrea:ing function of k for given t

0

Note that as u -f l , (i.e., A- ~½ ) then u=l+e (with C

positive or negative), and

= 

~~ 

( 1 — X~ + C log x ~

= 
1 ,T( O) C 

( ~ — (l+ctnx+c
2
(inx) 2)+ctnx

C 1T (t
0

)

= !.L0)
t (tnx)2 

after using a serie expansion.
7’ (t 0

)

( d J  1 “It ) 2 
2

~ 
~~~~ ~~U= . 

= 
“It 0

) [ ~( 
~~~ ) ] ‘ which proves that a

k
and are both continuous at A = ½ (k ) .

This explains the shape of curves A in Figs. VI.5.a & h.

P13. 5 Solution to a certain fjiter~~roblem.

The problem in (6.40 ) is to f ind h 2 (t ,t )  such that:

• Mm 5 (Ac 2 (t )  + W ( t ) o~~ 1 (t ) ) d t  , i.e., if we take
h 2 0

Mm 1 ((o.,(t )  - f h 2 (t ,~~) D ,( C ) d c ) 2 
+ ~ ~ ~2. (t ,~~) 2dC ) d t  (A 3 .2 4 )

h 2 0 0 0

- ~~~~~~~~~~~~~~~~~~~~ ~~~—
--—

~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~~~~~~~~~~~ —
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A3.8

a~ W ( t )
with LI = 2 ( W(t) is assumed constant).

k 2

Let us use a variational argument , i.e., h~ = h
2 0 

+ ~ , with f an

arbitrary function satisfying f(t,t) = 0

= ~ - I (h~~0
(t~C) +f(t ,C)D2R)dC)

2 
+

~ 

~h20 (t ,C)  + (t ,~~) 
]2 

dC] dt 1
0 + ôi with

61 = - 2 5 [ (D2 (t )  - 5 h
2 0 C t , c D2~~~~d~~ f f(t ,~ )D2

(~~dc +

t ~h 1+ 2 u 5 ~~~~~~~~ (t , C )  }
~ 

(t .~~)d C j  dt + 0 ( f 2 ) where 0 ( f 2 )

indicates a positive function of f ( t ,~~) , which is zero when f=O

A necessary condition for an optimum is therefore that Si = o

: ~t. Figure A3 .l

Area of integration

We can write:

J = 5 dt f ~2 0  (t ,~ ) ~f 
(t , C ) d~~= f  d~ 

~ ~h 2 0  (t ,C )  (t , C) d t

by permuting the order of integration. Integrating by parts,

T 1 D h  1t T  T T~~~
2h

.1 — f dd~ —
~~

-
~

--‘-
~~ (t .~,)  f(t.c)J — I d~ 5 2,0 Ct ,C)f(t ,C)dt

0 t=~ 0 ç

T ~~~ T t ~
2h

— 5 dt 5 2,0 (t ,C)f(t,~ )d~0 0 0 at

____________ —S-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . • - - -_ ~
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A3 .9

So ,

2
6! = - 2 [ 5  dt (0

2
(t  - 5 h

2 0
(t ,c) D

2 d~~) D
2

(~~) +~~ ~~~~~~ (t ~ C ) }

T~~ h
f ( t , ’ ) d ~ + 2 ~ 

2,0 (T,~
)f(y ,

~
)dC

J 0

As 6 1 = 0  • it imp lies tha t  the optima l solution is given by:
2( a h (t,r) t

u + 
L
02 (t)  — I h2(t.C)D2d~j D2(r) = 0 ~~t > T

h2
(~ ,t) 0 , V t (A3 .25 )

~ 
( T C )  = 0 ~

Th i s  proves that  when P ( s) =~~~ , a soiutio~ to (6.40) exists. This

.~o lu t i on  is  not in closed form , even when in this highly idealized case I-
ef ~~~~r )  cons tant .  However , numerical Solutions exist.

kNr~~~,- fhj t  when P ( s )  = —  , in (A3 .24)  is then replaced by

a2 a2~
-
• — h2

(t ,t) and —i- in (A3.25) is replaced by —
~~

— , while
at a

.
~-~~--  (T ,~~) = 0 is replaced by — (T ,C )  = 0 , V ~ , V in = 1,2,.. .,n

at

A 3 . 6  Obtention of the d i f f e r e n t ia l  equation , knowing h
2 (t , r )  

- - - - . - - - 

4 Let (6 .54 )

D2 ( t ) ( o ~~(t )  - D ~ (T)) 1 1-, 

1 2 u ( t- i)  = g ( t )  [D,(t) -D 2
(~~f lu ( t -~~)- 

(J
N
W (t) +0

2
(t) 72

= ~ h
2
(t ,~~) + q ( t )0

2
( t ) u ( t - r )  , from (6.4q)

h . ( t , i)  = (~~) h  (t ,T) ~ (t ,~~) + (qD 1) ’ u ( t — r )  4 gD~~~(t- - )2 g 2 q 2 .. - 

_____ 1

-

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~

_ _
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~~~~
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~
___ —~~
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A3 .10

L~ t y ( t )  h 2
(t ,’0

) , x(t) = ó ( t — T
0

) , and we get :

(gO
2 )’

y =  (~~) y + ~~~~y +  
gO

2 
( y - ~~~~y) + gD2 x

so the D.E. is:

+ 
~~ 

( - 

D~ 
-2 + y ( 2 ( ~ ) 2 

+ 
~~ 

D~ 
- = ~D~x

As 

02 

- D~ g and = (~~~)
‘ 

- D
2
g + (~ ) (~ - 2gD~ )

-~~ — - 2 ~~ 2D~g - 3 ~~~ and
2 

g 
2

2 ( 9.)2 
+ ~ — 

g 
= 2 

(
~~~~~2 

+ (D~ g) 2 
- 2 

D2 
o~ g ) +  ~~~~~ 

D2 
D~ g

- (
~~~) + D~g - 2gD~~)(  D2 

- D~ g)

= D
2

g - 2 —a D~g - + 3

and therefore h 2 (t , r )  is associated with the D.E.:

• / 1 / 0
2 1 D 2 D2 ,\y + y~~ 2D

2
g - 3  + y~~D~g - 2  ~— D 2g 

— ~
-.- + 3(~ —j ) = gD2 x

(A 3.2 6)

A3.7 Derivation of the Euler-Lagrange Equation for a special case.

We want to

t 2 t
I {(~~2

( t )  - ~I~~(t .~~)D . ( c )d~~) 
W ( t )  +uf 

~~~ 
h
2

(t ,~~)+s2h2
(t ,~~)]

2
dr, 

}~~t

wh -.ri i~~ (t ,~~~) = A(t ) (0(t) — O ( r j ) u ( t — r. )  • w i t h  0 ( t )  given.

~~~ ~~~-ond ‘~~ r 7’ i rr~wr i t t  ‘ r i  as:

LI ~~ ~i ,(t .~~
)2 +2~ 2

h
2
(t ,c, ~~ h~~(t,~~)+ ~~h2

(t ,~~)
2 
]d~

~~~~~~~~~~ ~~~~~~~~~~ -•-• .~ -. ~~~~~~ _ • •___ _ - _ j_
~.•..~•

__~
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A3.l1

= 1 t
2 o t _ .c

2+ t ) 2
~~~t

2+ 2 M t t ( t ) e t _ e A t 2 t _ e cn
2

+ 2~~ A ( t ) A ( t ) (e ( t ) - O ( C ) ) 2+2~~ A ( t ) 2
~~(t )  ( 8 ( : ) _ O R ) ) ]  d~ (A 3 . 2 7 )

Let ~It) ~ 5 (0 (t )  — 0 ( C ) ) 2
d~ , n ( t )  = 5 ( 0 ( t )  — 0 ( ~~) ) d c

So = u (~~
2~ + A

2
t&
2 

+ ~~~~~ + ~~A2
~ + 2a

2
AA~ + 2a

2
A

2
~~f l)

Let . 3( t )  = f ( 0 ( t )  - 8 ( ~~) ) D
2

(~~)d~ , then (A3.27) is:
$ 1)

~~ — A ( t ) J ( t ) ) 2 W ( t ) + 1
1

(t )
} 

dt = Mm f F (t ) d t

The Euler  equation is then derived as:

= -~~~ 
( 

~ (A3.28)
~A dt \

~~a A /

which  is:

.3(0  — A J i w  + u (At9
2 

+ A +u .qi +Ct
2
M + 2~~2AOru 1

= p ( X~$, + + A ( Ô r ~+~ g,) + A (~ n + ê i ~, + a  ,~, ) )  (p3.29)
2 2~~~

(A3.29) is rewritten as:

• • . . .. •. . • 2 •2 2W
+ A (ij~+0r~+a 2

,4, —~~2
4,— 0n) + A (0fl+8~~+ a

2~~
— 2~ 2

8n— ~~2
iS,—t8 -.3 —)

= - D ~~~~2 p

Afte r  ~iimpli f i ca tions :  ( i ~~r~~~t , ~~ •2 Ô r~

= — 
2 or: 0 1

(t )  f 0 (~)dC

A ( t 0
2

— 200
1

+ ,p)  + 2A0(tO— 0
1
) + A ( 8 ( t O — 0

1
) — a ~~( t9 2 — 288 1

+ D )

- 

~ 
( f~~ t -~~~~ ) ) D ~~( C ) d ~~) 

2 2

~~~~~0 •-

- ~~~~~~~~~ ~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ___ : 
~~~~~~

. , ‘, 
-
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A3. 12

A3 .8  Design deta i ls  for both the lily and LTI systems.

A3.8.a LTV system

The L.T.V. closed loop impulse response h2
(t ,r) of (6.27) is

associated with the differential equation:

(h 2
) :  y + (~ - D 2

) 
= D~/7’X where ~ (t )  = LI + f D

2
( C ) 2d~

Therefore the open—loop impulse response 
~2 

= h 2
( l—h

2
) 1 is

characterized by:

• i; 0
2 D \  2

I~~2 1:  y + ~~~~~~~~~~~-~~~~ ) y ” D 2/7’X

so g = =

and: 2• 2 D( D~ D 2~~ ~~~(gJ : y + ~~— -~~--- ---
1
y 7 ’ k2

2 
s c ( s)

The overall transfer function t is such that T (~ ) = 
1

1 1 R(s) —s+l

for c
1
(t) = l_e t

(t 11: y + y X

since the prefilter f should satisfy : t
1 ~ 

h
1

f it follows tha t

H f = h~~~~e
1

Henc e ,
k D

2
f ”  2 2~~ 1 2( i i :  y + i — — — --— — 1 y - — x• 1 \1~ 02 ~~/ k2 

iT

. D k D
2 k D2

+ (~ - 
.1 + (~1 - 1) = 

~~~~
- -I~

~~ 
+ X (~~~

_ +  (j — 1 ) 

~~~~~~~~~~~~~~~~~~~~ —--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _

_
~~~~~~~~~~~~~~~~~~~~~~~~~~~

—
~~~~~ - -



- - - .~~~~~~~~-- -~•-- -- - - - — - -—--—-~~~- - --- -

A 3—1 3

A3 .8.b LTI Systems

A two degree of freedom structure (Fig . A 3 .2 )  is considered .

The LTI system roughl y achieves (as seen in Fig. VI.6.b), for

P = k € (1,100] , the T.D.S. shown in Fig. VI .6.a  for the LTV design .

The LTI synthesis procedure given in (S2 , H2 ) is used with

5.69 1o6
~ s+8. s+l.s7~~ s2+2 .34s+l .6C( s) — 2 2 2 2(s + l . 6 5 + l . 1 ) ( s  +4s+8) ( s +60s+5500.)( s +63s+6000.)

— 
3396. (s+ 1.5) (s+l.7) (s+4 .67)

2 2(s+ .36) (s+226.) (s +l.32s+.67)(s +4s+8)

r f  the plant P = k/s with k E (1,1001 is considered and the

T.D.S. are those depicted in Fig. VI.8.c, following (S2, H2] , it is

found that

C( s)  = 
11.43 106(s+.6) (s+l5.4) (52+15+72)

(s+ .8)(s+34.)(s2+2.3s+l.8)(s
2
+63.s+6600)(s

2
+67s+7400.)

290. (s+. 55) (s+i.43)r( s) 
2 2

(s +s+l.5) (s+l) (s+31.)

R 
F G P 

N

T-’i.~i,re A L 2  Two cic’qr(.c freedom structure

- 
-_- -—-- - -- •--—-.

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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