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This work deals with the synthesis of feedback systems to achieve
specified performance tolerances,despite large uncertainty in a con-
strained part of the system, denoted as the 'plant'. Part of this work
deals with linear time-invariant (1ti) plants where the 'cost of feed-
back', if 1ti compensation is used, is primarily in the bandwidth of
the feedback loop being much larger than that of the system as a whole
- making the system very sensitive to sensor noise. Here, the objective
is to reduce the loop bandwidth by means of non-lti compensation. A
nonlinear first-order reset element (FORE) is introduced and with it,

a quantitative synthesis procedure which permits design to specifications
despite large but bounded plant uncertainty. The result is a very
significant reduction in loop bandwidth and with it, sv'stem sensitivity
to sensor noise. Stability criteria are included which helps generalize
the useful inputs classes.

Another method of non-1lti synthesis is by means of linear time-
varying compensation, applicable to a certain problem class. The
solution is not in general available analytically, but is found for
certain cases and exhibits in these reduced 'cost of feedback'. In the
final part of this work, the plant can be nonlinear with large uncer-
tainty giving a set of nonlinear plants W . The concept is use of
a lti set P which is precisely equivalent to W providing the output
is, in both cases, a member of an acceptable output set A . A syn-
thesis procedure is presented, based on this concept, for achieving
time-domain specifications of a specified nonlinear character. All of

the methods are illustrated by detailed design examples.
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CHAPTER I. INTRODUCTION.

1§ Generalities

An important problem area in systems theory is to satisfy
quantitative specifications despite parameter uncertainty. It is
assumed here that there is a single-input-single-output constrained
part denoted as the 'plant' and described by a linear differential

equation with fixed coefficients. (Fig. I.1)

r ol =
input -—E}'— output y‘n]+aly[n ‘)+--+any = K(x[m] +b1x(m 1]+--+bnj

x y n>m

Figure I.1. Plant characterization

There exists a finite set of parameters {kl'kz""’kz} such

that each coefficient is a function of those parameters, i.e.

a, = a‘i(kl’kz"“'kz) for i=1,n , bja Bj(xl'kz""'kz) for

j=1,m and K = :k(kl'kz"“"‘z) . Furthermore, it is assumed that

each parameter ki , i=1, 2 , is associated with a known range of

uncertainty [ki 'k, ] which can be small or large. We want to

min  ‘max
guarantee time domain specifications (T.D.S.), for example unit step
response of the type shown in Fig. I.2, despite the uncertainty of the
plant parameters. This means that for any plant parameter combination
Pj belonging to the set f of possible combinations, the system

output cj(t) is to lie within some prescribed time-domain bounds

defining the region R,' (Fig.1.2) < R v
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system
output

|

time

Figure I.2. Example of time-domain specifications.

It should be noted at this point that it is implicitly assumed
that we restrict }* to "reasonable" signals e (t) € R.

Mathematically this means that the designer restricts himself to

dic.(t)

signals cj(t) such that < Yi(t) for =Y, 2,0 .asp for

at*

some given functions vi(t) . Although the synthesis technique uses
frequency domain specifications, it was shown[Hl] that frequency
domain specifications suffice for T.D.S. of even more general type.

It is assumed possible to measure the command input r(t) and
the plant output c(t) and therefore the most general structure is
that with two-degrees-of-freedom, of which one is shown in Fig. I.3,
where F and G must be chosen by the designer.

It should be underlined that because of large plant uncertainty
that is assumed here, it is impossible in general to use an open-loop
system and therefore feedback is definitely n;eded. This necessitates

use of a sensor, which in turn introduces sensor noise N (Fig. I.3).




| +

Figure I.3. A two-degree of freedom structure

I.2 Linear time invariant design.

it

If the plant is minimum-phase there exists [Hl] an infinite set

\

| .4 of (Fi'Gi, which satisfies the T.D.S., despite plant-uncertainty.
The restrictions on the range of uncertainty have been discussed [H7],
[H8]. Furthermore, given a region ﬂ (Fig. I.4) of width at most ¢
where € > 0 is arbitrarily small, it is possible to show [H1] that

the set .45 of (Fi'Gi)e which satisfy those T.D.S. is not empty.

| system
B output

g [

- o
time

Figure I.4. Example of time domain specifications.




If a feedback loop gives us such benefits we should expect to pay

a certain price for these benefits.

2.3 Cost of feedback.

The mean square value of the noise at the plant output due to the

sensor noise of power spectrum °nn(w) , is given by

+? L(jw)i 2 ¢nn(w)

o |14L(3w) | 1P ()

dw

Assuming white sensor noise of strength a2

N and following the general

procedure for the synthesis of linear time invariant systems (L.T.I.)
derived by Horowitz and Sidi ([H2] we get results of the form shown in
Fig. I.5. We can divide the domain of integration in three regions.

2

a) w<<u, ft! >> 1 and the integrand = Tgig. which tends
P

to be small over that range, and the range itself (on an arithmetic
scale) is a small part of the range in which the noise effects are
significant. 1In any case, in this range the contribution to the

integral is beyond the designer's control.

By 2yl
b) w>w , then [L] << 1 and |75| |5 =~ 6]

i

1+L

As }G? <<1 in this region, the contribution to the intearal
can be neglected.

c) W << p << wt + then ]L] << 1 , the integrand is
equivalent to !G]z . However {G’ >> 1 and this is the region which
contributes most to the integral.

So, two members of the set J4 differ by: a) their spread in the
time domain system-responses to a command-input or by: b) their

respective level of sensor's noise rejection at the plant-input, or by:




1G] =|L/P]

Figure I.S. Typical linear time invariant design.

both a) and b).

Therefore in a general sense, the less sensitive we want the
output system to be to plant-parameters uncertainty, the bigger will
be the sensor noise effect at the plant input, and vice-versa, and
this is the real trade-off in any feedback system design. So a reas-
cnable definition of optimum is to select (F,G) € A‘ with minimum

©
o =§ J(; V-l—f—i Zandw where ¢ (w) is the power spectrum of the

sensor noise. However, this is a very difficult problem, as yet

unsolved. Our definition for optimum (Fi,G.) P G 4 is one for

i‘o
i k& .
which: Min k i where as s + » , Gi(s) - S for a-priori chosen
s
value of the integer e . Obviously, this definition is closely
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related to % minimization but it is definitely not the same thing.
Our definition (besides giving a solvable problem) is quite realistic
o3 it is closely related to L(jw) bandwidth minimization. This is

especially important for higher order (e.g., bending) modes avoidance.

It is worth noting that our definitidn is essentially the same as
Bode's in his derivation of the so-called 'ideal Bode characteristics'
{B1l]. Using such an optimum criterion, Horowitz [H3] has proven the
existence and uniqueress of an optirum (FO,GO) € f% , for a certain

proklem class.

I.4. Limitations in a L.T.I. design.

The nature of the optimum L is such that %ig ki means
essentially the minimization of the frequency mx (Fig. I.5) at which
?L(jw)? reaches its final asymptotic slope. However, for minimum-
phase L.T.I. networks é—%gléL is related through Bode Integrals to ZE;

If 2n L(jw) & A(w)+j B(w) with A in nepers and B in radians

and if u i &n w/mx then [Bl]

+
|
™w ) = [ g ¢n coth *EL du
X Lo Gu 2
1 *® aws) lu]
T{A(w )=A(®)] = = == s 221 gn coth du .
b B du 2

As stability requires LL(jwc) > -180° for IL(ij)! =1 , then,
because of large uncertainty, the maximum rate of decrease of L is

-40 1b/decade over some fregquency range. It will be shown (section
TT.1), however, that the disturbance specifications are translatable into

a cerain phase margin SM for L(jw) to satisfy over some frequency

§
I
|
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|
s

7
range R»axnb] (Fig. I.6), thus MAGNITUDE
|
increasing the cost of feedback. :
Indeed, over that frequency range //”’—j_~\\\\ RHASE
d.nlL ;
is then at most j
A : LLTI(Jw)
(2 5%) x 40 db/decade and w,
8
recalling (I.1l) and Fig. I.5, the ¥
level of noise at the plant in-
—e e e - =
put is then accordingly increased. ;_/ St
This can be visualized as follows
(Fig. T.7)¢
Figure I.6. Typical L.T.I. design.
PERFORMANCE
SPECIFICATIONS

LEVEL OF NOISE AT
PLANT INPUT DUE TO
THE SENSORS

Cquation (1.1)

LTI synthesis
procedure

PHASE OF
L(jw)

Bode integrals

RATE OF DECREASE
OF |L(jw) |

Figure I.7. Trade-off in a L.T.I. design.

Jne possible way to break this vicious circle is to concentrate on

devices for which the Bode relationship relating phase lag to

dsn!v]
dw

catdisi




does not hold, namely:

NON - (LINEAR TIME INVARIANT) networks.

5 S Non - Linear Time Invariant compensation.

We will investigate here:

- NON LINEAR (N.L.) networks

- LINEAR TIME VARYING (L.T.V.) networks.

I.5a N.L. networks.

As was seen, Bode's gain-phase relationship for LTI networks is
responsible for the large 'cost of feedback' in the synthesis of
systems with large uncertainty.

Tt is therefore logical to seek nonlinear networks for which that
relationship does not exist, and for the purpose of comparison, to
characterize them by some mathematical tool which reveals their gain-
phase relations.

The most commonly used tool is the describing functions [G2],[M1]
because it uses the same frequency domain concepts as in LTI networks.
The notation !Neqi and lfﬁq will be used to characterize respect-
ively the "equivalent" gain and phase of the nonlinear element N.
Obvicasly, the equivalent gain and phase concept is just a means for
us to try to evplain, visualize and invent nonlinear devices, which
are hopefully useful for our purpose. We certainly do not intend to
rely on Describing Functions to give a quantitative sythesis procedure.

Using the above notation we are then looking for N.L. devi.es such

that:
d‘me | m
—=29_ = -m db/decade with b > « = x 09p°
dw eq 20

S et




(recall that for a L.T.I. system a rate of decrease of -m db/decade

is associated with an average phase lag of =-m x 90/20°) ., This

would then lead to some open loop transfer function Leq(S) for which:

a1l
=Rl ; L%
o k db/decade with Zfeq > =5 9Q°

which then implies 3

{ dl_;ggl_ g ?_L%'L-T-I HiEh Eeq E EL.T.I.
t and therefore ]Leq(s)l would be as siown in dashed lines in Fig. I.S.
é l The improvement tc expect in terms of sensor noise fejection is then
; 1 obvious by inspection of Fig. I.S5.
¥ ; I.5b Linear time varying networks.
; It is well known that time-invariant filters are optimum for !
i stationary processes, i.e., if all signals are stationary [(Pl]

The fact that we concentrate on specific command inputs starting at
time t=0 , implies non-stationary processes. Therefore we are

induced to think that L.T.V. filters (F, G) can give better perform-

it

ances than L.T.I. (F,G) . Physically it means that the feedback

properties are tuned to follow the time-varying sensitivity needs,

PO

rather than be time-invariant. ‘

e
>

e
4
!. 4
i 16 Previous work.
4 —_—
1 The above topics constitute a very broad area of investigation.
Long ago Holzmann [H10]) mentioned that "control engineers in the |4
s chemical process industries have long recognized the possibility of

achieving superior responses by means of nonlinear control". And

Chesnut [C2] quoted John Mocre "that for any linear control, he could
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always build a nonlinear control which would be better". Clegg [Cl]
and others have noted that N.L. compensation can give better gain-
phase relations than LTI networks (from the describing function view-
point). But no quantitative synthesis techniques exploiting this idea
were reported. Recently, however, Krishnan and Horowitz [H4) proposed a
quantitative design procedure using a N.L. element.

On the other hand, it was shown that "variable structure systems"
have adaptive properties (see for example, [El], [Ul), ([uU2], [K1l]).
In these systems the LTI compensation changes when system state crosses
a switching surface. However, no cquantitative synthesis technique for
satisfying assigned spec ifications over a given range of uncertainty has
appeared for this class. A search of the literature reveals that
besides [H4) no quantitative synthesis procedure using N.L. compen-

sation has ever been given for uncertainty plants and which is

quantitatively related to the performance spe cifications and to the

range of uncertainty.

Much work has been done on the filter problem in bo”h stationary

and non-stationary processes (see, for example, ([Wl], (B2], [Sl], (K2]).
Very little has been done in this area for uncertain plants. Fleisher

[F1] did consider the problem of stochastic plant-parameters and gave

a synthesis procedure that uses lti compensation. However, because

of the linearization that he made in order to obtain a solvable
problem, his synthesis technique is approximately valid, at best, for
relatively small arameter uncertainty.

In summary we can say that the field of guantitative synthesis of
€or lback svstems using N.L. or L.T.V. networks has hardly been inves-

stod 2 nf POwW
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CHAPTER II. B. P. N

The work presented in this dissertation rests on the following
foundations:
a) The synthesis procedure for L.T.I. systems to satisfy T.D.S.
despite large plant ignorance, devised by Horowitz and Sidi [H2].
b) The derivation of optimum linear time varying filters for
non-stationary processes due to Booton [B2].
c) The concept of set-Equivalent-Plant-Linear Time Invariant
(E.P.L.T.I.) used to characterize a large class of non-linear-time-
varying plants, introduced by Horowitz [H1].
We shall now briefly review those topics: E

IT.1 Synthesis procedure for L.T.I. systems.

The method presented in [H2] is restricted to minimum phase
plants, but has recently been extended to non-minimum phase plants
(Horowitz and Sidi, [H9]) . In a first step, the T.D.S. are
translated into frequency domain specifications (F.D.S.). Although
no general rigorous translation between the two domains is known,
there is, in practice, little difficulty in effecting one which is
satisfactory for practical engineering purposes. Thus, for example
[Ss2], the T.D.S. of Fig. I.2 are translated in the F.D.S. of Fig. II.l
and therefore at each frequency w € 2 = [0Q»] , the maximum
tolerable variation A 1ln|T(jw)| on the system overall transfer
function T & % (see Fig. I.3) is defined. The synthesis technique {

is mathematically rigorous for such w=-domain specifications.

~

Pi(jwﬁ) denotes a point in the

Secondly, at each wy €
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100

RD/S

Figure II.l. Bounds on ln !T(jw)!

el B

complev plane which is associated with the plant-parameter condition

i . As 1 ranges over the uncertainty range the point Pi(ng)

describes a region in the complex plane denoted as the "template"

, D(jmy) of the plant P(jw) at frequency Wy .

3 Using cteps 1 and 2, (?rd step) for each wy € Q , a bound

B 1

if ; T(wf) (Fig. II.2) on the nominal open loop transfer function Ln(jw)

associated with the nominal plant condition Pn(jw) (i.e:,

~ Ln(jw) = GPn(jw) , Fig. I.3) is derived such that:
, ! y Ln(jwi) | i .
" } A ln ? T:Z;TESZT ! € & ln,T(jwl)« permitted f2.1)

when A 1n Ln(jwz) = A 1ln Pn(Jw)

(2.2)

Sooner or later there must exist a fregquency range in which
)|

sensitivity increases rarher than decreases, because in any practical

feedback system [B1]

& ;
[ 1n |s] duw =0, where § = 32.1 (2.9
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o

—
.

I3

is the sensitivity of T(jw) to uncertainty in P . This is some-
times denoted as the 'equality of positive and negative feedback areas'.
Hence, if {s[ < 1 over some range (the primary objective n a feedback
system), it must be balanced by another in which !s| > 1 . 1t is
easy to live with this constraint in the two-degree-of-freedom system,
because at sufficiently large  , T/ is negligibly small, so that
large relative changes 'n ‘T? are inconsequential. This means that
at large w , it is essential that the response tolerances A ln!T(jwﬁ
exceed the range of the P(jw) template in order that L(jw) may go

to zero as w-=» . |S| >>1 is tolerable in this high-frequency range,
as far as its effect on T(jw) 1is concerned, because the prefilter F
in Fig. I.3 attenuates the resulting high peaking in L/(1+L)

1

However, the disturbance response T, = C/D = (1+1) ™" = s of (2.3),

d
is then also very large, which is generally not tolerable because there
is no equivalent filter available. Although the parameter ignorance

problem is assumed to dominate, it is necessary to consider the

disturbance response, at least to the extent of adding the constraint
I (€ -1
3y> 0, a,le A |5| = |(1+0) | gy , Vo (2.4)

The value of y may be related to the damping factor [ of a second-

order response function by the relation

: 1 , 1
y= max | 3 | = 3|
o | lme®+i2ge ! 126/(1-g%) |

The above leads to the boundary T, of Fig. II.2 with em a function
of ¥ s .4 Bm = 50° if y = 23 dB . At low frequencies the

parameter factor dominates for w<uw in Fig. II.2, so these boundaries

b

containno nart of 77 . There is an intermediate freguency recion in
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which part of the boundary contains a portion of T e.qg. T(wd)

L .

in Fig. II.2. At sufficiently large w (w>wb) ¢ becomes the

o)
complete bhoundary.

In a fourth step, using the optimum criteria of I.3, i.e.,

. x>
X

L]
Min X. , where as g=»x 'Gi(S) » s for some given integer e
s
the optimum Ln(jw) was proven to be the one which lies exactly on its

bound T(wi) at each wy €Q . (see [H2], [H2] and [H9)).

G(jw) only guarantees that A 1n!?(jw)! is satisfied. The pre-

filter F 1is needed in order for IEE— to lie in between |T_.
I+ L Min
1 [
and 'TMax‘ .
F 1is thus deriveé, for example, by matching IFf . ’I%Z| with
| Max
i £ied f0) | .
the specifie lTMax(jw) for all w € Q
T(wl)
MAGNITUDE
T(wz)
. PHASE
Lo (Jw)
n
7(w3)

Figure II.2. Typical bounds on L, (jw) at different frequeficies.
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3 s 40 Design example.

The plant is P(s) = %

with k € [1,1000]
S +20 w_s+w
PP P

=5,3 ’ 2 2,10
R € ( ] /l-Cp €l ]

w
p
the parameter being independant. It is required that the system step
response lie within given T.D. bounds over the entire range of plant
parameter values. This problem was solved by Horowitz and Sidi [H2]
and [S2] and the resulting F.D.S. are shown on Fig. II.l. A peaking

Y = 2 dB was tolerated which corresponds (Appendix Al) to ¢ = .44 and
to a tolerable overshoot of 21% in the step-disturbance response.

Using the procedure described above,

47.191015(s+.905)(5+.92)(s+l7.3)(s+26.1)(s+200)(s+2220)

L,(s) = > 2.2
s(s+512) (s+5.28) (s+6.1) (s+37.8) (s+50) (s+1000) (s“+10500s+(15000) )
associated with the nominal plant P (s) = 5 .
nom T
s (s +2s+5)
LQ(S) is plotted in both Figs. III.13 and III.l4. The prefilter
> 9 (s+.94) (s+2.4)
(s+1.5) % (s2+4.25+9)

is then calculated to be F(s) . Corresponding

command outputs and step-disturbance responses are plotted in Fig. ITI.18

and Fig. III.19 respectively for different plant parameter values.

I1.3 Optimum L.T.V. filter for non-stationary inputs.

Given {11} a set of input signals that are to be applied to
a system characterized by its impulse response h(t,T) , i.e.

(Fig. II.3 ):

€
IR(t) = g h(t,s) xI(c) dg

Furthermore let us assume that any input signal zI(t) 7 (II} is the
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sum of a signal component xs(t) and a noise component IN(t) '
= { { 3
X (£) = x_(t) +x (t) with {xs} - .rN} given.

Let:

nw

i YII(tl,tz) II(tl) xI(tZ)

A T
YIs(tl.tz) = II(tl) Is(tz)

where the bar denotes the average over the ensemble of input functions.

Note that vIs(tl.tz) = YsI(tz,tl) . Yss ' YsN ¥ ok are

defined similarly. It can be shown that:

+ + + :
Yer = Vas " Yen * Yue * Yux

* Let g(t,T) be a given ideal system impulse response which, operating

on the signal component Ig(t) , gives the desired ideal output

signal:
il
x (t) = é a(t,8) x_(7) &z

If e(t) 4 ID(t) - IR(t) , how should h(t,T) be chosen so as to

minimize e2(t) for all t ? It can be shown [B2] that:

t te
2
e (t) = vDD(t,t) -2 g h(t, ) YID(C,T) az + gg KT} h(t,Tz)

YII(* ,Tz)drld.2

ik

i A variational argument leads to the optimum h(t,T) ¢to be the solution

X
4 - T» g(t,t)
5 e(t)
1& +¥ + 1& zﬁ &
h(t,T)

Figure II.3. Linear time varying optimum €ilter.

A T MR A TR ML AR . TS
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of the integral equation:
&
‘YID(t,T) = éh(t,’;) YII(C,T) ag for & > 7T (2.5)

Given the deterministic signal s(t) , how can one approximate

the autocorrelatio function yss(tl,tz) for practical purposes? We

first note that Yss(tl,tz) is a symmetric function, continuous if

xs is continuous. Let us consider signals existing on [0,T] where

T can be as large as desired. We can consider Yss(tl.tz) as a
definite symmetric kernel and by application of Mercer's theorem ([C3],
[Cq)
o wr(tl)wr(tz)
Y (t,,t) = [J SF—_E < (2.6) for all t_,t_ € [0,T]
e A 12
II r=1 r

where Ar and wr(-) are respectively eigenvalues and corresponding

eigenfunctions of YII , i.e., non trivial solutions of:
1 T
g © (s) =/ y__(s,2) © (z) d¢ (2.7)
- 11 >
0

For practical purposes, we can certainly approximate (2.6) by:
N wr(tl)wr(tz)
YII(tl,tZ) = —___~X;_———_ (2.8) for all tl.tz € {0,T1
r=1

where N is such that the norm on the space L2 [0,T] of the error

is less than a given tolerated error € , i.e.,

b N 2

; ©_(t)o (t,) | © 2

= Yzt ot = ] —5—%—2— atat, = ] l—ll <e (2.9
(2 (28 e i r . r=N+1 '}

II.4 Concept of set-Equivalent-plant-linear time invariant.

It was suggested long ago to replace non-linear or linear time
varying networks by an approximate equivalent linear time invariant
ones, for convenience in analysis and synthesis. The Describing function

|

52] is a well known example of such a substitution. However, it was

S ———

\\'wm e -/. -. El b
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definitely not used as a tool for gquantitative synthesis in uncertain
systems. The concept of Equivalent Flant Linear Time Invariant
(E.P.L.T.I.) set which can be properly used for guantitative synthecis
was recently introduced by Horowitz [(Hl, H6). This concept is now

briefly reviewed. Given Fig. II.4) R={r} and D=1{d} - two finite

sets of deterministic command and di.turbance inputs.
Let 1 = {i%(t),a=1,...N} be the given set of system inputs for which '3
] ; - QO .

E the design is to be executed, where i may consist of a command, a

disturbance, or a combination of any two of these. Given the set | 8

r—————

é | Ca[t] = Eu(t)} of acceptable system output signals associated with

e

2y , ie is possible'tq £ind the corresponding set 2z>(t] = {z%(t)}

e e g

i of acceptable plant output signals and thus the set Za[s] = L&ﬁz“(t)>}.
Let the plant be characterized by a set W = {w} (because of plant

E uncertainty) of nonlinear time invariant (the latter for the

G sake of simplicity - the extension to nonlinear time varying is

straighforward) continuous mappings w : X(t) >z(t) , with unigue

——h

continuous inverse w-l (B1) . Then for any plant w, € W there

exists a plant input signal Iti(t) which produces the plant output

¥ signal z°(t) € 2*[t] and we can define:
t v
H o a
g " afﬁzv(t)] z(s)
. Py s = o T
. oLz (01 2 (s
. as the %y - equivalent plant linear time invariant (E.P.L.T.I.)

, ) . o1 3 -
transfer function, in the sense that the input xvi(t) into the linear
c ; " o : :
Piz(s} gives the same cutput as the input Ivi(t) intq the non-linear
plant wi . Thus the method is restricted to nonlinear w for which

the set X is Laplace transformable. Restriction is made in the mean-

> : . a ; _—
time to design procedure for w such that Piv(s) is minimum phase
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D={d(n}

o)

Figure II.4. Feedback structure with nonlinear uncertain
plant set W .

(B2) for all a«, i, Vv
As i ranges over all ws € W and V ranges over all

zg(t) € za[t] ; Pig(s) describes the set:

o a a a
P [s] = {Piv(S) » oz, (8) €270¢E] , w, € W}

which is defined as the a -E.P.L.T.I. transfer function set associated
with the input signal ia(t) over the output set Ca[t] and the non-
linear plant set W

Once this is done, the quantitative design procedure used for
L.T.I. systems [H2] can be applied to the E.P.L.T.I. problem where the
specifications on the acceptable output are those assigned to the non-
linear problem. Pa[s] becomes the uncertain L.T.I. plant set in this
equivalent L.T.I. problem. Schauder's fixed point theorem is used to
prove that the solution to the latter problem is valid for the nonlinear

plant set. The synthesis procedure of Paragraph II.l can be easily

extended to nonlinear time varving plants.

et )
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CHAPTER  III. NONLINEAR DESIGN FOR COST OF FEEDBACK REDUCTION
IN_SYSTEMS WITH_LARGE PLANT IGNOPANGE.

propon

IIT .1 INTRODUCTION.

The Clegg Integrator (C.I.) is a linear integrator (L.I.) whose

output y is reset to zero whenever the input x crosses zero ([Cl],
see Fig. III.l). 1If it is properly inserted in a feedback loop system,
it can reduce considerably the system step response overshoot.

The C.I. response y(t) to a sinusoidal excitation x(t) is
shown on Fig. IIT.2 and its describing function N for sinusoidal
inputs is plotted on Fig. III.3. It is seen that the rate of decrease
of [N| and of the L.I. are the same. However, [ﬁl= -38° compared
to =90° for the L.I. Therefore the phase margin eM associated
with the "non-linear" open loop transfer function Leq(s) containing a

C.I. is bigger (by 52°) than the one associated with L contain-

prr ‘S
ing a L.I. in place of the C.I. As we know phase margin is closely
roclated to the overshoot in the svstem step response. This explains
qualitatively the differences mentioned earlier noted by Clegg. However,
quantitative synthesis can not rely on Descriﬁing Function Theory (as
already stated) and in any realistic design one has to overcome a big
instability problem if one wants to use a C.I. (see Chapter IV). To a
large extent the 'First order reset element' (FORE) (which is the
linecar element 1/s+b whose output y is reset to zero whenever the
input x crosses zero (Fig. III.4)) overcomes the instability
problem mentioned before, and this will be explained in detail in
Chapter 1IV.

It is worth noting (Fige.III.3, III.Z2, III.5), that FORE appears
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s
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.

x(1) x(1)
o
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Figure III.l.

C.I.

O

Fiqure III.4.

FORE.

(cose drw)

_‘:’[/\.\/./-\s.m:,. "’{‘@.‘(}.@;.jg)

2 b/w oL o e
AL////] 4////1 %)  Normalized l

(o] b reset value

x = - S 0 (% of the CI 498 .86 .26 .10 .05 .01
. reset value)

-2

Figure III.2. C.I. response to
a sine wave.

Figure III.5. FORE rasponse tc a sine

wave.
T \Y T T
0 \ AMPL{TUDE -1 0
\e——C.1.
FORE
- @
o W
g ¢
[V
- ¢ 205
S -20 ~-208
(= w
=3 1]
g‘ pHasE -
o
.40 T T T i — YN
10-2 107! [ 10 100
W

Figure III.3. Normalized describing functions of C.I. & FORE.

as a linear element to slow-varying signal and as a non-linear element
to fast-varying signals, because the value of the reset (Fig. III.5) is
definitely a function of the input signal frequency. This gives a flex-
ibility, not available in the C.I.

Furthermore the frontier between the two characters can bo

adjusted to a particular design.

III.2 Analysis: Characterization of 'FORE'.

Some tools are first derived that are used to solve the synthesis

problem.
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III.2a. Equivalent linear representation.

Let 8 = {ti . i=1,2...} be the set of zero-crossings of the
input signal x(t) to a FORFE (Fig. III.4), i.e. s € @ is such that:
x(t) =y (+.) =0
i b L

, where t_ , t € 8 , we have:

St <
Then for tNtt tN+ N N+l

1

y(t) = z(@)e P8 4

N

1 for t3t: genotes the Heaviside function

If u(t-tx) -{
0 for t<tK

]

-b(t-C)ch

-
; 1
then: yf(t) = [u(t-to)_-u(t-tl)]( I x(T)e

t fo
2

!u(t-tl)-v(t-tz) 1 [ x(g)e

)

b(t-8) g

tK+1
¥l i x(g)e

Fx

=b(t-g)

[u(t-tK) -u(t-tK+1 ag + .. +

. -b(t=C) .
u(t-tN) ;] x(Q)e dg = u(t-to) I x(g)e
' N %

-b(t=%)

b(t=2) 4,

J x(z)e dg u(t-tK)

K
Let r* 4 S x(0)eP®x%ar (3.0) and notice that

K
K-1
-t
yolt) = I x(t)e

o

1/s+b for the same input x(t) .

-b(t-mdc is the output signal of the linear element

t
Then yf(t) = yg(t) - ;rf e ERESE)
= |8
K=1 ':o

where 6 (t) is the unit impulse function.

]
- * -
§(t tK)dT IK J u(t t]) (3.1)

At this stage several comments are necessary.
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a). Note that zk' represents the reset value that occurs at time tttK.

Thus the nonlinear aspect of FORE is represented (3.1) by a train of

*
impulses of value -Jk at tx € 8 , added to the input, i.e. FORE can

be replaced (Fig. III.6) by 1/s+b and adding to the input the train of

N °© N+1
(3.1) that if x(t) produces yf(t) , then k-Xx(t) (where k 1is some

N
impulses - Z Jk' G(t-tx) for t. .S LSt . B). We also learn from
11

real constant) gives the output k-yf(t) and therefore the linear chara-
cter is preserved in the multiplication by a constant. This is quite an
important feature because it is then sufficient to characterize FORE for
unit signal, command or disturbance, in order to know its behaviour for
the non unit one. Y). From (3.1) one notes that FORE is nonlinear
from the additive point of view. If X (8) , yi(&) , and I (8) ,
y:(t) are respectively paired, then in general, Is(t) = Iﬁ(t)-rli(t)
gives rise to an output signal yi(t) #y‘;(t) +y§(t) . The equality
y:(t) = y;(t)-+y§(t) occurs if and only if the sets of reset instants
61 and 92 associated with Ii(t) and Ié(t) are equal. Thus FORE
is a linear element over the class X of input-signals X(t) that have

the same zero-crossings. However, even when FORE acts on X, it has not

the commutativity property with linear elements, i.e. FORE s LTI # LTI % FORE.
1

All these, then, legitimize as a notation, the use of (;:g)* to chara-
cterize FORE. From now on, any FORE will be followed (even if not
specifically mentioned) by the element ‘s+b) (Fig. III.7) and we define
. (==Y’ Y = x < Sanf ENE X
\S'*b) - s+b

)

-
xel 1*6(t-tx) tx € @

Pigure III.6. Equivalent representation of FORE.
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the equivalent open lnop transfer function Leq(S) éG(s)? (s). Note that

Leq(s) = L,TI(S) when no reset occurs. In a similar manner the equivalent

overall transfer function is defined as T_ (s) =AF(s) L (s)/€1+n  (s))s
eq eg eq

By using the equivalent representation of FORE shown on Fig. III.6 and

by application cof the superposition theorem, Fig. III.7 becomes equiva-
lent to Fig. III.8 from the output signals point of view. Thus the non-
linear outrut CNL(t) is the combination of the linear system output

’_‘q(t) and the train of impulse responses CT(t) -

For example, in Fig. III.7, let R(s)=1/s , D=N=0, F(s)=1 ,

——

-2 - ; 22 2
Leq(s) = /(s(_s+2~,wN)) with <1 . 'req(s) -wN/(s +2Csz+wN) . S0,

C.(r) = 1 - ot sin(wot+cos-1C)/ V1-c2 with o Tl 1t2 . The
A

first reset instant ¢t is such that Cl(tl) =1 (because I(ti) =0)

it

y |
{ civing tl=(w—cos-1c)/w° « Using (3.0},

-1 2
¥ =pf{r=cos L)/ 1=t
* = < < H
r e /wN and for tl.t tz

. - - 2
","(*) = -I‘* Cp(t-tl) = e Cth sin(wot+cos lC)/ ¥1l-z . Therefore for

} i 2 - = .
the nonlinear system output CNL(t) Cl(t) *CT(t) 1

, Y-{ FOQEH—! s+b 17 [5)
2 = ? w
o—s—e—al 6 O P et

T F -t 3
%" Tobay PO
i -1
Figure III.7. System block diagram.
1 Lo/ (1+Lg) Cy, Cne Cp B/ At0, )
et )

+X = FeR= CNL

Figure 11I1.8. Equivalent system block diagram.
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In summary:

C (t) for t€ ¢t
2 ) §

CNL(t) = {
1 for t 3 t2

This result is very interesting because the steady state is reached

in a finite time tl , which is impossible to acheive with L.T.I.

systems and because the result (0% overshoot in the system step response)

is independant of [ and wN . However, it is of little practical

use because of the pure 2nd order system considered here.

Physically the above is easily explained. After the first re-
set occured, the steady state (X=0 , yf-O , ¢=1) is reached which
eliminates the dynamics for t‘)tl , despite possible ignorance in

w
N

III.2b. Non-linear step response overshoot.

Using some of the results of the previous section, it is poss-
ible to calculate the nonlinear overshoot that occurs in the step
disturbance response of the system shown in Fig. III.7. For practical
purposes because of the universal character of the 'optimum' L.T.I.
open loop transfer function L(jw) in problems with large parameter

uncertainty, it is possible to approximate the resulting high order

u)Nz e-tds
L/(1+4L) by a delayed second order function T, __(s) =

APP 2
s 420w sty

CA linear system
7N

/ \

4 \
L
non- \
linear Ns?
system

-
~
~

—

-
Figure III.9. Linear and nonlinear system step responses.
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This approximation is justified in Appendix Al. In the second-order
-zn//1-z2
system the cvershoot is related to [ by OV =e S

and to the magnitude peaking by hi—L

1in (3.1b)

(jw)i = 2 . For the

max 2CV1-C2

remaining of this paragraph, td is assumed to be zero. Therefore the
following results will only be applied to those systems for which the
time delay can be neglected (see Appendix 1l).

Consider the system of Fig. III.7, where r=n=0 and d(t) is

-Cw. .t .
a step. Then in Fig. III.8 : Cz(t) = ;__2 sin (wyt+cos 1C) with
I=c
W, = Vl-cz- w, &
0 N "
T-cos ¢
The first reset instant occurs at tl W and therefore
. 0 i
the first reset valug is: (-ﬁ = -Cz)
£ €
1 -bt; 1 }
-'S_* == fc (C)e-b(tl—mdc = + — e DEY & B B e ¢ (g)dg after
L b b I3
l¢] [¢]
-Zw. t
L wNe N
integrating by parts. As C,(t) = sinw.t , we have
5 /i=g? 2
-bt w, w,
1 - -
e =X wlmz(ec“’wtl+?"’eb‘1) (3.2)
b 1-2CT+ (T)‘)

The nonlinear system step disturbance response is therefore:

Cz(t) for t ¢ tl
o, (€1 = { “ (3.3)
Cz(t) —xl Cz(t'tﬁ for tl £t«< t2
with tl é t2 A R
There exists at least one extremum at to € [tl,tzl at which,
'- - - /“ - . - - ;
L”L(to} Czl_o) ﬁ* Ck(to tl) 0 (3.3a)

Peplacing each term by its respective value gives:

=L
A ‘thO

Al ,r?

-

’ 2 . w. .t ]
- * - ‘ - - - ¥ 1]
L.-:mwoto ﬁ (Vle1, cosuo(to tl) csmwo(to tl))e ! ) o]

Using a:im:cf_1 = »/1—52 and cosmotl = -7 we have:

pe
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w
N S
e — e —— - *
(1 Il e

"
o

(V0 4 ,
N le) s:mwot0 (3.4a)

"

As t_€ [t ,t_] , there is only one extremum at t_=-— (3.4b) which
0 1" "2 0 wo

corresponds to the instant at which Cl(t) has its first minimum.

The value of the extremum is:

= = - C - | A -
Vyr, = 6 (80! ’Cz“o’ x ¢ (erenl Lov A (3.5)

N 1 LIN
PTT VR SAENE . SR (Mlze"” - M, (1-25m)) M, ne
1-2cM _ +M 2
1
sl el O — -1
R 008 WAL M o= = o TT  , e e
(3.7) (3.8) v1=z (3.9)

and . denoting the crossover frequency of Leq(s) P
such that {Leq(juc)[ =1 .

Using (3.5) and (3.6), charts are presented in Fig. III.1O,
giving the net overshoot or undershoot in the step disturbance
response, for the non-linear design, with M = ‘ibg as a parameter.

It is reasonable to hypothesize that for values of td very
small relative to tl and to , Fig. III.10 can be used with good

accuracy. Experimental results support this and will be given later.

II1I.2.c When is it possible to consider FORE as a linear element?

Assume FORE is located as own in Fig. III.7. and let d(t) be
a step-disturbance and r=0. Let Cz(t) (Fig. III.8) be as shown in

in Fig. III.1ll, then for t<t_. we have:

1
%
- -b(t-t,)
x(t) = x,(t) = -C,(t). Also X, * == [ C,(t)e gt . (3.10)
| | 2 % 0 L
If b=0 (C.I. case), Il" is the area under Cz from t=0 ¢to tl

in Pig. 13T.11. With DByl Il' is the area under curve
-b(tj-t) . If bt;>1 by a factor of 3 or more, B is very

B = C; (t)e
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small over (0,!:1) , SO C-'Cz for all t . Using previous results

w-cos-lt

"
we have: t, 8 ——— so (t,>7—) if Db>3w (3.11) is
1 WN/T:Zz 1 2wN N

OVERSHOOT (%)

|ﬁ|~c(oa)

.60-
B% iy 60 | & ° gl
180 B | R e 120 Te)

-Arg L (jwc) ( degrees)

Figure 1II.10. Net overshoot in nonlinear design with M = wc/b
as parameter.

:Zgn)fbm“

Xy *AREA

Figure III.1l. Derivation of non-
linear disturbance response from linear
response.
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satisfied it implies that 'FORE' can be considered as behaving like
1/s+b from a practical point of view.

FIX. 3% Synthesis.

III.3a. Philosophy of the design procedure.

We use the two degree of freedom structure of Fig. III.7. The

open loop transfer function LL (s) has to satisfy bounds [H2] at

TI
each frequency w € [0,»] (Fig. III.12). In general in the low-

frequency range (w <wb) LLTI(jw) lies on bounds due to the specifi-

cations on the command input responses and in u)>wb LLTI(S) is

determined by the maximum tolerable overshoot in the step disturbance

response. This merely means that for w

2>w>mb , the bound I'z
imposes a certain phase margin GM for LLTI(Jm) c
“1
'Ilgn!mdo‘
/ .
LLTI("") PHASE
p o3

Figure III1.12. Typical linear and nonlinear designs.
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Recall that the smaller the phase margin, the bigger is the
tendency to instability characterized by a larger overshoot. The N.L.
character of the FORE in this higher frequency range (w ‘wb) ¢ Will
permit a smaller phase margin 6& on Leq(s) for acheiving the same
specified maximum tolerable overshoot in the step disturbance response.

This allows a faster decrease of !Leq(jw)!(pig, ITI.12) and is accom-
pranied by the reduction of the sensor noise effect at the plant input.
We can adjust the value "b" of FORE such that in the lower frequency
range (m<mb) FORE acts like a linear element, so that the bounds

on Leq(s) due to the command input are unchanged. Consequently the
prefilter F remains L.T.I. which is certainly an interesting feature
and one of the important advantages of FORE over the C.I. Therefore a new
set of bounds on Leq(s) has only to be derived in the higher frequency

range (w >mb) . This is done by using Chart III.1l0 as will be

explained in Part I. For high plant gains, an undershoot problem arises

which is treated later in Part II.

III.3.b. Nonlinear Design Details - Part I. |

Without loss of generality, the design details are better presented
by means of an example. We will take the example of section II.2
treated in [H2]. The bounds T (w) d&ue to command response specifications 3
and the bound PE , due to the disturbance response specifications,
are plotted in Fig. III.13. To simplify the design with little loss in
exploitation of the benefits of nonlinearization, the parameter b of
FORE is chosen approximately at the first w value (denoted by wy, )
at which Lz(jw) lies on 7; in Pig. I1T.13, i.e. at which the

disturbance response dominates, in the present case at 60 rps (Fig.ITI.13.).

This definitely assures that the (nonlinear response to r ) = (linear
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response to r ) . From Fig. IT.l. the maximum bandwidth of
T(jw) ~ 7 rps. From the relation BW = 0y [1-2g2+(2-4c2+4c4');5];5 P w
is certainly less tha&114, so (3.11) is easily satisfied. The above
choice for b considerably simplifies the design details, because
only the disturbance response need be considered, meaning that only
Fz is changed into Tnz ; the other T (wi) boundaries need not ke
recalculated. 1In general, in problems with large parameter uncertainty,
this method of choosing b will have (3.11) easily satisfied which then
assures that the (nonlinear response to r ) = (linear response to r ).
It is for such problems that the added complexity and resulting
bandwidth saving of a nonlinear design are justified.

How is rnl obtained? Of the total ensemble of plants, consider
that subset whoseloop transmission L=PG has crossover frequency
uh=60 . Since.there may be an infinite number of plants in this sub-
set, pick the one with the largest value of [L/(1+L){j60 . From
Fig. III.10 at M=1 , 20% overshoot gives em = 180-155=25° . We
position the plant template at ;=60 (shown shaded in Fig. III.13),
such that one extreme point (Xx) at which it cuts the zero db lire
is at Sm = 25° . Another extreme position is at Y at which 8=-138°,
for which the overshoot is about 3%, from Fig. III.10. Because of the
shape of the template, it is seen in Fig. III.13 that the corresponcing
extreme position of L (nominal) is on the vertical line 8=-144° ,

¢ i : ‘ i -
i.e., in the nonlinear design at w=60, L inomdnal) may lie on or to

the right of rnz (60) » the latter being the vertical lne 8 =-144°,

The procedure is illustrated again, at w=100. Consider that plant
value whose loop transmission has wc==100 and gives the largest

value of 'L/(141)],, . From Fiq. IIT.10, at M=100/60, 20% over-

shoot agives 8, = 180-165.5 = 14.5°

We position the w=100 plant
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template such that the extreme point at which it cuts the zero db line
is at 9m=14.5 . The corresponding positions of L (nominal) is on
the vertical line 6=-160° , which becomes Tnl (100)

Some of the experimental results are given in Figs. III.1l4,
III.15 at this point to support the above. Fig. III.14 presents
Bode plots of three nonlinear designs whose differences, significant
only for w>1000 , will be explained later. Consider the response
for k=10 in Fig. III.15. 1In Figs. III.13, III.l4, the corresponding
0, is obtained by raising the nonlinear Lnl(jw) by 20 log 10=20 db ,
or alternatively by lowering the zero db line by =20db , which cuts
an(jw) very close to 60 rps and =-140° . Hence M=1 and from
Fig. III.10 at 140° on the M=1 curve, the net overshoot predicted 3
is 5%, almost precisely that obtained. Similarly, consider k=25 in

Figs. III.13, III.14, III.15. The corresponding . is obtained by

examining the =20 log 25=-28 db line which cuts an(jw) close to %
w=1000 at =-160° . 1In Fig. III.10, on the curve M=100/60

(extrapolated from M=1,2) predicts 10% overshoot compared to 9.1%

obtained. At k=100 , on the corresponding =40 db line: 0 =200 ,

8=-172° and in Fig. III.10 the corresponding extrapolated M=200/60

curve predicts about 12% overshoot, compared to 11.4% obtained in

Fig. III.1S5.

ITL. 3.8 Nonlinear design - Part II.

Suppose the above approach based on a second-order model, is
pursued over the entire w range, and the resulting nonlinear design
implemented, as was in fact originally done in this research. It is

found that the results are as predicted for command inputs r(t) for

all plant conditions, and for disturbance inputs corresponding to the
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smaller plant gain factor values, from k=1 up to approximately
k=100 . As the plant gain factor is further incresed, there is a
transition from the second-order type response, in the manner indicated
in Pig. JXT.1§.

There are two important phenomena to be noted. One is the local
maximum marked A in Fig. III.15, which gradually increases as k is
increased, until k>100 approximately, it becomes the major maximum,
as it clearly is for the case k=1000 . The second phenomenon is the
local minimum immediately following A , which eventually (at %k=100)
leads to an undershoot, growing by the time k=1000 , to 31% under-
shoot; both phenomena not at all as predicted by the second-order model.

IX1.3.4. Explanation of divergence from second-order model.

The second-order model is satisfactory for all plant parameter
combinations Pi such that the effective important part of Li has
relatively few poles and zeros, even though L has exactly the same
number of poles and zeros over all P parameter combinations.

Consider L1 with say 7 zeros and 12 poles, such that most of the pole
and zero corner €frequencies occur at lLl(jw)! very small. Thus in
Fig. III.14, the loop transmission at k=25 is obtained by letting

the present =28 db line be the zero db line. Lk=25(jw) can be
reasonably approximated by apuresecond order system for almost a decade
beyond this point. The value of Lzs(jIOOO) is approximately

-70428 = =44 db and so is ]Lzs/(1+L » since 14L,.(31000)%1

25" | 51000
Therefore, the large number of poles and zeros introduced in the
w=(1000,3000) range are comparitively far-off, and therefore the time

delay td can be neglected in our approximation.

However, at larger %k values these corner frequencies become

T
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less far-off and have a decided influence on the response, because
they occur in a frequency range where L/(1+L) is no longer very
small. As k increases, the corresponding L/(1+L) is a high-order
system, and ¢t

3 can no longer be neglected. The response of a time-

delayed second order system is compared in Fig. III.l6a with the actual

Y1000

*Ly000

(jw) is a very high-order system. The

linear step response of . Note how well the two agree,

despite the fact that Llooo
ronlinear step response is obtained from the linear step response, by
1'~ans of Eq.(3.1). The first reset is at tl , at which the impulse
response due to an input -xl*&(t—tl) must be added to find the effect
of FORE. Because of the time-delay td » the effect of the impulse

is not felt until ¢ >t1+td , thus explaining the local maximum,
which grows with the time delay, which in turn grows with k .

Decrease of the time delay by postponing the fast change in L magnitude
and phace, now at (1,000-3,000) to a higher fregquency, would be very
wasteful in terms of L bandwidth. Actually, it is found that a small
increase of phase-margin by a few degrees, suffices to satisfy the
overshoot limitation.

The second important phenomenon which does not agree with the
second~-order model, is the large undershoot in the step response of
L/(14L) at large k , as in Fig. III.15 at k=1000 . This is assoc-
iated with the approximately horizontal character of TLl(jw)’ (see
Figs. III.13, III.14) in the range w~(1500,3000) . The freguency
vasponse of 'Ll/(1+Ll)‘ at k=1000 , can be obtained by shiftinc the
zero db line to =60 db in Figs. 1II.13, III.14 and is shown in Fig.

I11.14. Besides the orincizal peak at M, . there is a minor peak

(or almost horizontal segment) at M2 . It has been noted [S2] that
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the inverse transform of Ll/(1+L1) can be approximately and qualit-
atively predicted from a sketch of !Ll(jm)/(1+L1(jN)' vs @ , by

L
reflecting the latter about the vertical axis. The shape of ¥1+L !
1

at M2 predicts an increase in the slope of the inverse transform

followed by a decrease, as compared with the time response if M2

was not present. This prediction is borne out in Fig. III.16b, which
gives the derivatives (impulse responses) of the two curves in

2.00 800~
&

2D ORDER WOOTL
WITH Tieg DELAY, cglt)

0.50|

0.004 [ 0004 5&”

TIME ; TIME

Figure III.16. The two significant phenomena of Part 2 of design.
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Figure III.l7. Comparison of the three different designs system
step responses at k =1000.
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Fig. III.l6a. M2 has a minor effect on the step responses in Fig. ﬂ

IIT.l16a, but a major effect on their derivatives in Fig. III.16.b. The
larger peaking in the impulse response (due to Mz), gives the under-
shoot observed in Fig. III.15 at k=1000. If one uses these impulse F
response curves together with Eq.(3.1), it is found that the nonlinear
step response obtained is precisely as predicted by Eqg.(3.1).

The above explanation sugge: hat the minor peak M

5 in Fig.

I71.14 should be eliminated, by using a characteristic such as L2 or

L3 in Figs. III.13, III.1l4. The larger undershoot in the step response
was thereby, in fact, considerably decreased as can be seen on Fig.
IIT.17. We have gone into this matter in great detail, because of the

universal nature of these results: Use of nonlinear compensation is

justified and hichly worthwhile when large high-frequency plant gain
factor unceortainty leads to a large frequency range over which ,L(jw)!
(in . linear design) must decrease relatively slowlv. Nonlinear design
periits a significantly larger rate of decrease. The loop character-
istics have a universal nature in the high-frequency region, so it is
important to thoroughly understand their properties in the nonlinear
design.

LR s3e, Detailed Design - Part II.

While the preceding explain the results obtained, they do not by
themeelves provide the data needed, (equivalent to Fig. III.10 for the
first part of the design), for quantitative design to specificatiore.
For this purpose a model is used to represent as accurately as possible
the system step disturbance response and to provide the mass of data

that is needed in order to permit the designer to systematically find

satisfactory design parametecrs for his specific problem. Dependinc




upon the nature (odd or even) of the excess of poles over zero .
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use can then be made of:

(s+2)

2,2 2
s (s +2§£wos+w2 )

(3.12) LA(s) =

(s+2)

2 2
s (s+w2)(s +2Clwzs+w2

¥

wl4n
(] if e is odd
z L
8 wl4n+l if e is even.
L
2n z

8 being such that 6 = w e where w is the crossover
cmax

cmax

X

frequency of the Leq(S) which corresponds to k'-kma »

satisfactory design at k =km

In this 'part II' frequency range, it suffices to obtain a

ax

, corresponding to the zero db line

shifted downward by 60 dbs (Fig, III.13, III.1l4). This is because the

two phenomena previously noted have their maximum effects at kma

k=k
max

X

It is upto the designer to make sure that his actual Leq(s) (at

) approximates LA(s) quite closely for a decade or so on

each side of the crossover frequency w . If this is not so, the

model LA(s)

ality, following [H2] we select e ™

EEL o

2

cmax

should be changed accordingly. Without loss of gener-

5 p 1.8, Biwmd . From Fig.

4
13, 8 = (w )7 ™ 32.10 .| The design parameters are presented in

cmax

Tables IIX.1,; IXX.2. (1) The Ci parameter is related to the peaking in

L, i.e. as i changes from 1 to 4, the nature of L changes in the manner in

Fig. II1I.14 for Lj o 3L Em S L () Gm is the gain margin of Li

at

Arg
for
the

the

k=kmax . (3) @ is the phase

Li begins to rapidly decrease.

margin at the point at which

There are three data values given

each combination of the above parameters. These are (a) OV, being

first peak overshoot value as well as the second and third, when

latter two are also significant

(b) UN, the first peak undershoot
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] Table III.1.

; Cy Ca Cs3 Cq
G_= 10 dB,% =2.5°
e

ov  40,77,90 30,44 29,32 27
] UN  62,66,70 42 29 20

{ GF 0.39 0.68 1.04 1.6

G_=12aB, $=2.5°
L m

- ov  23,48,50 25,33 23,24 24
; UN 42,35 28 22 8
f GF 0.65 1.07 1.55 2.2
E G =14 @B, ¢ =2 .5°
k m
i oV 26,42,38 26,27 24 18
k ! UN 26 18 12.5 3.5
; GF 1.06 1.80 3.17 9.20
' { G =104dB,6=5°
| m
|
B ov  28,64,79 35,57,58 31,38 30
E ! UN 61,61,62 52 42 22
% i GF n.68 0.72 1.02 2.00
r G, = 1248, 06=5°
E ov 18,43,46 22,37 27,28 21
; UN 40 38 28 13
; GF 1.07 116 . 1460 4.80
i G_ =14 dB, 6=5°
| m
L ov 26,40 21,28 21 20
| UN 28 28 21 4
' GF 1.67 2.00  2.92 12.3
1, G_=104dB, $=10° 3
. S S S i
= ov  15,39,44 27,36 26
* UN 43,34 50 20
E GF 213 1.63 4.6l

G_ =12 4B, $=10°
- -

/ ov 15,33,33 22,22 19
UN 40 34 14
GP 2.38 - 10.4

4 G o 14 @B, ¢ = 10°

| ov 20,29 17 13

i UN 37 30 10

GF 5.01 4.74 28.8

&3
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as well as the second and third when significant (c) GF, the normal-
zed high freguency gain factor of Leq(jw) . (Multiplication by 6
gives the real gain.) The :maller GF , the more economical is the

design.

It is necesssary to relate the design parameters of Table III.1l

to design numbers, e.g. poles and zeros of LA which correspond to any
entry in Table III.1. This information is available from Table III.2

which relates the entries and parameters of Table III.l to those of the

loop transmission of (3.12).

For our design example let us assume that in addition to 20% over-

shoot, (design L, ), a maximum of 30% undershoot is tolerable, in the

1

system step-disturbance response. Using Table III.l, a phase margin
® = 2.5° 1is then first considered. A satisfactory design can be obtain-

ed with the combination C4 and Gm = 14 db , however there is an

overdesign with respect to undershoot specifications. At ¥ = 5° , it

is seen that the combination C3 with Gm = 14 db slightly violates

the overshoot specification, but the undershoot is here too only

21% <30% max. The last design is certainly more economic because its

16

GF =3.1016 , compared to 9.10 at ¢p= 2.,5% . If QY= 10%° , it is

seen that combination C for Gm = 12 db , is almost satisfactory.

3
It corresponds (Table III.2) to the parameters Cz = .29 , 2z =150 ,
7 .
wf = 1,13 10 . By cut and try it is found that the design Ll for

4
which :2 ® 29 ; 2= L7550 wi = 1:15 10 satisfies exactly the

specifications, as shown on Fig. III.17, (curve 1).

If only a very small undershoot (™0%) (design L, ) is tolerable, it 4

can be found, following the same procedure, that the best design lies around

combination C4 v with © = 2.5° and Gm = 14 db , corresponding to ™~
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CQ = .50 , wi = 2.4 10 and z = 2000 . By cut and try the design
L2 is then obtained with {l - 8% , wi = 2.25 107 . & = 1750

for which the step disturbance response satisfy 20% overshoot and 0%

undershoot specifications, as can be seen in Fig. III.17. 1If we want

an L3 design for which the step disturbance response is similar to

the one shown in Fig. III.1l7, the same procedure gives cz = .65

wi = 2.5 107 , z = 1750 .

The three different designs that were obtained (Fig. III.l3,

I1II.14) are:

L (s) = X(5$:905) (5+.92) (s+17.) (5417.3) (5+26.1) (+200) (5+1750)
1 S(s+512) (+5.28) (s+6.09) (s4+23) (8+37.8) (8450) (s+130) (sz*Zcszs-ﬁu

2)2
2
with:

1.43 106 , w

k =9.2 1013 ' w

11.4 1013 P

% 11:5 106 - 2C£w2 = 1950 when i=1

x
n

= 22.5 10° , 2,0, = 5000 when i=2
k

O NENEN

= 25, lo6 ' 2C2wz = 6500 when i=3
The prefilter for all three designsis, not unexpectedly, the same

as the one used in the linear time invariant design (see II.2 for

3 details) .

IX1.4. Design results.
; The responses to command inputs for different plant parameter
£ combinations are shown in Fig. III.18 for the nonlinear design. Not
unexpectedly, these hardly differ from those obtained in the L.T.I.
design (see [H2, S2]), Recalling II.2, let F(s) = ;%; ¢ Q= 3 rps as

a crude approximation. Using a delayed second order approximation

(Appendix Al) for the closed loop, we get (Fig. III.7):
2
w & stg

n ]

2 s(s+a)

Cl(e) = when the command is a unit step.

8 42w _s+w
n n
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Table III.2.
oy <, s C4
Sm = 10 aB, ¢=2.5°
210”° :4 3 2.5 2.0
2°8 _920.11 01725 0.23 0.315
w107 ":0.7 0.8 0.9 1.0
G_ = 12 dB, ¢=2.5°
=3
210 ° :4 3 2.5 2
2CQ_7=0.125 0.195 0.255 0.398
w10 ':0.9 1.0 1.3 1.55
G_ = 14 dB, ¢=2.5°
210”2 :4 3 2.5 2
21 .7t0.14 0.222 0.308 0.50
10" :1.75 1.3 3.57 200
G_ = 10 dB, ¢=5°
210" :3 2.5 2.0 1.5
2C2_7=o.12 0.165 0.23 0.37
wg10 :0.8 0.75 0.8 0.97
G, = 12 dB, 6=5°
21073 .3 2.5 2.0 1.5
278 _9:0.14 0.185  0.26 0.462
w107 ":1.0 0.95 1.0 1.5
G, = 14 dB, 6=5°
210”3 3.0 2.5 2.0 1.5
2°4.910.155 0.21 0.3 0.59
w10 ":1.25 1.25 1.35 2.4
= = o
G = 104ds, 6= 10
210”3 2.0 1.5 1.0
278 ._710.16 0,25 053
©,10 ":1.15 0.875 1.2
= = °
G, = 12 a8, ¢=10
210”3 :2.0 1.5 s,
27%_10.185  0.29 0.65
w 10" :1.22 1.13 1.8
G_ = 14 dB, $=10°
m
210”2 :2.0 1.5 1.0
252_7:0.195 0.325 0.835
w10 ':0.77 1.49 3.0

R Y R T T

o NI R
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Figure JII.18. Response to command step inputs.

Let t & TIME - t. , then for t>0 ,

d
w 2 5
e (bl B e-at+ - 2 e-cmntsin(m V.o~ t+8 )
2 2 2 n
a -2az;mn+mn Vi~ a2-2an " 2
n" “n (3.12a)

with 6 such that CE(O)zo .
At gain factors k >50 we have wn> 100 rd/s (Fig. III.13) and

4

£ <.15 (Appendix Al). As mn >>a

c,(t) ~ 1- e . —_— & Ontointe Vit ) (3.13) beceuse O w v
/-— n
w vY1l=g
n
in this case, and for O0<t< tl , the input to FORE is then:
x(t) N;‘—f e-;wntsin(wnf]:czt) . Therefore, (1) Xx(t) is very
w V1eg

small and (2) the zero crossings are practically determined by the

feedback loop, i.e., T &~ w/unv'l-cz . Therefore, the first reset value

b
is r~——“——2 ’ sin(wn/l_-'czudc = 22"‘ > and (Fig. IT1.&
1 w /1-t° 0 w “(1=g
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for tl‘ t<t2 '
< 2 =lw = —
C_(t) = -x* C_(t-t.) = = e e ni® tl)sin(w l-c_2(t-t ))
Ly L 1 Vi 2 2 n 1
e ¥l=g— (3-F7)
n
-Cw (t=-t.)
2
£ _*u’___ e & sin (w Vl-czt)
2 342 n
wn( 1-z7)

Therefore, the nonlinear system response is, for tl S < t2 :

- 2
CNL(t)Nl-e B . f- sin(wnv’l-f, t) (3.14) because ¢ 1is very small.
n

Noting now that x;wx‘i for kK=2,3,..., it is seen that the nonlinear

system response is CNL(t) %l-e.’}Lt for t not too small, i.e., when

a,‘wn can be neglected in comparison of l-e-ut . For instance at
k =1000 , wn%GOO res and 1/wn%l/200 . Therefore when ¢t > .04
seconds (compared to a settling time of approximately 1 second),
l-e-mt >k = 20 oz/wn and the sinusoidal component can be neglected.
However for small t (< .04 seconds) this is not true and the nonlinear
and linear system responses differ one from another. Fortunately, this
cannot be noticed because all the quantities involved are then very
small.

For intermediate values of the gain factor (5 <k £100) we
have 30 rps S € 100 rpsit Aand 5 <b/wn <1.66 giving (Fig. III.5)
at most a reset value of 30% of the reset value obtained with a C.I.
in place of FORE, which can once more be neglected because here too
w>>a .

For small gain factors (k <5) the linear system is similar to
the nonlinear one because w <30 rps and therefore b/wn >2 giving ]

(Fig. II1.5) a reset value which is very small ( <5%) and can

therefore be neglected.
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Assume now that a command input is applied whose bandwidth is
smaller than the bandwidth of the prefilter. At small gain factors
giving b/wn> 2 the reset value (< 5% of the C.I. reset (Fig.III.S))
can certainly be neglected. At large gain factors giving bandwidth of
loop >> bandwidth of prefilter, we have by anology with (3.12a) and
(3=E3) Cz(t)ascommand input + A sin(wn/T:CZt'49) where the residue
_ : ! F(jwn) R(jwn)| .
A s =2 _-EEZ;T—_——_ !. Therefore A is very small as before,
and the arguments madepreviously are easily extended here.

At intermediate gain values, it might happen for some problems
that the corresponding range wn is not big enough compared to the

bandwidth of the prefilter, preventing us therefore Zrom making general

statements. However, for these problems (as in the present case) where

W >> bandwidth of the prefilter, even in the intermediate range of plant

gain factor values, the previous assertions can be extended.

We can therefore conclude that the superposition theorem holds
effectively, at all gain factors for command inputs, provided that the
bandwidth of the command signal ¢ bandwidth of the prefilter. It is
probablv unlikely, in most cases, that the system will be subjected <o
command inputs whose bandwidth exceeds 3 times the bandwidth e of the

prefilter, (here 3 w_m 10 rps) because the amplitude of the cormmand

£
signals at the output of the prefilter would then be ‘very small (< 1/10
of the input command amplitude in the present case because (see II.2)
@310y ] » .1
The step disturbance responses are shown on Fig. III.19.a & b at

different plant parameter values for the L.T.I. design and in Fig. ITI.

20, a~c for all N.L., designs.

TSI ———.
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Figure III.19. Response to step disturbance (linear design).
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In all cases, the overshoot is £ to the maximum tolerable 20%.

Comparing Figs. III.19.a and III.20.a, one notes :“hat besides the 52

R ——

case, there exists only slight differences. This is expected because for
small gain factor values, giving bﬂun> 2 , FORE acts like a linear

element (Fig. III.5). It is then easily understood wry there exists 1

only minor differences between the Ll ' L2 and L3 designs of Fig. III.
k 13 and 14 for those plant conditions. Therefore we can say, that super-
position holds for small gain factor values for disturbance inputs whose

bandwidth is smaller than the bandwidth of the loop. When the latter is

| untrue, Cp(t)‘Ed(t) because the feedback is ineffective. Therefore

’ x(t) »-d(t) and the first reset is determined by the first zero cross-
4

! ing of d(t) . Let d(t)=Asinu;t with w>> w by assumption.

] 1/wd

i

{ Therefore: xi - [A(d; n &~ - %ﬂl (where n 1is the reset value
' 0 d

percentage given in Fig. III.5 as a function of b/wn ), and
W

C.. (t) md(t) + 2an -2 &7 %¥nbgin(w vIsz?t 46 ), or equivalently,
NL ud n
CNL(t)fwd(t)==Cl(t) because Wy >>mn . Therefore superposition also

holds at small gain factors when the bandwidth of disturbance >> band-~
¥ width of the loop. The differences that exist for hich gain rfactors
between Fig. IIT.13.b, Fig. III.20.b and c have already been explained,

and were therefore expected, so the designer need only consider the non-

B Sl o

"
.

linear response at high gain factors for disturbances other than steps.
For instance, Fig. III.2]1 presents responses at large k to a set of

disturbances d(t) = e-'lwdtcoswdt rowg = 30,300,1200,6000 rps. ;

Using the apprcximation D(s) s -EJi_E we have:
S +ug

Q(s) 8 k. DR~ wnzs e-Std/«sz+wd2)(sz¢2:wns+wn2)) with & <.15 for

high gain factors as mentioned above. Therefore: (t 8 rrve - t,)




b A ol ez i

49

0.62

(a) 0.25

-0.12

-0.50

1.00
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(b)
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Figure III.20. Response to step discurbance (nonlinear design L. ).
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Figure III.20. Response to step disturbance (nonlinear design L2) :

() = +A e-(’w“tsin(wn/i:zzt+e ) -Bsin(wdt+3 )
. B s S T N e
with A—wn /(/1-¢ ((wn wd) +4z wy wd) )
o o33 9w 3% 3
B = W /(((uun Wq ) “+4z W Wy )) and CD,l(t) = D(t) + q(t)
£ wd << w. ANI/(I-;z) , B1 and as BN% ¢ chos-lc , we have:

CD g‘(t) = A e-cwntsin(wnfl_-t;zt+cos-lc) which is the L.T.I. system

step disturbance response when using a second order approximation.

Therefore, not unexpectedly at w. = 30 rps (compared with wn=6000 rps

d
at k=1000) the system response is very similar to the system step
disturbance (compare Figs. III.21.d and III.20.b, case fl) . Therefore
the reader notes that when the bandwidth of the loop > bandwidth of dist-
urbance the reset instants are determined by the loop. Hence, for such

inputs the superposition theorem holds even for large plant gains. Of

course, the disturbance attenuation capability decreases as wd

increases, as is seen in Fig. III.2l.b=-c. If wg = 6000 rps >> w,
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w w
4 el ) ¥ n, 2 n, 2
then the feedback is ineffective (Aw-——; (m—-) , BR (w_) ) and
V1l d d
(> (t) sD(t) =cosw .t . Therefore x,(t) = -cosw t and the first
D,% d L d
reset is determined by the first zero crossing of D(t). Therefore
w
3 n “Lw, (t=tq) 2 S
* x* = e n 1 V1~ - .
IluZ/wd and 1 Cz(t tl) N . sin(mn I=r (% tl)) This is

d

obviously a very small quantity which can be neglected in general.

’

Fig. III.22 presents the system output for simultaneous command

{unit step) and the disturbance and white sensor noise inputs shown

It is seen to be satisfactory. 1Indeed one notes that superposition holds

here, in a general sense, due to the fact that the bandwidth of the
disturbance signal << bandwidth of the loop.

In summary we can say that the superposition theorem holds in

a

general sense for command inputs and disturbance inputs provided the

bandwidth of the signals is smaller than the bandwidth of the loop.

Furthermore it should be underlined (as stated many times) that

the reset instants are primarily determined by the loop capabilities

when bandwidth loop >> bandwidth signal, while there are determined

by the signal (command or disturbance) when the converse is true.
Fig. III.23.a,b present the responses due to a truncated ramp

disturbance, and to a unit ramp, respectively. One notes that

(Fig. III.23.b) for some plant conditions a limit cycle occurs in

presence of a ramp disturbance. Much attention will be devoted in

chapter IV to the stability of feedback systems which include reset

elements, and it will be shown how such instability can be eliminated.

P o Y
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Figure III.23. Nonlinear design; response to a truncated ramp (a)
disturbance and to a ramp disturbance (b) at k =103

I1I.5. Noise Response of FORE.

III.5a. Open Loop Characterization.

If in the input X to FORE, the forced component due to r(t)
is large compared to a random component n and/or d in Fig. III.7
such that the zero crossings are primarily determined by the former,
then FORE behaves as a linear element 1/(s+b) to the latter signal
component. The case now considered is when a random stationary zero
mean process is the only input to FORE, which implies that the interval
of time T(t) between reset instants is also a stationary random

process. In principle, the statistics of T(t) may be determined
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from those of the FORE input X(t) , but even if the statistics of
T(t) are known, calculating those of the FORE output yf(t) would
require computation of the expected values of a stochastic integral,
one of whose limits is a random process whose statistics, in turn,
depend on the integrated process, obviously a tremendous task. Using
the fact that for a zero-mean Gaussian-Markov process X(t) , the
mean and variance of T tend to zero as the process becomes more
uncorrelated, following references [Pl], T 1is approximated by its
mean value T giving:
¢t £
y ler = e g an &R
t=-T(t) t-T
m
The cross-correlation of X(t) and y(t) is
t+T =b(t+t-%)
wyz(r) = E{yf(tﬂ)z(t)} =e{ / x(Q)e x(t)ag}

t+T-T
m

T b(p-T_ )

m
= [ ¢_ (p+T=T e ™ ap
o X m
-7, (b+jw)
(1-e )= 01.1. (W)N(w,Ty)

. Taking Fourier Transform gives [Gl]

ny(w) = Oxr(w) B+jw

The normalized random-input describing function is therefore

N(w,'l'm) -'I‘m(b+jw)

Nn(w,Tm) * [T/ 05507 = l-e (3.15)

so that !Nn{ >1 over some w and <l over others.
If the input X to FORE is a stationary white noise process of

power spectrum on(w) = ci , then the root mean square value of the

noise output Ye is given by:
R ol

[ s ]"
elna ™ (3 7 NG, )% oldw

T Pttt o 7 e
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Figure III.24. Representation of the filter f(t) .

+ ® 2 wT y
( el ol & R iy s PV | ]
Yf)ms‘ | 2n -fm[(1+e ) 4 e cos ——2 ]b2+w2 dw ] o
+ wT &
(y,.) aefE R “bTy.2 1 4 “bTp 2 _m ]
f' rms | 25 (1+e L. 5 i R cos’ —5 dw | oy (3.16)
- b +w

Let us consider the signal £(t) of Fig. III.24, we have

T

” 1 (s¥D) T /2. " =(s*D)T /2 L2 : _m

F(jw) = e (e m e m <) vy sinh(s+b) 3
Using Paseval's relation: [ £ (t)dt = > [ F(jw) F(-jw)dw
-C0

3 e 4 Tm Tm
e sinh(b-jw) —2~sinh (b+jw) — dw

TR 2

bT wT
v
. ] dw

2

3 o >3 cos2 _2_m dw (3.16a)

o BTy DTy BT
ot J Peyde o E =S D asinh -2 (3.16b)

-

Using (2.16a) and (3.16b) in (3.16) we get:

bT =bT,

ol & =bTp, 2 sinh -2cosh? = s
(yf)ms [2b (1+e ) A 5 bT )

2 e e
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and therefore:

1
mBHT 2 -bT =
_[a+e®m Ja s W 2
(yf)rms =1 5 * 5 (sinh bTm cosh bT l)} O
vl =bP
or (yf)ms = o& 5 (1-e.""m) (3. 17)

For the linear element 1l/s+b , it can be shown that:

Y1
(ylin)rms = Oy % - (3.18)

It can then be seen from Fig. III.2S that in this case the noise

level at the output of FORE is always smaller than the noise level at

the output of the linear element.

experimentally by controlling the interval between resets.

! The theoretical results are in accordance with those obtained
{ It is noted
|

] that when Tmb >1 by a factor of 3 or more, i.e. when the noise signal
i

i is relatively slow varying, then there is practically no difference

between FORE and 1/s+b . However, the difference becomes tremendous

as Tmb << 1 . Here too we can say that FORE can discriminate between

fast-varying noise signals and slow-varying ones.

(Yf)rms
7 A ty,. )
! N b lin’ yms B e
$ _r bl e Tl
3 i V/__l_ ik o p——— { i
E] N 2p [ ol
1 - /__1: - //
N 2b F
PG5 g
"N L [
L
N 2p | | Lo nd ] il ] ] | |
G ed8 o L I ETI I T TS o

Figure 71I.25. R.M.S. values of the noise at the output of FORE
& 1/s+b in the presence of white noise input.
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III. Sb. Effect at the plant input (closed loop characterization).

The effect of white sensor noise, in the closed loop system, at

¢zz(w) 2 '24212
®

the plant input 2 is given by ) Tl

and the m.s. noise
nn

2 d
at z is o0° =706 (o) = . where the ¢ are the power spectra.
Z e T2 2m
If L=N (wT)L (s) of (3.15) is used, then at some T , the above
n m eq m

becomes infinite, as shown in Fig. III.26. However, experimental

: . 2 SH
determination of oz(Tm) gave not unexpectedly finite results for
all Tm . as shown in Fig. III.26. In this run Tm was controlled
by having FORE reset determined externally at period 'I‘m , rather than

by the zero crossings of FORE.

When the actual nonlinear system was simulated, the experimental

cl
1.66) 104

l ~LINEAR DESIGN

10

10° | | L
0* 10°° ™

Figure III.26. Effect of sensor noise at plant input versus
™Tm at k=103

TR .. N e SP—
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result was ¢ i (normalized) value of 0.37, corresponding to

4 sec. in Fig. III.26. The linear design of [H2] for

T, = (2.5) 107
the same problem resulted in o© i (normalized) = (1.66) lO4 ¢« both
theoretically and experimentally. Thus, the nonlinear design which
achieves the same system output tolerances to command and disturbance
inputs as the linear design, does so with rms sensor noise effect
smaller by a factor of 0.37/(1.66)104 = ,0047. The improvement is
very spectacular in this specific numerical example because of (1) the
large uncertainty in the plant high-freguency gain factor k , which
gave the nonlinear design a large fregency range in which to exploit
its advantage of larger phase lag, and (2) the great difference
petween [L| and IPI in the high-frequency range, which leads to
serious noise effect at the plant input. The advantage of nonlinear

over linear design will be less to the extent that these two factors

are lessened.
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CHAPTER IV.  STABILITY OF FEEDBACK SYSTEMS ]
CONTAINING RESET ELEMENTS. 3
IV 1. Introduction.

General stability criteria are known for only a small class of non- !

p

linear and time varying feedback systems. The circle criteri~n, for ;
example, does not apply to the C.I., FORE or the more general reset

elements. It was necessary therefore, to develop our own criteria for

these elements.

In chapter III we implicitely restricted ourselves to stable open
loop transfer function Leq(s) (Fig. IV.l.a) and will therefore derive
sufficient conditions for Bounded Input Bounded Output stability of
the nonlinear feedback system of Fig. IV.l.a. We will then investigate
possible limit-cycles in the nonlinear feedback system of Fig 1IV.l.a.
containing the element (l/s+b); whose output y is reset to zero
whenever the input X equals the real value a ; a=0 , b#0 corres-
ponding to FORE and a=0 , b=0 to C.I. Only stable limit-cycles with
at most two reset instants per cycle will be considered. More general
limit cycles can be considered, however todate, limit-cycles with more
than 2 resets/cycle were never encountered experimentally.

Our primary objective will be to ensure stability when FORE is
used, because of its usefulness, demonstrated in chapter III. In the
following, intensive use of the z-transform is made with the usual
notations  +*(s) , «*( ) , 2(*) . RNote that zk' introduced in

chapter III is a number. In this chapter, 9 will denote the set of

reset instants, i.e., 9 = {tK 3 x(tk) =)
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Figure IV.l.a.System Block Diaagram.

Figure IV.l.b. Egquivalent

representation.

1V.2. Bounded Input Bounded Output (B.I.B.O.) stability

sufficient conditions for a class of nonlinear feedhack

systems.
Lemma J1: Consider the nonlinear feedback system of Fig. IV.l.a,
where Leq(s) denotes the open loop transfer function of the L.T.I.
system obtained in absence of resets. If the L.T.I. feedback system
is asymptotically stable and if the sequence
x -b(t, ~L)

{[IK*'.Q | f xtye " ac| ., ¢ ty € 9} of the nonlinear system

o K-1
ie bounded, then the nonlinear feedback system considered when resets
~ccur is stable in the B.I.B.O. sense.
Proof: It was shown (equivalence of Fig. III.7 and III.8) that
Fig. IV.l.a. is equivalent to Fig. IV.l.b.

Thercfore C(t) = C () +C (£) = C,(t) - Z=11k*cr<t'tx’ (4.0)

where C&(t) denotes the L.T.I. system impulse response. By assumption

the LTT system is asymptotically stable. So: V¢t , 3 Mo oa € IR such

that }Cé(t)‘ <M e-'Jlt (Al) and (B.I.B.O. of the LTI design

1
which follows from asymptotical stability) VR such that |[R(t)! ¢ Mr
3 M such that !cF(t)f< M (A2) (see Fig. IV.l.b).

Let us first assume that the set ? of reset instants is finite, .

Then, if u é 539 Iy" and using (Al) we have: for t >t
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N

N
" ' -a(t=t,)
c (&) =) Jrrcitilzu [ ettt enmme ™ n |
NL k=1 K [ K k=1 § K : g
Given € >0 arbitrarily small, 3 tﬂ, such that for t>t1 ‘CNL(t)Rs
Using (4.0) and (A2), [c(t)] ¢ [c (t)] + ?cNL<t_ < M+ € . Thus the

lemma is proven if 8 is finite.
Assume now that 9 is infinite but countable. By assumption
|
*|} is bounded, so let & lx ol . 8¢ -
{l=*1) ny u _s;p X, Let o, 2t -t ,
with tl( €@ N, 0<0K<eo, for if O = for some K

.

8 would not be

8 would be finite, while if °K=o for some Kk ,

countable. Therefore g 4 inf Oy > 0 . We have then:

K

u - -t i =
|CNL‘t>| LZIIK* Colt-t )| <cu K£1|C6(t tK)|

ve, 36t € 9 such that t€[tN,t

N+1] . Therefore VK, (using

N+1

o (t-tyg) _ -a(t-tN) _-a(ty-tyg)
Al) lca (-t )| <M e =M e e
: -t = - + - oo ot - -
However tN tK (tN tN-l) (tN-l tN-Z) (tK+l tK) < (N=K) ©
“a{t=ty) _-ao(N-K)
So: ICG (t tx)! sM) e e . Therefore for t <t<t .,
| -a(t-ty) -a0 -a(N=-1)o
.CNL(t)ISuMI e (Lte "4, ..4e )
P M]_ (1+e-ao+. ; d_e-a(n-l)o)
uM
and as N»w : lc () |< u M (1l+e ac+e_2uo+“.+e ozt T )"'-——l—- < ®
' “NL L 1 -ac
uM1 l-e
Using then (4.0) and (A.2) |c(t) ¢ M+ ——= <= and B.I.B.O.
l-e
Stability is therefore proven when & is countable.
Assume now that %5 is not countable. It means that there exists

at least one instant tp € 9 and that tp+r_ € ¢ for arbitarily small

£>0 . 1In other terms, there exists at least one interval

ne>

Q

o [t ,tpﬂ\l n>0 , on which x(t) =0 . By definition,

relal

X(z)drz and therefore

P . -
% o D (tp=t)
p
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Lt +E k.

" . P -b(t,-Z) £y
x = 1lim [ X(Q)e P *"dz =0 . The contribution to C,__(t)
p+l =0 & NL

P

(Fig. IV.1l.b) of the interval ]tp ,to+ﬂ] is therefore null and the

contribution to CNL(t) of QD is therefore the same as a single

reset occuring at time t==tp . A new equivalent set 3 is then
obtained by removing all the possible intervals Qp from 9 and by
replacing them by the time instant tp . Obviously § is countable
if and only if {Qp} is countable. Given two intervals Ts and Q¢
we have: Os n Qt =@ for all s , t and U Qi 3 Using the
fact that between two real numbers there always exists a rational
number, each Qp is associated with one rational number. The rational
numbers being countable, so is {Qp} . The lemma being true for the
countable set é we have proven the lemma for an uncountable set © .

Lemma 1 rests on the assumption of a bounded sequence {!Ik*'} .

16* and tm are defined by the set of equations:

m=-1
Xt ) = x(t) + 2 L¥ (e ~t) =0
K=1
tm m=1 tm
W, =b(t_-z) =b(tm=%) -
x* = [ zigle "W ey o+ ] &% W Cg (8-t )dL
t t
m=-1 k=1 m=-1

with Iét) QII(t)-CQ(t) . In absence of a rigorous proof we conjec-
ture that {!lk*!} is bounded if the LTI feedback system is asymp-
totically stable. It should be emphasized that once the above is
rigorously established, fruitful results on stability will follow such
as: a) generalization of lemma 1 to any reset element g* (defined
in chapter V), because g* will be seen to be a finite combination of

element (1l/s+b)* . Db) asymptotic stability of the nonlinear feed-

back system.
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IV.3. Investigation of limit cycles with one reset/cycle.

Sections IV.3,4 are exclusively devoted to such limit cycles,
even when not explicitely so stated. Recalling (3.0a) the system of
E Fig, IV.2.a is described by:

it T SR [ s
0 K=1 tK-l

-D(t=0) ]

| y(t) = X@)ar| ult-ty)  (4.1)

ot St

with tK€ g = {tK:I(tK) = a}

Equivalently:

€

® K
e [ e 2y ae] uie-t)
I =

k=

y(t) =

St

0

o g
kofod e'b‘t“‘«x(;)dc] u(t-t,) (4.2)
=1 | ¢,

~b (t-C)

K

-b(t-%) =
e x(z)dz] l[u(t t ) -uit t‘“l)]
A L

t (4.3)

™ K g
x(z)de $ig NESRRE o ok c’Jr(c)dclfu.(t-tx)-uf:—tlm)
e % o %o ; (4.4)

et y,(t)d [P P x@iar (4.52) , i.e., y,(t,) is the

-

]

(i ke S 5 ¢

x(g)dg - )
¥=1

[
L

i t
{ y(t) =/ e
{ €

0

4
y(t) I e-b(t-m
£

[ WS—
”

e

of (1/s+b) due to the input X(t) (Fig. IV.2.b).

A O SR

output at t=t

t 1 Therefore: Cod -5 (=)
k y(t) =y, (8) - s v (tx) |,'u(t-tK) -u(t-tK#l)} (4.5b)

K=1 L

Note that yz(tK) [u(t-tK) -u(t-t )] can be considered as the output

K+1

of a sampler followed by a zemorder hold, with sampling times corresponding

b 3 3 Yg y
I (s+b)a i s+b -
by
Figure IV.2.a. o = FORE. ] Be(s)

; Figure IV.2.b.

Equivalent representation of an a - FORE.
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to the reset-instants t, € 6 , when the input is vy (t) , (Pig. IV.2.p).

The output of the hold is then multiplied by e °(t"tK) hich is the

impulse response of 1/s+b . Therefore by taking Laprlace transform,

we have:
T e -b(t-t )]= (B (s) * )
Be(s) 2 f fu(t tK) u(t tK+1” e X 0 s+b
l_e-SUK "
where Bo(s) i Rt 1ie., Bo(s) is the Laplace transform of a
iy ©
zero order hold and GK = tK tK-l L
+9 -(g5=
Therefore: B (s) = 5— C;3° l:E_if_EiZE e dg (4.6)
e 2w I s-z C+b
c-j°
and Bl = l:s:if:flif (4.7)
e s+b ¥

Relation (4.5b) can therefore be considered as the sum of two signals
as in Fig. IV.2.b», which is equivalent to Fig. IV.2.a from the input-
output point of view.

If a limit cycle with one reset per cycle occurs, then as
£ o oK» T , a constant period. Therefore in the steady state, the

nonlinear feedback system of i'ig. IV.3.a becomes equivalent to the

R e x (_l_)* y (s+b)Leq}s) e
E s+b’a G(s)

Figure IV.3.a. Feedback system containing an @~ FORE.

2 + s+b)L__(s)| C
G(s) X sib £ y | (s+b) = (
‘ T - G(s)
ex| Be
e
Figure IV.3.b. Fquivalent representation when a limit cycle

with one reset/cycle occurs.
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linear samplec data feedback system shown in Fig. IV.3.b. The real

' _-bltg-T)
number xk' was defined in chapter III as: z; 4 r © K x(n1at . E

tk-1

Under the assumption of a limit cycle of period T
KT b xr-r)

Xk = fuine x(z)dz (4.8). Recalling the equivalent
(k-1)T 3

’

representation of Fig. III.6, zk* represents the strength of an 1
mpulse whose effect is the same as the reset. Therefore, if a limit

cycle sustains, all the reset values are equal and:

zi = I‘K-l B yes = 1{ =y (4.9), where u is independant of K .
What relation then exists between xk' and €(kT) ? We have:

e*(z) & 2[ | e(kT) 6(t~KT)] (4.10). However, from (4.5a)

K=1
e (kT) = yl(kT) by definition. Replacing (4.5a) in (4.10) gives:
ety = 2| ¢ §eblrT- " xyac) G(c—KT)}
=1 0
2T
=2z Z ( fe RIS e o PHE T
=1 0 T
(y+1)T i = KT * )
+ [ e DU LITR) yryar JDIRUHINT |, e DIFT c’x(c)d;]ﬁ(t-KﬂJ
YT (K=1)T
(4.11). Using (4.9) in (4.11) gives:
er(2) = 2 T u(reePTe.. 4 P(K-1IT) 6(t-KT)} (4.12a)
'K=1
4 -b(m-1)T 1 Hz
= zl Z T ue §(t-KT) [(4.12b) and: €%(2) = ——————o
K=1 m=1 (z-1) (z-e )
(4.13)
Let us now consider the system of Fig. IV.3.b. We have:
= L *
(1+Leq(s)) €(s) R(s)G(s) s ! Be(s) Leq(s) e*(s)
or equivalently:
L__(s)
s - —R(s)G(s) eq
T W Tt R T 0 i i i
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Taking the z-transform gives:
R TR S +(s i‘L)" e*(s)  (4.14a)
S/ = \1I+L_) (s+b) e I+L :
eq eq

s+b
3 -1 _-bT /i 1 Y.
=1=(1l-2 " ) \=+b (I*Leq)(s+b)/
and (4.14a) becomes:
( e \ *

2 e
£*(s) = ;:;:SE \(1+Leq?(s+b) ]
AR e NN
((1+Leq)(s+b) )
& e b
c*(s) = z-e°bT A*(s)
with:
(e )
A*(s) & (l+Leqz(s+b)
P
(1+L ) (s+b) )
' e
As X(s) = (s+b) €(s) , (4.14) gives then:
S Ris)G(8) 3 L__(s) (s+b)
1+Leq(s) e 1+Leq(s)

Taking the z-transform gives:

L
2 (z) ={—EC )' (z) + A*(z)(——eq— )' (2)

% 1+L
\1+Leq *

q

__=(s+D)T B SR L,
As Be(s)=}e——-—— . 1_(_e_e_q) et lebT)/ ec

\ (s+b) (1+Leq))

STlhE, ( 3 ) *
(1+L_ ) (s+b)
eq

(4.15)

(4.16)

(4.17)

€*(s)

(4.18)

Comparing (4.16) and (4.13) we can conclude that A*(z) represents

the train of impulses due to the resets, and therefore if a limit

cycle exists, A*(z) = £(2) + %{% where f(z) has all its poles strictly
inside the unit circle, and eguivalently at the steady state A*(z) = %%T .

Conversely if, as t += , the reset values temdtoward a constant

u#0 with periodicity T, i.e., a%(2) » —5

as

z2+1 , and this occurs

when the input x tends toward a with the same periodicity, i.e.,

a
x*(z) * —— as z-+1 , then we can conclude to a sustained limit

z-1
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cycle of period T . We have thus proven:

Theorem 2: A nonlinear feedback system which contains an
element (s_}l-:;)a whose output y is reset to zero whenever the input
x crosses a , for a given a , sustains a limit cycle of period
T with one reset per cycle if and only if there exists some finite

nonzero T , u € ﬂ such that in the neighborhood of t=% , we

satisfy:
2 lim (2=1) A*(2) = y (4.19a)
z=1
TE lim (2-1) x*(2) = a (4.19b)
z=1

Qualitative statements about possible limit cycles can be made by

inspection of (4.17). From (4.19a) a limit cycle exists if

A*(2) - z—u:f as z-+1 . However, the number of poles at z=1 of

A*(z) is only related to the number of poles at s=0 of A*(s) ,
( RG )'
\(s+b) (1+1)

1 \# Ny : <
over ((s+b)(l+L) ) . If e=0 no limit cycle can sustain, while

or in other words, to the excess e of poles at s=0 of

if e=1 a limit cycle is predicted. 4.19a and b give then the two
unknowns u , T which characterize the limit cycle. Furthermore, as
can be seen from (4.17) the value of e 1is only a function of the
number of poles at s=0 of R and number of poles at s=0 of L ,
under the assumption that G has no such pole. It is therefore very

striking how for such a nonlinear feedback system the stability problem

is related to the "type" of input R applied and "type"of L , where
by "type" we mean the number of integrations. (Type "O" R corresponds

to a signal R without integration, type "1" to one integration,

atCy o o)
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Iv.4. Examples of applications of Theorem 2.

It will be assumed that Leq(s) has one integration.

i \* (which is
q)/

Therefore, in both cases (b=0 , b#0) , ((s+b)(1+Le

the denominator of A*(s)) has no pole at z=1 .

IV.4.a. Type "O" inputs.

In this case, e=0 and theorem 2 predicts that no limit cycle

can sustain.

IV.4.b. Type "1" inputs.

RG
If bsO , ((s+b) (1+Leq) )has no pole at s=0, therefore e=0

and theorem 2 predicts no limit cycle. However, if b=0 , then

e=1 and a limit cycle can be sustained.

A R=1 |

In :he latter, let G=1 |, Leq(s) = S(s20) ' %

r
We have, from (4.17): 2 -i— 2—5"'20— ]
A*(s) = s +20s+A
2 r s+20
2
[ s“+20s+A
Suppose that 02 -A<0 and let wg 9: v‘l\—(!2 , then:
sinw T sinw T
2-Cl[z(l-e cJ'rccswo'l‘-e o= -A-—)-—-w—o*)+e = oTcoswo'r-t»(c:-;-—)e-cr—w—o— )
A% (s)= 20 o) (*] 0
(z-1) (z - e_OTcosw T+ e-GTsinw T)
(o wo 0
g z(z-e-OTcosw T+ e-OTsinw iy 2 A e-aTsinw T A*(s)
0 wO 0 @y 0
X*(g) = +
zZ = 22 e-cTcoson +* e‘on 22-22 e-cTcosmoT+e-2oT

According to theorem 2, a limit cycle exists if and only if, 3 T>0

’

such that: [condition II]
-gT

e sinw T
20 0
lim (z=1) x*(s) = — —oT e =0T =a
2=1 Y 1-e"%"cosw, T+— e sinw.T
0 wo 0

In the case of a C.I. (a=0) , it is easily found that:




o

I wo'r = or T = — - 3
“o v A-o
b 1-2-2°Tcoswo'r+e-20'r
| and u= lim (z-1) A*(z) = = 1+e T
{ -0 g
' z=1 l-e coswo'r + ;—s:.nw,,"l‘

S Rl
>

*
.

0
If 62 - A >0 , no reset occurs, and the system is stable if
0 >0, and unstable if ¢ <0 . The reader should note that if 0>0, a
reset occurs at t=» and therefore a 'limit cycle' then occurs of period

T=« . These limit cycles were not predicted by using the Dual input

describing functions [Gl]. As mentioned before, if b#0 , no limit cycle
can sustain. Thus the regions of stability with respect to a step

input can be compared in the ¢ - A plane on Fig. IV.4.a,b,c for the
L.T.I., the C.I. and the FORE case respectively. This proves then that
FORE is superior to the C.I. from the stability point of view (at

least for type "1" inputs) as already stated many times in chapter
II%. Furthermore for the C.I. (b=0) , the criterion suggests to

introduce a zero at s=0 in G(s) 1in order to stabilize the nonlinear:

A A A
’}\ ’ L) ‘ ~ !
2 j’/’ ”:\ i
</
STABLE 3\) LIMIT I, A/ STABLE /,
REGION ':\ CYCLE / ),\ REGION
(4 /
UNSTABLE ')) / '))\ /
* /
GO Bl T L
e SR
pz;mxv UNSTABLE REGION UNSTABLE REGION
(a) :LTI 3 - (c): FORE

Figure IV.4. Comparison of the stability regions.
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feedback system of Fig. IV.3.a. Another alternative is to introduce
two poles at s=0 in the open loop transfer function Leq(s) .
Those results can be physically easily understood. Indeed, consider

a L.T.I. feedback system containing a linear integrator (L.I.) in its
loop, whose input is X and output y. When a type "O" input R
is applied to such a system, as ¢ +*® , R+0 , X>0 and y->0 .

If the L.I. 1is replaced by a C.I., one notes that the steady state
(x=0 , y=0) 1is compatible and thus no limit cycle can sustain. If

now R is type "1" , then as t-+>~ , R-’kr r X0 and y*ky for

e m——

the I,.T.I. system. Unfortunately the steady state (X=0 , y=ky) is

RIS

impossible to sustain in the nonlinear mode with a C.I. in place of the

L.I. and therefore a limit cycle occurs. (Note that this mode is comp-

atible with FORE, thus explaining the difference fram the stability

e e et e

poirt of view.) To place some derivative in G (fig. IV.3.a) as is
sucgnsted by the criterion implies to place another integration in the
locp (because of the factor 1/G ) and therefore the state (x=0 ,
y=0) for the C.I. becomes a compatible one and a limit cycle is
therefore avoided.

IV.4.c. Type "2" inputs.

In this case, e=2 when b=0 and e=1 when b#0 . This
surgests that a limit cycle only sustains when b#0.If b=0, amplitude

of oscillations would increase with time. For example, if G-=1,

A 1
Lo-v(S) . Sieeday R(s) = '5—5 , then for b#0, we have:

[1 SR
o & B vl
= ®  g€sdegel !

A*(s) =
2

f e
L

s%+208+A |
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2 : 2
If o -A<0 and using iy ® YA-g , we have:
z(l-e-GTcosw T-ie -cTsinw ) +e-°T(e-°T-cosw T+i sinw T)
0 w 0 0 w 0
0 0
4%t} = g, =aT -oT
(2-1) (z—e ~“sinw,T - e cosw,T)
wo n 0
and:
20 402 Az e -o'rsinw T
fgary  E* 31 0
=l ¥ e o) ot 20T
S +20s+A z -2ze coson+e
so, as z*1 , 3
20 -oT -oT 202-1\2
i g (1-e costT -e o sinw,T)
x(z) + o
-0T e R
(z-1) (1-e coswo'r /1_¢2 e smwo’r)

and with 0 = Lwy A= w: and ¢ = cos-lc we know that a limit

cycle exists if:

i—c-(l—e-mNT s:.n(wo'r+2¢ )

3 T such that 1lim (z-1)X(z) = N ; SiJ_nM
) -ZwyT sin(wgT + ¢)
l-e sin¢

Let a=0 (FORE) then we have to satisfy:

sin2¢ = e";“’NTsin(wo'uzé) and 3 T#O0, 4f -1<Cg .19 ,

for which case a limit cycle exists. Region of stability with respect

\ A 9 /
me‘ 47

\\ CYCLING STABLE

& ¢ O T W —

REGION

Figure IV.5. Stability regions of FORE with ramp inputs.
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to a ramp input are then shown on Fig. IV.5 for the FORE. In order
to overcome the unstability problem noted here, the criterion sucgests
here too, to place a zero at s=0 in the filter G . An element
like G = ;%; seems then to be reasonable in order to avoid possible
! limit cycles in the nonlinear ramp input response and more generally

in the response to type "2" inputs. Indeed,

Z{L hhe L0y

s+a 2 ]

A*(s) = 8 t2gatl and thus e=0
z [ ——]

L s24208+A ]

! We should underline here that theorem 2 only predicts limit cycle

AT AR RO et g

! with one reset/cycle. This type of cycle usually only occurs with

|

! ideal 2nd order systems. Therefore, if conditions I and II of theorem
| 2 are not satisfied, as it does usually for high order systems, one

should investigate possible limit cycles with 2 resets/cycle which is

B P A O 95

the most commonly found experimentally.

AR = o

IV.5. Investigation of limit cycles with two resets/cycle.

If a limit cycle of period T with two resets/cycle sustain, it

e

means that the set of reset-instants is composed of two susbsets

A

ol={o,'r,2'r,..},92={AT,(1+A)T,(2+A)T,..}where 0<A<l and where 8, is 13

deduced from 6, by a time shift AT . Therefore, the signal

§ )
E sequence yj}(t) = {yQ(O) ’ yg(XT) ’ yQ(T) ’ y2(1+X)T) pemay ) OF i
! i
3 Fig. IV.2.b can be considered as the sum of two sequences i
y* _(t) , y* _(t) , each of them of period T , and '
£, 2,2 )

yp(e) = Zoyi(nT) 8 (t-nT) + nzoyz((n+x>r) S(t=(neM)T) By | (8) +yg o (2)
(4.20)
SO

yl(nT)z-nT + )y, ()T 2
n=0 n=0

yg(z) =(n+\)T %

ya’l(z) *y;lz(z)
(4.22)

]
I ~18
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® 1 Yy PP
s+b .
yT Y91
+
T + ‘B (
ATS | %/ [-ATS A
Y9.,2

Figure IV.6. Equivalent representation of FORE when a limit cycle
with two resets per cycle occurs.

Therefore Fig. IV.2.b is equivalent to Fig. IV.6, with

l_e-(s+b)0
Be(s) ey Y (recall 4.7) where UK = tK-tK_l When such
S . A
(¢} = L
a limit cycle sustains, K tK tK-l
1

OK = (n+A)T - nT = AT (4.22) and Ui = (n+l)T - (n+A)T = (1=-A)T (4.23).

has two distinct limits

Therefore (recall 4.7 and the definition of yE(t)), Be(s) = Bl(s) =

l-e-(5+b)ci 3 i

i T (4.24) when acting on the sequence yE,l(t) while
1_e-(s+b)oK2

Be(s) = Bz(s) i (4.25) when acting on y;lz(t). There-

fore the nonlinear feedback system of Fig. IV.3.a becomes then equiv-

alent to the linear sampled data feedback system shown on Fig. IV.7

from the input output point of view.

R + X € + # Y] C
h (s+b)L
" G(s) FJ ey = = ____E-Sﬂh—
s Ei
1 - (s+b) AT ﬁ’ B (s)
(s)= e ] .
1 s+b
l_e-(s*b)(l-X)T T
52( ) s+b 55
| ATS ATS (s)
re e 2

Figure IV.7. Equivalent representation of the nonlinear feedback

when a limit cycle with two resets/cycle sustains.




We have then:

(1+L  (s)) X(s)=R(s)G(s)+e*(s)B, (s)L (s) (s+b)+e*(s)B_(s)L (s)(s*-b)e-')‘TS
eq I: A eq 2 2 eq
(4.26)
A RG A Leg, s A
Let us denote P 2 (s+b) (14D) A Z 1+Leq Al — e
ATS

let then 2 [K(s) e ] =K(z,m) with m+A =1 denote the so-called

modified 7-transform (see (Ll], [J1l), [S3]). (4.26) becomes:
TS

H(a) = (s+b>p+e;(s>al(s)p.(s)(s+b>-+:3<s)32(s)».<s>(s+b)e'X (4.27)
and:

X(s) _ X -ATS
el(s) v e P-+€l(s)Bl(s)A(s)-+e;(s)32(s)A(s)e (4.28a)

TS ATS S

e, (s) = el(s>ex o by +e;(s)sl<s)a(s>e‘T +€3(s)B, (s)A(s) (4.28b)

Therefore after taking the Z-transform:

=ATS
* = * * * * E*
24 P* + 3 (BlA) +(32Ae ) 3
ATS o ATS
* = * * *
€3 (Pe >+ €} (BlAe Y* o+ (BzA)

or equivalently:

P*(1-AB,)* + (Asze'xTS)* (pe’TS) »
g* = (4.29)
1 A

TSy » (1-28 )% + (ABlesz)' p*
c1 = (4.30)
A

with A = (1-AB,)* (1-AB,)* - (Asle‘Ts>*(Asze"Ts)* (4.31)

Noting that:

~TS TS TS “Q=NTS, | oz

ZTK(s)eATS] = Z[K(s)e ] =2 Z[K(s)e

we can write:
A

(ABleATS)' =z A (2, , (Asze"Ts>- = aB,*(z,)) (Pe

e e T ————

T —

Ts)* = 2z P(z,)\)




e

: 1-e” (S*PAT
As: AB* = 3 [A

-k
——— = - -
1 [ — Al(z) e

)
TAi(z,m)

Loe™ (54B) (1-1)T

-mbT
* = -
ABS = Z {A - AY(z) - e AT(z,)
~-(s+b) AT
l-e (1-2)sT -1 _-AbT
* = —————— * -
ABY(z,}) =z [a S 1=a3zh) - 27 as(2)
-(s+b)mT
l-e -AST ~1 -mbT
* = -
ABY(z,m) = 2 [a Sor— T e Af(z,m) -z e A (2)

(4.29), (4.30) are rewritten as: t;(z) =

- -mbT
P(2) (1A (2) +e “‘b'”nl(z,m +B(2))izA, (z,m)-e "PTa, (z)) (4.32)

(I-Al(z)*e-

3 g = =~ 5
PTa @) (1-A (204 ™ A (2,00) - (z,m) -2 e ™%, (2)) (28 (z.0-e” PTA (2))
c;(z) =

= 3 (4.33)
zP(z.A)(l-Al(z)#e XbTAl(zn\))+P(z)(zAl(z.A)-Al(z)e XbT)

mb

- - -1 - -i
(1-A (2) ve )‘bTAl(z,m))(l-Al(z)+e TAI(':,X))-(Al(z,m)-z e MbTAl(z))(zAl(z,X)-e v

T
})
Al(z

Taking the r-transform of (4.27) and using
- -A
(B,A(s+b))* = 2 [A i } = alz) -alz,me 0T

(B * = z [a (1-e™ )] 2 a2y —acz,e™T

gives: (4.34a)

X(z) = ((s+b)P)* + (A(z)-e DT 1

Alz,me, (2) + (A(z,m)-2" e"“mr\(zncz(z)

and by taking the z-transform (ns)eATs)' (4.34b)

x(z,A)-((s+b)P)'(z,)\)+(A(2,A)-e_beA(z))cl(z)*(A(z)-e-mbTA(z,A) Ve, (2)

If a limit cycle with two resets per cycle sustains, then the ~equence

t
of reset values {xK' ) I I(L)e-b(tk-c)dc)

=

defined in chapter IIT
tx-1

is composed of two suhsequences

(n+))T =
(s he ., =« 3% . u J J.'(c)eq"”"*“'r er, ®oeve® 0}
1 3 In+l nT 1

Ao e it s
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4 St i TR 7 - R I?¢lvr'i}e'b"n*l\T—:)dc ® enee ® U :
(n+A)T : |
with EhY and Uy independant of K |
Therefore, by anology with {4.10) to (4.13), at the steady state: %
: e*(z) = —*:igi—-——-—° (4.35) ck(z) = ————EZi—————- (4.36)
i \ (z=1) (2~e ") ' 5 t-Dite—e "
i Conversely, if it exists My sl T such that, for the system of

Fig. IV.7, (4.35) and (4.36) are satisfied, it implies that as t>=> ,

1’ uz and therefore a

# the reset values z; have two distinct limits u
limit cycle of period T with two resets per cycle sustains.

E | : Therefore we have proven:

Theorem 3: A nonlinear feedback system which contains the rnon-
i 1 * ;

E | linear element (g:g-)a , whose output y 1is reset to zero whenever

the input X crosses a , for a given @ , sustains a limit cycle of

period T with two resets per cycle, if and only if, there exists

finite nonzero T , My e M, (= ﬂ? and X €)0,1[ such that in the

neighbourhood of t =« we have:

lim (2-1) (z=e PT)e. (2) = ¥ (4.37a)
1 1
z=1
| Lin (z—l)(z-e-bT)ez(z) =y, (4.37b)
b 2=1
p
lim (z-1)X(2) = G (4.38a)
/‘
m (2-1)x(2,\) = (4.38b)

ere are more complicated than those of

le, here too, as shown below, to
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not interested in the precise value of T and )
L (-b)
A 1 e o1
b Z =
R By » &b s+b 1+Leq(-b) *, Linl = = # I(s) where

L (s) denotes the remaining part of the fractional expansion of Al(s)

and where it is implicitly assumed that Leq(S) has one pole at

s==-b ;
=AbT -mbT
Thans  1eh (85 b e TR Ce ] e L PR Mg )
1 1 -bT -bT
z-e z-e
= é*bT I*(z,m) - IZ*(z) (because m +X =1)
and 1-a, (2) +e ™ (z,0) = e™T re(z,0) - I*(z) (by anology)
-mbT -1 -mbT
4 o1 -mbT e % _z_e R
Al(z.m) z e Al(z)s z—e'bT + L*(z,m) z-e'bT z T*(z)

« T¥z,m) - o te() & 7 ! ]

AbT

A (2) =z I*(z,) - T T

and zAl(z,A) - e
So in (4.32) and (4.33) the denominator

b

b= (e P g0 (z,m) - Te(2)) (e ™ Tra(z,\) ~Le(2)) -

(T*(z,m) - 2 ton(z)e™T) (25%(2,0) ~T*(2) e 'OT)
ot & » (o Py paie,miEv iz + ozl e D
BT

8= (z-6 ) (27 pn(2)? ~ Ie(z,m) TH(z,X))

(4.32) and (4.33) are then written as:

P(z) (e ™7 Ta(z,0) - T*(2))4P(2,)) (25* (z,m)=e "D 5# (2))

ei(z) =

(z-e.bT)(z-IZ"(z)2 - I*(z,m) IZ*(z,)))
L A;(Z) ] 3
L - (4.39) ‘
z-e

“ABTou (g}

2% (g} e zP(z,X)(e-XbTE'(z,m) -I*(z)) +P(2) (25*(2,)) -e
2 bT 2

(z-e PTy (2" 5 (2)% - T*(z,m) T*(z,0))
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A;(z)

bT (4.40)

A
e )

Two cases are now investigated.
a). b=0 and, as it is implicitely assumed that Leq(s) has only
one pole at s=0 , I(s) has no pole at s=0 , and therefore all

T* have no pole at z=1 . As lim (e-mbTZ‘(z,A) - I*(2)) # 0 (4.41)
z=1

b

- <A
lim (z2I*(z,m) - e mbTZ'(z)) # 0 (4.42) , lim (e TZ'(z,m)—E'(z))#O (4.43)

z=1 z=1

vim GER Y S o P ruiat) 40 (0.00) wng 1m0 e 0T S Erte e (2.0))

z=1 z=1
# 0 (4.45) , we conclude that the number of pdes of AI - AE at z=1
are exactly equal to the number of poles at z=1 of P(z) (which has
the same poles as P(z,}))

B). b#0 and then I(s) has one pole at s=0 , whose residue is
1/b . The inequalities (4.41 to 4.45) are here too satisfied. Further-
more, all terms I* in the numeration of both ci and 55 have one

pole at z=1 which is cancelled out by the one pole at 2z =1 of

2 Yge(2)?% - £o(z,m) T*(z,))

Indeed, one notes that the latter has no such term as (:ffzz with
-1 22 b z-1
y(1l) #0 because vYy(z) = 2z e S Al and therefore y(z) has
b b b

one zero at z=1 , implying then that z.IZ"'(z)2 - E*(2,X) T*(z.m)
has only one pole at z=1 . Therefore we can conlcude here, too,
+hat the number of poles at z=1 of AI ,A'z' is exactly equal to the
number of poles at z=1 of P(2)

Therefore in all cases (b=0 , b#¥0) condition I of Theorem 3

is satisfied if P(s) has one pole at s=0 , imnlying then that a
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limit cycle with two resets per cycle may sustain. The reader has
certainly noted that P(s) is exactly the same quantity than the
numerator of A*(s) in (4.17) [Theorem 2]. Therefore the qualitative
discussion made in section IV.4 for Theorem 2 is easily extended here
and it is seen that the occurence of a limit cycle is entirely deter-
mined by the number of integrations (type) of the system-input, while
the limit cycle itself is mainly characterized by the loop transfer
function Leq(s) . If G has no zeros at s=0, we can conclude then,
that a nonlinear feedback system containing a C.I. sustains in general,
a limit cycle with "type 1" inputs but such limit cycle does not occur
when the C.I. is replaced by FORE. However a nonlinear feedback system
containing FORE sustains a limit cycle, in general, with "type 2"
inputs.

It remains to show that condition II of Theorem 3 is a consequence
of condition I. This is now established.

Replacing (4.39), (4.40) in (4.34a) we get:

x(z) = ((s+b)P)* + A(z)

[P(z) (e ™ Tsa(z,1) - E%(2)) + Plz,A) (25*(2,m)

e ™7 (2p(z,0) (e-AbTZ'Lsz) - T*(2)) +2P(2) (Z*(z,))
Iy

Tre(z)) -z

-‘ - s
R N W

*Ais,m) [zP(z,X)(e'beZ'(z.m) -L*(z)] + P(2)[2Z*(z,)) -e-AbTE*(z)]
A

-e PT(p(2) (e ™ 5#(2,0) - T*(2)] + P(z,A) [25*(2,m) - &

~mb

Tz-(z)])]

3 bT

+P(z,)\)I*(z,m)(z-e ")
bT)

A(z) (=P(2)I*(2)z

lie(2)? - % (z,mI* (2, )(z-e"

(P(2)5*(2,)) = P(z,M)I*(2)) (z-e °1)
=

or X(z) = ((s+b)P)* + =
(z

+ A(z,m) T (4.46)

=5
(27 2 (212 - SH(z,mEe(z,0))(zme )

—

e A AT e A T ST

PO AAREP L AT MY G SR
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Equivalently from (4.34b) we have:
x(z,)) = ((s+b)P)*(z,)) +

z-l A(z) (P(z)E(z,)\) - P(z,\)I(z)) + A(z,))(P(z,\)Z(z,m) - P(z)Z(z))
2 22(2)? - $(z.mZ(z,A)

(4.47)

Defining n = lim (sP(s)) we have then:
s=0

z(T,A) 8 lim x(z) (z-1) =n A*(l)(t*(lém) = I*(1)) +A*(1,m) (Z*(1,N)-Z*(1)
z=1 Z*(1)" = Z*(1.,m)Z*(1,A)

(4.48a)

and limx(z,)) (z=1) ’nA*(l)(Z*(l,;) = Z®(1)) + A®(1,X) (E*(1,m) - E*(1))
z=1 I*(1)7 - I*(1,m)I*(1,2)

(4.48b)
=;(T,1-1) (by definition of T )

Pacalling that condition I is satisfied if P(s) = has one pole at s=0,
wa conclude (in that case n#0 ) that condition II of Theorem 3 is
a consequence of condition I.

IV.6. Example of application of Theorem 3.

let L (s) = and G=1 . Consider R(s) =§ .
ed s (s+1)

Then A(s) = S| RS- and thus it can be seen that the L.T.I.system

2
(s+2) (s"+1)
ohtained is unstable (oscillatory). The corresponding system response is

plcetted on Fig. IV.9.
Suppose that b=0 , a=0 (C.I.) then:

(s+1)2

P(s) = ———2—— SO n= lim sp(s) = %
S(S+2) (s +1) s=0
A ls) = —“—‘2—2'—“ =Litte) witn (s = siz - '4525"1)
s(s+2) (s“+1) : s241
and thus:
f(z) = - '22-2'1‘ g 2z;z-cos'r)+25in'r
z-e z"=2zcosT +1
=2AT
Sz, ) » _x2e - .4 2(z_cos\T-cosmT) +zsinAT+sinmT
z, — ’ .
z=e 2° - 2zcosT + 1
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Besides:

Alz) =% foZ _ z(z-cosT) - 2zsin'r>

\z-e_ZT 22 - 2zcosT + 1
-2mT : 5
2 (e (zcosmT = COSAT) = 2(sinmT + sinAT)
i et 1 Y-~ S 2
z-e 2" - 2zcosT + 1

Z(T,\) of (4.48a) and (4.48b) is ther plotted on Fig. IV.8.a for
different values of T and A . (The reader should remember that
m Q 1= so relations (4.48a) at )\ =.2 say corresponds also to
relation (4.48b) at m= .8 ) .,

Condition II of Theorem 3 implies that we should satisfy:
3 7,0 such that ¢(T,\) = ¢g(T,1-)) =0 {4.49)

From Fig. IV.8.a (4.49) is satisfied for: 3<T<5 and

.1<)<.2 , and therefore this region is magnified on Fig. IV.8.b.
't

(A, T

| . C(I-XIT)

Figure IV.8. Plot of z()\,T) versus T, for the characterization of a
limit cycle with two resets per cycle.




o oo

Gasiiodi i e

ke i £

% . ‘ K , &
iy e e i i1 i Cele o
P i » 3 5 & e L FORE
'
< H | i . o " v ¥ LTI
'3 ¥a . o . - . ¥ . - . -
)
’, . . ¥ . é . . - 5 ‘
s -~
8 1‘ »‘\ 1 e T < t ¥ 5 . E .
: 1y
B Aot e A et g et
= B B f. s s 2% o R s S "
3 | 2\ A o> . : & g
- . s e g . . "
: 3 3 ® : .‘ 2 3 o' Iy N r ¥ 54 ®
& ‘ T ' gl . . o o
< ' Wal shvs o2 +8 o TR
%l 3 (R T o ok ek iy, A
Y L Y IV st Ty < e

Figure IV.9. Comparison of the three system step responses.
Thus Theorem 3 predicts a limit cycle of period T such that

4.,02<T<4.03 with A such that .176<X < .177 . This is then
confirmed by an analog simulation of the nonlinear system includirg a
C.I. as shown on rig. IV. 9.

If now b#0 ,a=0 (FORE) it was already mentioned that no
limit cycle can sustain because P(s) does no longer have a pole at
s=0 implying then that A{ and A; do not have any pole at =z =1
This isconfirmed by an anolog simulation of the nonlinear system
including FORE as shown on Fig. IV. 9, with b=1 ,

One should be aware that the Dual Input Describing Tunctions [G2!
give, here too, wrong results, except for the period of the limit cycle
sustaining in the NL system including the C.I. Indeed, it can be
shown that when b=0 , the D.I.D.F. predicts a limit cycle of
frequency fuo~ 1.5 rd/s (Tm~4s) with ratio .7<A/B< .75 (instead of
.5) where the assumed input is X= B+Asinwot .

For b#0 , the D.I.D.F. predicts either a limitcycle or

instability (compare with above) and for instance with b=1 |, a

limit cycle is predicted, characterized by 1. <m0 <1l.1 and a ratio

B8 <A/B2 .9 . §




CHAPTER V.  GENERALIZATIONS OF FORE .

e a ae

1 ‘ Vv.1l. Introduction.

The C.I. has been generalized into FORE. It is therefore natural
to think about possible generalizations of FORE. One way is by
resetting the output y whenever the input X =ay#0 . However,
nothing is gained by doing this when both positive and negative command
E ! inputs are to be applied to the system. Resettina for X = 'al go is
! conceivable but the performances for two input signals X(t) and
: kX (¢t) , with kX real # 0 , would no longer be proportional with
{ ratio k and this is certainly a big weakness if the objective is 'O

guarantee T.D.S5. of a linear type.

. Another way to generalize, is to extend FORE to LLRE (Lead-Lag
3 s+b  * 1 ¢

L ess) (ua ) , SORE (second-order ...) ((Nb)("d) , TORE

p - - 1 ;" .

3 (third-order ...) ((" 2 (84b) (84C)) etc..., and in a very general

manner to g(s)* , where g(s) is any rational transfer function
| whose output y is reset whenever the input X is zero. (Fig. V.1)

V.2. First equivalent representation of g* .

Let 6 = {tK : I(tx) =0) be the set of reset instants. Then:
t

1 t ® K
2 yit) = [X(C)g(t=5)8C = ) tfx'(&)q(t‘c)dc u(t-:x)
/ 0 K=1 “K-1
b4 \'4 =
g — q*
, Reset when x=0
Figure V.l. General reset element (Equivalent notation).
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Suppose we restrict G to elements with m real pecles, so

T -ayt
a(t) =hyb(t) + | Ae *
i
i=1
Thus: ¢
m - K t
- s - -a. (t= dv
sied = Isttisiooniie » Tog § feoe ™V Sig p S0
0 i=1 kel t, 0
tK '
or if Xp . 8 7 e i giryar with t, €0
*x-1
. 2R t lag(t-n)
ylt) = [x(t)ale=0)ac] J A x% e 3 §(r=-t )datr
: LR B X
0 K=]i=1 0

"ina to the equivalent representation shown on rig. V.3.
1f g* is imbedded in the feedback system of Pig. V.3.a, it
~an be replaced by its equivalent representation of Fig. V.2. There-
fore, by application of the superposition theorem to all the signals,

he cutput e¢(t) can be computed by using the equivalent representation

g ? g
|

L)
L x* S(t-t)
| oty Red 3

b o = o - ——— = - - -

...
- ‘?T S+
* -
Zxx oo (t=ty)

Figure V.2. Equivalent representation of g* .

R St
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of Fig. V.3.b. Using such a representation it is possible to derive
charts similar to Fig.II1.10 for any specific g . If one is then
to choose aj , i=1,...m such that g(s)*=g(s) from the command
input point of view, the design philosophy used with FORE can then be

{ applied here too. This was used for instance with LLRE, but no
improvement over FORE could be noticed.

V.3. Second equivalent representation: stability criterion.

If we restrict ourselves to elements G(s) such that:

ajt

m -
g(t) = z Aie then:

| i=1
t N m K
j y(t) =/ x(t)g(t-0)az - [ ] [ Ae A re)ag ule-t) (5.0
{ to K=1 i=1 tK-l
tx tx b
R e
Using: / 0 0 we have:
‘ k-1
t m N x
yit) = f Z(Og(e-trag - ) ] « 4% ¢ Aie'°‘i(t’<’“xmdc
t i=1 K=1 0
0
TS (5.1)
fu(t tK) u(t tK41y

and therefore, by anology with the previous chapter, (section IV.3) the

! system of Fig. V.l is equivalent to that of Fig. V.4, where

r i o 4 t -t and B, (s) 1_e°(8+°1)°x

! - .(8) = .

S - - _—
|. ‘ K X K-1 1 s*ci 31 irk,ié(t tK'
h ) R F Leq/(1+Leq)

L _/1+L A, /(s+a,)g

3 eq eq‘fl p 4
1 . . - . - . . . -

" C
3 cF.eq/l+Le Ai/(s+al)g
p 3

Figure V.3.a. e i
L /l1+4L_.A /(s+a_)g

eq eq m m

A O— ol

Figure V.3.b. Equivalent representation of two

degree of freedom structure.




: 86

d

‘F As before, this equivalent representation is very suitable for stability
analysis. Let us now consider the closed loop nonlinear feedback

b cystem of Fig. V.3.a (with F=1) in which g(s)* is imbedded. If, as too ,

a limit cycle with one reset per cycle sustains, it means that ox> T

a constant number and therefore, using Fig. V.4, the N.L. feedback
system of Fig. V.3.a becomes, at the steady state, equivalent to the

rurely linear sampled data system shown on Fig. V.5.

It can be easily seen

that (4.10) can be generalized, giving:

v,
- | z L
ei(z) e P (5529 for 1=l, 2,..8
z-e 1
€
& ” ~-a; (ty=0)
where y, = limx . = lim tf e "1 “K™>'x(r)dg. we can then write
Ko 77 tge K-1
m B
’ R i L
Lol B e— ® — —_—
(Fig. V.5) X = =+ ‘Z B = o (5.3)
i=1
o - %
p
1 o g(s) T A (’?_'—‘ Y
i ! !
> I A
L e N B (s) ! i
T e " | !
19 [ f
p L - RS R e G s G e S W e e wss] ]
" '
.
% o s 4 O SRR :
. s+a o e .
!

Second equivalent representation of G* .
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A, Rg m .9
7O = - — « 2k
Tt gy sta, than &, ®¥e, Ty Zl g 1L
for ¢ TeZ2-cim < 'So

—uey N

1+L

2

2
(
\

* *

s - (Bqu _L__) . 1-(B_Kg§ _L_>" el /R9K>

ooy aay (. '(“"1)'1;
!
f
|
|

and:

m B
- R \* g B mskw
P | i (1+L) E ( g 1+L) i

i=1
If a limit cycle of period T with one reset/cycle exists, then I;( 3
i
has a constant value ¥y and in virtue of (5.2),
{ ¢

€*(z) = —= z
i (z-1) z_e-ui'r

for i =1,2...m . The converse is obvious.

a = L(s)
- gf(s)
e
g 3
L
£ -
b |
-
i
.
- ‘ 3
e Lok (s+aji)T
T i s+ui
"
m -
1 s+a Bm
c’
m

Figure V.5. Equivalent system when the nonlinear feedback system sustains
a limit cycle with one reset/cycle.
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By anology with Theorem 2 we can state:
If in the neighborhood of t=% , there exists, for the system

of Fig. V.5, some finite nonzero numbers T , U ...um GR such that:

1 ’
2 =0T %
h lim (z-e 17) (z-=1) e;(z) =¥y for 1 = 1,2:..® (5.6)
z=1
II lim (z-1) x*(z) = 0O (S.6a)
z=1

then a limit cycle with one reset/cycle exists.

v.4. Application: 'LL FORE'.

In general it is not necessary, as previously, to solve (5.€)
and (5.6a) algebraically if one is less interested in the specific
value of T than in the existence of a limit cycle.

This will now be illustrated by considering the simple example,

A A
2 s "
m=2 , i.e., gls) = s+, + s, - gl+q2 . (5.4) is used in order to get:
0 SO . SRS e L W SN S i 2q2 Ly*
S 1+L 9 145 92 g__1+L sz 1+L
SL B
T L IR BT L R WA e R Ny B Rl B W
g 1¢8 g 1+L g 1+L’ g 1+L g  1+L g 1+L
RALTE T b 36 W W a,) <lg £y
S TP R T R I 1oL ? 4L
g B
¢ 1-(51"1~ %t o2 )*+( e S WL %29 1 )*_(3291 L )*.quz By
g - I+L g 1+L g 1l+L q I+L g 1+ * g 1+L
L(s) 1is assumed to have only one pole at the origin, and Ll is such
L, (s)
that L(s) 8 ls . So L/1+L has no pole at s=0 while 1/1+L

has one zero at s=0 .

B,g
1f a2A1+c A2 #0 , then -—1;1 (for i=1,2, 3j =1,2) has no pole

at the origin. As there is no term in the denominator of both cI and

s; containing the factor 1/s , there is no such factor as 1/z-1

in the denominators of both t:‘{ and 25 . According to the criterion
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there exists a limit cycle if eI and s; contain the factor 1/z-1 ,

Therefore, this can only occur here if the numerators of both c; and
55 contain such a factor, i.e. for "type 2" inputs R , and especially

E | with ramp inputs. Indeed, R/1+L has then a pole at the origin and the

k| A,

I - residue at z=1 of the number ¢€* is —_— (i=1,2) which is
i aiLl(O)

finite non zero.
The stability criterion then implicitely suggests the insertion

of a zero at s=0 in G , i.e. tochoose A,6 , A, ,Q  , O such

1 2 B 2
that A1°2 +A2a1 ="0 (5.7} if one is to avoid limit cycles with
|
] "type 2" inputs. Indeed we have then:
! B.g A s+a
\ b Iz ) R 5 Sesli=anT I 2 . s L(s)
i : ~5 1s (1-z “e ) (__A1+A2 567 Q(s) ) , with 0Qf(s) & eLle
E pragi A ,Q(0)
E ! = (1-2 le alT) _1_[ s & X (s)] (after fractional expansion).
; A +A, L s 1
Ba¥ly 2 (1-z~Ye~02T) A, P10 IR
g It o A +A 1 s 2
[ TS |
8_2_?_]:. B2 e (l_z'le"’ZT) Al [ Q(0) + £ (s) ]
g 1+ A_+A 2 s 1
; ik S |
B -1 =g1T Al r
152 .1 = Gy o [0000) Ly ]
g 1+L i O Sl Lh e
The denominator of both c‘l' and 5'2' is then:
=y sy By RRLO T N R L
9 1-(1-z e 1) R T (1-z “e ) g
. . 12 1=2 1 "2 Y=g
-1 -a,T -1 _=a,T
Q(0) (1-z e 17)(1-z "e ) _
+ 1 Zl(z)A2u1+£2(z)Alu2 Zl(z)Azal

(A1+A2)(.1-z )
- 22(2)}\102 )

Bex s W )ilex e “QT)AIAZ 0(0)

+ =13 (aluz - alaz) + P(2)
(Al*l\zl (l1=-2 7)
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‘eve (1) £ . So the denominator contains now the factor l/l--z-1
with a residue 9(0) (Ao e-alT uzT) ¥ 0 because by
A1+A2 12

i + = o
assumption A1a2 LlAZ 0

It is easily seen that the numerators of both EI and 65 have

i » such term as 1/(1—2.-1)2 . Therefore, the numerators of both eI

+ alhze

and 55 have at most, a term in .1/].--2-1 and therefore if

= * * j
A1a2-+01A2 0 both El and 52 do not contain such a factor as

]./l-z.1 » preventing then the system from limit cycling in presence nf

"ype 2" inputs, and in particular with ramp-inputs. Relation (5.7) ig
a a

for instance satisfied by choosing Al ey and A2 =

2051

*
leading to the element G(s)* = (__s__) that is referred to

2
e T !

(s+a,) (s+a,)
as a Lead - Lag - and - First-Order - Reset - Element (LLFORE).

(e _1_)*

V.5. Synthesis procedure with LLFORE \s+ta s+b

Using the results of section V.2 (Fig. V.3.a and b) the nonlinear
feedback system of Fig. V.6.a is equivalent from the output signals

point of view to the linear system of Fig. V.6.b with:
£ t
x* A !; e"b(t-C)
Kok i &
K-1

X
x(g)ag = x* - f e 0 mat

s LY (s+a) (s+b)
<s+a s+b) Leq(s) ~
—O-
y

c

3

b

s

Vol

he-18
*

~
—

-1
§(t=t )
.- ;
x5y =02 oKl s+b

Figure V.6.a. System block l*Leq s
i;:g;;m S Figure V.6.b. Equivalent representation of a
Y feedback system containine an

LLFORE,

-8
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If « 1is so chosen as to satisfy a << Bandwidth of the open loop

transfer function for all possible plant parameter, then obviously

a<<b , therefore we can consider that: E
b s+a a s+b 1
— — —_— —= e
s = ~ 1 and s = 0 and therefore LLFORE

behaves practically like FORE. This is in accordance with experimental

results: the design L., of chapter III was used and on Fig. V.7 it is

1
shown, for the maximum plant gain factor, the non linear step dist-
urbance response for different values of a . As expected, for

a £ 1 rps. (compared to a bandwidth of 600 rps.) there is hardly

any difference from the result obtained with FORE (see Fig. III.20.b

(f 1)), while as o increases up to 10,000 rps., the nonlinear system
response tends to be like the one obtained with a purely linear system.
Therefore the design procedurederived with FORE needs only to be
completed here by a suitable choice of a . Since (Fig. III.13) the
minimum bandwidth of Leq(s) is roughly 6 rps., one can choose for

example a = .0 rps.

a
’\ s] 1
Signal \ 2 10
Amplitude % iggo
X 10000

0

Yoin ke ; ; -
v/ : : :

.
.
.
L
.
.
.
.

L

L]
¢

Figure V.7. System step disturbance response of the nonlinear feedback
system at k =1000 for different values of the parameter «a
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As expected, one notes from Fig. V.8.a,b,c that no limit cycle

is sustained in presence of a ramp input for all values of a , but it

is seen that the transient gets bigger and bigger as a decreases,

which is reminiscent of the limit cycle that existed with FORE.

V.6. Serial and multiplicative combination of G's.

It is worthwhile to mention that g* can itself be generalized
by considering a system of the type shown on Fig. V.9.a or of the type
shown on Fig. V.9.b, or any system which combines both types.

V.6.a. Serial Combination (Fig. V.9.a). 3

LE L hTi i {tx P ygite ) = 0} denotes the set of reset instants

i -
associated with the input PR it is then obvious that TOC Tlc T
..© Tp-l . If we assume that each 9; has m, real poles, then
for' M= AN s iope .
t Pias on Virgs gty
yi(©) = [y, (@g(e-0)dt - A Lxs, . [ el §(z-t, )dt
0 j=1 Vx=y 17 0 i
B
Hexe % —ai5(t, -T)
Xry * /Iy, (@e A
i tKi-l
and mi
gi(t) Shois(e) +§ A, e %ijt
=1

The equivalent representation of Fig.v.9.a ig Plotted on Fig. V.10

V6D Multiplicative Combination (Fig. 9.b).

T = {tK such that y(t,) = 0} denotes the set of reset instants.

It should be first noted that if in a), Tl o
a) degenerates then in the class b) studied here.

sse =T = T , Class
P

Therefore the equivalent representation of Fig.V.9.b is given by

Fig. V.10 where the substitution tK =t should be made for all
i

K
bow 3ydisee P
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Yo Y, Y Yy . A "
% 92 syt B g aekiaiged Yy ”
Figure V.9.a. Serial Combination.
Y y y ¥ y v y
Gk 9 PR 9y boF L o 5 B8 T A Y % P

1

Figure V.10.

Figure V.9.b.

Multiplicative Combination.

s+ail

Fquivalent representation.
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CONCLUSIONS TO CHAPTERS III , IV & V . s‘

A systematic engineering design procedure for drastically reduc-
ing the 'cost of feedback' of linear feedback systems has been pres-
ented and illustrated in chapter III. It is clear that the nonlinear
compensation (FORE) introduced is justified in problems of large para-
meter uncertainty, and that the design procedure is a general one for
this problem class. The nonlinear design permits the attainment of the
same command and disturbance performance tolerances as a linear desiagn,
but with significantly smaller loop transmission bandwidth. An import-
ant feature of the design procedure is that it permits design to

quantitative specifications, a property generally lacking in present

nonlinear feedback synthesis techniques, for systems with significant
parameter uncertainty.

It is important to note the inherent assumption in that chapter,
that the primary design problem is that of satisfying the response
tolerances to command inputs. However, realistically, consideration is
also given to disturbance inputs in the form of steps at the output,
with assigned restrictions on the damping of the resulting output.

Since the disturbance response is nonlinear (in contrast to the command
response which is essentially linear), one cannot in general guarantee
acceptable response to all possible disturbance inputs.

Therefore emphasis was then placed (chapter IV) on the stability
problem for this class of nonlinear systems. Suff . conditions were
derived for B.I.B.O. stability and it was conjectured that the nonlinear
system possesses B.I.B.0. stability, if the equivalent L.T.I. system

ie ae'mntotically stable.
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Furthermore, necessary and sufficient conditions were derived for
the existence of a limit cycle.

The results of chapters III & IV were then used in chapter V to
derive the new element LLFORE which can be considered a generalization of
FORE. Indeed, the latter improves the performances of FORE with respect
to ramp disturbances (and more generally with respect to "type 2" dist-
urbance inputs), without harming any of the gquantitative benefits obtained
with FORE. The design procedure derived in chapter III is therefore
easily extended to this nonlinear element.

The philosophy and motivation prompting the nonlinear compensation,
is based on linear frequency concepts, coupled with linear feedback
design techniques for guaranteeing performance tolerances despite large
parameter uncertainty. This philosophy has thus proven itself as at
least one approach worthy of pursuing. One might search for other non-
linear elements with even greater phase advantages than FORE, over linear

elements with the same magnitude characteristic. As an example the non-

+/x(g)dag if x x>0

o 3 nnO
- fxtt)ar if x x<o “*°°® 0° phase

linear element such that: y = {
lag integrator" from the describing function point of view. With FORE, the
equivalent linear phase lag useable was shown to be almost 180°. Non-
linear elements can undoubtedly be found which in a describing func<ion
charaterization, would permit even greater phase lag.However, as with the 0°
phase lag integrator, the more difficult challenge is to find a charac-
terization of the nonlinear element useable for the useful system control
signals, and so permitting design to quantitative specifications.

It will certainly be worthwhile in the future to extend this

research to multivariable systems, once a rigorous synthesis procedure

is available for L.T.I. multivariable systems with large plant ignorance.

q
|
|
A
|
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CHAPTER VI. LINEAR TIME VARYING COMPENSATI F BACK
SYSTEMS WITH NONSTATIONARY INPUTS.
VI.1l Introduction

It was noted (section II.3) that the typical set of command inputs
to a system can often be imbedded in the set of non-stationary processes.
Therefore, it is expected that L.T.V. compensation in a feedback system
will result in better performances than L.T.I. compensation, with respect
to sensor noise effects. It is implied that the instant of input (R)
application is known. Given (F,G) (Fig. VI.1), we get different
output responses ci(t) for the same command input, due to different
plant parameter combinations Pi € ﬂ) , as shown in Fig. VI.2. At each
instant of time to » the maximum spread is then characterized by

Ac(to) (Fig. VI.2). The L.T.V. networks F,G can be associated [S5]

with L.T.V. operators f,g , i.e. (Fig. VI.l):

€ |
vit) = [ £(t,5) r(2)az and x(t) = [ g(t,z) e (£)dL can be written in
0 0

the symbolic notations:
v=fr and x = g*e .
Therefore, the effect of the noise n(t) at the plant input x

(assum=-

ing R=0 ) is given by: (Fig. VI.1)

G X

R&FT" o—2= >
-

Figure VI.1. System Block Diagram .
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Figure VI,2. System Output Response for Different Plant Parameters

X, = =9'n -g'p'x_

X = -(l+g'p)-1'g-n if (1-0-«;'p).1 exists.
6+*n (6.1.a)

€
where 0  is a L.T.V. operator, i.e. xn(t) = [o(,Z)n(@a; .
0
The mean square value of the noise at the plant input defined as
2

%o 1 (t) = <xn(t)2 > , where the bracket sign stands for the ensemble-

average, is therefore:

Q
(a4
L}

t t
< g 0(t,5)) n (5,)dL, ({ 8(t,g,) n (z,)dg, >

n
Ot
Ot

e(t,cl) ] (t,cz) < n(cl) n (cz) > dcldgz

By definition, the autocorrelation function of the noise, is

, 8k o
Y‘\.x(allcz) = <¢(Cl) n {CZ) > , SO
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Using arguments analogous to those used for L.T.I. systems, it

shown that the spread Ac(t)

the smaller 02

namely, the bigger Ac 8 -

, and vice versa.

challenge then is to solve:

vt Min {ac?(e) + wz(t)o;‘: % (t)}
(£.9) L.T.V, A
with W(t) some given weighting function.

Because of the complexity of P in general, solving (6.2

the range of plant-uncertainty is a difficult task for which no

techniques exist at present. Let ci(t) be the system respon

input r when P==Pi . It is tempting in order to have a sol

AR TR T

problem, to pretend that the maximum range Ac(t)

of the differences (cl-c ) and this for all t , in the sys

2

response due to 2 'extreme' plant conditions Pl(s) and Pz(s)

g

the same input r , i.e.,

ve , Be(ty? = (cy(0) = cy(e)?

AT

In practice the extreme points of the spread Ac(t) in Fig. VI

'3

not necessarily correspond to the outputs (Vt) for any 2 plan

conditions chosen as 'extreme'. The weighting function W(t)

is then an extra degree of freedom, to help contend with the fa
the upper and lower bounds (Fig. VI.2) of the system responses

P,

i € ﬂp , do not, in general, correspond for all t

'extreme' plants Pl(s) .Pz(s) e Loe,

a realistic problem.

is a conflicting factor with oi =

in (6.2) consists

, to the two

can be
{t)

’

The

(6.2)

) over

se to

vable

tem

to

(6.3)
S -
t

in (6.2)
ct that

for

(6.3) usually does not hold in
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VI.2 An idealized problem.

VI.2.a Statement of the problem.

Let P(s) (Fig. VI.1) be a binary plant PP = {P, or P}

1
Following [H7] we show that At:z(t:) has a simple physical meaning.

When P=P2 we have (Fig. VI.1l):

]

X

Let:

>

A . . - . .
X, = X, + Ax (6.4.a) X, =9 fer - g Py %, (6.4.b)

Ac é €y=C ¢ a pl'xl (6.4.c), giving Ax = -g+Ac - g*n (6
(6.4.a) and (6.4) give: x1+ AX = gefer - g-pz-(x1+ Ax) = gen (6.5)
Using (6.4.b): Ax = ~g- (pz -pl)'xl - g-pz-Ax - g*n (6.6}
and (6.4.d) in (6.6) gives: gsAc = g- (pz-pl)-xl+g-p2-Ax (6.7}

s —-— -l. .
Using (6.4.c): Ac = (p2 pl) Py cl4-92 Ax (6.8)

Therefore Fig. VI.l becomes equivalent to Fig. VI.3 and Ac(t) can be

considered as the system response (when P=P2) to the equivalent

disturbance: (when N=0 )

- . -1'
d2 = (92 pl) P, °c (6.9)

(The subscript 2 in d 1is kept in order to recall that d2 is

associated with P2 ).

f
RO B

Figure VI.3. Equivalent Representation.

2 g.f.r - g-pznxz - gen (6.4)

.4.4)




Using (6.4.d) and (6.9) in (6.8),

Ncll= d2 - pz-q-Ac - Py*g°n (6.9.a)

-

z " P9 (6.9.b)

then (6.9.a) is rewritten as:

(1+22)'Ac = d2 - lz'n

=1 =
Ac = (l+22) d2 = (1+12)

X
22 n (6.9.c)

if (1+12) has an inverse.

il

Let d,30 , then A4c = -(1+22)' “L,°n which together with (6.4.d)

gives:

. -l' - .
bx g[(1+£2) 2, 1]+n

. -lu = .
Axn g* (142,) [12 (1+12)] n

bx_ = - g (1+22)'1-n

which can be rewritten, (recalling (6.9.b)), as:
-1 -1 -1 -1
Axn = = Py 22 (l+22) n=p, (1+22) 22 n
because 22 and (2L+5?~2)-l commute.
Note (6.9.b) that - 92-1-22'(1+22)-1 = -g’(1+p2'g)-l = - (1+g'p2)- g &

A (6.9.d) when P=P

so from (6.1.a), 6 = - p2-l'22-(1+22)'

2

Hence, for the plant P=P , the minimization problem of (6.2) becomes

2

(under the above assumption of a binary plant) equivalent to:

£ 2
Yt , Min 1Ac(t)2 + W (t)O;

(t)} (6.10)
£+9 A

I

where Ac(t) is the component due only to d , and 0 of (6.9.4) is

2

: 2
used in (6.1.b) for cP.I. »




SO,
L
>
—

102

VI.2.b Do rivation of the Optimum Filter.

Let hz(t,r) be the closed loop impulse response of the lower

part of Fig. VI.3 when animpulse is applied at W at t=71 , i.e.,

-1
8c = P,°g°w - p,tgrlc, or Bc = (1+4L,) "R ew
1f (l+S?.2).l exists and therefore (by definition Acw = hsz )
hy = (140) Teg, = 2. (142,) 7t (6.11.a)
2 2 2 2 2 i

1+ - effect of d2 is given by letting n=0 in (6.9.c), so in (6.10)

3

- -l “
+ . = - . .
Bc = + (1+L,) -4, (1+2,) (1+22) 4, +4,¢ (1+22) d,

=1
- (1+!2) 22 d2

-1
d, + (142,) [1- (1+2,) ]dz =d,

=L e

L€y

£
Ac(t) = d,(t) - fhz(t,c)dz(l;)dc : (6.11.b)
0
By definition:

V7
pet)? =< ta_(t) - [ h(t,00d. (2)d)2 > (6.12.a)
2 0 2 2
where the bracket indicates the ensemble-average over the set of command

inputs ri(t) . From (2.6)

N
I o,tep, (0 & P Dy (6.12.b)

A o
YDD(t,T) = <d2(t)d2(1)> = oL

where jbz(') is an N-dimensional vector.

(6.12.a) is then

t
2
Ao (t)” =y (t,7) - 2 £ hy (£,2) Y (2, 0)dE +
e
= g é hy(&e8y0h, (00 vy (2 0852, A2, (6.12.¢)
If the plant P=k , with k € [k ., ,k___]) a pure gain factor and
min max
w(t)=1 , then from (6.9.4, 6.11.a),9 = = ;L- . h2 (6.12.4) and

<
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using (6.12.c), (6.1.b) and (6.12.d), (6.10) becomes:

ey t ¢
Ve, Min vt - 2 [ ey @trag + [
h, 0 0

< T Y

R, (£,8,)h,(£,8,)
rY(C ;)+iv(c C)dCd;\ (6.13)
[FpDiz1 52 - NNCC1772 ST 3

2

By using Yop instead of Y1p in (2.5), we conclude that the optimum

solution h2 of (6.13) is the solution of the integral equation:

t
it
v TSE , f hz(t'C)(YDD(E,T) + = vm(c.r))dc = YDD(t,T)
0 k
2

(6.14)

We restrict ourselves, without loss of generality to white sensor noise

26(;—1’) . Therefore

of strength © 5 N

N ¢ With resulting YNN(C,T) =0

(6.14) becomes:

) ot
T T
YV ot21 ,uhy(tT) 4 ghz(t,c)wz(c) JD?(r) ag = Ez(t)@z(r)

2 2 (6.15)
with p 2 —';- . (Hote that u o -% W(t) for W(t) #1 .)
x5 x5

(6.15) has a solution if:

hz(t,r) = G‘(t)*.mz(ﬂ'ru(t-ﬂ where G— is a N-dimensional

: 4 0 < e
vector, and the heaviside unit function u(t-'r)={ il is intro-

p SN 45

duced to give a causal h2 . (6.15) becomes:

t E
t2r w60 D,0T+ Go [ D, D, e D" = .
0 1
w
=D, 0D, (6.16)
(6.16) implies that:
[ s T 1«1
Gy = Dyvy | ul + [ Dy .Dzmdcj (6.17)
o 0
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ard if
t
m(e) 2 [ ul f@z(;)%z(mac] o (6.19)
0
-1 D ()T
hy(t,1) = JDz(t) T D e -1 (6.18)

Note that 7 is an NXN matrix.

From (6.11.a) one gets (Appendix A 3.1) the open loop impulse response

associated with P=P2 ¢

2, (0 = D, (e) w‘l(r)-Dzm"u(c-r) (6.20)

The open loop impulse response 2(t-71) for any P=k € 'P is

(Appendix A3.2)

L, = A L (E,T) (6.21)  with Aéki (6.21.2)
2

and the corresponding closed loop impulse response (Appendix A3.2):

hie,n = A Dyer A wd o Do Tuge -1 (6.22)
where Al is a NX N matrix solution of:

. _l _1 .

A A AT T =

ks 0 (6.23)
It is shown (Appendix A3.3) that the system response to a command

input r , when P=k€@ is:

t) = il .24
c(t) cl()\ ) (6.24)

where cl(t) is the system response to the same input r at szl

VI.2.c Example.

Let {r(t)} be a set of step command inputs of amplitude «

with average mean square value < 3% = I 3 PElC ke Koo 1 . is
min’ max
a real gain factor and cl(t) is the system response to r(t) =u(t)

(kz-kl)
when Pskl . From (6.9), at Pskz v and r=a a(t), d.=

- *_nl°—°‘ = b
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From (6.12.b), the autocorrelation function associated with

kz-k k,-k
dz(t) is YDD(t,T) = < X a cl(t) X a cl(r) >
3 1
k. -k k.-k
<y 23 A g
= kl cl(t) k1 cl(T) -Dz(t) Dz(T) - (6.25)

Therefore N=1 , and from (6.19),

t
me) =u + [ b, %a ; (6.26)
0

From (6.22), the closed loop impulse response at P=k {is:

A-1
¥ w(t)
RitE,T) =X Dz(t) TS

DZ(T)u(t S (6.27)
m(t)

with A= k/k2 (from 6.21.a), and the system response to step command

of amplitude o is given by (6.24), i.e.

X~k
c(t) =a cl(t)(l e - ) (6.28)

e

noting in (6.26) that T(0) =u . The effect of white sensor noise

at the plant input is (see Appendix A3.4):

2 2

- sk ( 1 -U_nl)if ek gi

2x-1 kg m(t) "(t)2k k, 2

2 d (6.29)
9p.1. (%) o2

2N n(m(t) /u) g U

Bgte) 73 T(t) il el

k3 ?

The reader has probably noted that, as yet, nothing has been said

as how to select P, =k, , P,=k

1 1 P 2 ] <« This is

iven K. . K
i [mm'max

one of the major issues if one is interested in a synthesis procedure.

Let us assume in the meantime, that kl and k2 have somehow been

selected. Let the relative change m(k, to) at a given time to ¢ A

the system response at P=k € [kmin'kmax) , be defined as:

AR e = T AR TN SRR IR N R TI TRGA  W TRAAN T

-~




c(to)-ucl(to)

>

m(k,to) . Using (6.28),

acl(to)

kek X/k
1( o} (6.30)

m(k,t.) = —
0 kg n(ty) ]

As an illustration, m(k,to) is plotted versus k , for t0= R i tts

in Fig. VI.4.a for the case k1=100>k2=1 , and in Fig. VI.4.b for
the case kl =1 <k2 =100 . The spread in the overall system response

to a command input r , at time to , is obtained from these curves

as follows:

. [ :
SPREAD = cl(to) i !. (m(k,to))max

1
(m(k,to))minj where MAX

and MIN are taken over all possible values of k€ [kmin'kmax] i

"or instance in Fig. VI.4.a, when k =.1 and k = 10, ¢
m max

in

[m(k.to)lmax = m(k

max't()) ;

)
[m(k,to,]min m(kmin'to) v

and therefore it is easily seen that:

SPREAD cl(2.) * (.99-.24) = .72*cl(2.) at t_ = 2 seconds

0
c1(9.) (76 = 0) = ;76% c1(9.) at to = 9 seconds, etc.

Consider the case kK6 <k , shown in Fig. VI.4.b. If k . <k
1 2 min 1

then very poor results may be expected for kmin <k < kl » Since the

settling timeis seen to be very large. For the same reason,

kl < kmin < k2 is not a hetter choice. However, if kl < k2 < kmin < k:nax ¥

then we get a reasonable spread in the system command responses, for

large changes in k€ [kmin'kmax] g k2=l <kl =100 are selected

("ig. VI.4.a) then, on the one hand kmin"kZ should be satisfied, if
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m(k,to) m(k,tn) ‘

e

-

1

1 | - e -1 1 1
PR Lo k1=102 107 104 k 10-210"1 k=1 10

Figure VI.4 Plot of m(k,to) for k.6 >k (a) and k2 >k {b) -

Er 2 1

one is to avoid a long "tail" in the system response to command inputs,
and on the other hand, kl Skmax should be used to avoid tremendous

overshoot at small to . Note that all those results are independent

of the nominal choice of cl(to) , and of the actual values of

k. . .k and are therefore ver eneral.
min’ max Y

To summarize, we have found that from the system command responsc

point of view, two reasonable choices are:

k1<k2 << kmin(k (6.31)

- B kmin % kmax 1 W 33

The curves

2
qp 1 (to.k) (curve A obtained by using (6.23)) are

plotted versus k (see Appendix A3.4 for details), with parameter to ’

in Fig. VI.5.a for

k2=1<k1=100

and in Fig. VI.5.b for

k1=1<k2=100 (6.34)

in order to evaluate choices for from the noise response
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viewpoint. The curves (B) in dashed lines were ontained by takinc

the binary plant ?*: [k or kll (instead of P = k, or k,1).

Obviously, B passes through (k=k_ ,0.) for all t , and curves

1 0
A and B intersect at k=k, , since ‘P =1P" when k=k2 in the
g latter case, and the noise effect is zero when no uncertainty (k =k1)
|

is present in the first case. f
One sees from Fig. VI.5.a, that when kmax>kl , there is a

tremendous noise level at the plant input for all k., <k<k .

1

Therefore, k2 Skmin < kmax < kl is once again more satisfactory. From
Fig. VI.5.b, it is obvious that (6.32) is also highly satisfactory.
Discussion.

The choice (6.32) seems a better one than (6.31), especially if

k, and k, are taken much smaller than the prescribed k e k
1 2 min max

| However, such a choice is very poor as far as stability is concerned,

E__ when higher order systems (obtained when dealing with more realistic

(b)

{ 2

curve A

==e curve C

P
/1.

3 J-.ﬁp ta
¥

7

9 "-
4 le
. " _ao.
. (1.) u,’
--——-\
IICTSN 0
(10.) " i
7T 2 103 ol e fL =10° 10° «
10 10 k2=1 10 k,’lO; 10° k 10 10 kl-l 10 k?._ 0

Figure VI.5 Mean square value of the noise at the plant input for diff-
erent gain factor values of k and at different time instant ¢t when
;L> k2 (a) and k2> kl (b).

0
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plants) are considered. 1Indeed, it will be shown (section VI.4.c) that
for high order systems, kmax/k2 should be made smaller than some real
number, preventing (6.32) from being used. This result is not obvious
here, because a first order system is stable for all values of gain
factor k . Therefore, one has to use the other possibility (6.31)
which is more compatible with stability problems. Noting (Fig. VI.4.a),
that kmin/k2 should be as large as possible to guarantee satisfactory
spread (i.e., T.D.S.), we will therefore use for the remaining of this

chapter:

k, =k

1 max
{ (6.35)
k, <k

2 ° “min

vi.2.4 Results and Some Preliminary Conclusions.

We can now complete the above example (beginning of section VI.2.c).
In addition to the assumptions already made, we take:
;-

cl(t) = l-e ' kminsl ’ kmax.]'oo and w(t)=1 .

Following (6.35), kl.-loo ’ k2==l are selected. The design has thus been

completed [Appendix A3.8.a for details),and the overall system responses to
unit step input are shown on Fig. VI.6.a for different values of Pmk .
The mean square value of the noise at the plant input is shown in

Fig. VI.6.c where it is compared with the results obtained in a L.T.I.
design (Appendix A3.8.b) which acheives roughly the same time domain
specifications (shown on Fig. VI.6.b) as the L.T.V. system. Thec>

results confirm that much may be gained in reduction of sensor noise

effects at the plant input, by using L.T.V. compensation.

Several comments are appropriate at this stage:

a) It is seen that Ac(t) of (6.2) is indeed equal to




System Step Response

e

System Step Response

LTI design j

21‘ 11|
s

(c)

w
H
w

Mean square value of the
noise at the plant input

Figure V1.6 System Response to a unit step command (a) LTV design,
(b) LTI design. (c) Comparison of sensor noise rejection '
at the plant input between the LTI and LTV designs. !
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ck (e) = ¢ (t) , but this is true only for the simple first order
max “min

system, and not in general for more realistic systems, even in the case
where there is no uncertainty in the dynamics of the plant.

8) Note that (6.18) and (6.22) do not have h(t,t) =0 ,Vkx ,
vt , implying that our optimum design is a first order one, which is

of course not realistic. Therefore the above should be considered only

as an academic excercise, giving us, however, insight as to how k k

Lt T
should be chosen, given the uncertainty range [k_. , k ]
min max
y) Note that h (t,T) 1is a stable design for k € ]0, [ ,

which will no longer be true (as already noted) in high order systems.

VI.3 Some Approaches to the More Realistic Problem.

NI.3.a Generalities.

It is noted that when the plant is a pure gain factor ( as in the
previous section), the minimization of the sensor noise (of strength
GS ) effect at the plant input, is equivalent to the minimization of
sensor noise (of strength u = cfl/k2 ) effect at the plant output
(which is also the system output). Therefore, the derivation in VI.2
can be considered as a direct extension of Wiener filter theory to
linear nonstationary problems. As is well known, the derivation of
the optimum filter in such cases, is always done on the closed loop
impulse response h(t,T) , which does not explicitly feature the
complexity of the plant and therefore a first order optimum solution
is usually obtained (with white sensor noise), which is unsatisfactory
if the excess of poles over zeros of the plant ep 22 . (Indeed, as
h is first order, so is the open loop £ , implying in the latter case

that g possesses at least one derivative — which is impossible to

implement precisely).

b
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In L.T.I. systems, P(s) and G(s) commute, so:

X G (2 1 b GP 2 . n 4
- |2 - S <
°P.I.(w) 2n ;L 141! Onn(w)dw 2n ;{ i T A P dw
1 o 2 an
! = | 5 i o —on
! 37 f‘HI Onn(m)dw with ¢ P (6.36)

This means that the mean square value of the noise effect at the plant=-
input °P i (w) 1is equal to the mean square value, at the system

. - 12

output, due to a distorted sensor noise power spectrum ¢nn/!P' o EE

is therefore seen that H then emerges with the proper excess of poles
" : ; =] :

‘ over zeros, provided the sensor noise is distorted by P « 'This

reveals that the problem posed in (6.2) is a very realistic one, if it

i can be solved in general.

VI.3.b The Problem Posed by the Solution of (6.2).

It is assumed in the remainder of this section, that the input

r 1is deterministic, implying that Dz(t) is also deterministic

(N=1) , and P(s) =k/s with k € [kmin'kmax] . Under such assump-
tions:
i 4 ch t [ 2n, 2
=2 (6.1) becomes o = — st R (6.37)
[
P.I. & 3t
- k 2 7 i

and (6.2) becomes (using (6.12) and & c:/kz2 12

& vt Minr(D (t)-}:h(t )D, (£)azg) 2 + [2‘2_&;);25;1
] ’ - '_ 2 5 2 ' g 2 t)ag M 3t ' J
2

Ot—rt

(6.38)

Note: If P(s) 1is more complicated, then only the second part of the

bracketed term would be modified, becoming in general a combination of

R L WL
terms in b R R i ol where n is the order of the plant, olus
~
" *on, n, ”h, 3n,
some cross-product terms, f;F- Ba - 'hz....,——?r--fz- Fow i
i = 7, it 4

T R [ MY A SR Y e ISy PORENIY, B < . T 1
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Using a variational argument, i.e., letting hz = h: + £ , where

h;(t,r) represents the optimal solution of (6.38) and f(t,T) is an
arbitrary small impulse response belonging to the admissible class of
solutions,‘i.e., satisfying h(t,t) = 0 , it can be shown (the deriva-
tion omitted here, as the results are not used, but they are similar to

those of Appendix A3.5), that the optimum hz(t,r) is the solution

of:

Vf,Vt,t>c2, ([

~

Ot
O =t

- - ]
hz(t,c)YDD(cl,cz)dc VDD(t,cz)J

o
f(t;)+ah—2(t,5)a—f(tc) de. = 0 (6.39)
et at 2° -9t 0 2 o

Mathematically, (6.40) is equivalent to:

€

ghg(t,c)ym}(c,ﬂdc =yDD(t,1) o YE . . for TSt  (6.39.3)
{ zm;

5t (t¢,71) =0 Vet (6. 39.b)

which is unrealizable. This can be understood as follows. For t=T
with T fixed, the cptimum solution exists and since (6.39.b) should
be satisfied at t.='r , the optimum solution is dependent on T . Therefore
at t=T'>T , the optimum solution is a funtion of T' , and unless
(6.39.a) happens to be satisfied (which can only occur by chance),
this optimum solution for t=T¢ is no longer optimum for t=T ,
and therefore there does not exist a solution to problem (6.38) and in
general to (6.2). The reader may note that when 3h/3t 1is replaced
by h 1in (6.38), i.e., when the noise effect is considered at the

system-output (rather than at the nlant input), then (6.2) has a unique

solution (derived in VI.2). This may be surprising at first glance,

DN T, 4 . N T e
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but note that in the latter case, (6.39.a) does not need to be satis-
fied, thus explaining the uniqueness of the solution.
One alternative, therefore, is to modify the original problem of
(6.2) and solve: (for a given fixed T )
T
2

Min [ (ac?(t) +we) o

h2 0

2
P.I.(t)]dt (6.40)

It is shown (Appendix A 3.5) that (6.40) has a solution given by an
Euler-Lagrange differential equation. Another alternative is to distort
the noise characteristics in such a way that the resulting hz(t,T)

will have the proper excess of poles over zeros. For this purpose, we
introduce artificially an equivalent autocorrelation function of the
noise:

2 e 2 .e
Fgtesn] o (-1)" O & e =%) (6.41)

where e31 is an integer.
By analogy with the L.T.I. case (recall (6.36)), we then try to

minimize:
2

A
Oy é fo hy (€080 hy (£,8,) Yy (848,048, A2, (6.42)

in place of (6.1). Under this assumption, (6.2) becomes:

2.2 1

| (6.43)

Vt , Min {Acz(t) + W(t)
h

which has a unique solution as shown below. It should be recalled

that in L.T.V. systems, g and p do not commute and therefore ciut
# oi £, " The weighting function W(t) might then be used to try to

partially compensate for this. The remainder of this chapter is

.

devoted to a detailed @iscussion of the above two approaches.
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Solution to the Filter Problem by Distortion of the

Noise Characteristics.

VI.4.a Statement of the Problem.

The minimization of (6.43) was solved in (2.5), giving for the

optimum solution hz(t,r)

£
E3T Yo lteT) = {) “z‘t'c’”oo“'”*ﬁm“"”“

Using (6.41) and recalling (6.9) that 02 = (p2- Pl)'pl-]"'Cl is

deterministic because the input signals are assumed to be deterministic,
we get:

g 2

£
e e
D, (£)D, (1) (j)hz(t,z:)oz(z;)ozmdu (-1) “o W (t) {)hzu,c)a (z-1)dL

(6.45)

17 e
e 2 3
D, (£)D, (1) éhz(t,cmz(c)oz(z)du (-1) ONW(t)_BTe h, (t,T)
(6.46)

A necessary condition is therefore:

ae

;—; hz(t,r) = - y(t)Dz(T)u(t-T) (6.47)
v e-1
h, (&0 =0
are_l . =t

Integrating with respect to Tt , and requiring that

we get:

ae-l

81._e-l
1., 87F

where the notation Dz(t) = f Dz(c)dg is used.
0

1 1
hz(t,r) = y(t) [Dz(t) -D2(T)] u(t=-1)

4

D

Let Dg(t) ;-l(c)dc and integrating (6.48) with respect to T ,
gives:
ae-2
N OrE

1

2 2 1
hz(ttf) = y(t) [Dz(t) -Dz(r) - (t-T)Dz(t)] u(t=-1)




bt b

T

116
After (e=2) more integrations with respect to Tt , we have:

2
O L o

3 e _ € o 2
hz(t,T) = Y(t)[Dz(t) DZ(T) (t-T)D 51 5

A

e
2
1 A
Dz(t)]u(t-r) = y(t)Q(t,T)ult-1)

b3 (e-1) !
(6.49)
Inserting (6.49) into (6.45) gives:
{ e-1 2 -
y(t) = D (t)/ { (-1 Telw(t) + [ Q(t,2)D, (2)ag (6.49.a)
2 \ N 5 2
with
. - e e e-1
[ ote,0p, (2)ag = I(Dzm =D, (5} = (£=3)D7 (&) +...+
0 0
o1 (e=p) *T 3
(-1) ——‘—(e_l) : Dz(t)) D, (z)dg (6.49.b)
Integrating by parts,
t t
[te-t)p (mrag = {(t—C)D;(C)] o *+ [pprorac = D5 () because D) (0)=0
0 - 0

) o
2 [ 25 1 1 3
(f)(t-c) D,(L)dr = | (£=0)D,(0) | ¢ + {)‘t"’f’z“’d‘ = D, (t)

e
DRI o i e s e e )

Therefore (6.49.b) becomes:

% e 1 % e e-1 2 -2 3
 Q(t,2)D, (5)dg = D, (£)D,(t) = [ D, (£)D, (L)AL =DJ  (£)D (£) +D° (£)D] ()
o 0 & 2 2

k_e-k k+1 e-11 e
+...4+ (=1) 02 (t)D2 (B) +...% (=1} Dz(t)Dz(t)

(6.50)

Noting that:




1X7

£ e e 1 & e-1 )
- [ D@D, (@de = - po(e)D,(8) + [ DT (£)D(L)dg
0 2 2 0 2 2

e 1 e-1 2 e=2 2
- Dz(t?pz(t) £ D2 (t)Dz(t) - D2 (C)DZ(C)dC

e 1 e-1 2 e-2 3
= Dz(t)Dz(t) + D2 (t)Dz(t) - 02 (t)Dz(t) + ..

e-2_1 e e-1 - e
+ (-1)7 D, (e}D (L) + (-1) f D, (£)D, (2)dg
) 0
' (6.51)

.50) becomes: . i

¢ +
[ ote,0)p, (@)ac = 10 [ o @S @a
0 Q

)

so finally:

' t
Y(t) = D.(t) / ( 1Y) + -1 [ b_(@)p(@)ar )
2 N 0 2 2

]"1_2(t,T) =

2 e-1

-1 e e e-1 (t-1) " _e=2 e-1 (t-1)
Dz(t)[Dz(t)—Dz(T)-(t—T)DZ (E)4 S O, Tie) . (<) )1

T

e e
on(t) + é D, (£)D, (2)dg

e

£l
(-1) Dz(t))

w(t=1)

(6.53) holds for e 1,2,3..., and it can be checked that:

e~1
h(t,t) = 2 oo = ae-l H{E ) -
& ot

implying that the system obtained is of order e+1l ( e+l poles and

no zeros).
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VI.4.b. Analysis for different values of e

Vi.4.ba e=1
When e=1 , (6.53) becomes

Dz(t)[D;(t) -D;(T)]u(t-T)
hz(t,r) = (6.54)

2 i | b
ch(t) + 02 (t) /2

Tf W(t)0§ = U is a constant, (6.54) is associated (Appendix A 3.6)

with the Differential Equation (D.E.):

c 1. X o
D DD D, 2 D
w g 2 ]- [ 2"3 2 3 1
¢ . - et — e .3 =
.h2] y+’.202q 3D Jy+ lnzq 2 = q+3(D) 5 Jy D,aX
2 2 2 2
A - >
= y o+ Ql y+ 02 y = ngx
(6.55)
where
D
g - _____%_3__ (6.56)
w+ (D) 7/2
1

Recalling that h = 2¢(142) = with 2 ¢ p*g , we have: ¢ = p'P;1-12

and:
-1 -1 -1
h = p°p, 9-2(1"’? P, 22)

at L o

1 - -1 -1 -1
= PePy t4,0 (142,) T ((142,) 7) T(l+pep, L)

2

YD)

-10 . . -1. ir
p*p, *hye ((1+p P, 12)(1+12) )

-1 -1 -1 -1
= PP, hz-((l-o-zz) + PP, -hz)

=1
As (l+22) = l-h2

h = prpy thye (L+h, (pepyt=1)) (6.57)

As we know from L.T.I. systems, the problem of sensor noise rejection

at the plant input becomes crucial in the region where P(s) has its
e "

asymptotic behavior, k/s P , so we can restrict ourselves to gain

factor uncertainty with p-pzl = k/k2 é A . The differential equation
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associated with h = )\hz‘ (l+h2()‘~l))-1 is obtained as follows:

[(A'l)hzl o+ uly + @y = (X—l)qux
[l+(k-l)h2] : Yo+ ay + ay = ((A-1)02g+a2)x+alx+x
-1 § . T
[1+(A-1)h2] : ¥+ aly +[02+(>\-1)D2g]y = x+alx+a2x
-1 e s
[h2[l+()\-1)h2] ]: § + @y +[a2+()\—1)02g1y = D,gX
(6.57.a)
(h) : %+ ay +la+(A-1)D.gly = D.gX
3 2 : £ (6.58)
In a practical problem: 1
g D, (t)
lim Dz(t) =K , lim Dz(t) &0 . s Eim s = K and
t=x t=x t=o
, 2
lim g(t)*Kt = 2
t=o
Therefore the asymptotic behavior of the D.E. (6.58) is:
4y, 22,2
9+t+ 2Y 2X (6.59)

t

This is a Cauchy-Euler type of D.E. Through the change of

variable t=eu , (6.59) becomes:

¢ + 3y +2\y = 2AX (6.60)

B.I.B.O. stability . guaranteed for (6.60) and therefore for (6.59).
We can then apply a theorem by Cesari ([C5], p.38) which states that if
(6.55) tends asymptotically to (6.59), as t-=>« , and if (6.59) has

bounded solutions, so has (6.55). Therefore, we conclude that i
V>0 , (6.55) secures B.I.B.0O. stability.

VI.4.b.B e=2

2 2 Y
Dz(t) (DZ(T) -—02(:) + (t-\')02 (£)]

(6.53) aives: h2 (t,T) = t u(t-1)

2 2
clw(t) + [ b (2)D;(2)dg
N U (6.61)
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Following the same procedure as above h(t,T) is associated

with the D.E.:

hl : ¥+ a, (B)y + az(t)§r +a .ty » lnz(t)q(t)x (6.62)
with o
1 D
3 4 2
ul B 3029 S D2
D, (t)
gt) & 2
2 } (2)p(5)a b B 5
a- D_(g)D_(g)dg
N 4 2 A X D 2 2.2
0 02=3D29-75—D29-4 D—+12(D)
2 2 2
2 .3 1.2 2 I52 S 1 2 l.)2 2
: ! a, = A02q+12(02q) -6Dzbzg - 3; (30(D29) -3029) +21029(q)
! b 3 5, b, b
" 12(5—2-)3 - G emwig e s D—2D—2 ;
2 2 - 2%
{
; As t o , (6.62) is equivalent to:
|
4 ?‘+%9+%§'*%Y‘%x (6.63)
t
Using (t =e’) this Cauchy-Euler D.E. becomes:
Y4 Ey+ 1ly + 6ly = 6AX (6.64)

(6.64) has bounded solutions, if all minors Ai (Routh criteria) of:

€ 1 o
E ' lex 13 & [»0 ., il { i
A 0 0 6 A<1l

poss

Therefore, B.I.B.O. stability is secured for (6.62) if 0<A< 11

byl N AU
- o~

A
.

This imples that k €11 kz . and therefore if we have to cope with

uncertainty such that kmax’ 11 km B.I.B.O. stability is secured

5,
when kmin<k2 » which is a very poor choice, as far as the system
4 response is concerned, (recall (6.35) and the discussion in section

vVi.2.¢c).

PR




Vi.4.b.y e=3

(6.35) gives:

2
3 3 2 (t-1) 1
Dz(t)[Dz(t) -DZ(T) - (t T)Dz(t) P l— Dz(t)l

hz(t.r) B u(t-1)

2 ¢ 3
o W (t) + (f)oz(c)oz(c)dc

(6.65)
h(t,t) is then associated with a D.E. whose asymptotical behavior is
given by:

[h]: y[“ +E'§+3—2-y+2§{,+——2“ Yy
= 2 3 4
€ t t

which is equivalent, after the change of variable ¢t =el

% 410 y[3] +35 § +50 y +24%y = 24)X

A sufficient condition for stability is then given by:

| 10 1 0 0

|50 35 10 1
0 . 50 35
0 0

Note that the uncertainty range one can cope with efficiently in such

a case is only 25/3 (recall (6.35)).

VI.4.b.§ Analysis for e >3 and Conclusions

As e increases, we can develop similar relations. To secure

B.I1.B.0. stability, one gets sufficient condition
gie X <. K (6.68)

with 1lim k =1. It becomes once more clear that stability is conflict-
Q:"l

ing with the sensitivity of the system response to parameter uncertainty.
Note that our filter is an "all pole" filter and a big improvement

might be obtained by inserting proper "zeros". We have not pursued
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this direction, since the filter is L.T.V., and it is rather difficult
to introduce those zeros in a systematic way.

As for e>2 , the stability problem prevents us from coping
with large uncertainty, the corresponding systems are not so useful.
However, for e=1 , no stability problem occurs, and therefore the idea
arises to use the "second order system" obtained with e=1 , and to
doctor the "equivalent transfer function" by inserting a L.T.I. far-off
zero-pole package in order to come out with the desired excess of poles

over zeros. Without loss of generality, we used a package similar to:

K(s;z)

(6.69)
(sz+2; W s+w2)n
PP P

where n, 2 'Cp ,wp are to be suitably chosen by the designer.

VI.4.c. Synthesis for Large Gain Uncertainty.

VI.4.c.a Philosophy of the Synthesis Procedure

Let the uncertainty range, [k k 1 and the T.D.S. be given.

min’ max
It is found experimentally that if k1:=kmax (recall (6.35)) is used,
then the nominal response cl(t) is best chosen close to the prescribed

time domain upper bound.

Using (6.35) k2:=kmin is first chosen. This leads, in general,

to the slowest possible response signal, which may or may not be
satisfactory. If not satisfactory, kz <kmin (6.35) is adjusted until 3
the response signal for k =kmin is satisfactory. This can be under-

stood physically from the fact that specifying a larger uncertainty

k ] means that 2(t,1)

range [k2 ’kl] than the actual (kmin' -

handles a bigger burden due to uncertainty, which then leads to an

increase in its "Bandwidth" and thus a smaller spread Ac(t) for the
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considered range [k k ] [k2 kg

min’ max

As a consequence, the sensor noise effect at the plant input is
increased, but there is still preserved a certain improvement over
L.T.I. design, as seen from the examples below. Note that the factor
W(t) in (6.1) can also be used; however this is, in general, only
efficient at small t .

In a general sense k =knun does correspond to the lower Time
Domain Bound but k =kmax does not correspond to the upper one,
because as k-»kmax , corresponding signals have the tendency to
oscillate around the nominal signal cl(t) (see for example Fig. VI.8
and VI.10). Therefore, if one is to acheive T.D.S. this can certainly
ve done by cut and try, i.e., once k2 has been selected, to correct
the nominal signal cl(t) in order to satisfy those T.D.S. and then
derive a new k2 to satisfy the lower bound ard so on. The above
'cut and try' is always inevitable whenever a 'trade-off' optimization
criterion is used as the basis of design, whereas the primary specifi-
cations are in the form of performance bounds. We are at least finding
a systematic cut and try procedure.

In order to determine the L.T.I. pole zeros package, the concept
of "frozen-time open loop transmission" is used. This means that for
each fixed time to , the L.T.V. differential equation becomes a L.T.I.
one and thus one can define the associated L.T.I. open loop transfer
function A(s.to) (Fig. VI.7). We are aware of the fact that L.T.V.
system can be unstable although each of its associated A(s.to) leads

to a stable design, which means that the tool used here is certainly

not a very accurate one. However, it turns out that this concepts can

be applied successfully here and therefore we did not investigate more

e
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accurate methods like the application of the EPLTI concept (see
chapter VII).
The package is chosen to give a very small contribution to
A(s,to) in the low frequency range. Therefore, it suffices to consider
the worst case, i.e., the AM(s,to) with the biggest bandwidth
(Fig. VI.7). Thus it isconceivable that a 'time-varying far-off pole

zero package' may be better.

VI.4.c.B Example and Results.

Assume a set of step command inputs of amplitude Gi , with

<a?> ., =1 , and let the T.D.S. be as shown in
i~ Average over i

Fig. VI.8.c. The plant P(s) = k/s 1is considered with %€ (1,100].

Furthermore, it is assumed that the strength of the white sensor noise
2

is o_ =1 , Following the above procedure, the nominal system response

N

A

cl(t) = (1-e ) is selected and paired with k x==100 "

lskma
k2 =kmin==1 and W(t) =1 are then first chosen. The corresponding
system response to a step command are then shown in Fig. VI.8.a for
different values of the gain factor, and it is seen that the T.D.S. are

not satisfied. The sensitivity of the system response to plant

uncertainty can be decreased by decreasing W(t) , giving then less
emphasis to the noise performances. For instance with W(t) =.01 (Fig.
VI.8.b) over-design is acheived. By cut and try W(t) =.1 is found
satisfactory and the system response to a step command are then shown in
Fig. VI.8.c for different values of the gain factor k .
Note that the plant is first order, therefore a far off zero pole
packade is not needed in the present case since the closed loop trans-
mission, described by (6.58) with all terms in D/D and D/D dropped,

15 sccond order, i.¢

e

s
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Vi.8.a (W(t) =1.) VI.8.b (W(t) =.01)
Figure VI.8.a LTV system response to a Figure VI.8.b LTV system response
command input for different plant gain to a command input for different
factors when W(t) =1. [P(s) =k/s]. plant gain factors when W(t) = .01

[P(s) =k/s].

upper bound

lower bound

o ol ol S S s S v bo ol . e time
0 1

Figure VI.R.c LTV system response to a command input for different
plant gain factors when W(t) =.1 [P(s) =k/s]
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2p'p »(0,)° 20b A (D)2
- 2.2 * 2 22 2
) s T W N T o B By 1.2
u+(D,) /2 u+(D,) /2 u+(D)) " /2 u+ (D)) /2
2 2
(6.69.a)
k2—k 1 t
_ where here: D, (t) = —- € , pyt) = [Dp (g ,
13 1 0
= w(t)c2 /k2 = .1 and A = k/k
e ke S RN
From (6.69.a) and recalling that & = h(l-h).l , we get:
X 2ntp 203D (0.)?
5 22 . 2 2 2
i i g A . 1.9, =
u+(Dy /2 u+(D.) /2 u+ (D)) /2
2 2 2
| : i -1 157 P
| The plant is [pl:y =kx , so [p "] : ky =x andas g =p "%
J we have:
| 20'p 203D A (D)2
s 272 . 2.2 3 2 e
; lq] y + 3 = e T =g 15— X (6.69.b)
{ u+(Dz) /2 u+(Dz) /2 2 u+(D2) 72
{
As c. (s) = L wehav-(c{\—-tr)
157 T 5(s+1) (s+2) (s+3) i i
6 i : "
Tl(s) = T5t1) (s42) (543) and Tl(s) is therefore associated with the
D.E.
\ (t,) V46V + 11y + 6y = 6X (6.69.c)
*f By definition, hl (obtained with k=k1 ) is associated with tl '
: therefore, the prefilter f 1is such that:
i i : b
or ” (6.69.4d)
f = hl 'tl
Using (6.69.a) and (6.69.c) we get:
vt IR Sl By e -
[£] Ny, PO R, [y+6y+11y+6y]=6[x+ 13 X
2 u+(02) /2 u+(D2) /2
© le
k (D) 2D.D
e ( k_l ' i - ? ; ) }
2 u+(02) /2 u+(Dy) /2 (6.69.e)

X
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The mean square values of the sensor noise effect at the plant-
input are shown on Fig. VI.9 for different plant conditions. The results

are also given for the L.T.I. design [Appendix A3.8.b] which achieves the

1 o

L.T.I. Results

oZJa.a 5 & 8.7

k l 1 5 20 40

£ U I 1
1 2 3 4 5

Figure VI.9 Mean square value of the Noise at the Plant Input for the
L.T.V. and L.T.I. design (P(s) = k/s). .

0

same T.D.S. shown in Fig. VI.8.b.
There is clearly a big improvement in the noise level at the plant
2 ;
input. Note that OP 1 (t) *0 as t—+> and for t+0 . This can

be understood from the fact that as t=+® , the L.T.V. network behaves

like an open circuit and as t®0 the signal e (t) (Fig. VI.1l) which

is fed into G 1is very small and slow-varving, so a large bandwidth

for G is not required. It is very interestina to note that




Design

LN

Figure VI.10 LTV system response to step command inputs for different
plant gain values (P (s) =k/52) -

L.T.I. Design

Gy 7
SLMC g

1 2

Fiqure VI.1l1 LTI system response to step command inputs for different
plant gain values (P(s) =k/s?) .

(Fig. VI1.7) the bandwidth of our system has a maximum, leading to an

oxtremum in the noise level, both occuring roughly at the same time as

the maximum of S% . The trade-off between noise level and bandwidth

e At DS e YU, PRI . A TN
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L.T.I. Design (k=100)
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—

400
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time

Figure VI.12 Mean square value of the sensor noise effect at
the plant input for different values of the gain
value [P(s) =k/s?)

of a system needed to handle fast varying signals is once more very
clear.

Let us now consider the plant P(s) = k/sz with k € [1 , 100]
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with the same set of command inputs as before. The T.D.S. are shown on
Fig. VI.10 for this case. The nominal output cl(t) = (l-e-t)3 is
once more selected and associated with k=k1 =kmax= 100 . Using the
above procedure, k2 =kmin =1 1is taken, and by cut and try W(t)=.1
is found satisfactory for the T.D.S. to be matched. However, as the

plant is second order, we need here a far-off pole-zero package in order

to be able to realize the compensation G . n=1 is selected in

2
w

(6.69) and the package used is: £ ——3—12151———3— c The addition of
(s +2prps+wp)

such a package should not affect too much the signal responses obtained

with the "second order system". Therefore, we took as a criterion, a

phase lag of at most 5° at the maximum crossover frequency

W, = 20 rps. (Fig. VI.7) in the family of A(s,to) depicted on that

fiEi:e. The 'best' package is then found to be the one for which

z = 70 rps. Cp Y S wp = .75xz . 1In a similar way to the previous

example (equations 6.69.a-e) the D.E. for f and g can be obtained;

this step is skipped here to avoid lengthy derivations. System output

responses are plotted in Fig. VI.1l0 for different plant conditions.

Using then the T.D.S. shown on Fig. VI.10, a L.T.I. system was designed,

for which the system responses to command are shown in Fig. VI.1ll.

For both designs, the mean square value of the sensor's noise at the

plant input is plotted in Fig. VI.12 for the two extreme cases. f

Improvement is seen for all k € (1,100] .
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VY.5.a

It was explained in section VI.3.a, that the minimization problem
of (6.2) has no solution and might be replaced by that given in (6.40),

which has a solution (Appendix A3.5).

Let
Let
For
Min

"

where

8(t,.t)

(6.70) becomes

T -
Min | [(D(t) -[n

h2 0

As shown in Appendix A3.5,

the Euler-Lagrange D.E.

2
3 h

2

it

No closed form solution exists,
by numerical methods.
future research, but as we want to avoid numerical methods, we assume

hz(t,r) has the form:

Solution to the filter problem by means of the Euler-

Lagrange differential equation.

Statement of the problem.

2
a
Puls

o
k

kl/(s+a1)

k2/(s*a

v
2
o) - [ h,e,00@an? we +or (t)] at

hz(t.C) +a2h2(t.c))

(u

0

) -
(t,7) + D(1) [D(t) =~ [ h,(t,£)dz] = 0

s with uncertainty in both
S+a
be paired with output signal

we want to:

is defined in (6.1), with (6.1la)

2
) = uNé(C1 Cz)

= Q
N N|z N

€
L& 00@an %) +u [ (350, (6,0 +an (t.c)lzdc] at
0 2 22

(6.71) is equivalent to

in general, and (6.72) must be solved

This is certainly a direction to pursue in some
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h2(t,T) = A(t) (8(t) - 8(T))u(t-1) (6.73)

where  A(t)  is unknown and 6(t) is given.

VI.5.b Solution to the filter problem and outline of the

synthesis procedure.

As shown in Appendix A3.7, when (6.73) is inserted into (6.70),

the Euler-Lagrange differential equation is:

.. t ..
A(tez(t) = 29(t)61(t) + J' 62(C)d§ ) + 2A6 (t) (te(t) -Sl(t))
0

v &
z "
+ A(em(:em -8, (t) - uz(tez(t) - 28818 (6) + [ ezmdc) s ‘i%l 20

0
_ _ D(e)w(e)J(e)
- . (6.74)
t A :
where J(t) = [ (8(t) -8(5))D(Z)ar and 0, (t) = [ 8(prac
0 0

(6.74) is a singular differential equation which has in general at least
one unstable solution, because the coefficient in A 1is always negative,
while those in ; and A are both positive. To extract the stable
solution involves here too, numerical methods, which we want to avoid.
However, it seems that by a proper choice of A(0) and A(O) , we
can obtain quasi-stable solutions of (6.74), that is, solutions which
can be considered as stable over some finite interval [0,T] , big
enough for our purposes.

The synthesis procedure is then very similar to that described
in section VI.4.d.a. cl(t) is chosen to lie within the prescribed
T.0.S., close to the upper bound and is paired with Pl corresponding

to the highest gain value k=k . We then try first k, 6 =k
max 1 max

.

k,, kmxr As before, a cut and try procedure is then used to find
« '

ky and W(t) such that the output signals corresponding to
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k€ Jk . .k ] 1lie within the T.D.S.
min’ max

VI.5.c Examples of application and results.

VI.5ue.o E.(‘s_)_‘z k/s

The plant P(s) = k/s with uncertainty in the gain factor
k € [1,100) is considered here. This example was already considered
in section VI.4.d.B. The T.D.S. shown cn Fig. VI.13 are to be satis-

fied for system step command inputs. The nominal output response to a
=t 3

unit step command is taken as cl(t) = (l-e ) and is paired with
k=% =k =100 . k,=k . =1 is then selected, 6(t) in (6.73)
! miX 2 min
. k,=k,
is taken as 6(t)==D1(t) , (6(t) =D(t)) , where: D(t) = cl(t) i
1

and it is assumed that c;==1 , implying that u = c;/k; = ] In

a manner similar to the procedure described in VI.4.d.B. W(t) =1 |is
“irst chosen and by cut and try, W(t)=.1 1is found to be satisfactory.
"erefore the 'optimum' system (under the present assumption) is
aed from (6.73) as h2(t,T) = A(t)(Dl(t)-Dl(T))u(t-T) with
‘) the solution of: (recall 6.74)
ol € 32 . \
\tDl(i’) -2D1(t)D2(t) + g Dl(c)d;) + 2AD(t)(tDl(t) -Dz(t)/
4
/. Dy(E) | D(£)D] (t)
+ - - = - —_—
A \D(t) (tDl (t) Dz(t)) ok 2 / o 2

eing Appendix (A3.6), the differential equation associated with h2

is:

PRL A | é) [, A2 . a].
|h2]. y - v \2 “8 +y LZ(K) + - J = ADX

B>

and therefore (22 = h2(1-h2) )

o il B [LA2,AD_A
[121. y y \2A 5 ) +y {Z(A) + AD] = ADX
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1 : - . . g
so g = p2 '22 is associated with the differential equation:

: e S EXgid a \ _ ap:

The prefilter f 1is obtained by satisfying

9 =K I

n (1+21) f = tl
or:

-1 3 =L

f (1+11) 21 tl = (1+£1 ) tl

where tl is the specified overall transfer function associated with
CI(S) 8

P =P v Le@iay TI(S) = in the present case.

R(s) (s+1) (s+2) (s+4)

The system response to step command inputs are shown on Fig. VI.1l3
for different plant gain factors. It should be noted, as stated above,

that all these solutions are "unstable" at infinite t , but can be

regarded as "stable" over some finite interval of time. This is not
inconvenient if one has to satisfy T.D.S. over a finite interval [(0,T] ,
as is often the case with L.T.V. designs (recall that L.T.V. designs

do not give identical results for [0,T] and [a, T+a] ).

The effect of white sensor noise (of power spectrum o:*-l. )

&

1 , is shown on Fig. VI.14 for different plant gain factors, and is com-
i ! pared with the results given by a L.T.I. network which achieves the
4‘ ’

EZ 1 same T.D.S.

E .

; VI.S5.c.8 P(s) = k/s+a

i3

Consider the plant P(s) = k/(s+a) with uncertainty in

a € [(.1,1.] and with no uncertainty in the gain factor. Let us

select k2 i i k2 =1. , and assume that cl(t) = (l-e-t)3 is paired

with Pl(s) = kl/s+1 . Let 0§= 1 and let the T.D.S. to step command

inputs be as shown in Fiqg. VI.15. Once more, by cut and try, W(t)=.1 ,
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Figure VI.13 LTV system response to a step input command for
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Figure VI.1l4 Mean square value of the noise at the plant input due
to white sensor noise for the LTV and LTI design.
is found satisfactory giving, for different values of a , the responses
to a step command shown in Fig. VI.15; g and f can be obtained as
in the above section. (The details are therefore skipped here.)

1t should be underlined that our synthesis technique cannot cope

with large uncertainty in both the gain factor k and the pole a .

(Note that this was also true with the first approach.)
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Figure VI.16 Typical LTV system response to step command inpute
for different plant conditions. P(s) = k/(s+p)

.

oy

This is due to the fact that our optimum design is very sensitive,

o

I X
I' because it is "tuned" to the two extreme cases, Pl(s) = s*:ax and
{ max
b k

3 min X

t P (s} = ey (interchange of  — and e does not help).

min

is means that both approaches give correct system responses [Fig. VI.16]

for the gain factor values k € [k_. ,k ] when a=a_, . However,
min’ max min
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at kz:kmin , it is seen [Fig. VI.16) that an intolerable undershoot

occurs for some o € (a ) which increases with a . This is

. 0@
min max

due to the fact that the "equivalent open loop transfer function" needs

more "gain factor" when a=aqa than when a=a_. , in the time
max min — e
interval where undershoot occurs. Suppose that by means of the
weighting functions W(t) , the "gain factor" of the "open loop
transfer function" is increased to handle the undershoot problem. We

then have a L.T.V. system which no longer has better noise performances

than a L.T.I. design which achieves the same T.D.S.
VE.6. Conclusions

This chapter has presented a first attempt at using optimum
filter techniques to handle the uncertainty problem by means of LTV
compensation. While the problem has not been fully solved, in the
sense of providing systematic design procedures for systems with large
plant uncertainty, a respectable beginning has been made for achieving
TDS despite large gain factor uncertainty. It was emphasized that the f

minimization problem:

Min(ac(t)? + w(t)o? (8)) , Ve
h PI

2
had no analytical solution for realistic plants (of order n21 ).
Two alternatives were then presented, leading to realistic
solutions with substantial improvements over LTI design in terms of
sensor noise rejection at the plant input. We can conclude that this

chapter gave us a better understanding of the achievements and the

limitations that can be expected from LTV networks, when used to cope

“ith the uncertainty problems. Considerable work has yet to he done ;
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to arrive at a comprehensive synthesis theory for large and gereral
plant uncertainty. A possible direction is try numerical methods,
inasmuch it was noted that no closed form solution can in general be
expected.

It is seen that the improvements were much more spectacular with
N.L. compensations (recall FORE), as might have been expected. One
price paid is obviously in terms of stability, since the stability
problem is usually more difficult in non-linear systems than in LTV
systems. Also, one must design for specific input classes in non-
linear systems and must carefully check for the system response to the
occasional signal belonging to other classes. While, here, we also
tailor the design to a specific class of inputs, one can much more
easily determine its response to other input classes. However, it
should be mentioned that a significant restriction of LTV systems is

that one must know precisely when a specific input (of a certain class)

begins in time.

G s

e o
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LARGE PLANT. IGNQRANCE FOR PRESCRIBED TIME

DOMAIN SPECIFICATIONS OF A "NONLINEAR TYPE".

B e =

|

VER. L Introduction.

VII.l.a Generalities.

It was shown in chapter II (section 4) that some classes of N.L.T.V.
plant W can be characterized by a set Puls] , denoted as the EPLTI,
which is associated with the system input ia(t) and defined over a
set of acceptable system output Cu[t] . This equivalent character-
ization of the plant (that was proven by application of Schauder's fixed
point theorem) lends itself very easily to quantitative specifications
and is therefore a powerful tool in the synthesis of nonlinear feedback
systems. This technique has been applied successfully to the quantitative
synthesis of feedback systems that included L.T.V. or static nonlinear
uncertain plants. This chapter presents the first application of the
EPLTI set concept to dynamic nonlinearities.

The synthesis technique for L.T.I. plants that was reviewed in
chapter II (section 1) implicitely assumes T.D.S. of a linear "type",

L@ 1T ri denotes a command input applied to the system of Fig. VII.1l

0={d(n)}
{r(n}=R ) e} {xn}
# (6 |—o—{w={w] fen)

{ztn}

Figure VIT.1. Feedback structure witn nonlinear uncertain
plant sot w
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and ¢ its corresponding output, then: V&l =xr2 - cl(t) =Ac2(t) {T-10 .
However, it is conceivable that the T.D.S. are of a different nature,
i.e., linear time varying (L.T.V.), nonlinear time invariant (N.L.) or
nonlinear time varying (N.L.T.V.).

a). T.D.S. of a "L.T.V. type" means that the T.D.S. on the system
impulse response are different for different instant of application of
the impulse. This problem has been discussed elsewhere [H8], [H6].

8). T.D.S. of a "nonlinear type" means for example that the specifi-
cations are different for different signal amplitudes or the T.D.S. for
a ramp input are not necessarily the integral of those for a step, or
more generally given (T.D.S.)i for r, and r, =ger, then
(T.D.S.)j #gt(’r.D.S.)i . This problem is considered here.

¥). T.D.S. of a'nonlinear time varying type combines a) and 8)

The solution to this problem is therefore a combination of the solutions
to a) and B) . |

VII.l.b Nonlinear time domain specifications (N.L.T.D.S.).

Fig. VII.2 shows the acceptable response tolerances for a

c(t) ) TOLERANCES FOR INPUT u(t)

TOLERANCES, INPUT 1/2 u(t)
(NONLINEARLY RELATED
TO u(t) TOLERANCES)

Nl—
T
Fv

e TOLERANCES, INPUT 172 u(t)
2

(LINEARLY RELATED TO u(t) TOLERANCES)

t

Figure VII.2. "Linear" and "nonlinear" tolerances on step response.
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unit step response r(t) =u(t) . In a linear system, those for r(t) =
.su(t) are one half of the former, as shown. In a nonlinear system

they may be as shown in Fig. VII.2, of the kind usually associated with
time optimal response. It is conceivable, for example, that one might
want the unit ramp response to differ significantly from the integral
of the unit step response, which is impossible in a linear system. One
should note at this point that there is considerable ambiguity with
N.L.T.D.S. so defined. 1Indeed, with L.T.I. system the response specifi-
cations are the same when the command input jumps from 0 to 1 ,

I to 2" or from 5.2 e 6.2 .

This is, however, no longer trwe for N.L.T.D.S. and therefore all
the specifications that will be considered here are relative to the
reference r=0 . Obviously, one can also incorporate other references
than zero by adding some other contraints which then increase the
complexity of the problem.

It is shown that it is possible to achieve N.L.T.D.S. of the type

of Fig. VII.3, by using a L.T.I. compensation G(s) (Fig. VII.1l) and a

4 -
3~
» 2 v =
P: Kiy© + Kay X
2~ Ky, Ko € [1,10]

STEP DISTURB. (1-4): MAX. 30% OV.

i 1
t
5 10

Fleure VIT.3. Problem statement.

|
|
1
|
!




nonlinear prefilter F .

VL. }Y.e Nonlinear prefilter.

The problem raised by the synthesis of such a nonlinear prefilter
F introduces us to the research area of "open loop nonlinear synthesis",
for which only primitive solutions exist up to now. The problem is:
given a finite set of input signals R = {r}, design F such that to
each input r, there corresponds a specified output ui(t) (Rig. VIE.1).
One obvious necessary condition for the existence of such an F is that:
if ti(t) = rj(t) for t € [0,t1] then wu, (t) = uj(t) for the same

interval.

VIE.2. Synthesis procedure.

ViI.2.a Philosophy of the design procedure.

Following section II.4, the a - EPLTI transfer function set
; .a S TR
associated with input i (t) € I over the admissible output set ca[t]

and the nonlinear plant set W , is

[0 ]
P [s] = {p‘;l (s} , 2% € 2%te1 , w, €W} , which is well defined
\Y v

for all frequencies w € @ = [0, . It was shown [H2] that frequency
domain specifications suffice to guarantee T.D.S., therefore the
synthesis technique uses frequency domain concepts.

In the frequency domain, there is associated with each system
input ia(t) € I aset Q(y) of permissible equivalent overall transfer
function T%*(j,) [see [S2)]. The synthesis technique for L.T.I. systems
that was discussed in chapter II (section 1) can now be applied and
Equations (2.1) and (2.2) are rewritten here as

Gliw) P30 |

SUP Aln - | €8 1n3Tu(jw)|
1 1+c(j,,,)Pi’()'w)
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where 1 ranges over all possible plant parameters, and a over all

possible command inputs.

Satisfaction of (7.2) at some freguency W leads to a bound
Bu(wi) on the compensation G(jw) , due to the input ia(t) « 'Thas
is repeated for each system input ia(t)E I, leading at each wy to RN
bounds Ba(wl) (Fig. VII.4). G(jw) should satisfy all these N

bounds and therefore the final bound B(wl) (ir dashed lines in Fig.

VII.4) on G(jw) 1is such that:

B(wl) = g sgp Bq(wz) with 8 = ‘G(]wl) 3] -
This is conceptually done at each ay € 2 , and one then obtains the

optimum L.T.I. G{s) in the same manner as in [H2), i.e., as the one
which lies exactly on its bound at each 9, (S
Once G(s) is determined, the set {u} (Fig. VII.l) which is E
to be paired with {r} can then be obtained. The nonlinear prefilter
F must produce u,(t) € {u} when the input is ri(t) € {r} . some
primitive solutions are given in [Hl1l] and in Appendix A2.

VIiI.2.b Details of the design procedure.

These are best understood through an example.

61y §

Figure VII.4. Bounds on G(jw) due to system

input i% at frequency W,




[ (P é TS (5 1 | £ AT L vt @ (r=1)

I & L Ko
RPS
L l I =S e TS O ST Y 1 1 ; LAty (2
! 2 fro) 20 0 200 8 )
) 1 LT T i T - L g foE bgr o (r=4g)
4 20 Z5) 2 2o 40

Figure VIi1.5. Frequency domain specifications due to command inputs.

VII.2.b.a Specifications.

SET OF SYSTEM INPUTS It consists of:
1) Step inputs ruf(t) , ‘rl € [1,4) for which we want to achicve the
N.L.T.D.S. given below.
2) 0-4 step disturbances for which the maximum tolerable overshoot in

the system response is to be 30 percent.

; Therefore we will take here: b {ia(t) oAl o DR TR (5 S

e
*

o
PR

{r= %1, %2, +4, a=%1, +2, +4) and expect that specifications

will also be met for intermediate values. If the latter turns out

3

unt ruve, then the design specifications would be enlarged to include those

v
.

ey

system inputs for which the specifications are violated.

N.L.T.D.S: They are shown on Fig. VII.3 for step commands.

Those are chosen such that, given the tolerances on Ci(t) . those on

Cj(r) associated with input rj(t) = lri(t) have quite closely the

property Cj(At) = ACi(t) . Consequently:

a8 = ey ~ » " -
c ) = Jeywe™®au = afe, (he V% - 3 fe,(ore Mge = 2 ¢, (s) (7.4)

0 0 0
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2
The inputs considered are steps, so Rj(s) = A Ri(ks) and

C.(s) ‘e (hs)
T.(s) & RJ(S) = —3 = T, (s) (1.5)
) j x‘Ri(xs)

Thus it is only necessary here to concentrate on the T.D.S. of a
particular step command (say r. = 1) and translate them into frequency
domain specifications (Fig. VII.S).

The frequency domain specifications associated with rj(t) = Xri(t)
can then be deduced from (7.5), (Fig. VII.5,

PLANT W - is given by:

Wi use k122 +kE =u (7.6)

with uncertainty k k2 € [1,10]) independently.

1 ’
VII.2.b.B Characterization of the EPLTI set.

The acceptable system output Cr(t) is represented here by a
second order system step response, in order to obtain an analytic

oxpression for Pa[s]. For step inputs of amplitude r ,

“Cnwnt -
Cr(t) =r (1 - 3~————3- sin (w Vl-cnz t + cos lc ))
= . 2
OQur T.D.S. translate into:
2<C w <4, and 5<w V1-g : AR (T4
nn n n
If W é w VY1-g £ ,» then:
0 n n
1-2¢ P
Crz(t) . gt ( 1+ —-—l——E o 2ot ————11-5— e 28n¥nt cos2ut
2(1-Cn ) Z(I-Cn )
[ g
Y -
- 2 0 '"t(coswoc * e sinu t) + -—-“—-2- e c“wntsinzwot) (7.8)
1= v1=g
n n
r22w 4(35+4C w )
n n n

and 1o 211 B e ter =
) of b -3

s(s+20 w )(52+2C w_S+w 2)(sz+4c w S+4w 2)
nn nn n nn n

|
|
|
|
|
|
|
|
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Using (7.6)
2 2
rw [ rzwn kl(35+4cnwn) ]
u(s) = it 2 k,s + 5 | (7.9)
s(s 427 w s+w ) - (s+2C w ) (s"+4C w s+4w )
nn n nn nn n
(s+2C ) ( 2+4c w_s+4w 2)
o Cp(s) i i n n n

and p (s] = =

U(s)

k,s(s420 o ) (s7+4g v s+aw % +20 2k r(3s+dc )
(7.10)

with ST given by (7.7) and for n=1,2,..5,6. EPLTI sets are shown in
Fig. VII 6.a for various @ and a . Note that for small ®w the
EPLTI set is composed of two disjoint regions (for +r and -r)
becanse of the term in 22 in W (see 7.6). Such phenomena does
obviously not occur with L.T.I. plants. At very high freguencies,
however, the equivalent templates (Fig. VII.6.a) tend toward a straicht
line similar to L.T.I. plants, due to the high frequency gain factor
uncertainty.

In order to characterize the plant W for 4 =+1 , + 2 , *+ 4
we used a second order model system step disturbance response,
leading, for Pals] , to an identical formula as (7.10), with sub-
script d 1in place of r , and with r=-d .

How are cd and Wy then chosen?

The specification on the maximum tolerable overshoot is trans-
lated, as usual (see Appendix Al) into a minimum tolerable damping

value. TFor instance, here Cd 2 .36 for 30% maximum overshoot, or

cequivalently to:

sup G(jm)p;ﬁjm) l
i

. < 3.4 db (7.11)
146 ()P * (Gu) |

where 1 ranges over all possible plants and o = 7,8...,12.




PLANT TEMPLATES

Figure VII.6.a. Templates at w=.5,2,10 rps.
due to step command inputs

el o 2T o B4

Unfortunately, wd cannot be known beforehand, leading to an unavoid-
able cut and try procedure that will be discussed later.

This specific problem is easier, in the above sense, if there air.
specific bounds on the disturbance response, for a class of input
disturbances,when disturbance attenuation imposes a bigger feedback

burden than satisfying command response specifications.




VII.2.b.y Derivation of the bounds on G(jw)

- Bounds on G due to command inputs.

As explained in section VII.2.a, for a=1,2,...,6 , each
(Pa 3 Tu ) determines a bound Ba(wl) on G(jw) at w, € . by
satisfaction of (7.2). Using (7.3) one gets the final bound Bc(wz)

due to command inputs, which is plotted (hard lines) on Fig. VII.7 for

10db

N e € [20,400])

Figure V11.6.b. Templates at «=2.,10.,40.,200 rps. due to step

disturbances 'd! €[0,4)
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3 some frequencies.
- Bounds on G due to disturbances.
If one is to derive G(s) that satisfies the bounds on G due to
command inputs only, one ends up with a final design for which the cross- a

over frequency of the equivalent open loop transfer function s € [4,80].

Therefore for such a design, one guesses that Wy &~ 4 rps and
min

——
¥

~ 80 rps for the disturbance response approximation. It is obvious
max

-
v

4 that those values represent approximate minimum bounds for both

W and “q , because any G(jw) which will also take care of the

“min max

idditional disturbance specifications can only be more conservative, and

therefore vy Can only be bigger. So, one guesses some range for
f

; ) a
iy [«ay (5,400)] and derives corresponding templates P (s] for

1™ 7,8,.¢4,12 which are plotted on Fig. VII.6.b for some W
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Correesponding bounds Bd(wg) due to disturbances are then derived and

ylntte? fdotted lines) in Fig. VII.7. A new G can be derived, as will
be explained later, and therefore one ends up with a set of possible

values for Wy - Conceptually this is repeated until the real range of

oy corresponds to the one predicted.

VII.2.h.9 Derivation of G(jw)

Using (7.3), the final bounds B(w) on G due to the set I of

inputs, (.e. for a=1,2,...,12) are then obtained and plotted on

Fig, VII.8 for some w . The optimum G(jw) lies on its bound at each

«w and an approximation (Fig. VII.8) obtained is:

10 »
G(s) = L4 107 (s+1.25) (s+2) (5+120)

3 3 (7.12)
s(s+5) (s+60) (s+300) (s+400) (s +800s+10 ")

30+~

w
(o)
20
3(99) 40) : .

10 A , :

| : p20) #5 |

-100 =90 0 50

DEGREES
Figure VII.8. Final bounds on G and derivation of G
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for an excess of 3 poles over zeros.
The equivalent open loop transfer functions corresponding to the

nominal plant Kl=1 , K2=1 are then plotted on Fig. VI1.9 for the
values r=1,2,4 of the command step inputs. We have (Fig. VII.9)
wy ~ (20, 400] which is within the predicted range [5,400), implying
some overdesign, and therefore one should begin again the design with
a new prediction, say (10,400). However, in the present example,
removing the points corresponding to wd € [5,20] leads to new templates
(Fig. VII.6.b in dashed lines) which, in turn, leave the final bounds
B(w) unchanged. Therefore G(jw) derived previously remains unchanged

l too, and the final design is given by (7.12).

‘ 8

1 Note that at high frequency all three loop transfer functions

! (Fig. VII.9) are identical. This is due to the fact that Pulsl is

independent of r at high frequency, as seen from (7.10).

VII.2.b.€ Derivation of the nonlinear prefilter.

Conceptually, one can derive 3 different prefilters corresponding
to the 3 different linear time invariant designs that were obtained.

The method presented in [Hl] and in [A2] can then be used to actually

build the nonlinear prefilter.
4 However, the relation (7.5) in T suggests that one can use a ]
‘ similar relation for F , namely:

Fj(s) = Fi(Xs) with A such that: rj(t) = Xri(t) (7.13)
Indeed in a typical L.T.I. design, L(jw) copes with plant uncertainty ;
therotore, at least for high gain factors, L/l+L=1 from the command
input point of view, and therefore T(s) = F(s) . If the reference is

taken as the unit step, then (7.13) is rewritten as:

Fr(S) = Fl(rs) (7.14)
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Figure VI1.9. Nominal open loop transfer function for r=1,2,4 . {3
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Such a nonlinear prefilter F contains L.T.I. networks with time

constants proportionnal to input magnitudes. In an analog computer

realization, this is done by letting |r| control the potentiometers

and it has the great advantage of avoiding interpolation.

Following [H2] the prefilters gi(s) ’ 93(5) y ga(s) are then

derived for the three different command inputs considered. In order to

derive Fl(s) , we normalize all three gg , 1i=1,2,3 by using

(7.14), i.e.,

F @ eF e  F, (8F S ana F, (5)LF (G . These are

ot

plotted on Fig. VII.1O.

Recall from chapter II (section 1) that 3&(5) is obtained by:

| G(s)p%*(s)
inf | (s)
‘» S F: 1+<;(s)9‘;<s)

= Min Tr(S) (7.15)

where j ranges over all possible plants and r=1,2,4

(7.15) is then rewritten as:

-60 §F
.m sr4'N Q:'N

Eon

Figure VII.10. Normalized needed prefilters gi N(s) g Tul,8.4
g N e ’

e e o e e
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: | G(s)P?(s)
1?f i gi,N(rS) = = Min Tl(rs) (7.16)
3 | 1+G(s)Pj(s)
% Taking into account that the inequality sign > in place of = in

(7.16) implies overdesign, Fl(s) is thus chosen as to satisfy:
- = i =
F | F,(s) M;.n ff’z,u(S) (F17) for =11 24

It is found: 6.25 x 60

4 Fpla) o» > (7.18)
: (s+60) (s“+4.75s5+6.25)

which is plotted in Fig. VII.1O.
One needs now to check that for all w , and for r=1,2,4
G(s)P%(s)

‘ sup| F_(s) & < Max Tr(S) (7.19)
{ j = 1+G(s)Pj(s)
H

i when j ranges over all possible plants, which, in the present case,
is casily satisfied. If this were untrue, i.e., if 3 some frequency
range Qu on which (7.19) is violated for some r , then one must

use a smaller tolerable variation A Tt(jn) over that range and modify
the design accordingly. |, This procedure is certainly convergent, but

ray lead to some overdesign, the price that has to be paid in return for

-

such a simple nonlinear prefilter.

T

¥

VIT.3. Results.

vIiX.3.a. Command inputs.

% : As shown in Fig., VII.ll.a.&b., the nonlinear feedback system
:' satisfies the N.L.T.D.S. for Ir] =1,2,4 . Because of the smoothness
of the nonlinearity it can reasonably be expected that the N.L.T.D.S.
will be satisfied for all lrl € [1,4] . For example, the system ;
4 response to a step r=3 is plotted in Fig. VII.12.
? However, nothing can be said for lr] >4 and lrl ¢l . "The
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Nonlincar system responses to step command inputs
r' = 1,2,4 . (a) positive commands (b) negative

commands .
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system response to truncated ramp and sinusoidal command inputs are

shown in Fig. VII.13 and VII.l4. a & b respectively.

be quite reasonable, although the amplitude of the sine wave for

example, varies between -

VII.3.b.

5 and +5.

Disturbance inputs.

They are seen to

From Fig. VII.15. a and b it can be seen that the specifications

of 30% maximum overshoot for the step disturbance responses, is satis-

fied over the range of plant uncertainty.

For step disturbance greater than 6 , however, the system becomes

unstable for some plant parameter values.

This result is expected

because the resulting equivalent linear plant representation predicted

instability for the design used.

Fig. VII.16 and VII.1l7.a to d present the system responses to
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truncated ramp and sinusoidal disturbances respectively. They are seen
to be reasonable, although the amplitude of the input signal varies
between -5 and +5. (Recall that the design was guaranteed for

step disturbancas 4 € [-4, 4]).

5.5 5 53
| \ ; .
E | j4°
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' 4 (@)
i |
w : i {01
a ] |
=} , y |
i g | 1.2
‘ 2 I
"
j % -25
= 3 !
= ]-38
H (U]
{ Lo !
H ® et 5
f 5 1.44 2.16 2.88 1
. TIME (x10)-2 i
Figure VII.17. Nonlinear system response to a sinusoidal disturbance
E d = 5sinwgt for k1=10, k2=1. (a) wg=1 rps,
(b) wg=10 rps, (c) wy=100 rps, (d) wp=1000 rps.
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Fiqure VIT.v8. Nonlinear system response (3) to a co
step command (1) and step disturbance (2) for the plant

condition Kl1=10 , K2=1 .
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VII.3.c. Other system inputs.

A combination of a step command and a step disturbance leads to
satisfactory results, although the superposition theorem does not hold
here.

For instance, Fig. VII.18 contains plots (for k1 =10 , k2 =1)

of the system response to a command input r=-4 and a step disturbance

Fi

o

9.1
67
[©5] 43
2
' (2 19
&
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g 29
5 i
& {
%)
! 53
77
{ PR (o))
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E ] il Jowr
O -3.25¢ farit ! te2
- i | I
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TIME (x 10)
Figure VII.19. (a) white sensor noise (system input). ‘T

(b) nonlinear system response (2) for Kl1=10 ,x2=1]
to a step command (1) r=-4 in presence of (a).

5
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Nonlinear system response (3) for K1 = 10, K2 = 1 to
a step command r =1 (1) and the disturbance (2).
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d=+4 occuring 1.5 seconds later. Fig. VII.19 represents the system
command step response in presence of tremendous (the amplitude of the
noise input (Fig. VII.19.a) varies between =10 and + 10) uniform
white sensor noise. Fig. VII.20.a -c shows the nonlinear system response
to a step input command r=-4 in presence of some disturbances which
varies on [-4 , +4] leading once more to satisfactory results.

Finally, Fig. VII.21 differs from the previous case by the fact
that uniform white sensor noise (of strength o; =1) has been intro-

duced, in order to show a realistic case.

V" I | T 1 I 1 1 1 1
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-390 y 3 -
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-476— -
-553}- -
¥
1 s - 1 1 1 )| 1 |
0 .24 .48 q2 .96
TIME (xI0 )

Figure VII.21l. Nonlinear system response for Kl=1, K2=10 to a command
r=-4 in presence of disturbance and sensor noise.
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VII.4. Conclusions.

The EPLTI concept was used successfully in the design of a non-
linear feedback system to achieve N.L.T.D.S. It was shown that a L.T.I.
compensation G and a nonlinear prefilter F handle this nonlinear problem
and achieve quantitative specifications both on the command and on the
disturbance signals.

Nonlinear specification on the disturbance was not emphasized
here but this could easily be handled by our design techniqgue.
Applications of the synthesis procedure to L.T.I. plants is straight-
forward, leading to the synthesis of L.T.I. 1loops with nonlinear
prefilters, to achieve N.L.T.D.S.

The problem of a nonlinear prefilter has widely opened and supplied
considerable motivation in the research area of nonlinear open loop
synthesis. Some primitive solutions are presented in Appendix A2 ,
where it is shown, when possible, (i.e., for a large class of problems),
how to use the same relationship on the set {F®} that characterizes
the set of {T2®} , where T® is a representative nominal T from
the set of acceptable transfer functions for r® . This approcah
has the advantage of simplicity in both the derivation and implement-
ation of F , although it might sometimes lead to some overdesign, a
price that may have to be paid.

In our design, a L.T.I. G(s) was used which also accounts for
the simplicity of the design procedure. This obviously leads to over-
design in the bandwidth of the effective L.T.I. open loop transfer
function for some inputs. Certainly a nonlin=ar G would be much
better in this senseand this should definitely be one research direction

to pursue. Such a nonlinear G should present a different "transfer
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function" for each command input and disturbance considered.
In such a case, let {E}a be the set of inputs to G when

1
LQ a 4 "
ils= rl . There is a set because of the set W , i.e. each w in

W gives a different 2z . It is necessary that the nonlinear G acts

like G l(s) a fixed transfer function to the set {e)u , like 5%2(s)
1

to the set f{e} , etc.
=2

If disturbances are also to be considered, then the problem
becomes even more difficult.

Therefore, one should be aware that if the problem of a nonlinear
prefilter is a tough one, the proﬁlem of a nonlinear G is definitely

a very difficult one for which even primitive solutions do no exist.
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APPENDIX Al: CHARA A ._FEE YSTEM ST
BY MEANS OF A SECOND ORDER MODEL WITH TIME-DEJAY.

A justification is presented here for the use in chapters III &
2o-t3s
w “e~*d

VII of a delayed second order model TA(s) = as a means

S +20w_s+w
) o -

of predicting the overshoot in the L.T.I. system step response. Since
mathematical equivalence can obviously not be made, some examples will
be considered. We will show that if TA(s) is used, the predicted
overshoot is the same as that obtained experimentally. Using Equation
(3.1a) and (3.1b), Fig. Al.l is first derived which gives the well
known relations that exist between the damping factor Z , the over-

shoot and the peaking in [TA (jw)l of a delayed second order system.

) Peaking in
overshoot - 20, db of
L8 L
A |
-9 — 18, 1%L,
.8 - 16
7 -1 14.
.6 =12
.5 -~ 10.
.4 B
4 — 6.
2 - 4.
1 b (B8 5
Q\
D T S ... o | damping

Qe & R e T Ol T

Figure Al.1l Overshoot in the step response and peaking of IL/1+L
versus damping for a second order system.
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Consider the high order open loop transfer function Ll(s)
(7 zeros - 12 poles) used in chapter III, Fig. I1II.13, corresponding
to minimum gain factor k=1 . As k increases from 1 to kmax=1000,
the corresponding Lllk(S) is obtained by shifting the O db 1line in
Fig. III.13 by the amount - 20 log k . Table Al.2 gives the peaking

of Ll k/1+L1 versus k . Fig. Al.l is then used to give the
’ ’

xl

db
TABLE Al.2

T e : =

k peaking in | IT]_,k’ predicted overshoot actual overshootg

1 0. - - B

2 0. - -
3 0. - -

5 .3 .09 .09
7 1.35 <17 « X7
10 2.93 S .26
20 6.63 .46 .44
30 9.1 .56 «53
50 12.4 .68 .64
70 14.6 .73 .70
. 100 L7 .78 L
. 200 20. .86 .82
300 31, .86 .84
500 2%. .86 .86
. 700 21, .86 .88
1000 20. .86 «89

predicted overshoot in Table Al.2, which is then compared with the
experimental values (Fig. Al.3.a-c). Note the good agreement,
despite the shape of Ll(jw) (Fig. III.13). 1Indeed, Ll(jm) has

many corner frequencies in the low frequency rance and its shape in

the high frequence range (w > 600 rps) is far from resembling a second
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order system. Despite those two facts, it is seen that the prediction,
as far as the step response overshoot is concerned, is good.
This can be understood by considering the root locus of 1+L1,k ’
, the

as k varies, which is plotted on Fig. Al.4. At small k
dominant pair of closed loop poles are located on arc 2 (the poles of

arc 1 are very close to the zeros, even at k=1, so their effect can

be neglected, while those of arc 3 are far,relative to those on arc 2).
The pair located on arc 3 becomes dominant at intermediate and high

gain values of k , the poles of arc 2 being then very close to the
zeros. The effect of the two far-off pole pairs on arcs 4 and 5 can

be neglected, Eee [H7]). Therefore a second order model for T(s) can
be used here and this will remain true in general for systems with large
uncertainty, because of the universal character of the resulting

optimal loop functions ((H2], (S2]) for plants with large high frequency

gain factor uncertainty, to which this work is devoted. Note that it

is implicitely assumed that the two following cases do not appear, as

IL}

1+L

Pigqure Al.%.a. Figure Al.5.b.

Examples of open loop

transtoer functions, €4 to a step disturbance.

Corresponding system responses




discussed below.

lst case: IL/L+11 gualitatively as shown (see La in Fig. Al.S5.a
implying the system step disturbance response cd(t) of Pig. Al.5.b.

In such a case it is obvious that the overshoot cannot be characterized
by the above formula. Note that for such a system we would have a root

locus for 1+L qualitatively as shown on Fig. Al.5.c. Such a phenomena

G deanis

g |

Figure Al.5.c. Root locus of 1 + Ll,k(s) .
can occur at k==kmax , if the designer takes a very small damping

f  *or in his far-off pole-zero package [S2] in order to descrease !L[
very fast., Suffice it to say that (1) the L.T.I. system response
depicted in Fig. Al.5.b. is certainly not desirable.in general, (2) such
minor peakings in lL/1+L| should be avoided, especially if there are
bending modes present, (3) minimization of k does not necessarily

mean minimization of the sensor's noise effect at the plant input, so

a reasonable compromise is to use characteristics like Lb(jw)

(Fig. Al.5.a) rather than La(jw) -

ggg_ggggz L(jw) is qualitatively as shown in Fig. Al.6.a . Such

L - shaping can occur in designs where the plant template at w2>lu1

becomes "fatter" than at wy oo causing the bound on L(jwz) to be

significantly higher than on L(jml) . The effect of such a loop in
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Figure Al.6.a Example of Figure Al.6.b Corresponding
open loop transfer Bode blot of L
= function L(jw) e snadki l1+L

Fig. Al.6.a gives rise to two peaks in IL/1+L| as shown in Fig. Al.6.b,
and is usually achieved by a pair of complex zeros and complex poles in
L(jw) as shown in Fig. Al.6.c. It should be recalled that such pheno-
mena is less likely at high frequency because P(s)-*k/se . Therefore
at such frequencies, at least, the poles of L/1+L on arc 1 are practic-
ally cancelled out by the complex zeros of L , and therefore the complex
pair lying on the arc 2 can be considered as dominant and a second order
approximation is then legitimated. In those cases where, at low
frequencies, the loop A - B prevents the designer to use a second order
approximation, a more complex model must be derived unless overdesign
can be tolerated. Figure Al.6.c Root locus of 1+L1J(‘A)
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APPENDIX A2: NONLINEAR OPEN LOOP SYNTHESIS
The problem considered here is to design a system which achieves

N distinct output signals ul(t)...uN(t) when it is excited respect-

ively, by N different signals Rl(t)...RN(t) .

21 The Input signals are "qualitatively identical".

By "qualitatively similar" signal set, it is meant that :
Vg4 2K € R such that Ri(t) = KRj(t)(AZ.l),V t . This case was consid-
cred in chapter VII where the input signals were steps of amplitude r .
Recausec some empirical formula ur(t) = rul(t/r) could then be found

on the output signals, there existed a very simple prefilter whose

transfer function had the simple expression:
U (s)

Rl(s)

. 1 :
Fr(s) = Fl(rs) with Fl(s) a and RI(S) g - This

concept will now be extended.
As another example, assume that the set of inputs consists of impulse

Ri(t) = rid(t-T) P € R , which are to produce the set of outputs

shown on Fig. A2.l.a where V r the maximum value is y occuring at

u_(t) 4

Y=E}_

Y

l/rla

—

Figure A2.1.a. Time domain specifications as a function of s
the amplitude r, . :
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a time to inversely proportional to the amplitude of the input signal.

rat

Suppose that: u (t) = Brt e (A2.2.a), for which

to = ﬁ%— and Y ;%- . Therefore U (s) = —-59———- and as R(s) =r
¥ (s+ra)

we have: F_(s) B 3 B

(s+ra)

More generally, if u_(t) = g(r)t e-f(r)t then F_(s) = Sl
3 £ (s+£(r)) 2

This transfer function is easily implemented (Fig. A2.l1.b) on an anolog

computer, the amplitude r being obtained in this case, by integrating

o3
the input, i.e., r = [ R(£)dg S
0

As a third illustration, let the set {u} of desired outputs in

response to step-inputs be as shown on Fig. A2.2.a.

P g(!‘)/r
R(t)=r §(t-1 O

)
29y
f(r)

Figure A2.1.b Block diagram.

-

Figure A2.2.a. Time domain snccifications as a function of the
amplitude ri




W

o

ST

S e s

VR ol

o

—~—

S et L aiait o

e

ki o

R
L

A2-3

Say,
i 4 /= 2 1
e . -
u (¢, w. ) =1-——— sinw 1=t cos L. ) (AZ2.3.a) and
1 4 i nl /_l'Ci nl 1 1
ur(t,cr.wnr) = ul(t,clg(r),wnlf(r)) .Therefore:
wnrz wnlz f(r)2
F (s) = R RN 3 5 (A2.3.b)
= s 420 w  s+w s +20 w_f(r)g(r)s+w f(r)
rn n 1 ﬁ. n
£ o 1

which is also easily implemented as shown in Fig. A2.2.b

w%1f<r)2
R(t) =y Or——o—ol

zclun f(r)g(r)

1
—O-
2 en)?
o ! Figure A2.2.b Block diagram.

These simple examples suggest that when there exists a relation-

ship or. the sot {u (£)} , i.e., wu_(t) = E£(u, (t),r) then
r b 5 1

Frls) = :{lFl(s),r] which can be written in the general form:
p (r) sm+zl(r)sm-1+,...,+z (r)
F_(s) 2 o (A2.4)
= R R T
Py Pn

Fr(s) is easily implemented, as shown in Fig.A2.3 provided the
amplitude r is known ,6 j,e. F is "tuned" to this input set, so the
inputs must be restricted to this set.

Up to now we only considered steps or impulses for which the
determination of r was straightforward. 1In the general case, let

the sjgnal  R(t) of amplitude r be described by the differential

equation:
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A2-4

jo p-1 it
& Rit) +a. & R(E) # ouneyt & RIE) = x(8%30e) +8,6F 2 (e) #,...,48 8(2))
atP 1 4Pl p 1 q

with p>q . (A2.5)

Integrating (A2.5) p times gives:
t

p-q-1 pP-q p-1
R(t) +a, f R(z)Ag + ... +a_ [[... [R(g)Ag=r(t Lo Al OO - (5 il
1o e 1 q
p times 4 S (A2.6)
; pn(r)
zm(r)
X
p'l B8 .
t R — —O0r
-20‘ s 3 o
7 o —-

Fiqure A2.3 Block diagram for the Nonlinear prefilter.
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The left~hand side of (A2.6) is easily obtained, as it only involves
integrations of the input signals, and so is ©@(t) too. Therefore
Vt>0 , r can be estimated and its value is then used to compute
all zi(r) - pi(r) of (A2.4). It is important to recall that the
above is restricted to 'qualitatively similar' input sets.

A2.2 The input signals are linearly independent.

Here, consider the more general case of n independent input
signals R1 ,...,Rn P
o = e WA - . o7
AlRl(t) +x2R2(t)+ +Aan(t) 0 & )‘1"2 xr 0 (A2.7)
Consider the system of Fig. A2.4 where the sampling period T is

supposed to be very small. We have: (cf the modified 2 transform in

chapter 1V]

N N N-1 N N-K
U*(z) = AI(z)R*(z) +A5(z)R*(z N ) +A}+1(2)R*(z '—E_)
Nl
9 s +A§R‘(z "N ) . (A2.8)

Such an eguation can be written for each of the N pairs (Ri,Ui) giving

N eqguations with N unknowns (of course, if N is small there icsn't
T/N
e Al
T/N
ST -
e ;&’ e iy A2
R + T
) + u
O ——0
T/N *
¥ST 5 a oKST &
sl oy
K+1
¥ T/N
—
- (N~l)l” ~«N=1)
A 3] A
‘ N
Figure A2.4. System confiquration.




A2-6
enough flexibility for good matching - but one can use (N+M) terms

and choose M of these arbitrarily to suit the approximation, solving
for the remaining N ).

-

= 3 1
| N N N-1 N N-K N1 ['
E’i Rl(z ) Rl(z g e Rl(z i yese Rl(z 'N) Al(z) Ul(z)
. | N N N-1 N N-~K N 1
: Rz(z ) Rz(z N s Rz(z 'T) = Rz(z 'ﬁ') Az(z) Uz(z)
4 R L i o TR TORAE M e aen Pt o CHias e
= N N N-1 N N-K N 1
;» ! P}((z ) RK(z e Yis o RK(z "N Nike RK(z ,N) Ax+1(z) UK(z)
| N N N-1 N N-K N 1l
RN(z ) RN(z "N ) LR RK(z .—E—O o RN(z ’N) AN(z) ] UN(z)
b ! Using (A2.7) the rows are independent and (A2.9) has a unique solution
5 J which then solves the problem for the case considered.
i
{

e
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APPENDIX A3: DETAILS OF THE L.T.V. SYNTHESIS PROCEDURES

A3.1 Derivation of lz(t,T) from hz(t,r)

FE . In any realistic L.T.V. system, the closed loop impulse response
: hz(t,T) is the solution of a linear differential equation of order N
with variable coefficients, where the input x to be considered is a

unit impulse occuring at t= 1T . This implies [S5] that
A L
h2(t,T) = A(t)*B(T) u(t-1) (A3.1)

with Af*) and B(*) two N-dimensional vectors. By anology with

L.T.T. systems, if hz(t,r) is of order N , so is the open loop

o= i N S e

impulse response 22(t,1) , and therefore

i A T
b £2(t,T) = a(t)*B(T) ul(t-1) (A3.2)
|
|
; with af(+) and B8(+¢) two N-dimensional vectors.
-
3 ¢, and h2 are related through (6.11), i.e.,
4 t
1 [ 1o, (t,0) +8(e=0)h, (£, 1)dE = 8, (t,1) (A3.3)
B {) -
<1 Noting that T1<f <t due to the causality of h2 and 22 . and
g 1
R wsing (A3.1), (A3.2) in (A3.3) gives:
c
= et A@BOT+a®) [ @ A@AaBMO T =at) 80T (a3.4)
i 4 Lot
1 t T
A(t) = [ B(5)'A(£)d; an NxN array . (A3.5)
0
T A T T
Then (A3.4) Lecomes: [ A(t) +a(t)A(t)] «B(t) = a(ti[B(1) +A(t)B(T) ]
and identifying terms in ¢t and in 1 gives:
-l
n(t) = A(t) [1-A(t)) (A3.6a)
B(t) = B(E) (1-A(t)]T (A3.6h)
“

T Ty A T A AR AT oo (TS, " . T B W IR
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A3.2

Using (A3.6b) in (A3.5) and differentiating with respect to time gives:

Aty = n-n B Tace)
A particular solution is A(t) = 1

In section VI.2.b it was found that

(A3.7)

=1 T A % T
h,(t,T) =D, (£)T " (£)*D, (1) "u(t-1) with re)=FQu+f D, (%) D, (T)dL

(recall 6.19) so, from (A3.1), A(t) goz(t)ﬂ-l(t) and B(t)

The homogenous part of (A3.7) becomes:

fe) +ner o, ) o n7H )] = Ae) +A@T @ o)

which implies that the homogenous solution is:

A
=D2 (t)

Ao(t) = #('N-l(t) where ”( is a non-singular matrix ,

. -1
independent of time. Therefore, (A3.7) gives A(t) = 'ﬂ +K‘N )

and replacing in (A3.6):
{ a(t)
B(t)

Therefore from A3.2, A3.1,

aw) (K teeyy 2

1}

Be) (- K tenT

22(t,r)

1)

=l i
Dz(t)w (T)‘DZ(T) u(t=-1)

A3.2 Derivation of h(t,T) from & (t,T)

p,(e)n (&) (=1 (&) K™ (- K w7 ()b, (0 Tue-m)

Let

Bt t)

Y
Al(t) Bl(r) u(t=T1)
and
tee, 1 o u](f)'ﬁl(r)Tu(t-r)

where in the present case Al and Bl

(A3.8)

(A3.9)

(A3.10)

are the unknowns, while

a Hl arce given. (A3.3) to (A3.6a & b) can then be rederived with




A3.3

subscript 1
Therefore, (A3.6a) and (A3.6p) are rewritten as:

A (£) = (t) 1 -Ae)) (A3.11a)

B, ()" = (1 -he 78 07 (A3.11b)

= 4
and (A3.5) becomes A(t) 8 /8 (C)TA (g)ag = f 8 (C)TG )4 -Ao)) ez
0 1 K 0 i 3

or by differentiating:
Ae) = Sl(t)Tal(t) (-0 e)) (A3.12a)
A particular solution is Ae) = 1

The open loop impulse response £(t,T) associated with P € 1P

=1 k
p*p, .gz_kz 12 at p=k . SO

ADz(t)-ﬂ(r)-l-Dz(T)Tu(t-T) by using (A3.8) and

is (Eq. 6.9.b) %

git,r) = Alz(t,r)

e

defining ) k/k2 . By identification with (A3.10), al(t)

1

AD, (t)

ey

and Bl(t)T Dz(t)T and therefore the homogenous part of

(A3,12a) becomes:

Ao +ame) ™t

Ae) + Bl(t)Tal(t)l\(t) Dz(t)TDZ (£)A (L)

Fee)y +ame) I e)Ae) = o0 (A3.12b)

from (6:19).

(A3.12b) has no closed-form solution, in general, so let Al(t)
denote the solution to (A3.12b). Then: A(t) = ’n-+A1(t) '( where
ﬂC is a nonsingular matrix. From (A3.lla & b) and using the above

definitions of ay and ﬂl '

AL(E) = D, (8) (=A (8) K)

1

B0 = - K“lr\lm'l ne) to )

ttonce, from (A3.9), the closed loop impulse response associated with

e A R el e

SR i b i S
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Al o o

A3.4

P € ﬂ> is:

h(t,t)

a0, (0) (-h (0 K ) - KT o hrn”

-1 -1 P
ADZ(t)Al(t)Al(r) m(t) Dzm u(t-T1)

where /\1 is such that:

. -1 .
Al(t) = - A7 (t)ﬂ(t)Al(t)

1D2(T)Tu(t-T)

(A3.13)

(A3.13a)

In the special case where the input R 1is deterministic, or when

Dz(t) is a one dimensional vector T(t) becomes a number and so is

Al(t) (instead of a matrix). Then the solution to

(A3.13a) is

Al(t) = +w(t)-A and (A3.13) becomes, in this special case:

"(T)X-l
ﬂ(t)A

h(t,1) = sz(t)D () u(t-1)

2

A3.3 Derivation of the system response c(t) associated with p=k .

(A3.13b)

Let c(t) be the system response to a command

From Fig. VI.3,
c(t) = cl(t)-+Ac(t)

For the sake of simplicity, let N=1 ; this imples

r , when p=k

(A3.14)

that the closed

loop impulse response of the bottom part of Fig. VI.s is given by

(A3.13b). Under the above assumption, (Fig. VI.3):

t
Ac(t) = D(t) - [ h(t,z)D(Z)dg
k=k »

3

(recalling the definition of D from (6.9)).

with D(t) = cl(t)

Replacing (A3.13b) in (A3.15) gives:
D,(t) ¢

Ac(t) = D(t) - [ 20, @@  owa
m(t) 0
k. .~k
e X
where 02 = kl cl(t)

(A3.15)

(A3.15a)

(A3.16)
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A3.5 ,
(A3.16) can be r. .ritten as: |
t
fc(t) = p(e) - 2L f Mr(c)x'loz(c)zdc (A3.17)
T(t) 0
I'calling (6.19) we have Dz(C)2 = ;T(C) so
= A
[ (1 o (38)
Ac(t) = D(t) - D(t) = D(t) (A3.18)
L\=@r/ ], T (t)
'Jsing (A3.15a), (A3.14) becomes
k-k A
) 1 m(0)
clt) = cl(t) + k1 cl(t)(“(t)) .
So:
k-k A
A Fou (r.t_m_) ]
c(t) = cl(t) l.1+ kl (%) J (A3.19)

A3.4 Effect of white noise at plant input.

Under the above assumption that N=1 , we can use (6.1.b) and
(6.12.d) to obtain the mean square value of the noise at the plant

input when P=P2 , namely:

1. tt
2 =
.z, k; g({hZ(t’Cl)hz(t'cz)Ym‘cl'Cz)dtldiz (A3.20)
By anology with (6.12.4),
e ©(A3.21)
k

when the plant is any P = k € 1P . associated with the closed loop

irpulse response h of (A3.13b). Therefore, the mean square value of the

noite at the plant input, becomes in this case: (from (6.1.b) and (A3.21))
c €
of =L [ [ hee,conce.z )y (2. 80 dE. dE (a3.22)
r.1 % 60 | i 0 ke G i R

2
1ot the sensor noise be a white stationary process of strength ON '

H 2 \ = .
£C; YNN((‘l'(’z) = oNG(gl c2 50 (A3.22) becomes:
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A3.6
2
o ¢
o2 =3 [nwe,n’a . using (a3.13m),
R RO
' o2 t 22-2
2 :
oi L= ¥ f nz(c)zoz(c) 1 Sl A :
A 0 () 3
or 3
2 2
o D_(t) o : 4
og 5. —g— 2 E7) fﬂ‘(()n-zﬂ(c)dc . because (6.19) m(t) =D2(t)2
S kZ m(t) 0 s
and (6.2la) A = k/k2 . &
Finally: :
o2 p.(t)? 21-1
b [ 3w ] 5k
k; 23-1 T(t) P
o . (€)= (A3.23)
P.I. % 2
5 zn("“’) TE
k2 m(t) m(0)
2

2 :
As A = k/k2 , for any t-to ¢ OP.I.(tO) is a function of k .

Let u=A=2x , then for A#& , i.e. u#l ,

02 u-1l
°12>.1 () = &5, 0" <2 (—1—-&— )

k2 2 u-1 w(t) ﬂ(t)u
2
Therefore, ¢
2 2 2
i 5> NEME i S0 R " 8 ? &
3k k2 Jdu k2 kg 2 du
where
a1 1 (o)1
5 A0 S B ey T2l ), all derivatives being taken at
u-1 \ m(t) u
m(t)
fixed to
u-1
- R [ 1 e PO (w(O) )u zn("‘°’)]
du (u-1)2 "(to)u ﬂ(to) ™ (0) w(to) n(to)

(A3.23a)

which can be written as:




R

i g A T =

e

; A3.7

u-1 u-1
a _ 1 1'(o)u-l " 1-(‘"(!:0)) z zn(“(to)) ]
o= (u-l)2 Tr(to)"l |' wigd i J .
g1 A to 2 W(to)
; since m(t)) = m(0) + fo D,(2)°dr (recall 6.19), we have x = —— 31 .

Noting that 1 - x*° T 4 log "1 <0 for all x>0 , we conclude that

2
aJ 30

§J< 0 for all u and therefore —%"I— <0 for all k , which

imples that 02 (to,k)

P.I is a decreasing function of k for given to . E
- Note that as u=+1 , (i.e., A-+% ) then u=1l4e (with €
! ' positive or negative), and
D ) €
B i [1-X +e€elog X
‘ € n(to)
i i . wig® T
{ = — ———— [ 1 = (l4efnx+€ (2nx) " )+einX ]
2 1+€
’ [ ﬂ(to)
€ 2
= ﬂu{—ﬁ— after using a serie expansion.
m(t.)
0
2
( a3 ) P er: | mit,) ) ; 2
\ = = "(to) n 00 . which proves that UP.I. i
| u=1
1
; 29 1 k, I8
';'i and 7)1:. =~ arc both continuous at A =% (k = 7 ).
{

1 This explains the shape of curves A in Figs. VI.5.a & h.

: A3.5 Solution to a certain filter problem.
’ ‘

The problem in (6.40) is to find hz(t,r) such that:

¥ o.oia 2
Min [ (Ac®(t) +W(t)op

I (t))dt , i.e., if we take l-"-,i
h 0 5 s b
2 o
T t P -~ 3h2 2
Min f((o,(t) - [ he,00, 0080 + u [ == (t,0) dc)dt (A3.24)
hz QoY= 0 s ¢ 0 o
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A3.8
o2u(e)
with u = 3 ( W(t) 1is assumed constant).
k
2

Let us use a variational argument, i.e., h; = h2 0 + £ , with f an
’

arbitrary function satisfying f(t,t) =0

L ¢ 2
1=/ | (0, (8) - / (hy o(t.8) +£(£,8)D,(0)d0) “ +
0 0
;o l' dh 2
2,0 3f 1 3 .
m ({ | 5 (6:8) * 3¢ (6,8 dc] dt =1+ 8 with
4, I' € (<
L =~2 ][ | (0,00 - fhzlo(t.C)Dz(C)dC) / £(t,0D, (DA +
0 0 0
t 9h
waw ] il g o 3 @ bl el i o(£?)
A 2 3t |

indicates a positive function of f£(t,%) , which is zero when f=0

A necessary condition for an optimum is therefore that &8I =0

Figure A3.1
T P — — — —— — - u

/;/Area of integration
L a

I
!
]
T

—
We can write:
T t 3 T T
2,0 af 2 2,0 af
J = ({ dt({ oS {6,800 o= 0,000 gdc£ o= (t,8) o= (x,0)ae

by permuting the order of integration. Integrating by parts,

% th 0 t=T T T Dzhz 0
J=/ dr,[ St (t8) t‘(t,r,)] - [a [ > (B0 f(e,0)dt
0 . t=g 0 § dt
2
T dh, Ty Fhe o
v el el e - f g [ ——ES (e Q) e (0,000
o 0 0 at
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A3.9
So,
2
ey " 0]
§I = ~ 2 dt (D, (t) - h (t,2)D,(3)4z)D_(7) +u (t.z)
We. el e 5 2.0 2 2 e ? J
£(t,00dg |+ 2w [ =22 (1,0)f(r,)dg
J 9 3t
As 8I=0 , it implies that the optimal solution is given by:
( azhz(t,r) % ]
e ——— . - = V
" 7+ [Pp(®) / hz(t,()Dzch Dy(1) =0 t>1
3t 0
hz(t.t) =0 " vVt (A3.25)
3h2
\ e, vg

This proves that when P(s) -s + & solution to (6.40) exists. This
solution is not in closed form, even when in this highly idealized case

of n)(n) constant. However, numerical solutions exist.
: oh

Note that when P(s) =J% - in (A3.24) is then replaced by
2" 2 3"
“=— h,(t,z) and “— in (A3.25) is replaced by —— , while
2ol 2 2n
ot at 3
o, a"‘h2
- (T,¢) = 0 is replaced L et o [ ) e e (i o ) o PO |
at 3e™

A3.6  Obtention of the differential equation, knowing hz(t,T)

Let (6.54)

1

1
Dzlt)[Dz(t) =@ty ]

h’(t,r) = 5 1 22 u(t=-7) Q q(t)[Di(t) —D;(T)]U(t-f)
§ o W(t) +D_(t)“/2 v
N 2
?’.\3“‘,1) = ;!i h,(t,7) + a(t)D,(t)ult=1) , from (6.48)

" =9 q . e Shlis:
hz(t,r) (q) hz(t,T) + - hz(t,x) + (qu) u(t=t) + qu‘(t )
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Let y(t) = hz(t,TO) e xnlt)y = G(t-TO) , and we get:

- é ' é P
= () y + +
y b B

so the D.E. is:

As

Q Q-
]
o
N)
a
o
=
Q
rQ
[}
)
]
o
()
Vo]
+
o~
M .
—
[N
N
'
N
[te]
o
(=
S~

DZ 1

= ng - 2 == ng = === 3 (===

B

and therefore hz(t,r)

§+§(2D;g- 3

A3.7

3
Derivation of the Euler-Lagrange Equation for a special case. :

+
y) gsz

~
'
QR .

5, Dz) 2
D, D,

is associated with the D.E.: ;

ey

D

D D B D

2 ) ( v 2 2 2\ 5
— j+yiDg=-=2-—Dg-=-—4¢ 3(=— = gD_x

D, 2 B, 2 A D, ] 3 .

(A3.26)

We want to

) s
.~1xn ! i_(“z(t) (') h, (t
'2 0

when h_(t,q) A(t) (b

)D, (7)d \2w(t)+ ‘f:[ih (€.8)+a N, (€ C)lzdc]dt
G D2 z) C/ Uo 5t 2 'L a22 ’ J

(t) =0(r))u(t-r) , with O0(t) given.

The second term is rewritton as:

T=u;
0

1

t r .
|
L

2 3 z 2
3 h:(t, 2 +2n2h2(t.f,l 3t hz(t,f.)~ o.zhz(t.c) ]dc
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t
=uf { A e m-senam?i@iaamambe @ m-0enraiamew-oen?
[0}
i
E + 20 A(0A(R) (8(2)-8(2)) P20 a10) 28 () (em-e(m] dz (A3.27) i
4 &% 2 t
k Let y(t) 2 [ (9(t) -0(2))2dz , n(t) = [ (8(t) -8(5)dg
,.. 0 0
i f o2 3«2 . 2.2 . 2: )
E So Il=u\Aw+At8 +2AA6n+aZAw+2u2AAw+2csz0n
|

t
Let J(t) = [ (8(t) -6(5))D, (L)AL , then (A3.27) is:
]

T [ 2 T i
: Min | | (P, (8) = AT (ENTW(E) + Il(t)] dt = Min [ F(t)at . ]
Q A 0 A 0

i The Euler equation is then derived as:

P
7 ; g%=£(?_f') (A3.28)
E 3 aA ]
i E
which is:

J[DZ-Ale + u(At52 + ;\én +a§.’.w +u25ﬂ' + 2a2Aén]

.
d . .
“hse [AY + ABn + GQA‘“
=y ( AV + AD + i\(én+a2uo) + A(le'n+ér'1+a2ﬁ:)) (A3.29)

(A3.29) is rewritten as:

.- « . . . . oo . . 2 «2 2W
Ab + Aly+On+ah-asp-6n) + AlBn+én+ab-2a.0n-ap-t6 -J vy

JW
= =D, —
‘ 2y i
:
A After simplifications: (n=6t |, ¥ =26n)
| i s = 2 D.JW
% Aw+Aw+l\(6n-a§w-%ﬂ) = - 2u or: Bl(t)= 8(z)dg

N OY—r?

L8]

K(coz-zoelw) + 2;'\é(te-al) + A(é'(te-el) - a3 (8 - 200, +0)

2

D.wW

$ 2
( fe -mnogcmc) - __i_
3 2

=

u
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A3.8 Design details for both the LTIV and LTI systems.

A3.8.a LTV system

' The L.T.V. closed loop impulse response hz(t,T) of (6.27) is
associated with the differential equation:
ATy £
. n
hy: v+ (;- -z)y = D2/TX where T(t) =u + | D_()°dg
< D 2 2
\ 2 i
| Therefore the open-loop impulse response 22 = hz(l-hz)-l is
i characterized by:
o 2
i3 D
! | W o
(22]. y + (11 Dz v )y = Dz/"x
t so = P-1°2 = 2./k
l Qi tRg g by
i and
2
o 2 D
| e
gl: Y b 02 ﬂ/y
, S kSl g
The overall transfer function t, is such that T,(s) = Eisi- ~sel *

for cl(t) = l—e-t ;

A
since the prefilter f should satisfy: t. = h *f it follows that

R S Y I I Ty
¥ A S
——— —
)

, T |
-
=y 0y
! Hence,
! . 2 2
i ¢ D k D
' P -Jz_?z__z)y:_l 2y
i il Y \." D_, n k m
E | ™ . 2
i . D k D k, D
. - 1 ) Do) S
(hllz Y+(ﬂ-b—+(k 1)")Y‘k - X
2 2 i "
k . . k D
e gy -";(x+x(}-5—2-+(-—1-1)72))
3Dy 2 2
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Ty Ty

? A3.8.b LTI Systems

é A two degree of freedom structure (Fig. A3.2) is considered.

The LTI system roughly achieves (as seen in Fig. VI.6.b), for

P =k € [1,100] , the T.D.S. shown in Fig. VI.6.a for the LTV design.

| The LTI synthesis procedure given in [S2, H2] is used with

| 5.69 10°(s+8.) (s+1.57) (s2+2.34s+1.6)
| G(s) = >

(s241.65+1.1) (s2+45+8) (s24605+5500.) (5°+635+6000.)

3396, (s+1.5) (s+1.7) (s+4.67)
(s+.36)(s+226.)(52+1.32s+.67)(s2+4s+8)

F(s) =

.

f If the plant P = k/s with k € (1,100] is considered and the

T.D.S. are those depicted in Fig. VI.8.c, following [S2, H2], it is

{ found that
k 6 2
cis) = 11.43 10 (s+.6) (s+15.4) (s"+1.5s+.72)
(s+.8) (s+34.) (s242.35+1.8) (s2463.5+6600) (52+675+7400. )
i ' F(s) = 290.(s+.55)(s;1.43)
B (s“+s+1.5) (s+1) “ (s+31.)
3
lt "i
| & !
b
| A
I 4
F G P
|4 R O——m— O~ —0—
-1 N

i Figure A3.2 Two dearce freedom structure
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