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ABSTRACT

The problem of wave propagation in a random medium is formulated in

terms of Feynman ’s path integral. It turns out to be a powerful calculational

tool. The emphasis is on propagation conditions where the rms (multiple)

scattering angle is small but the log—intensity fluctuations are of order

unity — the so—called saturated regime. It is shown that the intensity dis-

tribution is then approximately Rayleigh with calculable corrections.

In an isotropic medium , the local or Markov approximation which is

commonly used to compute first and second (at arbitrary space—time separation)

moments of the wave field is explicitly shown to be valid whenever the rms

multiple scattering angle is small. It is then shown that in the saturated

regime the third and higher moments can be obtained from the first two by

the rules of Gaussian statistics. There are small calculable corrections to

the Gaussian law leading to “coherence tails”. Correlations between waves of

different frequencies and the physics of pulse propagation are studied in

detail. Finally it is shown that the phenomenon of saturation is physically

due to the appearance of many Ferinat paths satisfying a perturbed ray equation.

For clarity of presentation much of the paper deals with an idealized

medium which is statistically homogeneous and isotropic and is characterized

by fluctuations of a single typical scale size. However, the extension to

inhomogeneous, anisotropic and multiple scale media is given. The main

results are summarized at the beginning of the paper.
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1. Introduction and Suinniary of Results

The problem of propagation of waves in a random medium appears in a

number of areas of research and applied science. Some examples are atmospheric

optics , radio astronomy and underwater sound. The problem is furthermore an

old one which has been studied extensively. The earlier work (summarized in

the monographs of Tatarski~~ and Chernov2) employed the Rytov approximation.

In this approximation the logarithm of the amplitude is computed using first

order perturbation theory. The Rytov method is applicable whenever the

intensity fluctuations are small. When the wavelength is small it reduces

to first order geometric optics or W1~~. More recently, a different approxi—

mation which reduces the problem to a Markov process has lead to considerable

progress in cases where the intensity fluctuations are not small. This method

is explained in Tatarskii’s second book3 and in two excellent reviews of the
14,5recent literature. Nevertheless , important problems remain. In

particular, there does not exist a global view of what is going on in the

so—called saturated regime where the intensity fluctuations are important.

In this paper Feynman ’s path integral6 is applied to the problem of

wave propagation in a random medium. It provides a natural and systematic method

for attacking the problem, especially when the intensity fluctuations are

large and the Rytov approximation fails. The path integral is widely used

in quantum mechanics and statistical mechanics but It is expected that many

readers will not be familiar with it , thus the paper is meant to be self—

contained. The reader who desires further background information on path

integrals will do well to consult the book of Feynman and Hibbs.6

Because some readers vil~ not be familiar with path integrals there are

some pecularities in the organization of this paper. In real situations,

random media are often statistically inhomogeneous or anisotropic 
and1
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frequently have a power law spectrum in the scale size of fluctuations.

Path integrals are capable of handling all these complications. (In fact

the author first developed the method for propagation of sound in the ocean7,

a problem which has these complications and more.) However, it is vastly

easier to explain the path integral method for an idealized medium which is

statistically homogeneous and isotropic and whose fluctuations are charac-

terized by a single8 typical scale size L (smali compared to the distance R of

propagation). The bulk of the paper is therefore devoted to a study of this

idealized situation. Once this has been done the transition to realistic

media is relatively simple. However, this manner of presentation has a defect

for which only an apolo~ r can be offered. Because of the temporary restriction

to a single scale size L, results which are directly applicable to atmospheric

optics do not appear until late in the paper (specifically, Secs. (7) and (8)).

Finally, to illustrate the power of the path integral method (and, hopefully,

motivate the reader), a number of results for the idealized problem

will be summarized below . The translation of these results to more complicated

cases is generally straightforward: the details are given In the text.

Listing the results will require the definition of some symbols. This will

(temporarily) be done in terms of the idealized problem and the reader who

has worked on propagation in a random medium will find that they are familiar

objects; e.g., Tatarskii’s phase structure function D. For other readers,

the motivation for these definitions will become apparent in Sees. (2) and (3).

Actually, there are two distinct kinds of problems of propagation in a

random medium, corresponding to whether the scattering angles, single and/or

multiple , are large or small. If the fluctuations are weak so that a single

scattering approximation (Born approximation) applies there is little dis-

tinction between the two cases. However in a multiple scattering regime,

2 
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which is the case of interest here, the two kinds of problems are very

different. This is illustrated in Fig. (1.). The considerations of this

paper vi].]. be restricted to situations where the single and multiple

scattering angles are small. This is sufficient to cover the applications

mentioned above. The large angle multiple scattering situation is like a

problem In radiative transport and Is most efficiently treated by other

methods.

It will be assumed that the problem can be reduced to a scalar wave

equation with an index of refraction n(~~,t) which may depend on the frequency

w = ck. In a homogeneous medium (n) is a constant and for waves of a fixed

frequency can be set equal to unity. Defining

= 1 — n(~~,t) (1.1)

~i will be taken to have a zero mean and a covariance

(~~~~, t) ~~~ ‘, t ’)) = p(~~ - , t - t ’) .  (1.2)

It will be further assumed that either ~ is a Gaussian random field or

that is small , in which case the distribution need not be

specified.

I~~t the two dimensional vector r = (x ,y ) label the location of
]O 0 0 0

a point source in the plane z = 0. ‘Then in a plane of constant z > 0,

the signal will be E(z,r,r ,t) where = (x ,y) specifies the transverse

coordinates of the observation point. The total range of propagation

will be denoted by R and for In , I~~I << R and a CW source it is useful

to define a complex envelope ~ by

= Re 
~~~~~~~~~ 

e~~
C5 — wt)] (1.3)

3
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The time dependence of ~ is due to fluctuations in the medium. It will

be assumed that the full wave equation for € can be approximated by the

parabolic wave equation3 7 ’11

2 

(i~ + ~ V
2 

— kI.L( 1 z1 t))~~(r1 r0~
Z1 t) = 0 (1.4)

where V
2 

= + plus a boundary condition at z = 0

~x ~
y

F -
~ - 2

li k (r— r)

ó~ -, (4~z) 1 
exp[ 2z 

0 (1.5)

If L and T are the characteristic lengths and times over which ~ changes,

the validity condition for Eq. (1.4) are ( i )  kL >> 1 , (ii) kL. << uT and

(iii) that the m s  multiple scattering angle (<~
2
)R/L)~ should be small.

Feynman ’s path integral gives the solution to the parabolic wave

equation in terms of a ( strictly speaking) inf ini te  dimensional integral .

It turns out that this integral can be studied in almost exactly the same

way as Mercier12 originally attacked the phase screen integral. The result

is that propagation in a statistically homogeneous medium is very similar

to the phase screen problem. This will continue to be true in rather

general Inhomogeneous media, of which the phase screen Is a special case.

In order to indicate what can be learned from the path integral it is

necessary to review some known features of propagation in a random medium.

The qualitative character of ~ is determined by two parameters • and ~2

defined by

•
2 

= k
2
<(,(:(~~~z , t )dZ)2)

+ O(L/~) 
(1.6)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~ ..- ---.- . - -  ~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~- ‘ -
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p -,
where e is a unit vector in the z direction and in the second line it

a
has been assumed that R >> L and

= 6kL~/R. (1.7)
p

The parameter f is just the m s  phase fluctuation as computed in first
1

order geometric optics and serves as a measure of the strength of the

fluctuations. The other parameter i~ is essentially the square of the

ratio of the scale size L to the extent of a Fresnel zone. As shown in

Figure 2, if I is less than one or less than ci, then the Rytov1 5

approximation is valid. In the region where the Rytov approximation is

valid, the problem can be considered to have been solved years ago.

The intensity fluctuations (scintillations) are small and the relation

between ~ and ~ is simple and direct. Also, as shown in Figure 2, when

p both I and I/fl are greater than unity, the fluctuations in c~ saturate.

In particular, the variance of ln = in I approaches a constant of

order unity and the properties of ~ are determined more by statistical

consld9rations than by the detailed properties of ~~~.

Path integral methods have nothing new to add when the Rytov approximation

is valid . The considerations of this paper will therefore be restricted to

the saturated regions. There is then a small parameter a = Q/~ whose order
lI~of magnitude is

6L3”2
a 

R
3
~
2
(M
2
)~ 

(1.8)

The path integral allows the calculation of any moment of f as an

asymtotic series in a. The result is that ~ is uniformly distributed

in phase and that the moments of intensity I I~ I
2 
are given by

(x5 = n!(I>
5
[l + ~n(n — 1)Ca’ + 0(a

2
)] (1.9)

where C is a calculable constant of order unity whose precise value

depends on the spectrum of .t. In the limit a = 0 the distribution is

therefore Rayleigh15 with
5

L. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ .~~ ~~~~~~~~~~~~~~ 
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P(I) = 

~fr 
ex~[_ 

~~~] 
(1.10)

However, the correction grows with n and cannot be neglected for

n ~ (2/a)~ . It follows that there must be significant deviations from

a Rayleigh distribution when I/(I) is greater than (2/a)~ .

In addition to the distribution of 8 , one also wants to know the

coherences in space and time. Recent work on coherences has been greatly

facilitated by the observation3 5  that under certain conditions the prob-

lem can be replaced by a simpler local or Markov one where, in effect,

one makes the replacement

p(~ , t) —‘ 6(z)~~(lr l , t) (1.11)

with r = (x ,y) and 

-,2 2 ~
~drI,

t) =J’~(cr + z ) ,t)dz (1.12)

Note that 1
2 

is eq. u a 1 to k R ~ (0 ,O) and it will be convenient to

use the function ~ to define T a~d L by the expansion

/ -‘2 2
2 ,~ ~9 21 r t

k Rp( IrI, t) = 1 (1— — j —  j +  ... (1.13)
2L 2T

Within factors of order unity, the L and T so defined will be equal to

the length and time over which the original covariance p is non—vanishing .

It has been pointed out by authors that in the Markov

approximation the coherence of 8 and 8 can be computed exactly. It is

*3  9
(8 (m ’,r’,tO~ (r ,r ,t))

= exp [— ~D(~ ~~~~~~~~~ —~~
‘,t — t’)] (1.14)

8 (r ,r )8 (r,r
0 0 0  0

6 
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I ,
where

= (I)
~ 

exp [ik~~ 2 R }  
(1.15)

and D is the phase structure function of first order geometric optics

1

t) = ~~
2
af[~~(o , o) - 

~(Iu~ + (1 - u)r l ,t)]du (1.16)

The phase structure function always appears in an exponential and in the

saturated region where I is large, D can be approximated by an expansion
-~~-3

a Lnr ,r and t
0

1-’2 -~2 -, -
~ 1I r  + r  + r r  2

-‘ -‘ 2 1 o o tD(r , r , t)  = I J 2 + + ... (1.17)
3L T

Coherences are then characterized by two parameters l/T and I/L.

The literature is somewhat confusing as to the validity conditions

for Eq. (1.14). It turns out that the approximation leading to Eq. (1.14)

has a very simple interpretation in the path integral formalism . In the

next section is will become evident that for the isotropic medium under

consideration Eq. (1.14) is valid as long as the parabolic wave equation

is valid . From the path integral one can actually compu te the first

correction to Eq. (1.14). It is of order of the m a  multiple scattering

angle (R/L)¼.t
2
)~ which must be small if the parabolic wave equation is

valid .

For small a the path integral also allows the calculation of

and more çenerally

an arbitrary 2n-th order moment. In the limit a = 0, the real and Imaginary

parts of cf.’ are jointly Gaussian . To see the use of this result, let us

consider a typical question of practical interest. Take a fixed source and

receiver so that ~ is a funct ion only of time and suppose that at t = 0

7

p



is known to have a value ~~~
. An interesting practical question is

then what is the probability P(n ’) that ~~(t)/c~0 will take on the value

n ’. Since ~ has a Gaussian distribut ion, P(ri’) is simply

I fi ’~ - e
_
~~~

t)
ilI 2lexp 

—D(t)
~~~~~~~~ 

1 — e  
18r~~ u I 

~ I’ —D(t)

where D(t) = D(&~~,t) 
1
2
(t/T)

2
. The qualitative behavior of p(1~~) is

Indicated in Figure 3. It is evident that the signal stays in one quadrant

of the complex plane and is therefore coherent over a time of order T/I.

A further property of Gaussian statistics and a covariance of the form

exp [—3 (It/T)
2
] is that the signal will move in a straight line for

times less than T/l. One can ask the more general question of given
.9-, -3 -,

that 8(r,r ,t)/8 (r,r ) is equal to 1~, what is the probability that0 0 0

will be equal to ‘11’. The result is just Eq. (1.18)

with D(t) replaced by D6~ 
— r’, 

~~ 

- 
~~~
‘
, t — t’).

As stated above the Gaussian statistics leading to P(n’) are obtained

by computing moments. Again the approximation scheme breaks down for

moments of order (2/a)l~
2 and Eq. (1.18) is valid only for In~ and ~n ’

~ 
less

1/than (2/a) . Actually the order a corrections to any moment are calculable.

They are most important for intensity correlations where they lead to

coherence tails of order a which are small but fall much less rapidly than e~~.

The path integral also provides a simple method for calculating the

correlation between waves of different frequencies. In the saturated region

where I > 1 the result is, for ~w—w ’) small compared to w

____________ 
= exp [ 1 (w_w~

)
2] A(w-e~’) (1.19)

8
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where is

R

~~2 =<(f~ (k~
(
~~

z,t))dz)2> (1.20)

end. for a single scale medium

(

/2 F
A(w) = (1.21)

161w \1~’2
‘wou

with w 2 
= c 2R ~ (o ,o) where cg is the unperturbed group velocity . For a non—

dispersive medium = w~. When a is very sm~.ll the second factor on the

right—hand side of Eq. (1.19) falls much more rapidly than the first one. The

first factor exp [
~ 
~ 
(
~~
;
w~ 
)
2] can then be replaced by unity. In the

limit a = 0 the higher order correlations in frequency are Gaussian. One can

then obtain probability distributions in frequency from Eq. (1.18) with exp [—D12]

replaced by the right hand side of Eq. (1.19) and e~~ replaced by its absolute

value squared. It is worth noting that a first orc~er geometric optics

calculation misses the second and dominant factor on the right hand side of

Eq. (1.19) and therefore vastly overestimates the range of coherence in

frequency.

It can be seen from the path integral that saturation corresponds to the

appearance of multiple Fermat paths which satisfy a perturbed ray equation.

The signal tends to propagate along these Ferma.t paths and because there are

many of them, they interfere and produce Gaussian statistics. They will

become manifest in an experiment with a pulsed source where the received

signal will tend to show several arriva].a. These multiple Permat paths are

responsible for the factor A in Eq. (1.19).

9
I ,
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With one exception these results can easily be extended to statistically

inhomogeneous or anisotropic media and to media with multiple scales. The

exception is that A(~ ) defined in Eq. (1.19) cannot be computed for certain

multiple scale media. Actually, the path integral yields further inf ormation

in the case of multiple scale media. It appears to be only partially under—

stood3 5  that in this case there are two distinct saturated regimes. An

examination of the path integral shows that there are indeed two, one of

which (the fully saturated regime) is analogous to the saturated regime in

single scale media and another one (the partially saturated regime) is new.

Many experiments in atmospheric optics lie in the partially saturated regime

and this case is treated in some detail (Sec. 8). The fundamental distinction

between the fully and partially saturated regimes shows up in correlations

between waves of different frequency. In the fully saturated regime the real

and imaginary parts of ~
.(u) are jointly Gaussian random variables. For

partial saturation ~ (w) acts like a random phase times a Gaussian object.

A consequence is that propagation of narrow pulses is qualitatively different

in the two regimes. Depending on the medium there may be further qualitative

differences between full and partial saturation.

The detailed organization of the paper is as follows. Sees. (2)— (6) and

Apps. (A) and (B) are devoted to the idealized homogeneous , isotropic medium

with a single scale size. In Sec. (2) the path integral is introduced and

applied to the calculation of the first and second moments. App. (A) contains

the calculation of the error in Eq. (l.l).i). Sec. (3) is d~voted to the

calculation of higher moments when a is small and Sec. (14) summarizes the

statistics of in the limit a = 0. SpecIal attention is given to

statistics in frequency and pulse propagation . The corrections to the limiting

statistics are derived in App . (B) and discussed in Sec. (5) .  The appearance

10
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of multiple Fermat paths is demonstrated in Sec. (6). Media with multiple

scales are introduced in Sec. (7) and the distinction between full and

partial. saturation is made. In the fully saturated case there is a simple

modification of the results for a single scale medium (Table 2). The

partially saturated regime is more difficult. Sec. (8) is devoted to partial

saturation in a medium like that encountered in atmospheric optics. App. (C)

contains some calculations relevant to Sec. (8) and App. (D) discusses some

other kinds of multiple scale media. Methods for handling inhomogeneous and

I’ anisotropic media are given in Sec. (9) and Apps. (B) and (F).

2. FIRST ?~.ND SECOND MOMENTS FROM THE PATH INTEGRAL

Feynman6 pointed out that the solution to Eq. (1.14) with the boundary

condition in Eq. (1.5) is given by an infinite dimensional integral. It is

defined as the limit of a finite dimensional integral with 2n — 2 integration

variables corresponding to the Cartesian components of n — 1 two—dimensional

vectors 
~~~

, j = 1, 2, ... n — 1. With the convention that 
~~~~~~~~~ = ~ 

and 
~~ =

are the source and receiver coordinates, Feynman ’s integral is

= u r n  ~ f (U
d2r
j) (2~~~)~ 

exp [i~~ ~~(
~~~(i

-
i~l)

2 

~~~~~~~~~~~~~

(2.1)

vhere each component of 
~~~

, j = 1, ... n — 1, is integrated over the range

-~~ to +~ and zj = jR/n. In ii . is understood to be a vector in the (x ,y)

plane and is a unit vector in the z direction. At each point 
~~~

, 
~2

••• n l
in the integrat ion volume , the n — 1 points in space (1,z1) , (~ 2, z2) ,

can be thought of as discrete points along a path ~(z) connecting

( , O) to (~~,R) with = ~(Zj)~ see Fig. (14). In this sense Feynman’s

11
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integral is an integral over paths. Associating B/n with a differential

increment dz in range the argument of the exponential has a continuum limit

ikE ____ 
- 

i
+:
zzi

t

)

~+ ikf 
~~ (÷~~~~)2(

~() +~~~z~t)] 
dz

(2.2)

where ~~
‘ diVdz. The path integral for ~ can then be schematically written

as

= 
~~ 

f d(paths) exp Ek f ~~~~~~~~~~~~~~~ + ;z ,t~1 dzl
(2.3)

where the integration is over all paths connecting (~~,o) to (~~,R) and the

volume element in path space d(paths)is the coefficient of the exponential

in Eq. (2.1).

We will be computing averages of products of path integrals and the

following formula will be needed. Let ~
t ( z ) ,  n = 1,2,... be some set of paths

and = ± 1 corresponding phases. Then if either U is a Gaussian random field

2 1/2 1—6or kL (i~i > << 1 and its statistics are arbitrary, it is well known that

<
exP 
[
~ik 

~ ~n f n ~~ 
+ ~~5~~1t~~

) 
dz] >

= exp [— 2 m,n ~~~~~~ — 
m

( 2
~’))

’
~ 

+ (z ’—z)2 
~
t
n
_t
m ) 

dzdz]

(2.14)

12 
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As a first application of the path integral we can compute (8).

This vii]. not turn out to be a particularly interesting quantity but

the calculation is simple and it will show how path integrals work and

where the Markov approximation comes in. Bringing the average inside

the path integral and using Eq. (2.4) yields

(8) = 
J_ fd(Paths) exP[~~

/
~r

1)
2
dz - ~—~~TP(~1(r(z) — ~(z

l))2 + ~z — z’?~O)dzciz’]

(2.5)

The Markov approximation now appears as follows. The parabolic wave

equation assumes that the normals to the wave fronts point in directions

that are close to the z—axis. In terms of the path integral this means
-3 .9

that for the important paths ~r ’I = ~dr/dzl 
must be small. It then follows

that for important paths 
(~~
(z) - ~~(z 1

))2 + (z — z’)2 ~ — z’12 and

Eq. (2.5) becomes

(8) = 
.
~~~~~~ ex~~{_ ~_-j’/ ( I Z  - z’LO)clzdz’]fd(Paths) exP[~~

J
~;1)

2
dz]

(2.6)
•

The remaining path integral is just the path integral for S and for

R >> L the double integral over p can be replaced by R~(O,0). The final

result Is then

(8) = S exp [~~$
2
) (2.7)

This is the usual formula obtained in the Markov approximatIon~~
5 What

we have seen here is that this approximation has a very natural inter-

pretation in terms of the path integral and that it is valid as long as

the parabolic wave equation is val id.
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Since is large in the saturated region (8) is exponentially

small and therefore not particularly interesting. The same is true for

(68> and its complex conjugate (8*5*> . The path integral for ($5) vii].
be a double path integral over two paths r

1
(z) and r

2
(z) and will con-

tain a factor

exp~~ ~~ff{p (~~~~~(z) - ~~(z
I))2 + (z - z’)~~o) +

~ ~~ 
~~~~~~~~~~~~ + (Z - Z ’) : O) + 2P(~

l(;1 z) - r
2

(z )) + (z ’ - z)
2

1 t)Jdzdzl}

(2 .8)
where t is the time difference between the two S’s in the average. This

factor is of order exp [-4
2

J in all importan t regions of path space and

~~~~~ is e>:ponentially small .

A more interesting quantity is (S*(2)S(l)) where 8(1) Is a shorthand

nota t ion for S(r
11 r 1, t 1

) and S*(2) far t~
” (~~2,~~~2, t 2). ihe formula for this

object is

1f 2
[
~~f r ; )

2 
- (~~~( z ) ) 2 J d z  - v} (2.9)

-3where the path integral is a ”double path integral ’ over two paths r
1
(z)

and r
2
(z) ~onnecting (~~i,

0) to (r
1
,R) and G02,o) to (~2,R) respectively

and

v ~~~~~t[P(~~1(; (~ ) - 
l~~

l))2 + (z - z~~~ o)

+ P(%f(r2 (z) — r
2

(z ’)) + (a — a ’)

- 2P(jf~~~(z) - 
2 (z ’) )

2 
+ (z - z ’)

2
,t1 

- t
2)}

dzdz’ (2.10)
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There is now a region in path space where the integrand is not exponen-

tially small. It is ~(z)  r
2

(z) and almost all of the path integral

will come from this region. As before, ( 1
(z) — 

1
(z’)~

2 
and

(r
2
(z - r

2
(z’)) can be neglected relative to (z — z’) and in the same

spirit *JT~~
(z) — r

2
(z’))

2 
+ (z’ - z) 2 

can be approximated by

- 

2
(~~)

2 
+ (z’ - z)

2 
where ~ = ~(z + z’). Then for R >> L

the Integral over z — z’ can be done and

B

= 

~~~~~~ 
— ~~

2
(z)~~~,t

1 
— t2)dz (2.11)

a 

whcrc 

/ 2
d~ 1r !~~1) 

= k R (O,O) - ~(jr j, t)J (2.12)

-3
At this p n in t  it is convenient to change variables to paths u(z) and

~~(z)

(a) = + r
2
(
~)) 

— ~ (r + r
2
)
R 

— 

~~ ol 
+ r02) (1

~~(z)  = r (z) — ~2
(z) (2.13)

which satisfy the endpoint conditions ~(o) = ~ (R) = ~ and (o )  
~~ol — r 02 ) ,

= — From the finite form of the path integral in Eq. (2.1) it

is clear that this  change of variables is allowed and that the associated

Jacobian Is ~qi~i1 to unity. After integrating the first term in the

exponential by parts and usIng the endpoint conditions, the path integral

for <~~
(2)C(l)> becomes

<~~
*
(2)e(l)>

&~~~~
:
(2) ~o(1)fd

2
(paths) exp {

~ 
Ikf ~ ( z ) ~~~” ( z) dz fdcI;(z) 1 1t)dz]

(2.114)
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where t = t
1
—t
2

. In analogy with the formula

i tiXY
dy = 6(x) (2.15)

-3
the integral over the path u in Eq. (2.14) will produce a “ã—functional”

16which forces v to vanish identically. With the endpoint conditions

given above ~(z) must then be

~(z) = 

~
‘l 

- r
2
)
R 

+ 
~
‘ol 

— r
2)(1 

- (2.16)

In d the path v can then be replaced by the right-hand side of Eq. (2.16)

and the factor containing d then becomes just exp [—~D]. The remaining

path Integral is equal to (2nR/k Y 2and the result17 reproduces Eq. (1.114)

= exp [— ~D(l,2)] (1.14’)

-3 -3 -9 -3
where D(l,2) is a shorthand notation for D(r — r , r — r , t — t ).

1 2 ol o2 1 2

Appendix A contains an explicit calculation of the first correction

to the Markov approximation for (8*(2)S(l)). It is shown to be propor-

tional to the m s  multiple scattering angle ((~
2
)R/L)~ which must be

small if the parabolic wave equation is valid. Henceforth , all calcula-

tions will be done in this Markov approximation. The general prescription

is that whenever ~(~~
(r

1
(z) _

~~~(z~))
2 

+ (a - z’)
2

t
1 

— t~) 
appears, it

, ,~ / - 1 Iz + z’\ -3 a +
is to be replaced by ô(z — a )p~~r1

(~— 2 j — r ( 2 )~~
t
1 

- t

Turning now to the calculation of (S*(w I)8(w)), the path integral

for this quantity will contain (with k = k(w) and k’ = k(w’))

R R

4c~ [ J ~~1(~ + e z)dZ + ik ’J~.i ,(r2
(z) + e z)dzj> (2.17)

where the time dependence of ~L has been suppressed and the subscript

indicates that for a dispersive medium ~i can depend on w. Let us first

16
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compute this average in the absence of dispersion. When ~~~ is indepen-

dent of u it is, in the Markov approximation

exP[i(k - k’)
2
R~(0,O) - kk ‘f[~ (O ,O) - ~(j~~~(z) - r

2
(z)

~ ~
O)]dz]

(2.18)

For paths which make a significant contribution to the path integral,

the second term in the argument of the exponential must be of order unity

or less. In this term one can therefore approximate kk ’ by where

= ~(k + k’). Generalizing to dispersive media , one finds that in the

same approximation the result is just Eq. (2.18) with R~(0,O) replaced

by (c
g/ug

)2 where u
g was defined in Eq. (1.20). The path integral will

also contain a factor

exp 
[
~~~
f(

~~(z))
2 
dz - ~~~

J(
~~ cz ))

2 
d~~ (2.19)

which can be simplified by making an orthagonal transformation to paths

and defined by

+

~ +, ~ k ’v(z)
r
1’,s) = uiz) — 

k—k ’

r 2 ( z )  = 
~ (z) 

- 
k (z) (2.20)

After making this transformation the path integral factors into a product of

Integrals over and . Upon dividing by & (w ’)~~0(w) the integral over

cancels and the final result is, for 1w — w ’~ small compared to w ~ (
w+a ’) ,

_ _ _ _ _ _  

= exp 
[1(

~~w~
)
2]A (w - w’) (2.21)

17
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where

Jd(Paths) exp 
[ 2(k-k’) 

~~(;‘~z))
2
dz -

A(w—w ) = _____________________________________________________________

J d(paths) exp [ 2(k-k’)
(2.22)

In the saturated region where ~ is large i~~ z)l will be very small for

the important paths and the expansion

~(0,0) 
— ~( l ~~( x ) I , O) ~~ (O O) (!~~2.)2 (2.23 )

can be used. The path integral for A is then

fd(Paths)exP {_ 2 ( k - k ’ ) fi ~~’(z)) 2dz - 
k : 0

)f~~~)
) 2
d }

R

fd(Paths)exP[- 
ik 

f(~~(z)) dzJ

(2. 2b)

This type of path integral was evaluated by Feynman and setting k — k’ =

it is equal to

(6i W —

~ ~~~ /
I ___________________________________

/ w - w ~~
i

sinf6i w
0

where w;
2 

= R~(O,0) 
~~~ and a = 6(L~ /R 3 ~(O ,O)

)

½
= ~~~ Combining equations

(2.21) and (2.25) yields Eq. (1.19). Some features of these correlations

in ~ were mentioned in the Introduction. We will return to their inter—

pretation in Section VI.
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~bccept for the explicit verification of the validity of the Markov

approximation, the above results could be obtained by more familiar techniques

which do not employ the path integral. The power of the path integral will

become apparent in the next section when higher order moments are computed.

They are extremely difficult to treat by the usual techniques.

3. HIGHER MOMENTS FOR SMALL a

When ~ is large, the average of any path integral will be exponen-

tially small unless there is a region of path space where each path

associated with an 6 is close to a path associated with an 8~ . Such a

region does not exist for (6> or (6
2
) and we have already seen that they

are exponentially small. More generally, any moment with an unequal

number of S’s and 89’s will be vanishingly small.

Beyond (8*c2)6(l)) the first nontrivial object is

It is given by the quadruple path Integral over four paths r
1
(z)...r

4
(z)

(8*(4)S(3)8*(2)S(1)) =(2k) d
4
(Paths)exP[~~~E(-l)if(~~ (z)) 

2
dZ - 

M]

(3.1)

where

M = 
~~
E(_l)

1 + 
ifi(I~~ (z) 

_
~~~

(z)i~
ti 

- t~)dz (3.2)

There are two regions of path space where M is of order unity or smaller.

They are: (a) ~~1
(z) - r

2
(z)l < L,4, 1r 3(z) 

— 

~4
(z)1 < L/~ with the dis-

tance between pairs of paths arbitrary and (b) ~r1
(z) — r

4
(z)l < i~/4’,

~~3
(z) ~~ (z)( < Lu again with the distance between pairs of paths

arbitrary. In region (a) where I~~1
(z) — ~2

(z)~ is of order L/4 , the

oscillat ing factor

19
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,

exP {~~~~~(;1(z) ) 2 
(~~~~~~) 2 J ]  exp~~~~~~~~~~(z) - r2 (z)) . 

(~~
u’(z) + ~~~‘(z))dz}

(3.3)

in the path integral will restrict lr~
’(z) + ~~

‘(z)~ to be of order

2~/(kLR). For a typical path 
1
(z) + 

~2
(z)I w ill then be roughly

1(R) 2 (~~; I ( )  + ~~ ‘(z)~ . The centroid of the other pair ~3
(z) + r4

(z)

will be restrained in a similar way. It follows that most paths will be

such that the ratio of the distance between the pairs to the scale length -.

L is roughl y ~R/( 6kL
2
) = ~ ~~~

, where cv is the parameter iefined in the

Introduction. For small cv the pairs are separated by many times L and

therefore are uncorrelated. In region (a) M then reduces to

R R

M /dd~ 1
(z) - 

~2
(zL t

1 
- t

2
)dz + fd (I~~3

(z) - 
~4

(z)1,t
3 

- t
4
)dz

- 
(3.4)

and in region (b) it becomes

M ~~~ ~~~(~~3
(z) - ~2 (z)  ,t

3 
- t

2
)dz + fd(~~~~(z) - p

4
(Z )  , t

1 
- t
4
)dz

- 
(3.5)

Thus in each of the two importan t  regions of path space , the quadruple

path integral  f ac to r s  in to  the product of two double path integrals, each

of which is precisely the integral encountered in the calculation of

(8*6). The result is that

~~ (8*(4)8 3))(&*(2 811)) +

(3.6)

where the two terms come from the two regions (a) and (b).
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In Appendix B the error in Eq. (2.6) is obtained by computing the first

correction. It is of order a and will be discussed in detail in Section V.

Generalizing to an arbitrary moment is easy. The general non—
P

vanishing nome:t is<fl~~
*(j) fl

~~
(i>and can be written as an integral

over 2n paths r (z) and r (z). There will now be n~ importan t regions
3 1

-9
of path space corresponding to the number of ways paths r (z) can be

paired with the paths ~~(z). In each of these regions the 2n—tuple

path integral can be approximated by a product of a double path integrals.

Some simple combinatorics shows that the result will be as follows. Let

I be a permutation of the indices i. For example , if n = 3 and the

permutation is (1,2,3) - (3,1,2) then 1 = 3, 2 = 1 and 3 2 or if the

permutation is (1,2,3) -~ 
(Z ,l ,3) then ~ = 2, 2 = 1 and 3 = 3. With this

notation

~~~ f l 4~*(j ) S (j ~~ (3.7)
j 1 i 1 penns 1 ,3  1

where the sum of over all n possible permutations of the ind ices i.

The same result holds for correlation s in frequency. Extending the

• notation ~(j )  to incl ude a f r eq uen cy l abel w~ we have

= exP[~~D(i.~~) 
- (u 

~~~~~
2j - u ) (3.8)

which holds in the saturated region where only small values of w — w
.4 -3 1 •j

1 r — r i ,  etc. are iuteresting . The same construction that led toi 3
Eq. (3.7) for equal frequencies then shows that it holds for unequal

frequencies as well .

• The interpretation of Eq. (3.7) will be given in the next section.

A final remark here is that the arguments leading to Eq. (3.7) do not

depend on the validity of tne Markov approximation . The latter is needed

only when <,~
*
~1)C(2)> is explicitly evaluated .

— - 
-
~ 
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~~ THE STATISTICS OF S IN THE LIMIT cv = 0

The moments of Eq. (3.1) correspond to a complex Gaussian

distribution . The probability that 6(j)/S (j) will he equal to 1~. for

j = l,...n is then

P
nOli p ll

n
) = (det[71M ])_lexP{_E~~~~(M)~~ fl~~

J 

(4.1)

where the n by a matrix M is

= = exP[~D(i~~ ) - ~( 3  ~~~i)~~Mw~ - W~~) (4 .2)

Eq. (1.10) corresponds to the special case n = 1 and Eq. (1.18) is

obtained by dividing P
2

(T1, i1 ’) by P
1
(T~). The measure is d2ri = d(Ini~)d(Ren).

In principle , Eqs. (~t .i) and (~~.2) determine all the statistical

properties of . For example , it follows from Gaussian statistics that for

~ (j) = A (j)e’~~~~ the  correlations of amp]Jtude and rate of phase

= 
18

dt

<A(l)A(2)> 
E~~ .1

12~~
) - ½ (l- 1M 12 15K ( 1M 12 1) (4.3)

where E and K are the complete eLliptic integrals of the first and second

kinds and

(~p( 1)~p(2)) - 
t~(i ,2) £n (i- M 12 1 )

2
= — ½ £n(l— 1M12 1) (4 .4)

T

where in the secon~ l ine the expansion of D in Eq. (1.17) has been used.

Eq. (4.4) can be extended to the derivatives of cp wi~th respect to and
-) 2r in the obvious way . Intensity correlations 1(j) = 

~A(j)t are

22
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simpler with -

(1(1) 1(2) ) = (~ ) 2 
+ ~(5*(l)8(2))l

2

The appearance of Gaussian statistics in frequency is somewhat

unfamiliar . To see what it implies , let us compare the saturated regime

to a simplier unsaturated one. When simple first order geometric optics

applies and the medium is nondispersive , c~(w) is equal to S (w)e’~~ where

~ is a fluctuating time shift independent of w. Under such propagation

conditions , the statistics in m are essentially trivial. The envelope

~(w) fluctuates but does so in such a way that at a fixed time when ~
has a definite value a knowledge of ~ at one value of w determines S for

all w. Another way to say the same thing is that a pulse will be sub-

jected to a random time shift but wil.1 not be distorted in shape . For

propagation to. the saturated regime the statistics of ~ (w) are non—

trivial and thing s are co~ p~et c1y different. At one f ixed t ime a knowledge

of ~ (w) at one w yields only statistical information about ~ at nearby fre-

quencies. Correspondingly, the medium ~vil1 distor t a pulse in a way that

Is predictable only statistically. A peculiarity is that (S*CiY)S(u)>

and has a pha se corresponding to an average r e ta rda t ion .

The above remarks about ~(m) are most easil y made quantitative in

terms of pulse propagation . It is worth going into this in some detail

both because the physics is interesting and because it will connect with

the Fermat path s  of See . ( 6 ) .  For sip~~ icity the unperturbed

medium will be assie:~~J to be nuaJi spe ra ive  wi th  w = ck.  Let the
P iWT~~ - -

transiii tted signal be f (i) = Jo I (u)di where f (—w ) = f (w).
0 0 0 0

Tald:ig the unperturbed arrival tiao as the orig in , the received signal
— jUT

will thezi be f (T )  = e ö(w)f (w) dw.  The signal f (T) is a Gaussian
r 0 r

random variable whose complete statistics arc determined by the covariance

of IS. Assuniing’9 that variations in S (w) f ( - ’)  over a frequency

23



corresponding to the width of (6*(_~w)8(~w)) can be neglected , this co—

var iance is

(f*(w’)S*(J! )f (w)$(w)) = + w ’)) 
2 A(w - a’) (h.6)

wi th

~ 
W
i!

A(w) =

si n ( i~~~\~

where the small cv limit of Eq. (1.19) has been used and = u cz/ 6 =
c~i~

2
ii~
2
~~ O,O)

Denoting the received intensity f
2

(T )  by J(T), the average (J(T))

is a measure of the distribution of energy over arrival times. Accord—

lag to Eq. (4 .6)  i t  is

0

<~~:~ >= ~~~fe_1Wt 
A~ w)dw = 

n~l 
(1)

n~~~~ 2 e~~~~~~ l
t 

> 0]

and vanishe s for -T < 0 because the integrand is analytic in the upper

half plane. Evidently, all the energy comes n after the unperturbed
2 — 1

arr iva l  t ime and is conf ined  to a region 0 ¶ (w~ s 
) . The net

retardation is consistent with w’iat was said above about the phase of

The c o m p l e t e  abse  re of energy for ¶ < 0 is pecul iar to

the l i m i t  of sma l l  cv and w i l l  1ater be seen to have a simple physical

interpretation (see Sec. (6)).

For a sharp transmitted pulse the distrib...tion of energy over arrival

times can be thought of as being due to two effects. One is the w ander in

arr ival  t ime  of the center of the pulse and the other is spreading of the

24
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pulse around its center. The two effects are in principle distinct. For

the simple case of propagation in an unsaturated regime where 5(w) = e1
~~~,

the wander is of order (~
2
)~ while the spread is just the width of the

• transmitted pulse . As we wil l  now see , in the saturated regime the

spread and wander are roughly equal . The width of (J(T)) measures the

sum of spread and wander. A quant i ty  which measures the spreading,

independent of wander , is

(JJ(T + ¶ ‘)J(~ ‘)dT ’)
P( r ) = (4.8)

( 
J

’

(J(.r 1))dT l)2

When f S has a Gaussian distribution P(r) is
0

P(T) = 

P (T) 

f
~A (w)~~

2
dw + L~~~

_iwT
~ f~~~)~

2
dw (4.9)

where

(ff (T + r ‘)f (T ‘)dT ,)

2

P (T) (4.10)o

The two terms in P(T) have the same height at ¶ = 0. The spike propor-

t iona l to P (T) f a l l s  rap id ly  leaving the second term whose width is a
0

measure of the spread . Comparing w i t h  Eq. (4 .7)  one sees that

+
1 i 1WT~~ ~2 

______________________

—je t A(w)
~ d w=

(J~ J(T 1))d .r F)2

and it is clear that the spread and wander are essentially the same. A

physical interpretation of the two pieces of P(T) will be given in

Sec~ ( 5 ) .  Finally, a useful formula is
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2 ~
W/w

ll
IA (w) I =

+ sinh2(—~—\~ (4.12)
\2W1/

It is interesting to ask why it is that the square of the auto-

correlation of f rather than the autocorrelation of f
2 
appears in P.

The answer is that when f (w)S(w) has a Gaussian distribution , the med ium
0

cannot transmit any information that is not contained in the coherence

(f*(w l)5*(w l)f (m)5(w)). As given by Eq. (~~.6 ) this coherence depends

only on ~f( u ~,)~~
2 and the medium can only t ransmit  information about the

autocorrelation of f.

The s ta t is t ics  of the signal as a func t ion  of spacial wave numbers

can be analyzed in a s imilar  way.  Mul t ip ly ing  S(~~,~~~, t) by a suitable

funct ion of r and in tegrat ing over r one can represent a boundary con—

di t ion  at z = 0 corresponding to, say, a plane wave emerging from a f i n i t e

aperture.  For such a signal , the Four ier transform

.9 -3
-, 1 ~~—ir~~~ L -, 25 (2) = Je S (r)d r (4.13)o

(2 it)

.9 -3
will be sharply  peaked around some 2 = 2 . With the correspondences

-, 
0

t -~ 2 , w -~ r one can proceed as above and discuss spread and wander in

.4
L. Again the medium can only transmit information contained in

-* ~ -~ 2
which will typically depend only on ~5 (~~(r +

5. CORRECTION TO THE c~ 0 LIMIT

The leading corrections to the cv = 0 limit are computed in Appendix B.

The main results are as follows.

The order cv correction to (i5 is dominated by fluctuations near the

transmitter and receiver. This is not unexpected since near their end-

points the paths cannot be separated into uncorrelated pairs. Explicitly

(
~~fl
) is
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(I S  = n~ (i)~~(i + ~n (n - 1)~~ + O(cv2)) (5. 1)

where

I
L Iq

2
~(q, 0)dq

C = 
(3w) ½ 

~

‘

o~ 
(5.2)

fqp (q, 0)dq

4 0

and p is the three—dimensional Fourier transform of p

= ~~-fq sin(q~~~)p (q , t)dq (5.3)

The consequences of the fact that the error grows with n were noted in

the Introduction. Note that the correction to (15 is positive. This

means that the intensity fluctuations overshoot (i.e., become larger

than Rayleigh) near the boundaries of the saturated regime.

The correction to a general correlation can also be computed . They

are always fractionally small. For example , (S*(2)5*(2)S(l)S(l)> is
—D(1 2)

proportional e in the cv = 0 limit and the correct ion to it is of

order cve 
D(l,2) The corrections to intensity correlations are the most

interesting . In the cv = 0 limit (I(t
1
) I ( t

2
)) is equal to

(1)
2 

fl + e 
D(t

1 
t2)J At t

1 
= t

2 
the order cv correction is given by

Eq. (5.1). However , at large I t 1 - t
2~

, (r(t
1
)I(t

2
)) must approach (1)

2

and the corrections must go to zero. It turns out that half the correc—

tion dies like e 
D(t1 t

2
) but the other half falls much more slowly,

leading to a coherence tail. (Note that this is consistent with what

was said above about the corrections always being fractionally small.)

For the general intensity correlation the coherence tail is

= (5. 4)

21 -D(l,2) il~~ 
L~(q

2
p(q,t

1 
- t

2
) k (1

l 
- + J ( I ~~1 - ~~2I~~)J dq~

(i) l + e  +~~~~~~~~
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.3 .3 -3 -3
where J is a Bessel function and specializing to r = r and r = r

0 - 1 2 ol o
produces

(I(t 1
) I (t 2

)) = (I) 2[l + e
_
~~

t
l 

- t2
) 
+ 

~~~~ Lfi2~ (q, t 1 - 
t
2
)dq] 

(5.5)

I..
Eq. (5.1) is not reproduced at t 1 = t

2 
because a term of order

has been dropped from both Equations (5.4) and (5.5).

6. FERMAT PATHS

There is an interesting connection between averages of the path

integral and averages over Fermat paths which satisfy the perturbed

ray equation

.3,~~ .3 .4
r (z) + Vi1(r(z) + ez) =0 (6.1)

.4 f~ ~\
where V =l—,—J. This will be illustrated for the special case of

-3 .9
sources and receivers located at r = r = 0 so that S is a function only

of time. The path integral for (5*(t)~ (0)) is

(S*(t)5(0))<fd
2
(Paths) eXP[ikf[

~(r (Z))
2 

- ~~~~
i

(Z ))

2

(; (Z )  + z,0)

+ t(r
2
(z) + e z ,t)]dz (6.2)

In the saturated region we know that for (S*(t)S(0)) to be non—
.3 .4

vanishing , t must be small and that only paths for which r (Z) — r
2
(z)I

is small (‘~~I3
/$) contribute. Changing variables to (z) = ~(~ 1

(z) + ~2
(z))

and v(z) = r1
(z) — r

2
(z),  the path integral can then be approximated by
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(5*(t)5(o) )~~~~~fd
2( t h ) exP[~ikf [~~(z).{~~” (z) + ~~~[;(z) +

- t~ (;(z) +~~Zz
~o) J d

z]~~~~~ (6.3)

where the first term in the argument of the exponential has been integrated

by parts and a dot indicates differentiation with respect to time. The
integration over the path ~ (z) produces a “S-functional” which forces

w ‘ + V~i to vanish for all z. Thus the integral over w(z) is restricted

to paths which satisfy the ray equation (6.1). This is a general feature

of the saturated region. Higher order correlations are dominated by con-
-9 .3

figurations where paths r
1
(z) and r

1
1(z) are pair—wise close. A similar

analysis shows that for each such pair , the path ~~(z) = ~~~~(z) +

sat isf ies Eq. (6.1).

Equation (6.3) can be further analyzed. For most media ~.i and ~i are

statistically independent. The average, ( ) ,  can then be thought of as

two independent averages ( ) and ( )~ over ~i and i. The 6-function of
3 , .9

+ V~t that is produced by the integration over v is effected only by

the average ( ) while the phase exp[iktf~.i] is effected only by the other

average ( ) - . It is therefore possible to write (S*(t)S(O)) as the
-4

integral over paths w of a n-averaged 6—functional which can be inter—
-9

preted as the probability that a given path w will satisfy Eq. (6.1)

times a phase which is to be averaged over M . To do this correctly,  i t

is necessary to go back to the definition of the path integral in Eq. (2.1).

The integration variables and wk, k = l,2,...,n are then discreet and

the mathematics is straightforward . The integration over the v ‘S can

be done trivially and after some manipulation, one finds
- 

R
= fd(Paths)

/P(Path)~~~cP[ IktJii(~~(z) + e z , 0)dz]
> 

(6.4)

where the integration d(paths) ’ is over paths (z) *~ th a modif ied

volume element

-~~~ ‘,
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d(paths) ’ = 
~ (

~ d~ W~~(a\ (6.5)
(14~ ) 2\3_ 1 .y \R/

which doe s not contain k and

P(path) = (!~)2
n_2

(

~~ 62(! (; + 
~~~~~~~~~ 

- 2~~~)  + +

(6.6)

.3
is the probability that w will satisfy the finite difference approximation

2
n -~ -‘ -# -, -~ -~
—(w + w . - 2w) + V~t(w + e z ,O) = 0 (6.7)
R 

j+l j—l j  zj

to the ray equation. In the limit n —~ oo,P(path) is the probability (wi th

a measure d(paths)’) tha t  w will satisfy Eq. (6.1). Equation (6)) show s

explicitly that (5*(t)S(O)) is a sum over format paths with fluctuating

phases ktfIL. Finally, bringing the average of i inside the exponential

yields

= fd(paths) 
‘P(path) CXP[_k

2
t 

((
~~~(;(z) + ~~ z~o)dz~~~~~

J
(6.8)

In the Markov approximation where (z) is neglected relative to e z  in

the average of ~i , Eq. (6.8) becomes

exp1~3s 2(~)21 fd(paths) ‘P(path)

2 t 2
= exp -

~~~~~ 

(
~
) (I) (6.9)

which is the standard result .

This provides a new way to look at the Markov approximation . It
2req uires that an average l ike (( ép (w(z )  + e z , 0)d z) ) along a path which
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p
satisfies the perturbed ray equation (6.1) should be well approximated by

the corresponding average ((f~d(e z,0)dz)2) along the unperturbed ray.

For a homogeneous and isotropic medium , this will be the case as long
2

as the rms multiple scattering angle ((~j. )R/L)
2 is small.

According to Eq. (6.8), (53(t)5(O)) can in principle be computed

by a geometric optics method which searches out the rays which satisfy

the perturbed ray equation. Geometric optics corresponds to an approxi-

mate evaluation of the path integral by the method of stationary phase.

In the saturated region the stationary phase approximation will in fact

be valid since for ~ > 1 the phase kf~dz is necessarily large . To get

Gaussian statistics for 5 , it is nece ssary that there be several rays

connecting a given source and receiver. In path integral language this

means that there will be multip le stationary phase points and S w i l l  be

a discreet sum ZAke’~
’1c over contributions , one from each stationary

phase point or ray. The phases cpk and amplitudes Ak as well as the

number of rays w ill fluc tua te wi th ç~. yielding Gaussian statistics for 5.

It is difficult to prove rigorously tha t there are always mul tiple
rays in the saturated regime . However there Is a simple construction

which shows the essen tial physics. At one fixed time the rays are sta-

tionary points of the path length S defined by

S kf
11 
[½(~~

l
~ z)) 2 — u (i~(z) + ~~z )}  da . (6.10)

Let S(~) be S evaluated for the special paths that go in a straight line

from the source at (&0) to an arbitrary point (~ , z~) with 0 < z
0
< R

and then follow another straight line from (r,z
0
) to the receiver at

(~ , R). Multiple stationary points of S() as a function of will be

indica tive of multiple stationary points of the complete functional in

Eq. (6.10) and the spacing of such points in will be similar to the
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spacing between multiple rays . Now doing a simple integral shows that
S(~) can be written as

-
~ -~~2 +S(r) = ½ (r) B — S1

(r) (6.11)

where B 
~ 

.~ and S1 
is k1i integrated along the above mentioned

0 % 0’
path. To simplify S(~), B

1 can be replaced by its average value R/(6K).

Then defining ~ = L and S
1
(~) 

= 
~ f (~) the quantity to be studied is

.4.

½ c2 u — ~f (u )  (6.12)

and we are Interested in Its stationary points which satisfy

—
~~~~

‘ f6~) = 0 . (6.13)

By construction f is a random function of order unity which changes by

order one when its argun~ent changes by order one; i.e. I~ f I - i  and

changes sign roughly each unit in ~~. For ç
~>>4 the first term in Eq.

(6.13) dominates and there will be a single solution near = 0. This

is the unsaturated regime. In the saturated regime , 4~>> ~~, the random

character of f guarantees that there will generally be many solutions ,

spaced by about one unit in ~ (a distance L in ~) and filling up the
interval o<I~~I < ~/Q (0< I~ I < ~L/c2). To find the other boundary of the

saturated regime, • > 1, we have to ask when the multiple rays are

physically meaningful. From their interpretation as stationary phase

points of the path integral It can be verified that two rays will be

physically distinct if S varies by a quarter cycle , I.e., order unity

between the two. The variation in S between two solutions of Eq. (6.13)

will be roughly ~ and if they are to represent physically distinct rays

• must be greater than unity.

An experiment with a pulsed source will tend to see several arrivals

corresponding to the multiple Fermat paths. This random multipathing

is the origin of the rapid fall—off of frequency coherence which takes
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place in the saturated regime. To see how the orders of magnitude work ,

the difference in travel time between the ray nearest = and the fur-

thest one out at j~ J - ~ /I2 Is ~~~~~~~~~~~~~~~ •
2/(2Qu) where the two

terms come from the two terms In Eq. (6.12) and it has been assumed that

$ > >~~~. Frequencies which differ by more than t
0
1 will then be incoherent,

in agreement with Eqs. (1.19) and (1.21). Note that t
0 is positive.

This is why in the limit a = 0 all the energy arrives after the unperturbed

arrival time and >~O (t )  > vanishes for  -r < 0. Also the two terms in P(r)

(Sec. 4) can easily be interpreted in terms of fluctuating multipath.

The spike P
0
(T) Is the autocorrelation of each arrival with itself and

the broad second term is the autocorrelation of different arrivals.

Finally a word of caution. The above construction vastly underestimates

the number of rays. In reality the number of rays is probably an

exponential of 4/1~ rather than 4/~ as the construction would imply. It

may be extremely difficult to actually resolve the arrivals.

It Is interesting to consider the transition into the saturated

regime in terms of propagation of a pulse. Consider first crossing the

line ~ = ç~ from the region where both • and G are large but ~ < 4’.
With t’ and c~ large but well outside the saturated region, one knows from

the Rytov approximation that the receiver will see a single arrival with

a considerable wander in time of arrival. At the boundary of the

saturated region the pulse will begin to split into several arrivals and

well inside the saturated region there will be many arrivals that are

spread out over a time long compared to the original wander in the single

pulse. Crossing the boundary 4’ = 1 from the region where both 4’ and ~l
are small is rather different. In this case one knows that well outside

the saturated region , there will be a single arrival with no discernible

wander in time of arrival accompanied by a small scattered wave spread

over a continuum of artival times. As the boundary of the saturated

region is approched , the single peak will shrink and the scattered wave

will grow in amplitude . Well inside the saturated region, the original

peak will have disappeared completely and the now large scattered wave

will have broken up into a number of discrete arrivals.
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7. Media with Multiple Scales

So far it has been assumed that the fluctuations in p can be

characterized by a single scale size L. Technically, this requires

that the expansion of ~~,

I +
~ +4

,0) = ,~, 2 ( ~~ 
— —

~~~
-.

~~- + a -~~~
-

~~
- + ....) ( 7.1)

2L 4L /

through order exists and that the coefficient a is of order

unity. There are cases of practical importance where this is not

true . For example , optical index of refraction f luctuat ions

induced by Kolomogorov turbulence have the property that the

(three dimensional) Fourier transform ~ (q) of p behaves like

over a long interval in q and the expansion in Eq.(7.l)

makes sense only when the cutoff (inner scale) is taken into

account and then a is very large. This and the following section

are devoted to these media with multiple scales. It will be

assumed that  ~~(q)  goes like l q I
2
~~ 

for large q where 4 > p > 1.

(If p is greater than four the medium acts like one with a single

scale size and for p < 1 it is so singular that does not

exist.) In practice there is always some physical cutoff at large q

(inner scale). However , the effects of such a cutoff will be

ignored in what follows.

For p > 2 , the length parameter L will be defined by Eq. (1.13)

as before and in the case p < 2, L will  be defined by

= ~ ( O , 0) [1 
— 

~ 

~i] 
( 7 . 2 )
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for small ~~~ . For Kolomogorov turbulence , p is equal to 5/3

and ~ (0,O) and L are related to Tatarskii’s C~ by 2.9lC~ =

The parameters 4’ and ~ continue to be defined by Eqs. (1.6) and (1.7).

The main qualitative difference between propagation in single

and multiple scale media is that in the latter case there is more

than one saturated regime . In terms of the Fermat paths of the

last section , it turns out that in a multiple scale medium the

smaller scale inhomogenieties can make multiple Ferinat paths

before the large ones do. This leads to a new kind of saturated

regime. Even in a single scale medium with p > 4 the line ~ =

is not a sharp boundary . In real i ty there is a transit ion zone

where random focusing along single Fermat paths produces intensity

fluctuations bigger than Rayleigh . As p decreases below four this

transition zone opens up and becomes a new saturated regime . The

boundaries of this new regime can be found by studying the object

1 -‘2 -
~~- ‘~f(u) of Eq. (6.12).

To see when the smaller scales can make multiple Fermat paths ,

imagine throwing out all scale sizes larger than AL where 1 > A > 0.

The new scale length will be AL and ~‘ and ~2 will  be replaced by

and X 2
~2.  The combination ~/~2 becomes A~~~~

4
~~
’24’/c2 and is

equal to u n i t y  when A = (4 ’/ç2 )
2/ ( 4 P)~ Thus if p < 4 the small

scales can make multiple Fermat paths when 4’ < ~~, i.e . ,  be fore

the large ones do at 4’ = c~. However , if these mult ip 1 e paths are

to be physically meaningful A~
’24’ must be greater than unity and

the smallest permissible value of A is •
2~’p~ Pu t t ing  everything

together , the small scales can make meaningful multiple Fermat

I
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paths when > 1. This is one boundary of the new saturated

regime . To f ind the other boundary , we need to ask when the

multiple Fermat paths can be separated by L. For a given A the

minima of ~-A 2Q~
2 
- A~

”24’f(~~) extend out to a maximum 
~~ 

which

is the largest value of 
~~~ 

for which the equation
2+  p/2

~~ 
. +

A ~1u — A 4’vf(u) can be solved. The maximum l u l  is
(4’/c2)A 4

~
”2 and noting that is distance in units of AL one

sees that the Fermat paths can be separated by L when

= 1. For p > 2 the most separated paths are due to

large scales with A = 1 and the other boundary of the new reg ion

is 4’ = ~~. However , if p < 2 the smaller scales produce the

largest separation and taking the smallest permissible value

for A one sees that there can be Fermat paths separated by L when

4’2/~/~.~ > 1. The regime where there are meaningful multiple

Fermat paths all ly ing w i t h i n  L of each other wil l  be called the

partially saturated regime. The regime where the spacing between

Fermat paths can be greater than L is analagous to the saturated

regime of the sing le scale case and wi l l  be called the fu l ly

saturated regime . The bou ndaries of these regimes are summarized

in Table 1.

Partially Saturated Regime Fully Saturated Regime

______  
4’>l , 4’/~~>l

L<p< 2 4’>i,4’4/P/~>i ,~~2/P/~<i 4’>l,

Table 1. Boundaries of the Saturated Regimes

3
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Although these boundaries have been obtained with a hueristic

Fermat path argument they are in agreement with what one f in ds

from more precise calculations . It is known that outside the

saturated regimes the intensity fluctuations ((12> 
_
<I>2),<I)2

are small , implying both the validity of the Rytov approximation

and the absence of saturation . Inside the saturated regimes (as

given by Table 1) the intensity fluctuations as computed in the

Rytov approximation are large , signaling the onset of saturation .

The line between the fully and partially saturated regimes

corresponds to the place where two pairs of paths , in the sense of

Sec. (3), can be separated by more than L. When they are

separated by more than L the pairs of paths are completely

independent ( f u l l  sa turat ion)  and Gaussian statistics for ~~ follows

immediately .  If all pairs are wi th in  L of each other (partial

sa tura t ion)  then one expects that at least some statistics will

not be Gaussian .

Nothing that was done in Sec. (2) or App . (A) depended in

any essential way on the assumption of a single scale . The reader

can verify that  Eq. (1.14) for <~~ *( 2 )e ( 1) >  at equal frequencies

continues to hold whenever the parabolic wave equation is valid.

The only subtle point is that for p < 2 the rms scattering angle

is not well defined and , correspondingly, in App . A ,Eq.(A.6)

cannot be approximated by Eq. (A.9). However , a rather straight—

• forward analysis of Eq. (A.6) shows that the fractional error in

Eq. (1.14) is of order D(k~~~,0) and it is known that D(k
’,O) < 1

is the validity condition for the parabolic wave equation when
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p < 2. Turning to coherences in frequency , there is however a

significant defect in the theory if p < 2. When p is less than 2,

the path integral in Eq. (2.22) cannot be approximated by that in

Eq.(2.24) and A must be understood as a function defined by

Eq. (2.22) whose evaluation would require a numerical calculation.

In the fu l ly  saturated regime where pairs of paths can be

separated by L or greater , the arguments of Sec. (3 )  proceed as

before . One readily verifies that in the ful ly  saturated regime

the statistics of ~ are Gaussian and the discussion of Sec. (4)

applies (except Eq. ( 4 . 7 )  which assumes Eq. (1.21) for A ) .

Eqs. (B .12)  and (B. 17)  of App . B hold in the multiple scale case .

The reader can then verify that for p > 2 , E g s .( 5 . l ) , ( 5 . 2) ( 5 .4 )  and

(5.5) for the corrections to Gaussian statistics continue to hold

in the ful ly saturated regime and that for p < 2 these same

equations hold if a is replaced by a ’ where

— 4(p+l)3”~r(3/p) 7 3— 

33~
’2irL”2p ,( 6— 2 P ) / P  .

The situation f or the f ul ly saturated regime is summarized in

Table 2.

Corrections to the
______ 

Boundaries Limit ing Statistics Limiting Statistics

2<p<4 Unchanged Unchanged Unchanged

l<p<2 Replace •/~>l Unchanged except Replace a by a’

2/ that A is not known
by • explicitly

Table 2. Changes Needed to Apply the Formulas of
Secs.(l)-(5) to the Fully Saturated Regime.
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The higher order statistics in the partially saturated regime

are more complicated. For the case p < 2 everything can be worked

out in detail and the results will be given in the next section.
However, for p > 2 the path integrals yield only qualitative infor-

mation ; It is summarized in Appendix D.

Finally, in multiple scale media the notion of multiple Fermat
t paths should be used with care. They exist but there are so many

of them that they cannot , even in principle , be completely resolved .
Nevertheless, the notion is useful  In In te rp re t ing  the path integral

calculations and will continue to be employed .

S
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8. The Partially Saturated Regime for p < 2

The partially saturated regime for p < 2 is of considerable

practical importance. Many atmospheric optics experiments lie in

this region and , luckily,  the complete statistics of~~ can be

worked out. There is a natural small parameter 8 defined by

~2—p

(
~,4’

4/P
) (8.1)

For p = 5/3, 8 is related to Tatarskii’s
1 
C~ by

= 1.19 C~~
415R 11115k 7115 and to the intensity fluctuations as

computed in the Rytov approximation by ((~~n I ) 2)-~~~n 1)  = 0.808
5
~
’2
.

Rytov

The signal statistics will  be given through order 8.

Partial saturation is due to the appearance of multiple Fermat

paths all lying within L of each other.  The larger scales ( -L)

will tend to correlate the locations of these paths leading in

general to a complicated statistics. However , for p < 2 the spectrum

is so heavily weighted toward small scales that the locations of

the Fermat paths turn out to be uncorrelated . This is not the

case for p > 2 where the multiple Fermat paths become correlated

and the path integral yields only qualitative information (see

App.D). Even for p < 2 where the locations of the paths are

uncorrelated the large scales can still correlate the phases along

different Fermat paths. We will see this at the end of the section

when coherences in frequency are studied.

Consider Eqs.(3.l) and (3.2) for <12> in the partially

saturated regime with p < 2. In the integration region (a) the

separation between members of a pair of paths 
1(Z) (using the
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notation of App. B) must be such that d ( 1 1( z ) I )  ~ 1, i.e.,
+ 2/ +
1v 1(z)I ~ L/~ . The distance v

2(z) between pairs (again in

the notation of App.B) will be limited by the oscillating terms

in the path integral to values such that c
~I 2 (z)II 1(z)I L

2 or
-

~ 2/ +
1v 2(z)I < L4 ’ /~ . Note that the ratio of the cutoff on 1v 21 to

that on 1 l 1 is 4’
4/P/ç~ and is large. Now both and “21 are

small compared to L and Eq. (7.2) can be used to evaluate Il in

Eqs. (3.2) or (B.3) . Taking account of the fact that I I ~I << I ’~~I

the expression for M in E q . ( B . 3 )  of A p p . ( B )  then becomes2°

R R

M = ~2R_ 1f ~~1(z )  
~~dz - 4’

2
R
_I
P(P_l)

f 

~~1
(z) ~

2
~~~2(z) 

~~~~dz (8.2)

and when 1 1/LI - 4’~~~”~ and 1v 2/Ll 4’
2/P /ç2 the second term on the

right hand side of Eq.(8.2) is of order 8 and can be dropped . This

is the same thing as saying that different pairs of paths in the

path integral,  or equivalently different Fermat paths in the sense

of Sec.(6), are not correlated and <1 2 > becomes 2<1> 2 . What is

happening is that for p < 2 the fractional power behavior of d

at small separations is making the arguments of Sec. (3 )  valid even

though the d i f f e r e n t  pairs are separated by less than L. Note

that this will  only happen for p < 2. The generalization to

<Ia> is straightforward and the result is a Rayleigh distribution

with <I n > = n!

The true test of the method comes when one evaluates the

corrections to Rayleigh statistics. It is shown in App.C that to

order 8

• <1n> = ~~~<1>
fl (1 + n ( n — 1 ) C ( p ) 8 )  (8.3)
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where C(p) is a constant which depends only on p. This constant

is evaluated in App. (B) and C(5/3) = 1 .0 6 .  The corrections are

small for small 6 showing that the approximation scheme is con-

sistent but there will be significant deviations from a Rayleigh

distribution when 1/<1> ~ 12/8C(p)

The statistics of ~~~~~~~~ as a function of source and

receiver locations can be investigated in a similar way. One

finds that they are Gaussian and at equal times and frequencies

the results of Secs. (3) and (4) hold in the limit 8 = 0. There

are coherence tails of order 8. These are discussed in App.C.

In the fully saturated regime the dynamics of the medium

enters only through D ( t ) . This is not always true in the par t ia l ly

saturated regime . It is true when the Taylor hypothesis is valid

(a frozen field convected by a “w i n d ” )  and the statist ics in time

can be obtained from the spatial statistics . However , one can

consider a d i f f e r en t  kind of medium where the time dependence

of ~i is associated with linear waves whose dispersion relation is

w - k~’2 . The Fourier t ransform of the second time derivative

~5 of p will then behave like

- .‘. +

~i( I q J )  = (const)JqJ ~ (8.4)

at large 
~~~~ 

For the Taylor hypothesis Eq.(8.4) holds with

6 = 2 and in general 6 can be considered as being defined by

Eq.(8.4). Assuming p < 2, the statistics of at unequal times

are Gaussian in the p a r t i a l l y  s a tu ra t ed  regime provided that

p - 6 < 0. This can be verified by explicitly computing the
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corrections. For p < 2 and p - 6 < 0 the corrections to Gaussian

statistics are fractionally small for small 8 and the results of

Secs.(3) and (4) continue to hold at unequal times. However for

p — 6 > 0, a direct calculation shows that the corrections to

Gaussian statistics are not f ract ional ly small and therefore that

the approximation scheme of Sec. (3) is not consistent at unequal

times.

To see what is happening for p - 6 > 0 one can compare the path

integrals for <I(t’)I(t)> and ((E*(t~ ))2(~~(t))2> 
. The latter

is sensitive to the time dependence of the phase of ~2 while the former

is not. A rather involved but straightforward calculation then

shows that for p - 6 > 0 the signal moves more rapidly in phase

than in amplitude. This is to be contrasted with the case

p - iS < 0 where the time statistics are Gaussian and according

to Eq. (1.18) there is no tendency to move in phase as opposed to

amplitude . As long as p < 2 the signal has a Rayleigh distribution

and over a long time the track of the signal will fill out a disc

in the complex plane . The difference between p - 6 < 0 and

p - 6 -> 0 comes in how this disc is filled up. For p - 6 < 0 the

signal is Gaussian and it will make a track of the type shown in

Fig. (5a) which looks something like a random walk. However ,

for p - ‘S > 0 the track will wrap around in phase and slowly move

in and out in amplitude as shown in Fig. (5b).

These peculiar features of time statistics in the partially

saturated regime can be understood in terms of Fermat paths. We
• i1~ (t)know that £(t) is schematically EAk(t)e 

k where the locations

I



of the paths are uncorrelated (for p < 2) but the large scales

may correlate the phases l k
(t). The question of random walking

vs phase wrapping is equivalent to the question of whether or

not the time derivatives = 

~
‘k are correlated . For p — ‘S < 0,

the time derivatives are suf f ic ient ly  weighted towards small scales

that the ‘
~k 

are uncorrelated and the signal random walks. However

for p - ‘S > 0, the effect of the large scales is strong

enough to produ’— . a correlated phase derivative common to all the

Fermat paths.

Propagation of sound in the ocean is an example of a situation

where ~ (t) phase wraps in the partially saturated regime? For

the ocean p 2, ‘S ~ 0 and in this special case it is possible to
7

work out the detailed statistics of e(t). However , for other

combinations of p and 6 it is not possible to compute fourth and

higher moments of ~ (t) analytically, except when p - 6 < 0.

Checking consistency , it was stated above that for

p < 2 the statistics of ~~~~~~~ as a function of and are

Gaussian in the partially saturated regime . If the time derivatives

on the right hand side of Eq. (8.4) were replaced by spatial

derivatives we would have ‘S = 2. Since p — 2 < 0 for p < 2 it

is consistent that the statistics in and are Gaussian and

that the statistics in time are Gaussian when the Taylor

hypothesis (implying ‘S = 2) is valid.

For p < 2 and p — iS < 0, the statistics of i~~(~~~~0
,t)  in the

partially saturated regime are essentially the same as in the

fully saturated regime. The reader may therefore wonder what the

basic distinction between the regimes is . The answer turns out to

lie in the statistics in frequency .
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Let us examine the path integral for

Up to a normalization it is

a,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > -

• fd
4
(Paths) exp [

~ 
~~ (_ l ) ii~ f(~~~(z))

2dz — 

N] 
(8.5)

where with the Markov approximation , surpressing time t

N = 

~~~ i,j=l 
~~~ f I ~~i

z)_
~j(z)I)dz (8.6)

and for s implici ty the medium has been assumed to be nondispersive .

There are the usual two important regions of path space (a) and (b).

Let us concentrate on (a )  where 
~~l~~ 2 I < L/c~~

’1) and 1r 3-r41 < L/4 2
~
’
~~.

First we will see how Gaussian statistics arise in the f u l l y

saturated regime and then see how the partially saturated case

differs . In the fully saturated case typical values of , say ,

- i~l~~ 3 1 are large compared to L and 
~~~~~~~~~~ 

can be set equal

to zero. Ignoring correlations between the different pairs then

yields

$ 

N + 

~ 
) (~~l) ’~~ ~~~ 

f
~~(I~~~(z)4.(z)I)dz (8.7)

i,j=l i,j=3 c
0

• which is a sum of two terms one of which depends on and and

the other on and and the result is Gaussian statistics. In

the partially saturated case typical values of l~~l~~ 3I are small

p compared to L and 
~

(I
~~l~

-
~ 3 I) is approximately equal to ~ (0). Now
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we have to set correlations between the different pairs of paths

equal to ~ (0) rather than zero and N becomes

N ~ 
(
~~~~(...l) i 

~~~
)

2
R~~ o

+ 

~ ~~ 
+ (-l)’~~ 

23f[P(ki
( z )  - 

~~ (z)I)-~~(0~~dz

(8.8)

The path in tegra l  again factors into a product of two double path

integrals and is expressable in terms of A as defined in Eq. (2.22).

Collecting the contribution from both regions (a)  and (b) and

supplying the correct normalization yields

=

l)~~o
(w
2
)
~~~

(W
3
)
~~O

(
~~4

)

exp 
L4 (

~~~~(_l) J 
~~ )

2
R~~(o~J L A (~ 2 _w l ) A ( w 4 _w 3) + A ( w 2 _w 3) A (

~4 _t
~l~J ‘

(8.9)

Because of the common exponential factor in front of the two terms

on the right hand side this is not Gaussian statistics . What it

corresponds to is an~~ of the form E(~)/~~(w )  = e1
~~’x ( w )  where

* is a real Gaussian random variable with < p >  = 0, <*
2> = R~ (0)c

2

and x (w) is an independent complex Gaussian random variable with

zero mean and covariances < x ( w ) x ( w I)> = <x * ( w ) x *( c ~I ) > =  0 and

<x*(w)x (w1)> = A ( ü ’ - w ) . It is straightforward to ver i fy  that this
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a

ansatz does in fact yield the correct 2n-th moment of~~~(~,j) in

the partially saturated regime. In particular the second moment

_ _ _ _ _ _ _ _ _ _ _  = <exp [i ( w’_w~*] x * ( w ) x ( ~~t )  >
= <exp ~~~~~~~~~~~~~~~~~~~ >
= exp 

~4 
( w w ~ )

2
R~~( 0 ) c 2] A (~~’ -t~i) (8.10)

comes out right. For a dispersive medium <~~~~> becomes w 2 as in

E~~. ( 1.20) and c rather than c appears in A.
‘p g

Thus the fundamenta l  d i s t inc t ion  between the f u l l y  and

partially saturated regimes is that in the former the statistics

in frequency are Gaussian while in the la t te r  they correspond to
I .

a phase times a Gauss ian . Well inside the p a r t i a l ly s a tu ra t ed

regime 
~~ 

is small compared to the width in w of A. The phase

e then dominates the moments of ~Jw) , except for correlations

involving only E w ~~
2 where ~ cancels. As the boundary ~2/P/

’~ = 1

of the fully saturated regime is approached the width of A (w)

becomes comparable to Wg and upon passi:ig into the fully saturated

regime A dominates the moments and the signal becomes Gaussian .

In the terminology of Sec. (4), for  pa r t i a l  saturat ion the spread

is small compared to the wander. In pulse propagation e1W*

represents a quasi-deterministic wander which dominates

The phase e1~~ cancels out in the integral (Eq.(4.8)) for P(t)

and the spreading of a pulse is proportional to the inverse width

of A.
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In terms of Fermat paths E (LA ) EAk(ü)e , the non-

Gaussing statistics can be understood as follows . Each

can be written as 
~~ 

+ where ~ j is a common phase generated

by the larger scales. The phase differencesL
~~k

(w) are due to

the small scales. They vary from path to path and are responsible

for the Gaussian factor x (w). Note that only correlations in

frequency measure ip directly. Correlations in space or time see

only ~~ or ~, which for p < 2 and p - 6 < 0 are dominated by small

rather than large scales , leading ultimately to Gaussian statistics.

The phase wrapping in time for p - 6 > 0 is a remnent of ~i.

The statistics of ~ in the partially saturated regime are

summarized in Table 3.

Intens ity Variations in

Distr ibution space time frequency

p - a < o  p - 6  > 0

R a y l e i g h  Gauss ian  Gauss i an  phase phase t imes
wrapping a Gaussian

Table 3. The StatIstics of in the Partially
Saturated Regime for p < 2.

The reader may be curious as to what happens at p = 2. The

“small ” parameter 8 is then equal to unity but according to App . C

the coefficient C (2) in Eq. (8.3) vanishes. A detailed

investigation
7 

then shows that the corrections to Rayleigh

statistics in the par t ia l ly  saturated regime are of order (tn~ )~~~.

More genera l ly ,  if p = 2 and Ln 4~ is large the statistics given in

Table 3 apply with errors of order (-fn’fl~~~. At p = 2 it is

possible to compute A. It is given7 by Eq. (1.21) with w0a replaced

:~
—
~~~~~=~~~~~~--~~

L _ _ _

~~

_ . —- - - - -  - —-— - -  - rn



_____  - ~~~~~~~~~~~~~~ 
- -

by w0c t ( 9.n~ )~~~. In general , a medium with 1p-2)th~ < 1 will act

like one with p = 2.

p As mentioned before the case of partial saturation for

p > 2 is discussed in App. 0.

I.

S

p
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9. INHOMOGENEOUS AND ANISOTROPIC MEDIA

In practice, random media are  only locally homogeneous and the

covariance

p(~~_ ,t _ t *;~~)~~ <~~(~~,t)~~(~~
’,t ’)> - <~~(~~,t) 

><
~~(~~

‘1t ’)> (9.1)

depends on position ~c ~~
- (~ + ~~). It is always as sumed that the variations

of p in ~ - are  much more rapid than those in ~ hut over a long

propagation path the dependence on ~ cannot alway s be neglected. Al so,

in an inhomogeneous medium < p ( )  > = ~~~~ will general ly not be a

constant and consequentl y cannot be absorbed in the def init ion c = w / k .

Finally, the medium can be s ta t is t ical ly an iso t rop ic  so that p depends

on the orientation of ~ - as well as its magni tude .

To obtain t rac tab le  path in tegra ls  in an inhomogeneous medium

we will have to approximate  the path dependence of ~ in p by evaluating

~ alon g some cent ra l  path which will tu rn  out to be an unper turbed  ray.

From Sec. (3)  we know that paths  a re  separated by L ‘~ /~1 (the precise

def ini t ions of L, c~ and ~2 for inhomogeneous ariisotrop ic media will be

g iven below) and the problem will  be t rac table  if

(i) for changes in ~ of order L~~/1l the co r re spond ing  var ia t ions

in p can be neglected. It will also turn out to be n e c e s s a ry  to expand 
~~

in powers of d is tances  between paths and we will have to require  that

(ii) ~~~~ is slowly vary ing over distances of order L~~/~2 .

The one other  condit ion is that

(iii) the parabolic wave equation is a valid approximation.
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When ~~~~ is not a constant this requires .that the normals to the wave

front s in the “unperturbed problem” where i~(~ ) = ~~~~ remain close

to the z-axis. If this is tr ue locally but not globally, then øolutions based

on the parabolic approximation can be patched together in the obvious way.

When conditions ( i ) ,  (i i)  and ( i i i)  are  met it is reasonably straight-

forward to extend the path integral  method to inhomogeneous and aniso-

tropic media . It amounts  to: (1) showing that  with suitable definitions

of ~ and D , <C> remains exp [ -f t~~~ } and Eq. (1. 14) continues to

hold , (2) finding a suitable definition for fI and then showing that the

boundaries of the saturat ed regimes a re  still given by Table 1, (3)  showing

that in the fully sa tura ted  regime the sta t i s t i c s  of e are Gaussian and

that in the partially saturated regime they are (for p < 2) as given in

Table 3, (4) giving new formulas for the corrections to Gaussian statistics

and coherence tails and (5) giving a method for computing A(~ ). These

steps will be carr ied  out in order.  In doing so it will be a s sumed  that a

ray approximation is valid for  the unper turbed  problem with ~i. =

A. The First and Second Moments

The path integral  for  < C >  will contain a factor

cx P [-~~~~ tdz Y dz ’ ~ (c( z) - c ( z ’ )

(9. 2)

The path dependence of the th i rd  argument of p will be approximated by

setting f( ( z )  ÷ ( z ’) )  = ~(z) where z = f(z- ,- z’) and is the unperturbed

ray satisfying
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+ ~ ~~~~~ 
+ = 0 (9. 3)

Here = (s , s ) is a two dimensional vector and ((0), 0) and ((R), R)

are the source and receiver co-ordinates. If there is more than one un-

perturbed ray connecting the source to the receive r it is assumed that

they are far enough apart that the path integral reduces to a sum of

(statistically) independent terms coming from paths near each rays

Defining a new path ~(z) by (z) = (z) +~i(z), the Markov approxima-

tion now amounts to setting

~(z) - (z’) + ~~(z - z’) ~ 
( ‘ (~ ) + ~~) (z - z’) (9.4)

The essenc e of the approximation is neglect ing ~i( z)  - ~ (z ’).  By require-

ment ( i i )  the substi tution ~ ( z )  — ~ (z ’) ~ ‘ (~) (z — z ’) is always valid.

The reader will note that by ( i i i )  ~~
‘ is actually small compared to e .

However , in a suff ic ient ly anisotropic  medium ‘ cannot be neglected

on the ri ght-hand side of Eq. (9. 4 ) .  Assuming for the moment the validity

of the Markov approximation, the analog of ~(0 , 0) will be ~~~ 0; z)

where
00

~(O,0;z) = f p(( ’ (z ) +~~) u,0;~~ (z) +~~~z)du (9 5)

and the path integral for <E> , which is now trivial since p no longer

contains the path ~~, will y ield < E > = exp [ - f ~
2
j where

= k2 5 ~(O,0;z)dz (9.6)
0
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Continuing to assume the validity of the Markov approximation

the next thing to compute is <E *(z ) C (1) > . There are two paths

= + and + where ~ satisfies Eq. (9. 3) with the

boundary conditions ~(0) = f(~01÷ r02~ and ~ (R ) = f(~ + ) and the

approximation is

R R
fdz fdz’p(c.(z) -~~.(z’) + ~~(~~— z ’), t.-t ;f (i~.(z) +~~.(z’))+f~~~( z + z’))
0 0

~ -~~~(z); t. -t . ;z)dz (9.7)

for i, j = 1, 2 where

00

t; z) = f  p(~ + (
~

‘ (z) + ~~) u, t; (z) + ~~ z) du ( 9. 8)

The path integral for <e*(2) e(l) > is then

<C* ( a) e(l)> 
~~~ 5 d

2 (paths )  ex~~[i S0 (pa th l )  -iS 0 ( path Z)

~jd(~~1
(z) - ~~2

(z), t
1 
- t

2
; z) dz ]

(9. 9)

where

S0 = kf  [f (~’ (z ) )2 - 
~o

( (z )  +~~~z )]dz (9.10)

and
p

d( %~, t ; z )  = k2 [ 
~ (0, 0 ; z )  — ~~~ t ; z ) j  (9.11)

Introducing paths ~ = f(
~ + -~

) and = we can , according to
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(i i), expand S
0

(path 1) - S
0

(path 2) in powers of ~ and ~ and keep

Only the leading terms which are quadratic. Proceeding in this way

22
yields

~~
:(2)st1) >

I2ked~~Jd
2( 

th) [ikj(
t~~) 1 ( )  ~.(z)~~.(z)~~..(z))dz

eo(z) € o(l) 0 
1 3 13

R I—f d(~ (z), t1 — t2; z) dz J (9. 12)
0

where the two-by-two matrix (in 
~~~~~~~~~~~~~~~ 

space) iJ. (z) is

______ — I= ~ (x) (9.13)
13 ax . ax . 0 .. —1 3 x=s(z)+e z

The path ~ now appears only as a linear factor in the exponential and

integrating over it will produce a product of ô-functions which force

~(z) to be equal to the special path r~~z) which satisfies the differential

22equation and boundary conditIons

V’Y’(z) + ~i.(z) ~2”(z) 0

r0l
_ r

OZ

~.(R) = (9.14)

Then setting ; equal to ~~ in d the remaining path integral just

produces
17 f 2k and one finds Eq. (1. 14)

<e *(z) Ew >  E~~2) e0
(l) exp [-fDJ (1.14”)

with
R

D= zf  d(j~’(z), t1 — t 2
; z ) d z  (9. 15)

0
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The object D defined in Eq. (9.15) is just the phase structu re

function of first order geometric optics” ~ for a general inhomogeneous

anisotropic medium which satisfies (i), (ii) and (iii). Note that ~

is always linear in 
~~~

_ 
~~~ 

and 
~~~~~~ 

When i.i
0 

is a constant,

~~ -i~02)(R - z) J R  + (~~ -~~ ) z/R and for a homogeneous iso-

tropic medium Eq. (9. 15) reduces to Eq. (1. 16).

For an isotropic medium where p depends only on the magn itude

of ~~~-~~~
‘ the Markov approximation is valid whenever the parabolic

wave equation is. The reason is the same as in Sec. (2). In App. (E)

the formula for the f i r s t  correction to the Markov approximation to

*0
~~ > is given. One can explicitly verify that the error is small

when the parabolic wave equation is valid.

The si tuation for anisotropic media is more complicated. Consider

an anisotrop ic but homogeneous medium with constant i
~~~

. Typical in-

homogeneities will not be spherical ly symmetric and one needs to

consider the three cases shown in Figs. (6a), (6b) and (6c). The

asymmetric i n h o m og e n e i t i e s  i n t r o d u c e  a n e w  s m a l l

angle 8
~~

, t h e  r a t i o  of  t h e  s m al l  d i m e n s i o n  t o

the large one. Examining the er ror  in the Markov approximation as

given in App. (E) one finds that , ior the case shown in Fig. (6a) ,  the

Markov approximation fails when the r. m. s . multiple scattering angle

is of order 00 . For the case shown in Fig. (6b) , it fails when the
p

r. m. s. multiple scatter ing angle is of orde r of the angle of incidence

9. and for the situation in Fig. (6c), it fails when the r. m. s. multiple
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scattering angle is of order unity, i. e., when the parabolic wave equa-

tion fails. Since can be small compared to unity the Markov ap-

proximation can fail in an anisotropic medium before the paraboli c

wave equation does but only for some propagation paths . When it fails

Eq. (1. 14) is not valid and this represents a defect in the theory which

is not easy to remove.

It should not be surpris ing that the Markov approximation can

fail sooner in an anisotropic medium. The Markov approximation can

be interpreted as the statement that the system has “no memory” in

range , i. e., that scat ter ings at a given range point a re  independent of

previou s distant scat ter ings.  In an isotropic medium this will be t rue

as long as the r. m. s. multip le scattering ang le is small and the wave

keeps moving in the same direct ion . However , in an anisotropic medium,

when the s cattering by a g iven inhoniogeneity can be hig hl y dependent on

the ang le of incidence , a distant scattering which has deflect ed the ~~ ve only

through a small angle will not be “forgot ten .” For the inhomogeneities

shown in Fig. ( 6 ) the scattering is strongly dependent on angle of

incidence (measured from the long axis of the inh omogeneities) when

the ang le is of order When the incident wave is along the long axis

as in Fig. ( 6 a ) ,  it begins to remember previous scat ter ings when the

scattering angle builds up to 00 and the pieces of the wave have inci-

dence angles greater  than 00. For the case shown in Fig. (6b ) the past

history of the wave becomes important when pieces of the wave have

been deflected by 9~ and are  incident along the long axis . When
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approaches i r/2  as in Fig. (6c) the process has no memory as long

t
as the r. in. s. multiple 8cat ter ing ang le i~ less than unity.

Yet another way to understand the peculiarities of anisotropic

media is to return to the remarks  fol lowing Eqs. (6 . b )  and (6 . 9) .  For

an isotropic medium the average  of ~ integrated along a Fermat path

‘W will be the same as the ave rage  of ~.i integrated along the unperturbed

ray as long as the r . in. s. multiple scat ter ing angle is small. How-

ever , in an anisot r opic medium the average  of p. integrated along a

path can be very sensi t ive to the local direction iX~’ of the path. In

fact, for the situation shown in Fig, ( 6 a ) ,  the ave rage  of ~i integrated

along a Fermat path deviates  f rom the average  along an. unperturbed ray

as soon as 
~~~~~~~ 

00 and for  the sit uation in Fi g. (6b) wh en ‘~ 8..

This leads to the same cr iter ia  as be fo re .

The combination of an ani sotrop ic medium and a spaciall y vary ing

1j
0

(~~) leads to a new set of compl ica t ions . This will be i l lustrated for

propagation iii a channe l where  the unpe r tu rbed  r ays  make loops as shown

in Fig. (7) and where the long ~xis of the inhomogeneities is parallel to

the channel axis. The medium will a lso  be assumed to be statistically

homogeneous in the direct ion of the channel  axis but not necessarily in

the t ransverse  d i rec t ions .  (This is a prototype of the ph ysical  situation

which occurs for sound propagation in the ocean .
7 ) The sca t ter ing  will

be strongest when the tangent to the unpe r tu rbed  ray  is pointing along

the lon g axis of the inhomogeneit ies , i. e~~, at t h e  t u r n i n g  p o i n t s .

For small 00 
one can in fact  ignore  all of the propagation path except

for a set of d iscre te  regions around t u r n i n g  point s where the tangent to

the ray is within 00 of the channel  axis .  Assuming  that a Markov
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approximation is valid for propagation throug h one of these region s, it

will also be valid for propagation throug h many turning points provided

only that the average scattering at a given turning point is at most

weakly dependent on sca t te r ings  at previous turning point s. Assuming

that the turning points are separated by more than a coherence length

the effect of previous scat ter ings  will be a random modulation of the

range z0 and ( t r a n s v e r s e )  location of a turning point. Now the

average scattering around a turning point is dependent only on its

location in the channel and not on its range z
0
. Thus the Markov

approximation will  be valid out to range such that random variation s

in are big enough to change the average scattering. This turns

•ut to be a much longer range
7 than that for which the r . m. s. multiple

scattering angle (which is dominated by variation s in z
0
) becomes of

order 00.  The extended val id i ty  of the Markov approximation can be

demonstrated exp licit l y using the Fermat  path formalism of Sec. (6 ) .

One works out the proper t ies  of Ferrnat paths which are randomly de-

Elected at tu rn ing  points  and then c ompares averages  of p. integrated

along these paths to averages  of p. in tegra ted  along the unperturbed

ray. For a g iven channel one can then find out when the Markov ap-

proximation will break  down . The resul t  is just the criteria stated

above.

B. The Sa tu ra ted  Regimes

It will temporarily be assumed that the medium has a single
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scale. Then in an anisotropic inhomogeneous medium the scale length

L becomes a z-dependent two- by-two matrix (in 
~~~~ 

sPace) defined

by the expansion of p

~~~, 0 ;z )  ~ (0 , 0 ; z ) [ l _ f ( L
~~~

(z ) )
~ 

w O w . + 0(J~~~~)] (9.16)

The f i r s t  task in discussing the saturated reg imes is to find the

co rrect  definit ion of ~2 and es tablish th eir bounda r ies . The gene ral

defin ition of £2 will involve L and some geometric  parameters  as so-

ci7t ed with the unperturbed problem. From Secs. (3) and (7 )  one can

cee that  ~ measures  the rate at which the phase of the oscillating

~actor in the path integrai  var ies  as a path moves away f rom an unper-

turbed ray. To examine this  in more detail  consider paths that leave

the source at z 0, go to the r e c e i v e r  at z = R and at some point z 0

in between are separated from the unper turbed ray ( z c~
) by 1. Let

S(1, z
0
) be the minimum of S

0
(p ath) - S

0
(unperturbed ray) taken over

all paths of this  class. The minimum is achieved for a path that follows

an unperturbed ray from the source to ( ( z 0 ) + 1, z0) and then another

unper tu rbed  ray f rom ((z
0
) ~ - I , z 0

) to the receiver.  When p.0 is

a constant S (I , z 0) is simply

— — — 2
$ S (I , z0) = ~~~(j )  B(z0) (9. 17)

where B which a l r ead y appea red  in Eq. (6. 11) is

p , 
kR

B~z , - (9.
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— l -l -.2
and £1 is the average of B L , x. e.

cl
_I 

= L~~ B
’ = L ’2 [ .

~~~~ f B4(z0) dz0] (9.19)

Thus £1 is a measure of the phase change required to move a path a

distance L awa y fr om the unperturbed ray. In general there  is a

two-b y-two matrix B defined by the expansion for  small ~ 22

— —  1 — 3S(1, z
o
) 

~~~ 

1i~ j B . ( Z~~~~) + 0( 
~ I (9. 20)

and will be an ave rage  of L 2 B 1. It is convenient to weight the

average by ~(0, 0; z) and cl will be defined as22

R 2f ~(O, 0; z) (C (z) ).. (B~~(z) ).. dz
— l 1 -.2 -1 1 0 i

Il = — (L ).. (B ).. — (9. 21)a ~ a f p(O , 0;z)dz
0

With this definition of ~2 one can follow through the arguments of Sec. (3)

and verif y that sa tura t ion and Gaussian s ta t i s t ics  a re  expected when

~~ > 1 and Z’/cl > 1. A more precise  procedure  is to comput e

(<1 2> - .  < 1>2
)/< 1> 2 in the R ytov approximation to find the boundary

of the sa turated reg ime and then in the saturated reg ime compute the

correct ion s to Gaussian s ta t is t ics  and verif y that  they are small. A

straig h t fo rwa rd  evaluation of ( < 1 2 >_  <1>2)/< 1 >21 shows that it
Rytov

does in fact exceed unity when Z’- > 1 and ~I cl > 1 indicating that the

boundary is correct. Using the formulas of App. F one can verify that in

the saturated regime the corrections to Gaussian statistics are indeed

small.
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With the appropriate change in the definition of (C 2 ) . .  for
S 3

p < 2 , the same procedure  can be extended to media with multi ple

scales. The result is that  with ~2 def ined as in Eq. (9. 21) the

boundaries g iven in Table 1 remain  c o r r e ct  and that for  p < 2 the

partially saturated s t a t i s t i c s  g iven in Table 3 also remain cor rec t .

To actually calculate B . . ( z )  the fol lowing resul t  is useful .

t Define a Green ’ s function g . . ( z , z ’) by 22

—i g.(z, z ~ ÷ ~~~~ (z )  g~~.(z . z )  = b ó( z  — z)
8z

g..(O, z’) g..(R, z’) 0 (9. 22)

Then it is straightforward to verify that

(B~~(z) ).. = -g. .(z, z) (9. 23)
‘3 ii

C. Correlation s in Frequency

In general one can write

> 
exp L ~~

(
~~~w1)

2

1 ~~~~~~~~~~~~~ (1.19’)
• 

~~ *( l )  e6((..)) L 2 (a
g J

where the exponential  f ac to r  come s f rom geometr ic  optics and A is

to be computed f rom the path i n t eg ra l .  The geometr ic  optics decor-

relation fr~ quency 
(~)g 

is

-z 
((d fk 

rp . (~~(~) ÷ ~~~ t ~ - <p . (~~~(z) + 
~~~~ 

t ) >]dz)
) 

(9. 24)

and for a genera l  d i spers ive  medium both p. and the unperturbed ray
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~,

will depend on ~~. For a nondispersive medium Wg 
is equal to

where ~ is evaluated at the central frequency ~~~.

As before the path integral  for A is tractable onl y for

m e d i a  wi th  p > 2. The derivation~~ roceeds as in Sec. (3)  and

~ / i c c
after introducing scaled paths ~ = ( ~ ) (~~~-

_)  where
2(i. -~~~)

= ~~(c~ü+~~’) and c
g 

is the group velocity at @ = the path in tegral

for A gives

K()~~A(~ ) = K(0) 
(9. 25)

where 22

K(w) = fd(paths) exp
[
~if [(~

I (z) ) 2~ 
~~
(z) ~.(z)(p...(z) +i~~h..(z))j dz]

(9. 26)

with

h..(z) = c~~ ~(O , 0;z)(C
2
(z)).. (9.27)

If the path in t e g r a l  for  K is wr i t t e n  out in its f ini te  form it

become s an ordinary integral ~ f l a rge  dimension whose integrand is

the exponential  of a q u a d ra t i c  fo rm.  Such an in tegral  is proportional

to one over the squa re  root of the de te rminant  of the quadratic form

and in par t icu la r A wi l l  be the  square  root of the rat io of two determi-

nant s. As the number  of in tegra t ion  points goes to inf ini ty  the deter-

minant s become funct ional  de t e rminan t s .  There are  two equivalent

methods
6 for computing the r a t io  of these  func t iona l  determinant s.

In the f i r s t  method one has to f ind all  the eigenvalues o of then

d i f f e r e n t i a l  equation
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Ii

+ ~~~(z) ~~~~~ - w
~
h
~~

( z)  ~~~~ z) = 0 (9. 28)

subject to the boundary conditions Vr~
) ( O) = ~~~(R) = 0. Having done

this A(~ ) is

A(~) = 
(iT 1 )  (9.29)

In the second method one defines a two-by-two matrix M .(z , ~ ) by

the diff erential  equation

MY.(z,~~) + ~~~ (z) M
k .(z P~~

) + i~~
h .k (z) M k . ( z . t ~

) = 0 (9.30)

and boundary condition s 22 in a

= 0

M!.(0,~~) = 8 .. (9.31)
13 iJ

Then A is given by the ratio of determinants

A(~ ) = (~:~ ~ ~ ~ 32)

As an example of how A is computed cons ider  a homogeneous

• • -1 ’ -2isotropic medium where p... = 0 and h.. = 8.. c p(O, 0) L . The
• 13 13 i j g

eigenfunctiori s of the operator  in Eq. (9. 28) are then of the form

2 26~ sin(n1 
ir z / R )  and 8j2 sln(n2 -Tr z/R) and the  c igenvalues  a re  -n

1 it

P and ~n - n
2 c~1 where = C

g L / R  i ( ~~. 0) as in Sec. ( 4 ) .  The infinite

product  in Eq. (9. 29) is then a product  over two sets of integers
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\f
= ( iT 1 1T 1 ) (9.33)

\nl= l l _ i
? Z  n 2= l  z z J

and the two equal f ac to r s  jus t  cancel the square  root. The resul t  is

fic~ \2

A(w) = 
1 

= —j—
~
— 1 1 

(9. 34)
n 1 1 - i n ..

~° I • f iw
2 2 1+~ — j 

— sini—
fl iT 

~l 
n � 0 

~~~

and with 
~~ ~ o~~~

6 Eq. ( 1, 21) is reproduced . To c ompute A l~y the

second me th od one f inds  immedia t ely that  M . .(z ,~~) 6 . .
13 1.] i~~ / \ R \~1

M..(z, 0) 6.. z and Eq. (9.32) yields the expected answer.

Once 
~g 

and A have been determined everything proceeds as

in the homogeneous isotropic case. In particular C sa ti s f ies  Gaussian

s ta t i s t ics  in the full y sa t u ra ted  ~regime and in the par t ia l l y sa turated

reg ime for p < 2 (where A is unfor tunate ly not known ) it is a phase

times a Gaussian. There is one new point  worth mentioning. In the

calculation of Sec. (4) < ~~ (r )  > vanished for T < 0 because A was

analytic in the upper half plane . When p . . . ( z )  is non-ze ro  there  can

be a finite number of positive eigenvalues ~~~~. Then A is no longer

analyt ic  in the upper half plane and < . Q  ( r )  > is nonvariishing for r < 0.

This in fact happens for propagation of sound in the ocean.

The transition to inhomogeneous anisotropic media has now been

completed. The reader who is interested in seeing how the method

works in detail for a realist ic problem can consult the book of Flatte ,

et al. 7 
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10. Conclusions

The path i n t e g r a l  has turned out to be a powerful tool.

It has prov ided a precise , (very nearly) complete and glot—al

picture of what goes on in the  saturated regimes. The unsat-

urated regime where the Rytov approximation is valid could

also be t rea ted  by path integral methods . While this would

lead to a more unified picture , in the end it would only

amount to a rederivation of the Rytov approximation . A more

t ’~u~~t f u ]  enJeavor would be to make an attack on the remaining

uns-:~iv~ d problems in the saturated regimes . For situations

wh.~~e scalar wave equation is sufficient and the (multiple)

sc~~Lte r i n g  angles are small the  r emain ing  problems are :

a) How to compute (except  n u m e r i c a l l y)  the coherence in Ire—

que~icy , A ( w ) ,  fo r mu l t i p l e  scale media w i t h  p < 2.

b) What are the  detailed (beyond those given in App.(D))

s t a t i s t i c s  of cf,? in the  p a r t i a l l y  sa tura ted  regime for

4 > p > 2 ?

c) 110w to compute the second moment ~e*(2) e(l)) for those

propagat ion paths in highly anisotropic media where the

Markov approximation is not valid?
p

d) What is the detailed behavior of C at the boundaries

be t wee n t he  unsaturated and saturated regimes and between

the fully and p a r t i a l l y  s a tu ra t ed  regimes?
P

These are diff icult problems which may not have any

simple solution and , in particular , the path integral may not

be the best method for attacking them . On the other hand , it
p

Is quite remarkable that the use of Feynmann ’s path integral

has reduced the problem to a few unknowns which occur only in

special cases .
P
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Among the other methods for treating wave propagation

in random media , the most powerful  ones use the Markov ap-

proximation from the beginning. With the Markov approximation

one can derive local partial differential equations for the

momen ts of e ~~~~~~ These equations have been studied exten-

sively, especially by the Russian school.3’4 In the Markov ap-

proximation the path integrals for the moments are formal solu-

tions to these partial differential equations. The equations

for the first and second moments can be integrated analytically

and correspondingly the path integrals can be done analytically.

For the higher moments , the differential equations have yielded

only  some i n f o r m a t ion about4 (1(1) 1(2)) . The reason that

this approach has not yielded more is that to determine the

asymptotic (long-range ) behavior of a function from its defin-

ing partial diff~ rential equation is highly non—trivial. The -

path integral has the advantage that it works on a global rather

than local level , making  it easier to determine the asymptotics .

The reader who is familiar with Mercier ’s’2 treatment of

the phase screen problem (an idealized case where all the scat-

tering takes place on a thin sheet) will have noticed the

similarity between his methods and those used here . The simi-

larity is partly just the mathematics of manipulating integrals

but there is also a physical reason . Any medium can be approxi-

mated by a (perhaps) large but finite number of phase screens.

The wave field can then be expressed as a large but finite

dimensional integral over the surfaces of the screens. But

this is just the path integral in its finite form . Thus the
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path integral can be thought of as a scheme where one approxi-

mates the medium by n phase screens and then lett ing n go

to infinity recovers the original problem .

V

p

P

p
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APPENDIX A CORRECTIONS TO ThE MARKOV APPROXIMATION
1

The exact path integral for (~*(2)~ (1)) can be expanded as

(~*(2)~~(l)) 
~~~ 

h f 2  exP[~~![(~~]~
z))

2 _ (~~(z)1
)2Jd z _ vo]

X [V - v]m (A.l)

S

where V is given by Eq. (2.10) and V is the Markov approximation
0

given by Eq. (2.11). The m = 0 term is the Markov approximation and

the m = 1 term will be computed below for the special case
p

For (~*(1)~~(l)) = <I) the first correction contains [v — v]
which can be replaced by -V because, as may be seen from Sec . (2)

the piece proportional to V vanishes. We then have to first order

R
-+ I

(I) = (i) 
— ---

~~J 
d (paths) exp ikJ v ’(z) u ’(z)dz — V JV (A.2)

0 k o

where paths v(z) = r
1
(z) - r

2
(z) and u(z) = ~(r 1

(z) + r
2
(z)) have been

introduced . In terms of the Fourier transform p of ~ (Eq. (5.3))V is

R H

2f 1 12 I-~2 2 
iq (z

1 
— z

2
)

V 2kJ dz 1 JdZ ,) Jd qdq (‘V q + q ,o) e
0 0 z

(~~ (z~~ - u(z )) r-~ -, 1 r ~X e sin ~q 
. v(z

1
) sin ~ q v(z

2
) (A.3)

P where q = (q ,q ) is a two—dimensional vector . Writing

( u ( z
1 

- u(z 2)) 
= exp [i~ .J~~(z) [6(z  - z

1
) - ó(z - z

2
)]d zl



and inserting V as given by Equation (A.3) into Eq. (A.2)
-3 -3

one finds that since V depends only on v the integral over u(z) can
0 

.÷
be done and that it leads to a 6- functional which forces v to satisfy

the equation

- 

~~‘(z) =~~[ô(z 
- z

~
) - ö(z - z

2
)] (A.4)

—3 -3
with the boundary conditions v(0) = v(R) = 0. In terms of the Greens

2
function g(z,z’) which satisfies —~~g(z ,z’) = ó ( z  — z’) and g(O,z’) =

-~ ~~2 ~g(R,z’) = 0, v(z) is constrained to be v (z) where

-3
= ~(g(z,z1

) — g(z,z2)) 
(A.5)

The path integral is then done by replacing v(z) by v (z) in V and in

the representation of V and the final result is

— 

(I) - (I~ 
=2k2/dz1

~~~z
2
~~~2qdq ~~~~~ + q

2 
,0) 

i~~(z1 
- z

2
)

~< sin
[~
q v ( z

1)] sin[~~ 
. 
~~(z)]exP[ ,~~(l~~ (z)l o)dzj

(A.6)

To estimate the size of the integral in Eq. (A.6) , one notes that

1z 1 
— z

2~ 
will be restricted to order L or less and that for 1z1 

- z~
q . vóz) is of order q L/k q/k which is assumed to be small. The

sines can then be expanded and using the identity

2(z — z ) g(z , z )
[g(z

1
,z
1
) — g(z

1, z2
)][g(z

2 , z1
) — g(z

2
,z
2
)] = — 

1 2 1 2

(A.?)
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one finds

<i) - (i) 
= ~~~~ z1~~~z2~~~

2
qdq ~~~~~~~~

2
o)~~ c~ - z2)

2

X 
~(z z )exP{i~~(z - z2

) _fi (I~ 0 z ) I ~ O)dz } (A.8)

Ignoring the term J d(~~0(z)j ,0)dz in the exponential which can only

make the integral smaller , changing to variables u = z1— z2 an -i

= ½ (z1
+ a2), approximating their limits by -~~~ <u < and 0 < z < R

and &et-ting g(z1, z2) g(~ ,~~) then yields

<I> — 

~~~~ = — 
R~(0,0) _____

3L

The correction to Markov approximation to <~~~(2) ~~(i)> can be

analyzed in the same way. it is fractionally small as long as < ~2> R/L

is small.

F

p

- 
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APPENDIX B CORRECTIONS TO GAUSSIAN STATISTICS

To begin with something simple, consider <~
2
>• It is given by

the path integral in Eq. (3.1) with t~ = t and the end point conditions

= 
~ i
(R) = 0. Changing variables to , u

2, 
and defined by

~(z) =~~l
(z) + + 

2~~
2
~ 

+ 3V ~~~~(Z )

~2
(z) = ~1

(z) + p2
(z) — 1~2(z) 

—

r
3
(Z) = ~~(z) 

- 

~~
P
2

( Z )  + 
~~~~~ 

—

r
4
(Z) = ~~(z) 

— p2
(z) — 

~~2
(z) + ~~~~(z) (5.1)

the integral over ~1
(z) can be done and it produces a 6- func t iona l

which forces u~ ’(z) to vanish everywhere. With the end point conditions

u
2
(O) = u2

(R) = 0, the only solution is u
2
(z) = 0. The quadruple path

integral then reduces to the double path integral over paths and v
2

~~~~ 1j2 [ ~~~~~l( ~~(z)dz 
- (B.2)

where M was defined in Eq. (3.2) and for = 0 it is explicitly

R
f -3 -3 -3 -3

M =j  2d 1v 1
(z )1, 0) + 2d ~v2

(z)l,0 )— d (~ v
1
(z) + v

2
(z)1,O

- d ( I ~~1
(z) -~~2

(z) 1, 0)j dz (5.3)

The two regions (a) and (b) discussed in Section III  are ~~~
(z) 1 < L/4

with “2 
arbitrary and 2

(2)1 < L/P with 
~~~~ 

arbitrary.

It was pointed out in the text that M is of order uni ty  or smaller

throughout regions (a) and (b). Actually, there is a further region
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(ha ving some overlap wi th  (a) and (b)) where M can be small. It is (c)

< L/~
4 i~2

(z)I < L/J~ and owes its existence to the fact that

when both ~v1
(Z)~ and 1v 2

(z)l are small, M is quartic in the v ’s. In

all other regions of path space , e 
M 

is exponentially small.

Our first task is to dispose of the extra region (c) by showing

that for  small ~ the volume of path space occupied by this  region is

exponentially small compared to the volume s occupied by reg ion s (a)

and (b). An estimate of the volume of path space occupied by region (a)

is 

L~~~
2 (paths) exP [i k~~~~ (z) . ~~(z)dz - 

L
2

R~~~~~~
h 1  

1 (5.4)

where the integral is done by integrating over v
2
(z) which produces a

6—functional that forces ~~(z) to vanish. An estimate of the volume

occupied by region (c) is

1f2  exp~ikf~’(z) ~~
‘(z)dz - 

_
~~~J~~(z) + ~~(z)) dzl

(6/cy) 24
= I—. ,—~~~~~ — e  (B.5)2 ~3 2 i3

sinh ~
j —  + sin si—

‘~

where the value of the path integral is taken from Ref. (6). For small

~~, the volume occupied by region (c) is therefore exponentially small

compared to the volume occupied by regions (a) and (b). This result ,

which may surprise some readers , deserves an explanat i .~n. In region (a)

where is always less than L/~’ , the factor exp [ikfv (z) ~~(z) dz]

= exp [—i kf~1
(z) 

~~
‘(z)dzI will restrict 1v~’~ to values less than

P/(kLR). Typical values of 1v 21 will then be R ~~ ~/6 L/ci. At a
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P

.9 .9

given range point z , the variables v
1
(z) and v

2
(z) span a four-

dimensional space. In this space the volume occupied by paths in

region (a) is roughly L
4
/(+cy)

2
. At the sane point the volume occupied

by paths in region (c) is roughly L4/~
2
. Thus at each point z , the

volume associated with region (c) is a factor of ~
2 

smaller than that

occupied by region (a). To compute the total volume in path space,

one has to multiply together the volumes at each range point z , taking

into account the fact that the paths cannot bend too rapidly. The path

integrals in Equations (B.4) and (5.5) do just this. The resulting

exponential ratio of volumes should no longer be a surprise since at
2

each range point the ratio is down by ~

It is therefore sufficient to consider only paths lying in regions

(a) and (b). The fact that integrating separately over regions (a) and

(b) leads to a slight over-counting can also be ignored. The volume in

path space where regions (a) and (b) overlap is even smaller than the

volume occupied by region Cc). Now as was pointed out in the Section III,

for most paths in region (a) M ~~~ where

(a) -~

M = 2Jd (lv (z)1,0)dz (B.6)
0 1

0

and for most paths in region (b) M M
(L
~ with

R

= 2/d (lv2
(z) l~~0)dz (B.7)

The path integral in Eq. (B.2) can then be expanded according to
- 1

I
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fd
2(paths)eXP[ikfv (Z) ~~ (z)dz 

- M I

~~ (z)dz 
- M
(
~~J 

(M
(a)_ 

M)
m

+ ~~~ fd
2( th)  

[kf
~~~
’( )  ~~(z)dz 

- M
~1 

(M ~~~
_ 
M)

m 

(B.8)

wh ich is an asyntotic series in o~. It is not a convergent series because

(exponentially small) contributions from region (c) and the overlap of

regions (a) and (b) are not being treated correctly. The m = 0 terms

correspond to Rayleigh statistics and the m = 1 terms are the first

correction . They will be computed explicitly below .

Eq. (B.8) generalizes to an arbitrary correlation in the

obvious way. For a 2nth order moment there are n~ important regions

of path space. In each such region there is an M given by the analog

of Eq. ( 3 . 14) or ( 3 . 5 ) .  The generalization of Eq. (B.8) is then a

sum of n~ terms , each of which is a series of powers of the appropriate

M -M.
0

The path integrals for the m = 1 terms in Eq. (B.8) can be evalu-

ated by inserting a spectral representation for M — M. If p is the

three—dimensional Fourier transfor of p (see Eq. (5.3)), then in region

(a)

R

M(a)_ M = 4sk2fdzJd
2
q p (l~

•#
c~ )e

i
~
t V

2
(z) 

- cos (
~ 

. v ( ~~’~] (B.9)
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and

R -

1 1’ 1 + (a)I (a)
~~Jd (paths) exptikJ v ’(z).v2’(z)d2

_ M 1M0 
- M =

qk 0

v~~~zlfd
2
q p (I~~I )fd

2
(paths) exP f-ikJ~2

(z) (~~~
‘(z) - 

~~6(z 
- z’))dz - ~1~]

X — cos ( q v1(z5)J (B. 10)

a —3 —3
Since M depends only on v

1
, the integral over v

2 
can be done and it

produces a 5—functional which forces v ’’(z) - S(z — z”) to vanish.

In terms of the Greens function g(z,z’) defined by

2
g(z , z ’) = 6(z — z’) (B.ll)

-3
with boundary conditions g(0,z’) g(R,z’) = 0, v (z) is constrained

q (a) ~~~~~~ 
2 

-3
to be — 

g (z , z ’) .  In M and cos ( q • v (z’)I one can then set v (z)

equal to ~~g(z,z’) and the remaining path just gives (I). The calcula-

tion of the correction in region (b) is identical and to leading order

in 0!
P

I
2

>

~~~

2 I

~~ 

= 4~~
2~~~zJd

2
q p( l~~l) QCz,1~~I (B.l2)

wi th

Q(z,l~~
) = 2[l - cos (~ g(z,z))] exp [-2~~~(~~~ ~(z~z

’)i 0)dz’}
- 

(B.13)
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An examination of the integral ~n the right-hand side of Eq. (B.12)

show s that for small 0!, (i) d (-’f
I- g(z,z’LO) can be approximated by

(ii) 2[l — cos(~ — g(z~z))j can be set equal to

(~ g(z,z))2 and (iii) the dominant contribution comes from the regions
a ~ 0 and z R where g ( z , z ’) z(R — z’)/R and z’(R — z)/R. The con-

tributions from the regions z 0 and z ~ H are the sane and

I
2
~~~~2I>

2 
8~k2fdzfd

2
q P ( l q I ) ( ~~~~~~~~ ) 

ex~

[

~ 
R~(:~o)z]~~~~

LJq
2
p(q, 0)dq

= p (B.l4)

qp(q ,  0)dq

The correction to (1
fl
) involves n! regions of path space and in

each of these regions there are n(n — 1)/2 terms in M - M which differ

only by permutations of the paths. The result is that the correction to

(i5 is n~(n)(n 
— 1)/4 times the correction to (1 2) .

Moving on to a more complicated object , consider (1(1)1(2)>. It is

given by the path integral in Eq. (B.2) but the end point conditions on
-3 -3 -3 -3 -3 -3 -3 -3

the paths are now v (0) = v (R) = 0 and v (0) r — r , v (H) = r — r
1 1 2 ol o2 2 1 2

and now M is
R

M =f [2d(l~~1
(z) L 0) + 2d(~~2

(z)I ,t1 
- t~~ 

- d (I~~ (z) + v2 (z) l ,t1 - t2)
0 .9 .3 1

— d (I v1(z) — v
2
(z) t

1 
— t2)j dz (B. 15)

The integration over region (a) give s <1)
2
(1 + corrections) while the

2 -D(1 2)
integration over region (b) gives (I> e (1 + corrections). As
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indicated the corrections in region (b) are proportional to e
D 

and

are a small effect of no particular consequence . The corrections in

region (a), on the other hand , are small but do not contain e
D 

and

hence fall much less rapidly. This leads to a coherence tail in

( 1(1) 1(2)) which is not present in (~ *(1)~~(2)) .  The interesting
-3

corrections in region (a) are computed by changing variables from v , (z)
-~ z -~ R — zand v
2
(z) to v1

(z) and w(z)  v2
(z) — — Cr — r

2
) — 

H 
(r

1 
— r

2
)

and then proceeding in exactly the same way as before. The result is

2 -D(l , 2) - ,  -3 —3 -3
<1(1)1(2)) = ( I )  [1 + e + y(r — r

2
,r — r

2
, t — t

2
))

(B. 16)

where

y (~~,~~~, t) = 2v k2~~~~zfd
2

q exp ~ i 
~ 

+ ~ 

(H - z)q ro1 (I~I t)Q(z~~)
(B. 17)

and Eq. (13.12) is not reproduced for  1(1) = 1 (2) because a small term

of order ‘~‘e 
D 

from region (b) has been dropped . For small a this integral

can be simplified in the same way that Eq. (B.14) was obtained from

Eq. (13.12). It becomes

-3 -4

LJq p ( q , t)~ J (q’~r~)-f J (q~r~~)]dq

y(r,r ,t)
o 8 

j~~~~~~)d (B.l8)

Corrections to more complicated correlations and terms of order
2

0! or higher cart also be computed — the only obstacle be ing the labor

involved. The calculation of the  general coherence tail involves only

some combinatoric~~. It is
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<k =l 
(I k))~~ - 

~~i = “Gaussian te~~s” + ~ ~~ mjY( k _ i )

~ <I ( k ) ’
~>k~l

(B.l9)

where y ( k  — i)  = r
j~~ ‘

~ok 
— roj~ 

t
k 

— t~ )~ the “Gaussian terms ” are

what one would compute from the Gaussian distribution and all terms of order
-De have been dropped.
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APPENDIX C: CORRECTIONS TO GAUSSIAN STATISTICS FOR p < 2

Eqs. (8.12), (B.13), (B.16) and (8.17) of App . (B )  do not

assume a single scale media and will be the starting point. For

p < 2 , in e i t he r  the fully or the partially saturated regime Q

can be approximated by

Q(z , l~~l ) {
~ 

g(z,z))~ ex~~[_ ~~~~~~~~~ 
~~~~k~~~~

’Z) 

~
] (C.1)

where the cosine has been expanded , the short distance expansion

for ~ Eq.(7.2) has been used and the identity

= ~~~~~g(z,z)~ P (C .2 )

has been employed.

In the fully saturated regime the main contribution to

Eqs. (8.12) and (B.17) again comes from z 0 and z R. Using

Eq. ( C . 2 )  for Q then yields Eqs. (8 .14)  and (B.18) with a re-

placed by a ’ where a ’ is defined in Eq. (7.3).

In the part ially saturated regime all values of z

contribute to the integral but the dominant contribution comes

f rom large j q j  where

~(q,t )  = ~ (O ,t ) 2~ (r (1÷~p))
2 sin(Trp/2) (C 3)

4r

For n = 2, Eq.(8.3) with

(p÷l)
(4 P ) / P  2

p (r(l+~ p)r(p-l))
2 
sin(np/2)r( (4 - p)j p)

pu 6 ~~ F ( 2 p — 2 )  ( C .4 )
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is obtained by inserting Eqs. (C.3) (with t=0) and (C.1) in

E q . ( B . 12 ) .  The extension to general n works in the same way

as before . The coherence tails in the p a r t i a l l y  saturated

regime are obtained by inserting Eqs.(C.3) and (C.1) into

Eq.(B.17). For ~ , ~~ ~ 0 this leads to in tegra l s  which

cannot be done a n a l y t i c a l ly .
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APPENDIX D: THE PARTIALLY SATURATED REGIME FOR p > 2

It is difficult to make q u a n t i t a t i v e  statements about

the partially saturated regime when 4 > p > 2. There is how—

ever some qualitative information .

Eq . ( 1. 14 ) holds and Ce? is equal to C0exp [—F1’2]in

all regimes as long as the Markov approximat ion is valid.

Furthermore (e * (W ? )  8(w)) continues to be given by Eqs.(l.19)

— (1.21). The argument that any correlation involving an un—

*
equal number of e ’s and e ‘s van ishes also goes through as

before . Thus ~ is uniformly distributed in phase . The

difficulty arises when one attempts to compute the non-vanish-

ing higher moments.

The stat istics are not Gaussian . This can be verified

by assum ing that they are and then computing the corrections.

They are not s m a l l .  Some i n f o r m a t i o n  can be obtained however

by comparing the path integral for ((e
9( 2 ) ) 2 (~~~( l ) ) 2) with

that for ( Ie ( 2) 1
2 

I~~~( l ) I 2)  . Upon do ing  t h i s  one f inds that

always phase wraps as shown in Fig.(5b). lt turns out that -

the t y p i c a l  space t ime  scales over which  the phase and intensity

— change are those listed in Table D-l (the parameter ~ was de—

f ined in E q . ( 8 . 4 ) ) .

4

S
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Phase L/~ T/~

(T/~’ ) ( G / 4 ) 4~~ (T/~~)(~~/~~)
4
~~

P~n I (L/4)(~~/c~) 
p 

-

p - ó > 2  2 > p — o > 0

Scale Length Scale Time

Table D—1. Time and Space Scales Assoc iated with
Phase and in I in the Partially Saturated
Regime with 4 > p > 2.

Note that for partial saturation where ~4/p
,~ > 1 but

< 1 the  r a t e  at which the intensity changes is always

small compared to the rate at which the phase changes .  Ex—

amilling more complicated correlations leads to the conclusion

that at a fixed frequency can be represented as

~~(i) 80 (j )  exp [i  
~
(i)]x (i) ( D . 1)

where 4(j) is a real Gaussian random variable with ( 4~(fl) 
= o

and

((~~(i) - ~(J))
2) = D( i ,j) (8.2)

The other factor x is an independent (of 
~ ) complex random

variable about which only three things are known :

( 1) any correlation involving an unequal number of x ’ s and
*

x ‘s vanishes

(2) <( x 1 2> = 1

and
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(3) the decorrelat ion l eng ths  and times for x are those listed

under i n t e n s i t y  in Table D-1.

To see what the representation in Eq.  (D . 1) means cons ider

= ~ exp [i(~~( l )  - ~(2)) ]) ~ X ( 2 )  x(1))—

= exp [_~D(1,2)] ( ~x I~~ 
( D . 3 )

where to get the second l ine one notes tha t  (X
*(2) X(1))

will be approximately ( i x  2> for all space or time separa-

t ions such tI~at exp [—iD] is not vanishingly small. Thus ,

E q . ( 1 .l 9 )  is re produced , as it should be. Similarly,

= exp [--2D( l , 2 ) } ( 1 x 1
4

) ( D . 4 )( ~“
~~ 2 ) )  

~~ ~~~~
and this correlation is known up to a constant. However ,

all that is known about the intensity correlation

(1(2) 1(1)) = 4( X (2)1
2 

ix (1)l ) ( D .5 )

are its space and time scales .

The extens ion to unequal frequencies is straightforward .

At different frequencies ((~~( w )  — ~~ w ’))2) (
~~

) and

(x (w ’)  x ( w ) )  A ( w  — w ’). The higher order moments of x
are again non-Gaussian and unknown . However , their width in ‘.a

is large compared to W
g • As in Sec .(8~ th is means t ha t  pulse

propagat ion is dominated by wander rather than spreading.
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As was mentioned in Sec.(8), there is a case where the

non-Gaussian statistics of x can be studied in detail. It is

for correlations in time when p = 2 and S = 0 and is explained

in Ref.(7).

The above results are most easily derived us ing  the

Fermat path formal ism of Sec.6. One can work out the joint

probability that two paths will satisfy the perturbed ray equa-

tion . In the partially saturated regime with p > 2 it turns out

that  the  F~ rmat paths are highly correlated and tend to lie with-

in L(~~/cl)
4
~~ of each other. Study ing averages of ~i and p ’ along

correlated Fermat paths then leads to the above conclusions. The

detailed calculations are relativel y straightforward but tedious

and will not be given here .
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APPENDIX E: CORRECTIONS TO THE MARKOV APPROXIMATION

FOR INHOMOGENEOUS ANISOTROPIC MEDIA

If the x dependence of p is evaluated along the unper-

turbed ray then the first correction to the Markov approximation

can be evaluated for a general homogeneous anisotropic medium .

Let

p (
~~, t; ~ ( z )  + 

~~
z) = J d~ie~~~~~~(Z,t;z) (E.1)

then the  gene ra l i z a t i on  of Eq . (A.6) is

p R R<I> — <I>
— 

<I~ 

0 2k 2 J  dz1jdz2 I d~~q dq~~~{~ 
+~~~q , 0; ~ (z

1
+ z

2)J

x exP [i(q~ ÷~~~
.
~~~(~~(z

1
÷ z2))(z1

_ z
2)]sin [~~~

.
~~0

(z 1)]

x sin E .~~
Q

(z
2
)iexp [_

J

R

d(~~
Q

(z ) , 3 ;z)dzJ ( E .2 )

where q = 
~~~~~ is a two dimensional vector , d is def ined

in Eq. (9.11) and

= ~~~~ (g.~ (z ,z1) - g1~~(7, :~2)~ ( E . 3 )

wi th  g1~ 
def ined in Eq.(9.22).

For an isotropic medium Eq.(E.2) can be analyzed in the

same way as Eq.(A.6) and one finds that (<I> — <I>)! <I>

is of order of the r.m.s. mult iple scattering angle.

It is also straightforward to analyze Eq.(E.l) for a homo-

geneous but anisotropic med ium . The result of doing this was

stated in Sec.(9A).

- 
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APPENDIX F: CORRECTIONS TO GAUSSIAN STATISTICS FOR

INHOMOGENEOUS ANISOTROPIC MEDIA

When the approximation of Eq.(9.7) for the correlation

between two paths is made , it is possible to compute the cor-

rections to Gaussian statistics in the saturated regimes . The

calculation is a fairly straightforward generalization of that

done in App.B and only the final result will be given .

Define a function ~1(~~;z) where 
= (q

,~,q~~) by ~ 1
(q, t ; z )  =

- 
~~~~
(
~~~

T (z)
~~~~~

),t ; z )  where ~ is defined in Eq.(E.l). Then the

analog of Eq.(B.l2) is

R
/2\ .~/T\2 2~~ ~ 2 -

~ 
-
~\ 1 — 

= 4rk jdzJ d q ~1(q,0;z) Q1(z,q) (F. 1)
(I) 0

where

Q1
(z ,~~) = 2[l — cos(qjqj

gjj(z ,z)k
_1

)]exp [_2J d(~~1
(z ,z~~),0 ;z t )dz~

]

( F . 2 )

wi th

v1
(z ,z’) ~ = k~~ q~ ~~~ (z~ z’) (F.3)

and d and g1~ 
are defined in Eqs.(9.11) and (9.22).

Using ~1 and ~ as def ined by Eqs.(9.21) and (9.6) it is

possible to show that the right—hand side of Eq.(F.1) is small

in the fully saturated reg ime and in the partially saturated

regime for p < 2. As before , in the fully saturated regime the

• dominant contr ibution comes from the regions z 0 and z R

and in the p a r t i a l l y  saturated regime 
~l 

can be approximated

__  —



by its asymptotic form for large ~l .  Also , Q1 can be simplif ied

by expanding the cosine and replacing d by its expansion for

small 
~~~~

. The detailed calculation which is then fairly straight—

forwa”d wil l  be l e f t  to the reader.

The generalization to <I’~> works in the same way as in

A p p . ( B ) .

The coherence tail is given by Eq.(B.16) with

= 2uk 2 fdz Jd
2q ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (F.4)

where is defined in Eq.(9.14). The apnroximations mentioned

above can also be made in the integral for y . Finally . Eci.(B.19)

holds w i t h  y given by E q . ( F . 4 ) .
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FIGURE CAPTIONS

FIG. 1 The d i f f e r e n c e  between m u l t i p l e  large angle sca t t e r ing

(a) and multiple small angle scattering (b).

FIG.2 Parameter regimes in ~~-Q space.

FIfl.3 Illustrat ing Eq.(1.18). The signal n ’ w i l l  l ie , wi th

90% probability, with in the circles : (1) for  ~t / T

small , (2) for c~t/T 1 and (3) for ~t/T large. The

locat ion of the signal n at t=0 was an unlikely one

lying outside the 90% probability circle for a

Rayle igh distribution .

FIG.4 A path in the path integral for n=6.

FIG.5 (a) The schematic track of a signal satisfying Gaussian

statistics in time .

(b) The track of a signal which moves faster in phase

than  a m p l i t u d e  (phase  w r a pp i n g ) .

FIG.6 Propagation through an anisotropic medium . The blobs

are schematic ~nhomogeneities and the heavy  d i rec ted

lines are the unperturbed propagation path at various

angles with respect to the long axis of the blobs.

FIG.7 1 Propagat ion in a channel. The channel axis (z -ax i s )

is parallel to the long axis of the inhomogeneities

(blobs). The med ium is assumed to be isotropic in

the z direction and the unperturbed propagation path

(heavy directed line) makes periodic loops .
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