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ABSTRACT

The problem of wave propagation in a random medium is formulated in
terms of Feynman's path integral. It turns out to be a powerful calculational
tool. The emphasis is on propagation conditions where the rms (multiple)
scattering angle is small but the log-intensity fluctuations are of order
unity - the so-called saturated regime. It is shown that the intensity dis-
tribution is then approximately Rayleigh with calculable corrections.

In an isotropic medium, the local or Markov approximation which is
commonly used to compute first and second (at arbitrary space-time separation)
moments of the wave field is explicitly shown to be valid whenever the rms
multiple scattering angle is small. It is then shown that in the saturated
regime the third and higher moments can be obtained from the first two by
the rules of Gaussian statistics. There are small calculable corrections to
the Gaussian law leading to '"coherence tails'. Correlations between waves of
different frequencies and the physics of pulse propagation are studied in
detail. Finally it is shown that the phenomenon of saturation is physically
due to the appearance of many Fermat paths satisfying a perturbed ray equation.

For clarity of presentation much of the paper deals with an idealized
medium which is statistically homogeneous and isotropic and is characterized
by fluctuations of a single typical scale size. However, the extension to
inhomogeneous, anisotropic and multiple scale media is given. The main

results are summarized at the beginning of the paper.
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1. Introduction and Summary of Results

The problem of propagation of waves in a random medium appears in a
number of areas of research and applied science. Some examples are atmospheric
optics, radio astronomy and underwater sound. The problem is furthermore an
old one which has been studied extensively. The earlier work (summarized in
the monographs of Tatarskif’and Chernovz) employed the Rytov approximation.

In this approximation the logarithm of the amplitude is computed using first

order perturbation theory. The Rytov method is applicable whenever the

intensity fluctuations are small. When the wavelength is small it reduces
to first order geometric optics or WKB. More recently, a different approxi-
mation which reduces the problem to a Markov process has lead to considerable Q

progress in cases where the intensity fluctuations are not small. This method !
is explained in Tatarskii's second book3 and in two excellent reviews of the f
k.5

recent literature. Nevertheless, important problems remain. In i

particular, there does not exist a global view of what is going on in the

so-called saturated regime where the intensity fluctuations are iwmportant.
In this paper Feynman's path integral6 is applied to the problem of
wave propagation in a random medium. It provides a natural and systematic method
for attacking the problem, especially when the intensity fluctuations are
large and the Rytov approximation fails. The path integral is widely used i
in quantum mechanics and statistical mechanics but it ié expected that many
readers will not be familiar with it, thus the paper is meant to be self-
contained. The reader who desires further background information on path
integrals will do well to consult the book of Feynman and Hibbs.6
Because some readers wil. not be familiar with path integrals there are

some pecularities in the organization of this paper. 1In real situations,

random media are often statistically inhomogeneous or anisotropic and

s
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frequently have a power law spectrum in the scale size of fluctuations.

Path integrals are capable of handling all these complications. (In fact
the author first developed the method for propagation of sound in the ocean7,
a problem which has these complications and more.) However, it is vastly
easier to explain the path integral method for an idealized medium which is
statistically homogeneous and isotropic and whose fluctuations are charac-
terized by a single8 typical scale size L (small compared to the distance R of

propagation). The bulk of the paper is therefore devoted to a study of this

idealized situation. Once this has been done the transition to realistic

media is relatively simple. However, this manner of presentation has a defect

for which only an apology can be offered. Because of the temporary restriction
to a single scale size L, results which are directly applicable to atmospheric
optics do not appear until late in the paper (specifically, Secs. (7) and (8)). ,
Finally, to illustrate the power of the path integral method (and, hopefully,
motivate the reader), a number of results for the idealized problem

will be summarized below. The translation of these results to more complicated
cases is generally straightforward: the details are given in the text.

Listing the results will require the definition of some symbols. This will
(temporarily) be done in terms of the idealized problem and the reader who

has worked on propagation in a random medium will find that they are familiar

objects; e.g., Tatarskii's phase structure function D. For other readers,

the motivation for these definitions will become apparent in Secs. (2) and (3).
Actually, there are two distinct kinds of problems of propagation in a {

random medium, corresponding to whether the scattering angles, single and/or

multiple, are large or small. If the fluctuations are weak so that a single ;

scattering approximation (Born approximation) applies there is little dis-

tinction between the two cases. However in a multiple scattering regime,

<




vhich is the case of interest here, the two kinds of problems are very
different. This is illustrated in Fig. (1). The considerations of this
peper will be restricted to situations where the single and multiple
scattering angles are small. This is sufficient to cover the applications
mentioned above. The large angle multiple scattering situation is like a
problem in radiative transport and is most efficiently treated by other
methods .

It will be assumed that the problem can be reduced to a scalar wave
equation with an index of refraction n(X,t) which may depend on the frequency
w = ck. In a homogeneous medium ( n ) is a constant and for waves of a fixed

frequency can be set equal to unity. Defining
u(x,t) = 1 - n(x,t) (1.1)

¥ will be taken to have a zero mean and a covariance

(ux, t) u&".t')) = p(|x =%, t - t9. (1.2)

It will be further assumed that either u is a Gaussian9 random field or
2
that XL{u )é is small, in which case the distribution need not be

specified.

Let the two dimensional vector ;o = (xo,yo) label the location of
a point source]'0 in the plane z = 0. Then in a plane of constant z > 0,
the signal will be E(z,;,;o,t) where ; = (x,y) specifies the transverse
coordinates of the observation point. The total range of propagation
will be denoted by R and for l;l, l;o‘ << R and a CW source it is useful

to define a complex envelope & by

1(kz - wt)]

> - - -
E(z,r,r ,t) = Re [G(z,r,r ,t) e
o (")

(1.3)




The time dependence of £ is due to fluctua:tions in the medium. It will

be assumed that the full wave equation for & can be approximated by the

parabolic wave equation3-7’ll
) 1 2 - > -
— ol - =0 1.4)
(:l = + 2% v kp(r,z,t))&(r,ro,z,t) (
2 a2
where V2 = é—; + ——5 plus a boundary condition at z = 0
ox dy

> 5 2
ik(r - r)
o

é - (th(z).'1 exp e (1.5)

If L and T are the characteristic lengths and times over which p changes,

the validity condition for Eq. (1.4) are (i) kL >> 1, (ii) kL << oT and
(iii) that the rms multiple scattering angle ((le)R/L)i should be small.
Feynman's path integral gives the solution to the parabolic wave
equation in terms of a (strictly speaking) infinite dimensional integral.
It turns out that this integral can be studied in almost exactly the same
way as Mercier12 originally attacked the phase screen integral. The result
is that propagation in a statistically homogeneous medium is very similar
to the phase screen problem. This will continue to be true in rather
general inhomogeneous media, of which the phase screen is a special case.
In order to indicate what can be learned from the path integral it is

necessary to review some known features of propagation in a random medium.

The qualitative character of £ 1is determined by two parameters ¢ and Q

defined by
R
8 - k2<([p.(gz . ,t)dz)2>
-_-kznquz\,o)dz + 0(L/R) (1.6)
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£ :
where ez is a unit vector in the z direction and in the second line it

has been assumed that R >> L and

Q = ekL2/R. a.n

The parameter ¢ is just the rms phase fluctuation as computed in first
order geometric optics and serves as a measure of the strength of the
fluctuations. The other parameter ! is essentially the square of the
ratio of the scale size L to the extent of a Fresnel zone. As shown in
Figure 2, if ¢ is less than one or less than 2, then the Rytovl-s

approximation is valid. In the region where the Rytov approximation is

valid, the problem can be considered to have been solved years ago.
The intensity fluctuations (scintillations) are small and the relation

between & and u is simple and direct. Also, as shown in Figure 2, when

¥ both ¢ and £/Q are greater than unity, the fluctuations in 8 saturate. E
3 I

In particular, the variance of 1n \5\ = 1n I approaches a constant of 1

order unity and the properties of § are determined more by statistical

considzrations than by the detailed properties of .

Path integral methods have nothing new to add when the Rytov approximation
{ is valid. The considerations of this paper will therefore be restricted to

the saturated regions. There is then a small parameter a = Q/¢ whose order

5
of magnitudelh is

2
GLa/

i
R3/2<“2>5

(1.8)

The path integral allows the calculation of any moment of & as an

asymtotic series in o. The result is that § is uniformly distributed

2
in phase and that the moments of intensity I l8| are given by {

U™ = n(D™1 + dnn - 1)Ca + 0] (1.9) ‘

where C is a calculable constant of order unity whose precise value

depends on the spectrum of pu. In the limit o = 0 the distribution is
therefore Rayleighl5 with




s g
P(I) = ) exp[ (I)] (1.10)

However, the correction grows with n and cannot be neglected for

3

n 2 (2/a)°. It follows that there must be significant deviations from

3

a Rayleigh distribution when 1/{1) is greater than ~ (2/a)°.

‘In addition to the distribution of &, one also wants to know the
coherences in space and time. Recent work on coherences has been greatly
facilitated by the observat:lon3-5 that undgr certain conditions the prob-
lem can be replaced by a simpler local or Markov one where, in effect,

one makes the replacement

- g
p(x,t) =» 6(2)8(|r|,t) (1.11)
-
with r = (x,y) and
@
6({?|,t) = J/;((;z + zz)i,t)dz (1.12)

2 2 _~
Note that ¢ is equal to kx RP(0,0) and it will be convenient to

use the function f to define T aad L by the expansion

2 - 2 ¥ t2

A r

kx“Ro(|r],t) =¢7]1 - R (1.13)
2L 2T

Within factors of order unity, the L and T so defined will be equal to

the length and time over which the original covariance p is non-vanishing,

=
It has been pointed out by several authors > that in the Markov

»
approximation the coherence of ¢ and § can be computed exactly. It is

@ G FLe0EEE, 0)

$*G I @.F)
o (o]

G B

= exp [-4D(r - r',ro - r;,t -th] .19
o o

6




Ty

| where
-> - 3 ( )2
= B = Tod
Go(r,ro) = (I)° exp [1k - ] (1.15)

and D is the phase structure function of first order geometric opticsl

1

D(r.7 , t) = 2%k (50,00 - f(|u? + 1 - u)';ol,t)]du (1.16)

The phase structure function always appears in an exponential and in the
2
saturated region where ¢ is large, D can be approximated by an expansion

-»> -
in r,ro and t

-
D(?,ro,t) =¢ * = . (1.17)

Coherences are then characterized by two parameters ¢ /T and ¢ /L.

The literature is somewhat confusing as to the validity conditions
for Eq. (1.14). It turns out that the approximation leading to Eq. (1.14)
has a very simple interpretation in the path integral formalism. In the
next section is will become evident that for the isotropic medium under
consideration Eq. (1.14) is valid as long as the parabolic wave equation
is valid. From the path integral one can actually compute the first
correction to Eq. (1.14). It is of order of the rms multiple scattering
angle (R/L)é(pz)% which must be small if the parabolic wave equation is |
valid.

For small o the path integral also allows the calculation of |

-> = -y = i - -> -
(6*(r,r°,t)6*(r',r;,t')@(r",r;',t")ﬁ(r"',r;",t'")) and more generally

an arbitrary 2n-th order moment. In the limit ¢ = 0, the real and imaginary |
parts of & are Jointly Gaussian. To see the use of this result, let us
consider a typical question of practical interest. Take a fixed source and

receiver so that <& 1is a function only of time and suppose that at t = 0

OV




é?/¢§o is known to have a value n. An interesting practical question is
then what is the probability P(n') that é:(t)/<:o will take on the value

n'. Since & has a Gaussian distribution, P(n') is simply

e IO
1l - e-D(t)

x(l - e-D(t))

10/ 12

exp | -

P’ = (1.18)

- > 2 2
where D(t) = D(0,0,t) ~ ¢°(t/T)°. The qualitative behavior of P(T’) is

indicated in Figure 3. It is evident that the signal stays in one quadrant
of the complex plane and is therefore coherent over a time of order T/¢.

A further property of Gaussian statistics and a covariance of the form

exp [-§(¢t/T)2] is that the signal will move in a straight line for

times less than ~ T/¢. One can ask the more general question of given
that 6(;,;o,t)ﬂﬁo(¥,?o) is equal to T|, what is the probability that
6(?',?;,t')ﬂ50(;’,?;) will be equal to T‘. The result is just Eq. (1.18)

> 2, o -, ”
with D(t) replaced by D(r - r°, % T t = €Y.

As stated above the Gaussian statistics leading to P(n') are obtained

by computing moments. Again the approximation scheme breaks down for

)1/2

moments of order (2/a

1/k

than (2/a) . Actually the order a corrections to any moment are calculable.

and Eq. (1.18) is valid only for |n| and |n'| less

They are most important for intensity correlations where they lead to

-D

coherence tails of order a which are small but fall much less rapidly than e
The path integral also provides a simple method for calculating the
correlation between waves of different frequencies. In the saturated region

where & > 1 the result is, for |w-w'| small compared to w = %{w+m')

2
£ & i
<;*(:?)i; E:;:> i (Qai‘) B (1.19)
o o
8




w
where - is

2
ffw- (ku(Ezz,t)) dz) > (1.20)

NF P P Ty

—~
€ |O\
Pl
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\/P
S~
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B e T

Alw) = 173 (1.21)
i (Giw )
"o a
o i
# ‘;
with w;2 = c;2R 0(0,0) where cq is the unperturbed group velocity. For a non- '
dispersive medium - wg. When a is very smell the second factor on the

right-hand side of Eq. (1.19) falls much more rapidly than the first one. The
2

i ?
first factor exp |- % ('”(n ) can then be replaced by unity. In the

w
g

limit a = O the higher order correlations in frequency are Gaussian. One can
then obtain probability distributions in frequency from Eq. (1.18) with exp [-D/2]
replaced by the right hand side of Eq. (1.19) and e-D replaced by its absolute
value squared. It is worth noting that a first orcer geometric optics

calculation misses the second and dominant factor on the right hand side of

Eq. (1.19) and therefore vastly overestimates the range of coherence in

@
frequency.
It can be seen from the path integral that saturation corresponds to the
appearance of multiple Fermat paths which satisfy a perturbed ray equation.
“

The signal tends to propagate along these Fermat paths and because there are
many of them, they interfere and produce Gaussian statistics. They will
become manifest in an experiment with a pulsed source where the received
signal will tend to show several arrivals. These multiple Fermat paths are

responsible for the factor A in Eq. (1.19).
9

1
b
A
-2
.
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With one exception these results can easily be extended to statistically
inhomogeneous or anisotropic media and to media with multiple scales. The
exception is that A(w) defined in Eq. (1.19) cannot be computed for certain
multiple scale media. Actually, the path integral yields further information
in the case of multiple scale media. It appears to be only partially under-

stood3-5

that in this case there are two distinct saturated regimes. An
examination of the path integral shows that there are indeed two, one of
which (the fully saturated regime) is analogous to the saturated regime in
single scale media and another one (the partially saturated regime) is new.
Many experiments in atmospheric optics lie in the partially saturated regime
and this case is treated in some detail (Sec. 8). The fundamental distinction
between the fully and partially saturated regimes shows up in correlations
between waves of different frequency. In the fully saturated regime the real
and imaginary parts of & (w) are jointly Gaussian random variables. For
partial saturation f;(m) acts like a random phase times a Gaussian object.

A consequence is that propagation of narrow pulses is qualitatively different
in the two regimes. Depending on the medium there may be further qualitative
differences between full and partial saturation.

The detailed organization of the paper is as follows. Secs. (2)-(6) and
Apps. (A) and (B) are devoted to the idealized homogeneous, isotropic medium
with a single scale size. In Sec. (2) the path integral is introduced and
applied to the calculation of the first and second moments. App. (A) contains
the calculation of the error in Eq. (1.14). Sec. (3) is devoted to the
calculation of higher moments when a is small and Sec. (L4) summarizes the
statistics of é' in the limit a = 0. Special attention is given to
statistics in frequency and pulse propagation. The corrections to the limiting

statistics are derived in App. (B) and discussed in Sec. (5). The appearance

10




of multiple Fermat paths is demonstrated in Sec. (6). Media with multiple
scales are introduced in Sec. (7) and the distinction between full and
partial saturation is made. In the fully saturated case there is a simple
modification of the results for a single scale medium (Table 2). The
partially saturated regime is more difficult. Sec. (8) is devoted to partial
saturation in a medium like that encountered in atmospheric optics. App. (c)
contains some calculations relevant to Sec. (8) and App. (D) discusses some
other kinds of multiple scale media. Methods for handling inhomogeneous and

anisotropic media are given in Sec. (9) and Apps. (E) and (F).

2, FIRST AND SECOND MOMENTS FROM THE PATH INTEGRAL
Feynman6 pointed out that the solution to Eq. (1.4) with the boundary
condition in Eq. (1.5) is given by an infinite dimensional integral. It is
defined as the limit of a finite dimensional integral with 2n - 2 integration
variables corresponding to the Cartesian components of n - 1 two-dimensional
vectors ;J’ J=1,2, ... n=-1. With the convention that r and T,

JIJ -9 J!J =n

S ¢ > :
are the source r, and receiver r coordinates, Feynman's integral is

EF,T ,t) = 1iml(nr_rld2r)( xp )n ikR lg n® ;,1‘;1-1 : > >
e N 2k 3=1 J 2miR S n iny 2 R ‘N(rd'.'ezzd ,t)

(2.1)

where each component of ;ﬁ’ J=1, ... n - 1, is integrated over the range

- to +» and zJ = jR/n. In u, ;& is understood to be a vector in the (x,y)
->
plane and . is a unit vector in the z direction. At each point ;1, ;2"';n 1

in the integration volume, the n - 1 points in space (;i,zl), (;2,22), ik

-

(rn-l’zn-l) can be thought of as discrete points along-a path ;(z) connecting
-
r

(;O,O) to (¥,R) with 3

= ;(zJ), see Fig. (4). In this sense Feynman's

11




T ——

integral is an integral over paths. Associating R/n with a differential

increment dz in range the argument of the exponential has a continuum limit

> |2 R
. n 2 /T, -r I 2
s .151 “?(‘Jﬁ‘i'l') B & v - '15(;'(’)) "‘(;‘Z) *:zz’t) s

0

(2.2)
where ¥' = d¥/dz. The path integral for & can then be schematically written

as

R
: 2
é’(?,?o,t) = ;—k fd(pa.ths) exp ikf [%(;-(z)) -u(?(z) " ‘ézz,t)] dz
0

(2.3)

where the integration is over all paths connecting (;0,0) to (*,R) and the
volume element in path space d(paths)is the coefficient of the exponential
in.Eq. (2:.1)-

We will be computing averages of products of path integrals and the

following formula will be needed. Let ;n(z), n=1,2,... be some set of paths
and £ = + 1 corresponding phases. Then if either u is a Gaussian random field
2\1/2 ) Rk ; . 1-6
or kL u > << 1 and its statistics are arbitrary, it is well known that
R
-> ->
<exp [—-ik E &n fu(rn(z) + ezz,tn) dz] >
0
R R
- ﬁz "() "’(1)2 (')Q‘tt dzdz"'
-exp-2 Emsn p(rnz-rmz)+z-z *o-tn zdz
m,n
00
(2.4)

12




As a first application of the path integral we can compute Qﬂ).

This will not turn out to be a particularly interesting quantity but

the calculation is simple and it will show how path integrals work and
where the Markov approximation comes in. Bringing the average inside

the path integral and using Eq. (2.4) yields

2
(&) = .2;"}? ﬁ(paths) exp ;—k (-r")zdz - :—jp(J(;(z) - -;(z'))z + (z - z')?,o)dzdz'

' (2.5)

The Markov approximation now appears as follows. The parabolic wave

equation assumes that the normals to the wave fronts point in directions

that are close to the z-axis. In terms of the path integral this means ﬁ
- - »
that for the important paths 1r'| |dr/dz| must be small. It then follows i

;‘)(z'))2 +(z-2w |z - z'|2and

=
that for important paths (r(z) -

Eq. (2.5) becomes

3 R R R i

i ik [ ~,.2 1

8 = 2ik' exp|- ];—'_/:/r:dz - z'|,0)dzdz’ /;(paths) exp ;— (r)"dz ' !
0o 0

(2.6)

The remaining path integral is just the path integral for 50 and for
R >> L the double integral over p can be replaced by RS(0,0). The final i

result is then ]
8) =6_ exp [-°] 2.7

This is the usual formula obtained in the Markov approximation?-s What

we have seen here is that this approximation has a very natural inter-
pretation in terms of the path integral and that it is valid as long as

the parabolic wave equation is valid.
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Since 4’2 is large in the saturated region (§) is exponentially
small and therefore not particularly interesting. The same is true for
(68) and its complex conjugate (8*8*). The path integral for (68) will
be a double path integral over two paths ;l(z) and ;’2(2) and will con-

tain a factor

R R
2
sxnl- *5‘--/‘/-[3 (J(}’lu) -7,EN) 4 (e - z?.O) *
00

L) g 1)
P (J(-r’z(z) - ;)2(2'))2 4+ (z - z')2,0) + Zp(J(;l(z) - ?2(2'))2 + (z’ - z)z,t)}dzdz'

(2.8)

where t is the time difference between the two 8's in the average. This
2

factor is of order exp [#4")] in all important regions of path space and

{(88) 'is exponentially small.

A more interesting quantity is (6*(2)6(1)) where (1) is a shorthand
=5 > *
notation for 6(r1,rol,tl) and 8*(2) for & (-1:

object is

—-— d (paths)exp f(; (z) = (;é(z))zldz -V (2.9)
)k

whele the path integral is a'double path integral" over two paths r (z)

and r (z) connecting (r 1'0) to (r ,R) and (r 0) to (r ,R) respectively

and

R R
k
k- ?f [ rl(z) -7 @) 4 @ - z')z,o)
00
+ D(ﬂ;z(z) - :2(21))2 + (z - z')2,0)

- 2
- 29(4( rl(z) - :2(z')) + (z - z')2,1:1 - tz)]dzdz' (2.10)

14
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2
<5*(2)£(l)>=('2']'zﬁ> 5:(2) go(l)fdz(paths) exp [-— ik

There is now a region in path space where the integrand is not exponen-
tially small., It is r (z) = r (z) and almost all of the path integral
will come from this region. As before, (r (z) - r (z )) and

(rz(z) - r2(z )) can be neglected relative to (z - z ) and in the same

> > 2 ’ 2
spirit (rl(z) - rz(z )) + (z° - z) can be approximated by

¥ 2 2 —
"\I(—;l(i) - rz(E)) + (z' - 2)° where z = 3(z + z'). Then for R>> L

the integral over z - z’ can be done and

R
- -
v fallF @ -F,@l - tz)dz (2.11)
0
where
-
d(lz!,t) = ? ©,0 - 3(|7|, tﬂ (2.12)
_’
At this point it is convenient to change variables to paths u(z) and
_)
v(z)
- > - ~> - 2z - S¥ z
_ : ; =l & =&
u(z) = 5(11(2) 23 rz(z)> 2(rl + rz)R %(ro1 + r02)(1 R)
- -» -
v(z) =r_ (z) - r_(2) (2.13)
1 2
which satisfy the endpoint conditions 2(0) = u(R) = B ana v(0) = (;ol - ;02),
> -> >
v(R) = (rl - r2). From the finite form of the path integral in Eq. (2.1) it

is clear that this change of variables is allowed and that the associated
Jacobian is cqual to unity. After integrating the first term in the
exponential by parts and using the endpoint conditions, the path integral
for <E*(2)é'(l)> becomes

R

R
fs(z)-vn(z)az - d(|¢(z)|,t)az:]
0

(2.14)
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where t = tl-t2' In analogy with the formula

l__ ixy -
2ﬂﬁ dy = 8(x) (2.15)

-

-
the integral over the path u in Eq. (2.14) will produce a '"6-functional"
16

¢

->
which forces v’’ to vanish identically. With the endpoint conditions

>
given above v(z) must then be

-
r

-’
v(z) = (rl - T

z - - z
)R + (rol - r02) (1 - E) (2.16)

->
In d the path v can then be replaced by the right-hand side of Eq. (2.16)

and the factor containing d then becomes just exp [—QD]. The remaining

path integral is equal to (2nR/k)~%and the resultl! reproduces Eq. (1.1k)

(8*(2)8 (1))
Al = exp [-3D(1,2) ] (1.14%)
§¥(2)8 (1) ‘
;r
- > - -
2 . 3 oo - -
where D(1,2) is a shorthand notation for D(rl r2, r01 roz, t1 t2).

Appendix A contains an explicit calculation of the first correction
to the Markov approximation for (8*(2)8(1)). It is shown to be propor-

3

2
tional to the rms multiple scattering angle ((p YR/L)* which must be
small if the parabolic wave equation is valid. Henceforth, all calcula-
tions will be done in this Markov approximation. The general prescription

- =y T V& ’ b
is that whenever p J( ri(z) - rj(z )) + (z - 2) 'ti - t:J appears, it

afi? [z + 2° > (z + z’'
is to be replaced by 6(z - z')p(\ri(—z ) - r.j('—z"—)hti —~ tJ)-
Turning now to the calculation of (§*(w’)8()), the path integral

for this quantity will contain (with k = k(w) and k' = k(w'))

R R
- - - -
€xp [—1kfpm(r1(z) + ezz)dz + 1k'f“m’(r2(z) + ezz)dz]> (2.17)
0 0

where the time dependence of pu has been suppressed and the subscript

indicates that for a dispersive medium p can depend on w. Let us first

16




compute this average in the absence of dispersion. When My is indepen-

dent of w it is, in the Markov approximation

2A ~ ~
exp[-i(k - k’)"Rp(0,0) -kk’J[5(0,0) - °(|;1‘z’ - ?2(z)|,o)]dz
°

(2.18)

For paths which make a significant contribution to the path integral,

the second term in the argument of the exponential must be of order unity
or less. In this term one can therefore approximate kk ‘ by Ez where

k= 1(k + k). Generalizing to dispersive media, one finds that in the
same approximation the result is just Eq. (2.18) with Rp(0,0) replaced
by (cg/mg)2 where Wy Vs defined in Eq. (1.20). The path integral will
also contain a factor

R R

- St > 2
exp izli f(;i(z))z dz - 3;—- (ré(z)) dz (2.19)

0
vhich can be simplified by making an orthagonal transformation to paths

U and v defined by

e 1 k'v(z)

ry(z) = K-k '
?,(2) = B(z) - B2) (2.20)

After making this transformation the path integral factors into a product of

*
integrals over U and V. Upon dividing by 50 (w')go(w) the integral over
U cancels and the final result is, for |w - w'| small compared to w = -‘]?* (wtwt),
E" (0) & () '\
\J
“(w ) e (w) = exp |- }2-(-“:—”—> AM{lw=w") (2.21)
¢ (u )60(“’) g

17




where

R R
Jd(Paths) exp |- g(li(—lfk—.y J(;'(z)) az - Eej[ﬁ(o.o)-ﬁ(z(Z),O)]dEl
0 0

= R
J d(paths) exp [} ET%¥E77' J (3'(z))2d%]
0

Mo-a') =

(2.22)
-’
In the saturated region where ¢ is large Iv(z)l will be very small for
the important paths and the expansion
> v |2
~ ~ ~ VX
$(0,0) - 5(|v(x)|,0) ~ 50(0,0)( L ) (2.23)
can be used. The path integral for A is then
R R
_2 —20
ik 2 k 9(0,0) [~ 2
fd(pathS)eXP[" m‘l—_'ﬁ_/(‘g'(w) dz - —'3(2_):/(v(z)) dz]
: ’ 0 2L 0
Aw -~ w’) = R
_2
ik “/' i
d ths R e Z dz
f(pa )eXP[ 5 _k,)o(x? (2)) ]
(2.2k)
This type of path integral was evaluated by Feynman and setting k - k' =
(w-w')/cg it is equal to
61 L= w'\3
w0
- ' —
HUE SRS PEETAY (2.25)
sin(si e
(o}

-2 ~ 2 i b ;5
where wg = Rp(0,0) /cg and a = 6(L /R3 5(0,09 = Q/¢. Combining equations
(2.21) and (2.25) yields Eq. (1.19). Some features of these correlations
in ¥ were mentioned in the Introduction. We will return to their inter=

pretation in Section VI,
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Except for the explicit verification of the validity of the Markov

approximation, the above results could be obtained by more familiar techniques

vhich do not employ the path integral. The power of the path integral will
become apparent in the next section when higher order moments are computed.

They are extremely difficult to treat by the usual techniques.

3. HIGHER MOMENTS FOR SMALL a

When ¢ is large, the average of any path integral will be exponen-
tially small unless there is a region of path space where each path
associated with an & is close to a path associated with an 8*. Such a
region does not exist for {8) or (62) and we have already seen that they
are exponentially small. More generally, any moment with an unequal

number of &'s and 6%'s will be vanishingly small,

Beyond (8*(2)8(1)) the first nontrivial object is (8% (4)8(3)6*(2)6(1)).

- -
It is given by the quadruple path integral over four paths rl(z)...r4(z)

R
4
- 4
(8*(0)8(3)8*(2)8(1)) =(2k) h/; (paths)exp -;—P'Z (-l)jf(?j(z)) 2dz -M
. j=1 0
(3.1)

where

R

4 s
M = -52(-1)1 * Jﬁ(l}’i(z) -3 @l - v e (3.2
inj=1 0

There are two regions of path space where M is of order unity or smaller.
They are: (a) \;l(z) - :2(2)\ < L/%, ‘:;(z) - :4(2)\ < L/? with the dis-
tance between pairs of paths arbitrary and (b) \:l(z) - ¥4(z)\ < L/¢,
‘?s(z) - ?z(z)l < L/¢ again with the distance between pairs of paths

- -
arbitrary. In region (a) where \rl(z) - rz(z)l is of order L/?, the
oscillating factor

19




R
R
ikf 2 ~lten)? ik f{~
exp|— r(z) -(r'(z))"|dz] ~ LS ( = . 200 2,
2 0[( 1 ) ( P ) ] z o ! rl(z) rz(Z) r (z) + rz'(z) dz

(3.3)

244 2>,
in the path integral will restrict Ir1 (z) + r2 (z)| to be of order

- -
28 /(kLR). For a typical path lrl(z) + rz(z)| will then be roughly

%(2)2‘?;'(2) + ?é'(z) ~ %%E . The centroid of the other pair :a(z) +‘;4(z)
will be restrained in a similar way. It follows that most paths will be
such that the ratio of the distance between the pairs to the scale length

L is roughly @R/(GkLz) = a_l, where o is the parameter defined in the
Introduction. For small ¢ the pairs are separated by many times L and

-

therefore are uncorrelated. 1In region (a) M then reduces to

R R
M~ b/:1(l'r’1(z) " ?z(zi,tl - t)dz + ofd(|'r'3(z) - ?4(z)|,t3 - t,)dz
. (3.4)
and in region (b) it becomes
R R
Mz.o/;l(l?s(z) -?2(z)|,t3 - t,)dz +.o/.d(‘?l(z) - ?4(2)\,t1 - t,)dz
(3.5)

Thus in each of the two important regions of path space, the quadruple

path integral factors into the product of two double path integrals, each

of which is precisely the integral encountered in the calculation of

{8*8Y. The result is that

(8% (0)8(3)8*(2)8(1)) ~ (8% (1)8(3)){(6*(2)8(1)) + (6%(2)8(3)){(8*(1)8(1)) |
(3.6) |

where the two terms come from the two regions (a) and (b).
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In Appendix B the error in Eq. (2.6) is obtained by computing the first

correction. It is of order a and will be discussed in detail in Section V.

Generalizing to an arbitrary moment is easy. The general non-

n n
vanishing moment 1s<:n 8*(j) r]&(i;>and can be written as an integral
j=1 i=1

over 2n paths ¥j(z) and ?i(z). There will now be n! important regions

of path space corresponding to the number of ways paths ?j(z) can be
paired with the paths ?i(z). In each of these regions the 2n-tuple

path integral can be approximated by a product of n double path integrals.

Sonie simple combinatorics shows that the result will be as follows. Let

#
i be a permutation of the indices i. For example, if n = 3 and the
permutation is (1,2,3) = (3,1,2) then ¥ =3, 2 =1 and 3 = 2 or if the
permutation is (1,2,3) - (2,1,3) then ¥ = 2, 2 =1 and 3 = 3. With this
v notation
n
n n =
'. <n<8*(;s) n 5(>% Z _ 0*(3)6(1> (3.7
: j=1 i=l perms i, j=1
where the sum of over all n! possible permutations of the indices i.
f
The same result holds for correlations in frequency. Extending the
% notation 8(j) to include a frequency label w_ we have
J |
|
w -w \2 ‘
(8*(§)8 (1)) - i J *
= exp{-4D(i,j) - s{———1 A = . i
8*¥(1)8 (1) PI-iD(1,3) - H—— ey wj) 5.0 |
(o} (o] g |
®
which holds in the saturated region where only small values of mi -0,
=y -
]ri - rj], etc. are interesting. The same construction that led to
Eq. (3.7) for equal frequencies then shows that it holds for unequal
13
frequencies as well,
The interpretation of Eq. (3.7) will be given in the next section.
A final remark here is that the arguments leading to Eq. (3.7) do not
¥ 3 g 5
depend on the validity of the Markov approximation. The latter is needed
»
only when <£ (1)E(2)> is explicitly evaluated.
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4. THE STATISTICS OF 4 IN THE LIMIT @ = O

The moments of Eq. 3.7} correspond to a complex Gaussian
distribution. The probability that 6(j)/6°(j) will be equal to ﬂj for

J = L, 1S then

n

-1 * -1
{—/ - M 4. 1
Pn(Tll. PRI (det[nM ]) exp i§1n1< )ij TlJ. (4.1)

where the n by n matrix M is

w o o-w \2
_ ¥ W86y _ T apronalsy I i % 3 PG e
My1 = E*(1E _(3) i e wg 5 DEEL

Eq. (1.10) corresponds to the special case n = 1 and Eq. (1.18) is
obtained by dividing Po(ﬂ,ﬂ') by Pl(ﬂ). The measure is d2n = a(Imn)d(Ren).
In principle, Eqgs. (4.1) and (4.2) determine all the statistical

properties of 51. For example, it follows from Gaussian statistics that for

&) = A(j)el¢(3) the correlations of amplitude and rate of phase

¢=§4€— arelB

AN g ) - mca- g, k() (3

where E and K are the complete elliptic integrals of the first and second

kinds and
. . o 2
(p(Dp(2)) = - PL“I—’—) fn(1 - |M12|)
¢2
= _ 2 fn(1- M ,[) (4.4)

where in the seconu line the expansion of D in Eq. (1.17) has been used.

° -5
Eq. (4.4) can be extended to the derivatives of ¢ with respect to r and

= 2
* in the obvious way. Intensity correlations I(j) = lA(j)l are
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simpler with .

(1(1)1(2)) = (1)2 + |(5*(1)6(2))\2 (4.5)

The appearance of Gaussian statistics in frequency is somewhat
unfamiliar. To see what it implies, let us compare the saturated regime
to a simplier unsaturated one. When simple first order geometric optics
applies and the medium is nondispersive, §(w) is equal to 5o(w)ein where
T is a fluctuating time shift independent of w. Under such propagation
conditions, the statistics in w are essentially trivial. The envelope
S8(w) fluctuates but does so in such a way that at a fixed time when £
has a definite value a knowledge of & at one value of w determines & for
all w. Another way to say the same thing is that a pulse will be sub-
jected to a random time shift but will not be distorted in shape. For
propagation in the saturated regime the statistics of &(w) are non-
trivial and things are completely different. At one fixed time a knowledge
of §(w) at one w yields only statistical information about & at nearby fre-
quencies. Correspondingly, the medium will distort a pulse in a way that
is predictable only statistically. A peculiarity is that (8*(w")8(w))

and has a phase corresponding to an average retardation.

The above remarks about &(w) are most easily made quantitative in
terms of pulse propagation. It is worth going into this in some detail
both because the physics is interesting and because it will connect with
the Fermat paths of Sec. (6). For simplicity the unperturbed
medium will be assumed to be nondispersive with w = ck. Let the

e (w)dw where f (~0) = £¥(w).
o o o

transmitted signal be £ (7) = j}
o
Taking the unperturbed arrival time as the origin, the received signal
=3WT 4 ot
will then be fr(T) = jlz é(w)fo(w)dw. The signal fr(T) is a Gaussian
random variable whose complete statistics are determined by the covariance

of fod' Assuming ? that variations in 60(w)f0(w) over a frequency

23
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e Y

corresponding to the width of (§*(-3w)$(3w)) can be neglected, this co-

variance is

(;:Gn')ﬁ*aﬂ)zo(w)d(w)) = |;;(§(w + w'))l3 Aw - w’) (4.6)

with

where the small o limit of Eq. (1.19) has been used and w, = uga/s

el /A5 (0,0) .

2
Denoting the received intensity fr(T) by J(7), the average (J4(7))
is a measure of the distribution of energy over arrival times. Accord-

ing to Eq. (4.6) it is

0 T<0

4 Lot 2.2
——<-£(T—)>——— « s fe-iwt AMw)dw = -2w, ) (-l)n(ml)2 g oy

(fJ(ﬂm) i . am

(4.7)

and vanishes for 1 < 0 because the integrand is analytic in the upper

half plane. Evidently, all the energy comes in after the unperturbed
: & . € 2 -1

arrival time and is confined to a region 0 < T ~ (wln ) . The net

retardation is consistent with what was said above about the phase of

(6*(m')6(w)). The complete abse ce of energy for T < 0 is peculiar to

the limit of small « and will later be seen to have a simple physical

interpretation (see Sec, (6)).

For a sharp transmitted pulse the distribution of energy over arrival
times can be thought of as being due to two effects. One is the wander in

arrival time of the center of the pulse and the other is spreading of the




pulse around its center. The two effects are in principle distinct. For

iwT

the simple case of propagation in an unsaturated regime where §(w) = e -

~2
the wander is of order (T )i while the spread is just the width of the
transmitted pulse. As we will now see, in the saturated regime the
spread and wander are roughly equal. The width of QJ(T)) measures the

sum of spread and wander. A quantity which measures the spreading,

(j:a(T + 19T Hdr ')
P(T) = (4.8)

" ( f(—ﬂ('r'))dT ')2 '#

When faﬁ has a Gaussian distribution P(t) is

independent of wander, is

Po(T) i 2 1 -iwT 2
P(T) = o f\A(w)\ do + 5;;./:5 | Aw) | “dw (4.9)

where
¥ &= 2

( ff (t + ~r’)f°('r')dT ’)

-0

. P (1) = =
(feneP
% (o]

The two terms in P(71) have the same height at T = 0. The spike propor-

(4.10)

tional to P (T) falls rapidly leaving the second term whose width is a
o

¥ measure of the spread. Comparing with Eq. (4.7) one sees that
@
= 7 7
3 = P AT+ YT ) YT
—z—j; A e = = (4.11)

. u o

and it is clear that the spread and wander are essentially the same. A
physical interpretation of the two pieces of P(7) will be given in

i ' Sec. (5). Finally, a useful formula is

1
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lw/w, | -

sinz(-g--)i + sinhz(-gj--)i (4.12) |
2&1 2m1 |

lA(Q))'z =

It is interesting to ask why it is that the square of the auto-

2
correlation of fo rather than the autocorrelation of fo appears in Po.
The answer is that when fo(w)6(w) has a Gaussian distribution, the medium

cannot transmit any information that is not contained in the coherence

(fﬁ(m')&*(m')fo(m)ﬁ(w)). As given by Eq. (4.6 ) this coherence depends
only'on |f(m)\2 and the medium can only transmit information about the H

autocorrelation of f. i

The statistics of the signal as a function of spacial wave numbers i
can be analyzed in a similar way. Multiplying 6(?,¥o,t) by a suitable
function of ?; and integrating over ?o one can represent a boundary con-
dition at z = O corresponding to, say, a plane wave emerging from a finite

aperture. For such a signal, the Fourier transform

o 1 “ir + 3, o 2
é (L) = ./; é (r)d' r (4.13)
i o 2 o

(27)

e Y
will be sharply peaked around some £ = zo. With the correspondences

- -
t > 2, w~ r one can proceed as above and discuss spread and wander in

=
£. Again the medium can only transmit information contained in

(6*(;)5(:')) which will typically depend only on \60(§(? + :'))‘2, |

5. CORRECTION TO THE o = O LIMIT

The leading corrections to the @ = 0 limit are computed in Appendix B.

The main results are as follows.

The order ao correction to (In) is dominated by fluctuations near the
transmitter and receiver. This is not unexpected since near their end-

points the paths cannot be separated into uncorrelated pairs. Explicitly

(In) is
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a™ - n!(l)n(l + 3n(n - DaC + O(azﬁ (5.1)
where
®
2~

. Lr/; p(q,0)dq

o5 (3m) (5.2)
) - i
/qp(q,o)dq
0

and p is the three-dimensional Fourier transform of p

p(‘;\,t) = %fq sin(q\;\)g(q,t)dq (5.3)
0

The consequences of the fact that the error grows with n were noted in
the Introduction. Note that the correction to (In) is positive. This
means that the intensity fluctuations overshoot (i.e., become larger

than Rayleigh) near the boundaries of the saturated regime.

The correction to a general correlation can also be computed. They

are always fractionally small. For example, {$*(2)8*(2)8(1)8(1)) is

-D(1,2
proportional e Sl in the o = 0 1limit and the correction to it is of

-D(1,2)
order we <, . The corrections to intensity correlations are the most

interesting. In the ¢ = 0 limit (I(tl)I(tz)) is equal to

@ e T t)

. At t1 = tz the order o correction is given by

2
Eq. (5.1). However, at large |t1 - tzl, <I(t1)1(t2)> must approach (I)
and the corrections must go to zero. It turns out that half the correc-

-D(t. - ¢t
( 1 2) but the other half falls much more slowly,

tion dies like e
leading to a coherence tail. (Note that this is consistent with what
was said above about the corrections always being fractionally small.)
For the general intensity correlation the coherence tail is

)) = (5.4)

(rrop 81T oty

2
()" {1 + .
qp (q,0)dq

(i}
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-> - - -
where J is a Bessel function and specializing tor =r_and r =r
o . 1 2 ol 02
produces
@®
N Ly
q -
2 -D(t. -t a/_n 1 2
aeepace) = (e 5 et o D (5.5)
.[qp(q,o)dq
{ -D(1,2)
Eq. (5.1) is not reproduced at t1 = t2 because a term of order ae

has been dropped from both Equations (5.4) and (5.5).

6. FERMAT PATHS

There is an interesting connection between averages of the path
integral and averages over Fermat paths which satisfy the perturbed

ray equation
-5 =
""(z) + vu(r(z) + Ezz) =0 (6.1)

where.3 =(§;,§;). This will be filus:rated for the special case of
sources and receivers located at r = ro = 0 so that & is a function only
of time. The path integral for (8*(t)8(0)) is
R
(8*(t)5(0))“7}-§'/¢;2(paths) exp ikf[&(;l'(z))z - ;(?2'(2))2 - “(;1(2) + -e.zz,o)
k 0o

- -
+ p(rz(z) + ezz,t)]dz (6.2)

In the saturated region we know that for (*(t)8(0)) to be non-
- =5
vanishing, t must be small and that only paths for which |r1(z) - rz(z)l
=5 - -
is small (~ L/?) contribute. Changing variables to w(z) = i(rl(z) + rz(zﬂ

- - -
and v(z) = rl(z) - rz(z), the path integral can then be approximated by
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L b S

R
2
(8*¥(£)8(0)) = f‘?‘/:j (paths) exp —ik/[z(z) '{3"(z) + 3;1[;(2) + Zzz,o]
0 ]
- tfz(z(z) + :zz,o)ldz (6.3)

where the first term in the argument of the exponential has been integrated
by parts and a dot indicates differentiation with respect to time. The

-2
integration over the path v(z) produces a "S-functional" which forces

- -
¥ 2=
W' + Vu to vanish for all z. Thus the integral over w(z) is restricted

to paths which satisfy the ray equation (6.1). This is a general feature
of the saturated region. Higher order correlations are dominated by con-
figurations where paths :i(z) and :i,(z) are pair-wise close. A similar

analysis shows that for each such pair, the path :i(z) = ;[;i(z) + :i,(z)]

satisfies Eq. (6.1).

Equation (6.3) can be further analyzed. For most media L and pu are
statistically independent. The average, (), can then be thought of as
two independent averages {( ) and { )° over pu and ;. The §-function of
;" + gp that is produced by“the inte:ration over 3 is effected only by
the average ( )u while the phase exp[iktfﬁ] is effected only by the other
average )&. It is therefore possible to write (§*(t)8(0)) as the
integral over paths 3 of a u-averaged d-functional which can be inter-
preted as the probability that a given path ; will satisfy Eq. (6.1)
times a phase which is to be averaged over ;. To do this correctly, it
is necessary to go back to the definition of the path integral in Eq. (2.1).
The integration variables 3k and ;k' k = 1,2,...,n are then discreet and

_’
the mathematics is straightforward. The integration over the v 's can

be done trivially and after some manipulation, one finds

R
E*(t)8(0)) = ﬁ(paths) 'P(path)éxp[ iktf}l‘:‘v’(z) + -e,zz,o)dz]>. (6.4)
0 . )

-.
where the integration d{paths)’ is over paths w(z) with a modified

volume element
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" '\ 2n
d(paths)’ = i > ’__]dz\v (2) (6.5)

1 R
(4m) i
which does not contain k and
n-1 2
n\2n-2 2(n” - - - > - -
= ™ 6 — -2w 0
P(path) (R) Jql (Rz(wj+1 + wJ__1 J) + Vu(wJ + ezzj. 9 )

(6.6)

—’
is the probability that w will satisfy the finite difference approximation

P——D -> > -2 = - 0 e 6

Rz(wJ+1 wJ_1 - 2wj) + Vp(wj + ezzj, ) = © (6.7)
to the ray equation. In the limit n - « P(path) is the probability (with
a measure d(paths)’) that ; will satisfy Eq. (6.1). Equation (6.3) shows
explicitly that (8*(t)8(0)) is a sum over Fermat paths with fluctuating
phases kEfL. Finally, bringing the average of L inside the exponential

yields

2 2 2
(8* ()8 (®)) = ﬁ(paths) ‘P(path) exp —k2t (ﬁ(w(z) + zzz,o)dz) ’
0

0
(6.8)
- -
In the Markov approximation where w(z) is neglected relative to ezz in
the average of u, Eq. (6.8) becomes
ke [ 2/t\2 )
B*(t)8(0)) = expt-£¢ —~ d(paths) ‘P(path)

= exp -QQ T ](I) (6.9)

which is the standard result,

This provides a new way to look at the Markov approximation. It

R. o 4 2
requires that an average like ((Jﬁdvmz) + ezz,o)dz) ) along a path which
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satisfies the perturbed ray equation (6.1) should be well approximated by
R. < 2 .

the corresponding average ((g”p(ezz,O)dz) ) along the unperturbed ray.

For a homogeneous and isotropic medium, this will be the case as long

2
as the rms multiple scattering angle ({u )R/L)é is small,

According to Eq. (6.8), {(8*(t)8(0)) can in principle be computed
by a geometric optics method which searches out the rays which satisfy
the perturbed ray equation. Geometric optics corresponds to an approxi-
mate evaluation of the path integral by the method of stationary phase.6
In the saturated region the stationary phase approximation will in fact
be valid since for ¢ > 1 the phase ¥:g{hz is necessarily large. To get
Gaussian statistics for &, it is necessary that there be several rays
connecting a given source and receiver. In path integral language this
means that there will be multiple stationary phase points and é will be
a discreet sum EAkeiwk over contributions, one from each stationary

phase point or }ay. The phases Py and amplitudes A, as well as the

k
number of rays will fluctuate with y yielding Gaussian statistics for 8.

It is difficult to prove rigorously that there are always multiple
rays in the saturated regime. However there is a simple construction
which shows the essential physics. At one fixed time the rays are sta-

tionary points of the path length S defined by

s = kfS BE @ - u G + 3 2] dz . (6.10)

Let S(?) be S evaluated for the special paths that go in a straight line
from the source at (6,0) to an arbitrary point (;, zo) with 0 < z< R
and then follow another straight line from (r,zo) to the receiver at

(3, R). Multiple stationary points of S(;) as a function of T will be
indicative of multiple stationary points of the complete functional in

Eq. (6.10) and the spacing of such points in : will be similar to the
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spacing between multiple rays. Now doing a simple integral shows that

S(;) can be written as
s@ =% OB - 5,® (6.11)

;—?%§;~T and Sl is kp integrated along the above mentioned
0 0

path. To simplify S(;), B-1 can be replaced by its average value R/ (6K).

where B =

Then defining T=1L 3 and Sl(;) = ¢ f(a) the quantity to be studied is
>2 >
 Qu - of(u) (6.12)
and we are interested in its stationary points which satisfy
Qu -ov f(u) =0 . (6.13)

By construction f is a random function of order unity which changes by
order one when its argument changes by order one; i.e.lgfl~1 and Vf
changes sign roughly each unit in u. For 2>>0 the first term in Eq.
(6.13) dominates and there will be a single solution near u = 0. This
is the unsaturated regime. In the saturated regime, ¢ >> Q, the random
character of f guarantees that there will generally be many solutions,
spaced by about one unit in o (a distance L in ?) and filling up the
interval 0<|K|< ®/Q (0< I;l < 9L/Q). To find the other boundary of the
saturated regime, ¢ > 1, we have to ask when the multiple rays are
physically meaningful. From their interpretation as stationary phase
points of the path integral it can be verified that two rays will be
physically distinct if S varies by a quarter cycle, i.e., order unity
between the two. The variation in S between two solutions of Eq. (6.13)
will be roughly ¢ and if they are to represent physically distinct rays
¢ must be greater than unity.

An experiment with a pulsed source will tend to see several arrivals
corresponding to the multiple Fermat paths. This random multipathing
is the origin of the rapid fall-off of frequency coherence which takes
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place in the saturated regime. To see how the orders of magnitude work,
the difference in travel time between the ray nearest : = 3 and the fur-
o=m_1(®2/29t Q) - QZI(ZQw) where the two

terms come from the two terms in Eq. (6.12) and it has been assumed that
0‘1 will then be incoherent,
in agreement with Eqs. (1.19) and (1.21). Note that to is positive. f
This is why in the limita = 0 all the energy arrives after the unperturbed

thest one out at |g |~0/Q is t

$ >> Q. Frequencies which differ by more than t

arrival time and >d] (1) > vanishes for t1<0. Also the two terms in P(t)
(Sec. 4) can easily be interpreted in terms of fluctuating multipath.
The spike Po(r) is the autocorrelation of each arrival with itself and
the broad second term is the autocorrelation of different arrivals.
Finally a word of caution. The above construction vastly underestimates
the number of rays. 1In reality the number of rays is probably an
exponential of ¢/Q rather than ¢/Q as the construction would imply. It

may be extremely difficult to actually resolve the arrivals.

It is interesting to consider the transition into the saturated
regime in terms of propagation of a pulse. Consider first crossing the
line ¢ = @ from the region where both ¢ and @ are large but Q < &.

With ¢ and Q large but well outside the saturated region, one knows from

the Rytov approximation that the receiver will see a single arrival with

a considerable wander in time of arrival. At the boundary of the
saturated region the pulse will begin to split into several arrivals and
well inside the saturated region there will be many arrivals that are
spread out over a time long compared to the original wander in the single
pulse. Crossing the boundary ¢ = 1 from the region where both ¢ and Q
are small is rather different. In this case one knows that well outside
the saturated region, there will be a single arrival with no discernible
wander in time of arrival accompanied by a small scattered wave spread
over a continuum of arrival times. As the boundary of the saturated
region is approched, the single peak will shrink and the scattered wave
will grow in amplitude. Well inside the saturated region, the original
peak will have disappeared completely and the now large scattered wave

will have broken up into a number of discrete arrivals.
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7. Media with Multiple Scales

So far it has been assumed that the fluctuations in y can be
characterized by a single scale size L. Technically, this requires

that the expansion of 3,

»>2 >4 !
k%R (| 7] ,0) = o2 <1 - +va g+ ....> (7.1) f
2L 4L

through order ?4 exists and that the coefficient a is of order
unity. There are cases of practical importance where this is not
true. For example, optical index of refraction fluctuations
induced by Kolomogorov turbulence have the property that the
(three dimensional) Fourier transform §(gq) of p behaves like
lql-ll/3 over a long interval in g and the expansion in Eq. (7.1) ]

makes sense only when the cutoff (inner scale) is taken into

account and then a is very large. This and the following section

are devoted to these media with multiple scales. It will be
assumed that p(q) goes like lql_z-p for large q where 4 > p > 1.
(If p is greater than four the medium acts like one with a single
scale size and for p < 1 it is so singular that <u2> does not
exist.) 1In practice there is always some physical cutoff at large g
(inner scale). However, the effects of such a cutoff will be
ignored in what follows.

For p > 2, the length parameter L will be defined by Eq. (1.13)

as before and in the case p < 2, L will be defined by

P
(7.2)

-
-1
L

| =

B(|¥|,0) = $(0,0) [ -
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for small I?]. For Kolomogorov turbulence, p is equal to 5/3
and p(0,0) and L are related to Tatarskii's C, by 2.91C§ = 6(0,0)L-5/3.

The parameters ¢ and 2 continue to be defined by Egs. (1.6) and (1.7).
The main qualitative difference between propagation in single

and multiple scale media is that in the latter case there is more

than one saturated regime. In terms of the Fermat paths of the

last section, it turns out that in a multiple scale medium the

smaller scale inhomogenieties can make multiple Fermat paths

before the large ones do. This leads to a new kind of saturated

regime. Even in a single scale medium with p > 4 the line ¢ = Q

is not a sharp boundary. 1In reality there is a transition zone {

where random focusing along single Fermat paths produces intensity
fluctuations bigger than Rayleigh. As p decreases below four this
transition zone opens up and becomes a new saturated regime. The
boundaries of this new regime can be found by studying the object
2 ad% - of (1) of Eq. (6.12).
To see when the smaller scales can make multiple Fermat paths,
imagine throwing out all scale sizes larger than AL where 1 > A > 0.
The new scale length will be AL and ¢ and Q@ will be replaced by
3P/2y and 2%2. The combination /9 becomes A(p'4)/2¢/9 and is
equal to unity when A = (6/0)2/(4"P)_ Thus if p < 4 the small
scales can make multiple Fermat paths when ¢ < Q, i.e., before
the large ones do at ¢ = Q. However, if these multiple paths are
to be physically meaningful Ap/2® must be greater than unity and

2/p

the smallest permissible value of A is & Putting everything i 4

together, the small scales can make meaningful multiple Fermat




paths when ¢4/€/ﬁ > 1. This is one boundary of the new saturated
regime. To find the other boundary, Qe need to ask when the
multiple Fermat paths can be separated by L. For a given )\ the
1,232

minima of 3 - AP/23£ (%) extend out to a maximum |4| which

is the largest value of |u| for which the equation

203 - Ap/2¢3f(ﬁ) can be solved. The maximum |u| is

A
(@/Q)A(p_4)/2 and noting that U is distance in units of AL one
sees that the Fermat paths can be separated by L when
(Q/Q))\‘p_z)/2 = 1. For p > 2 the most separated paths are due to
large scales with A = 1 and the other boundary of the new region
is ¢ = Q. However, if p < 2 the smaller scales produce the
largest separation and taking the smallest permissible value ¢-2/p
for A one sees that there can be Fermat paths separated by L when
¢2/€/b > 1. The regime where there are meaningful multiple

Fermat paths all lying within L of each other will be called the

partially saturated regime. The regime where the spacing between

Fermat paths can be greater than L is analagous to the saturated

regime of the single scale case and will be called the fully

saturated regime . The boundaries of these regimes are summarized
in Table 1.

Partially Saturated Regime Fully Saturated Regime
<p<4 o>1,0%/%/051,0 /o<1 2>1, 8/2>1

L <p<2 ¢>1,¢4/€/b>1,¢2/3/9<1 o>1, ¢2/3/Q>1

Table 1. Boundaries of the Saturated Regimes




Although these boundaries have been obtained with a hueristic
Fermat path argument they are in agreement with what one finds
from more precise calculations. It is known that outside the
saturated regimes the intensity fluctuations (<12> -<I>2)/<I>2
are small, implying both the validity of the Rytov approximation
and the absence of saturation. 1Inside the saturated regimes (as
given by Table 1) the intensity fluctuations as computed in the
Rytov approximation are large, signaling the onset of saturation.
The line between the fully and partially saturated regimes
corresponds to the place where two pairs of paths, in the sense of
Sec. (3), can be separated by more than L. When they are
separated by more than L the pairs of paths are completely
independent (full saturation) and Gaussian statistics for £° follows
immediately. If all pairs are within L of each other (partial
saturation) then one expects that at least some statistics will
not be Gaussian.

Nothing that was done in Sec. (2) or App. (A) depended in
any essential way on the assumption of a single scale. The reader
can verify that Eg. (1.14) for <g*(2)c"(l)> at equal frequencies
continues to hold whenever the parabolic wave equation is valid.
The only subtle point is that for p < 2 the rms scattering angle
is not well defined and, correspondingly, in App. A,Eq.(A.6)
cannot be approximated by Eq.(A.9). However, a rather straight-
forward analysis of Eq. (A.6) shows that the fractional error in
Eq.(1.14) is of order D(k 1,0) and it is known that p(k 1,0y <1

is the validity condition for the parabolic wave equation when
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P < 2. Turning to coherences in frequency, there is however a

* significant defect in the theory if p < 2. When p is less than 2,

the path integral in Eq. (2.22) cannot be approximated by that in

Eq. (2.24) and A must be understood as a function defined by

Eq. (2.22) whose evaluation would require a numerical calculation.

In the fully saturated regime where pairs of paths can be
separated by L or greater, the arguments of Sec. (3) proceed as
; before. One readily verifies that in the fully saturated regime
the statistics of E'are Gaussian and the discussion of Sec. (4)
applies (except Eq.(4.7) which assumes Eq.(1.21) for Ay .
Egs. (B.12) and (B.17) of App. B hold in the multiple scale case.
The reader can then verify that for p > 2, Egs.(5.1),(5.2),(5.4) and
(5.5) for the corrections to Gaussian statistics continue to hold
in the fully saturated regime and that for p < 2 these same

equations hold if o is replaced by a' where

3/p
_ 4(p+l1) r(3/p) Q
a' sy (703)
33/2ﬂ1/zp ® (6-2p) /p

The situation for the fully saturated regime is summarized in

Table 2.
Corrections to the
Boundaries Limiting Statistics|{Limiting Statistics
2<p<4 Unchanged Unchanged Unchanged
l<p<2| Replace ¢/0>1| Unchanged except Replace o by a'
2/p that A is not known
by ¢ //h>l explicitly

Table 2. Changes Needed to Apply the Formulas of
Secs. (1)-(5) to the Fully Saturated Regime.
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The higher order statistics in the partially saturated regime
are more complicated. For the case p < 2 everything can be worked
out in detail and the results will be given in the next section.
However, for p > 2 the path integrals yield only qualitative infor-

mation: It is summarized in Appendix D.

Finally, in multiple scale media the notion of multiple Fermat
paths should be used with care. They exist but there are so many
of them that they cannot, even in principle, be completely resolved.
Nevertheless, the notion is useful in interpreting the path integral

calculations and will continue to be employed.
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8. The Partially Saturated Regime for p < 2

The partially saturated regime for p < 2 is of considerable
practical importance. Many atmospheric optics experiments lie in

this region and, luckily, the complete statistics of £ can be

worked out. There is a natural small parameter B defined by

2-p f
= (9/@4/9) (8.1)

1
For p = 5/3, B is related to Tatarskii's Cn by

4/5,-11/15,-7/15

B = 1.19 C; and to the intensity fluctuations as

2 -
computed in the Rytov approximation by((zn I)2>—<2nﬂ7 = 0.80g 5/2.

Rytov
The signal statistics will be given through order B.
Partial saturation is due to the appearance of multiple Fermat
paths all lying within L of each other. The larger scales (~L)

will tend to correlate the locations of these paths leading in

general to a complicated statistics. However, for p < 2 the spectrum
is so heavily weighted toward small scales that the locations of |
the Fermat paths turn out to be uncorrelated. This is not the
case for p > 2 where the multiple Fermat paths become correlated
and the path integral yields only qualitative information (see
App.D). Even for p < 2 where the locations of the paths are
uncorrelated the large scales can still correlate the phases along
different Fermat paths. We will see this at the end of the section
when coherences in frequency are studied.
Consider Egs.(3.1) and (3.2) for <I?> in the partially
saturated regime with p < 2. 1In the integration region (a) the

separation between members of a pair of paths 31(2) (using the
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notation of App. B) must be such that d(]3l(z)]) £ 1, 1.@.,

> 2/p ; > ; : T
|vl(z)| < L/% . The distance v,(z) between pairs (again in
the notation of App.B) will be limited by the oscillating terms
in the path integral to values such that 9|32(z)||$1(z)| ~ 1% or
x 2/p : >
lv,(z)| s Le“/F/Q. Note that the ratio of the cutoff on |v,| to

that on |$l| is ¢4/p/9 and is large. Now both |31| and |v.| are

5l
small compared to L and Eq. (7.2) can be used to evaluate M in
Egs.(3.2) or (B.3). Taking account of the fact that |31| << [32| A

the expression for M in Eq. (B.3) of App. (B) then becomes20

R R
o
M= ¢2R! dz - ®2R-lp(p-l)f
0

and when IGI/LI ~ ¢"2/P ana I;Z/L| - 2/P/q the second term on the

2 p-2

v (z)
2 dz (8.2)

L

31<z)
L

vy (2)
L

right hand side of Eq.(8.2) is of order B and can be dropped. This
is the same thing as saying that different pairs of paths in the
path integral, or equivalently different Fermat paths in the sense
of Sec.(6), are not correlated and <I?> becomes 2<I>2., What is
happening is that for p < 2 the fractional power behavior of d

at small separations is making the arguments of Sec. (3) valid even
though the different pairs are separated by less than L. Note

that this will only happen for p < 2. The generalization to

<> is straightforward and the result is a Rayleigh distribution

with <I™ = n1 <1>",
The true test of the method comes when one evaluates the
corrections to Rayleigh statistics. It is shown in App.C that to

order B
<1 = ni<sf(1 + % n(n-1)C(p)B) (8.3)
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where C(p) is a constant which depends only on p. This constant
is evaluated in App.(B) and C(5/3) = i.06. The corrections are

small for small B showing that the approximation scheme is con-

sistent but there will be significant deviations from a Rayleigh
distribution when I/<I> > V2/BC(p) .

The statistics of 5%?,?0) as a function of source and
receiver locations can be investigated in a similar way. One
finds that they are Gaussian and at equal times and frequencies
the results of Secs.(3) and (4) hold in the limit B = 0. There
are coherence tails of order B. These are discussed in App.C.

In the fully saturated regime the dynamics of the medium
enters only through D(t). This is not always true in the partially
saturated regime. It is true when the Taylor hypothesis is valid
(a frozen field convected by a "wind") and the statistics in time
can be obtained from the spatial statistics. However, one can
consider a different kind of medium where the time dependence
of p is associated with linear waves whose dispersion relation is
w ~ ka/z.The Fourier transform of the second time derivative
p of p will then behave like

5(]4) = (const) |§|~(2*P~8) (8.4)

at large |J|. For the Taylor hypothesis Eq.(8.4) holds with
§ = 2 and in general § can be considered as being defined by
Eq.(8.4). Assuming p < 2, the statistics of £ at unequal times
are Gaussian in the partially saturated regime provided that

p -6 <0. This can be verified by explicitly computing the




—

fie

5

corrections. For p < 2 and p - § < 0 the corrections to Gaussian
statistics are fractionally small for small B and the results of
Secs. (3) and (4) continue to hold at unequal times. However for
p -8 > 0, a direct calculation shows that the corrections to
Gaussian statistics are not fractionally small and therefore that
the approximation scheme of Sec. (3) is not consistent at unequal
times.

To see what is happening for p - § > 0 one can compare the path
integrals for <I(t')I(t)> and <(£*(t'))2(5(t))2> . The latter
is sensitive to the time dependence of the phase of £ while the former

is not. A rather involved but straightforward calculation then

shows that for p - § > 0 the signal moves more rapidly in phase
than in amplitude. This is to be contrasted with the case

P - 8§ < 0 where the time statistics are Gaussian and according

to Eq. (1.18) there is no tendency to move in phase as opposed to
amplitude. As long as p < 2 the signal has a Rayleigh distribution
and over a long time the track of the signal will fill out a disc
in the complex plane. The difference between p - § < 0 and ;
p - 8-> 0 comes in how this disc is filled up. For p - § < 0 the ‘
signal is Gaussian and it will make a track of the type shown in
Fig. (5a) which looks.something like a random walk. However,

for p - § > 0 the track will wrap around in phase and slowly move
in and out in amplitude as shown in Fig. (5b). |

These peculiar features of time statistics in the partially

saturated regime can be understood in terms of Fermat paths. We

i¢, (v) 1
know that £(t) is schematically ﬁAk(t)e k where the locations :
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of the paths are uncorrelated (for p < 2) but the large scales

may correlate the phases ¢k(t). The question of random walking

vs phase wrapping is equivalent to the question of whether or

not the time derivatives é% ¢k = $k are correlated. For p - 6 < 0,
the time derivatives are sufficiently weighted towards small scales
that the ék are uncorrelated and the signal random walks. However
for p - § > 0, the effect of the large scales is strong

enough to produc: a correlated phase derivative common to all the

Fermat paths.
Propagation of sound in the ocean is an example of a situation

where £(t) phase wraps in the partially saturated regime? For
the ocean p = 2, § » 0 and in this special case it is possible to
work out the detailed statistics of é%t)? However, for other
combinations of p and § it is not possible to compute fourth and
higher moments of E(t) analytically, except when p - § < 0.

Checking consistency, it was stated above that for
p < 2 the statistics of 6(;';0) as a function of ;o and T are
Gaussian in the partially saturated regime. If the time derivatives
on the right hand side of Eq. (8.4) were replaced by spatial
derivatives we would have § = 2. Since p - 2 < 0 for p < 2 it
is consistent that the statistics in ;o and ¥ are Gaussian and
that the statistics in time are Gaussian when the Taylor
hypothesis (implying § = 2) is valid.

For p < 2 and p - § < 0, the statistics of E(?,?o,t) in the
partially saturated regime are essentially the same as in the
fully saturated regime. The reader may therefore wonder what the
basic distinction between the regimes is. The answer turns out to
lie in the statistics in frequency.
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Let us examine the path integral for <£* (wl)f:(wz)&* (m3)£(w4) > :

Up to a normalization it is
E* ) E* () Elwy) > -

R
4 1 4 LW b =
a” (paths) exp |5 I (-1y3-L | (¥'(2))“dz - N (8.5)
j=1 5 .
0

where with the Markov approximation, surpressing time t
R
4 ST DR
N=1 $ (-t LI fﬁ(l'r’.(z)-?.(z)l)dz (8.6)
j c : :

0

and for simplicity the medium has been assumed to be nondispersive.

There are the usual two important regions of path space (a) and (b).

Let us concentrate on (a) where [?l—?zl < L/<1>2/p and 1;3—;4| < L/@z/p.

First we will see how Gaussian statistics arise in the fully
saturated regime and then see how the partially saturated case
differs. In the fully saturated case typical values of, say,
|;l—;3| are large compared to L and 6(]?1—;3|) can be set equal
to zero. Ignoring correlations between the different pairs then

yields
R

2 4 o @l
N =z %-( A R )(-1)“3 —1-2-lf5(|’r'i(z)-'£.(z)|)dz (8.7)
i,3=1  i,j=3 c .
0
which is a sum of two terms one of which depends on wq and W, and
the other on wsy and w4 and the result is Gaussian statistics. 1In
the partially saturated case typical values of l;l—;3l are small

compared to L and 6([?1-?3|) is approximately equal to §$(0). Now




we have to set correlations between the different pairs of paths

equal to p(0) rather than zero and N becomes

4 . W 2
- ¥ o A
N=3 (jgl(-l) = ) Rp (0)

(i,j

The path integral again factors into a product of two double path

4

R f
3 ): (-1)1+J w.w. % Y % o u
1 i,j=3> — p(lr; (2) fj(z)l) p(0)| dz
0

+

N =
e

o
c

(8.8)
integrals and is expressable in terms of A as defined in Eq. (2.22).

Collecting the contribution from both regions (a) and (b) and

supplying the correct normalization yields

et W Elwy) g* (wy) Elwy) >

Entw € w)En wE, (w,)

4 < We\2
exp [}% ('21(—1)3 7}) Rﬁ(éﬂ [5(wz-wl)A(w4—w3)+A(wz—w3)A(m4-wIZ].
J:

(8.9) ]

Because of the common exponential factor in front of the two terms

on the right hand side this is not Gaussian statistics. What it
iwy

e

corresponds to is an(S of the form Elm)/f;(w) X (w) where

Y is a real Gaussian random variable with <y> = 0, <w2> = Rﬁ(O)c-2
and x(w) is an independent complex Gaussian random variable with

zero mean and covariances <x(w)x(w')>=<x*(m)x*(w')> = 0 and

<x*(m)x(w')> = A(w'-w). It is straightforward to verify that this
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ansatz does in fact yield the correct 2n-th moment of £ (w) in

the partially saturated regime. In particular the second moment

Glaga? . (o o] e
<exp E(m'—w) lﬂ><x* (w)X(w*) >

exp [_% (w_w')zms(o)c-z] AMw'-w) (8.10)

comes out right. For a dispersive medium <y®> becomes w;Z as in
Eq. (1.20) and e, rather than c¢ appears in A.

Thus the fundamental distinction between the fully and
partially saturated regimes is that in the former the statistics
in frequency are Gaussian while in the latter they correspond to
a phase times a Gaussian. Well inside the partially saturated
regime Wy is small compared to the width in w of A. The phase
1wy

e then dominates the moments of (‘f(w) , except for correlations

involving only | E(w) \2 where  cancels. As the boundary QZ/p Q=1

of the fully saturated regime is approached the width of A (w)
becomes comparable to wg and upon passing into the fully saturated
regime A dominates the moments and the signal becomes Gaussian.

In the terminology of Sec.(4), for partial saturation the spread

is small compared to the wander. In pulse propagation elww

represents a quasi-deterministic wander which dominates <{Q(‘l’)> .

1w¥ cancels out in the integral (Eq.(4.8)) for P(t)

The phase e
and the spreading of a pulse is proportional to the inverse width

of A.




i¢, (w)
In terms of Fermat paths 8 (w) = iAk(w)e . the non-

Gaussing statistics can be understood as follows. Each ¢k(m)
can be written as wy + A¢k(m) where wy is a common phase generated
by the larger scales. The phase differencesA¢k(w) are due to
the small scales. They vary from path to path and are responsible
for the Gaussian factor X (w). Note that only correlations in
frequency measure Y directly. Correlations in space or time see
only §w or § which for p <2 and p - § < 0 are dominated by small
rather than large scales, leading ultimately to Gaussian statistics.
The phase wrapping in time for p - § > 0 is a remnent of Y.

The statistics of E in the partially saturated regime are

summarized in Table 3.

Intensity Variations in

Distribution space time frequency

p-8<0! p-8>0

Rayleigh Gaussian Gaussian phase phase times
wrapping a Gaussian

Table 3. The Statistics of in the Partially
Saturated Regime for p < 2.

The reader may be curious as to what happens at p = 2. The
"small" parameter B is then equal to unity but according to App. C
the coefficient C(2) in Eg. (8.3) vanishes. A detailed
investigation7 then shows that the corrections to Rayleigh
statistics in the partially saturated regime are of order (£n¢)-l.
More generally, if p = 2 and 4n?% is large the statistics given in
Table 3 apply with errors of order (ln¢)—1. At p= ¢ it is

possible to compute A. It is given7 by Eq.(1.21) with W, replaced
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by mou(an)-l. In general, a medium with |p-2|%n% < 1 will act
like one with p = 2.
As mentioned before the case of partial saturation for

P > 2 is discussed in App. D.




9. INHOMOGENEOUS AND ANISOTROPIC MEDIA

In practice, random media are only locally homogeneous and the

covariance
PX-XLt-th%) = <pk,t) p(XLt)> - <u(X,t) ><u(xht)> (9.1)
depends on position x = L (X+X'). It is always assumed that the variations

of p in X-%' are much more rapid than those in x but over a long
propagation path the dependence on X cannot always be neglected. Also,
in an inhomogeneous medium <u(x) > = po()’c) will generally not be a
constant and consequenfly.cannot be absorbed in the definition ¢ = w/k .
Finally, the medium can be statistically anisotropic so that p depends
on the orientation of X-X%' as well as its magnitude,

To obtain tractable path integrals in an inhomogeneous medium
we will have to approximate the path dependence of % in p by evaluating.
% along some central path which will turn out to be an unperturbed ray.
From Sec. (3) we know that paths are separated by L &/Q (the precise
definitions of L, ® and Q2 for inhomogeneous anisotropic media will be
given below) and the problem will be tractable if

(i) for changes in X of order L&/ the corresponding variations
in p can be neglected. It will also turn out to be necessary to expand Fo
in powers of distances between paths and we will have to require that

(ii) p.o(i) is slowly varying over distances of order L&/Q.
The one other condition is that

(iii)the parabolic wave equation is a valid approximation,
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When p.o(';:) is not a constant this requires that the normals to the wave
fronts in the "'unperturbed problem'' where u(x) = po()’c) remain close
to the z-axis. If this is true locally but not globally, then solutions based
on the parabolic approximation can be patched together in the obvious way,
When conditions (i), (ii) and (iii) are met it is reasonably straight-
forward to extend the path integral method to inhomogeneous and aniso-
tropic media. It amounts to: (1) showing that with suitable definitions
of & and D, <€> remains exp | -% @2] and Eq. (l.14) continues to
hold, (2) finding a suitable definition for £ and then showing that the
boundaries of the saturated regimes are still given by Table 1, (3) showing
that in the fully saturated regime the statistics of £ are Gaussian and
that in the partially saturated regime they are (for p <2) as given in
Table 3, (4) giving new formulas for the corrections to Gaussian statistics
and coherence tails and (5) giving a method for computing A(w). These
steps will be carried out in order. In doing so it will be assumed that a

ray approximation is valid for the unperturbed problem with By

A, The First and Second Moments

The path integral for < & 5 will contain a factor

2R R
exp Ir- = [ az [ az p(?(z) -F(2') +€ (2-2",0; 1F(2) + F(2) + 12 (z+ z'))}
Rl R “ .

9. 2)
The path dependence of the third argument of p will be approximated by
setting 3(T(z) +T(z')) = 5(z) where z = Yz+2') and 3 is the unperturbed

ray satisfying
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3'"(z) + Gpo(E(z) + Ezz) = 0 (9. 3)

Here B = (sx, sy) is a two dimensional vector and (5(0), 0) and (3(R),R)
are the source and receiver co-ordinates. If there is more than one un-
perturbed ray connecting the source to the receiver it is assumed that
they are far enough apart that the path integral reduces to a sum of
(statistically) independent terms coming from paths near each ra.y.21

Defining a new path u(z) by T(z) = 8(z) +u(z), the Markov approxima=-

tion now amounts to setting
T(z) - T(2') + Ez(z -2") ~ (3'(Z) + Ez)(z- z') (9. 4)

The essence of the approximation is neglecting u(z) - G(z'). By require-
ment (ii) the substitution 5(z) - s(z') & s (z) (z - z') is always valid.

The reader will note that by (iii) §' is actually small compared to Ez.
However, in a sufficiently anisotropic medium s' cannot be neglected

on the right-hand side of Eq. (9.4). Assuming for the moment the validity
of the Markov approximation, the analog of §(0,0) will be 5(6, 0; z)
where

0
p(0,0i2) = [ p((3'(2) +3,) u, 0; 3(z) +% 2)du (9.5)

-0
and the path integral for <£>. which is now trivial since p no longer
. - . . E - e 1 2
contains the path u, will yield <& > = 0 exp[ -3 ®°] where
2 R

o° = & [ $(0,0;z)dz (9. 6)
0




Continuing to assume the validity of the Markov approximation
the next thing to compute is <€ *(Z) £ (1) >. There are two paths

'x’-l = '§+v’vl and ?2 z §+\7/Z where § satisfies Eq. (9. 3) with the

SO - s l - > - s l-o -
boundary conditions §(0) = z(r01+ roz) and s(R) = 2(r1+ rZ) and the

approximation is

R R
of dzof dz'p(;i(z) -'f'j(z') + Ez(z -2z'", ti - tj ; %(;i(z) +?J,(z'))+ %Ez(z +2'))
R
~ J ﬁ(v?ri(z) -v’vj(z); t:i-tj ; z)dz (9. 7)

for i, j = 1, 2 where
0

p(W, t;z) = ofap(v71+(§'(z) +Ez)u.t;§(z) +Ezz)du (9. 8)

The path integral for <g*(2) g(l) > is then

<¢*2) L) - LZ [ a%(paths) exp[i S,(path1) -iS (path 2)
4k
f 1
-dfd(»?ll(z) - W, (z), fy=tyialds |
(9.9)
where
S, = k? rl(?'(z))z -p (¥(z)+e z)!dz (9. 10)
0 La Mo z J .
0
and
d(W, t;z) = k° [ 60, 0;2) - p(W, t;2)] (9.11)

Introducing paths U = 3(W, +Ww,) and ¥ = \}T/l-\?r we can, according to




e

(ii), expand So(pathl) -So(path 2) in powers of U and V and keep

only the leading terms which are quadratic. Proceeding in this way

yields22
R
*
S MOTIUESIPN ol jd2<paths)exp[ikj(ﬁ'(z) $T(e) - (2) V(2w (2)) da
€3 € !
R
-[ d(@(2), tl-tz;z)dz] (9.12)
0

where the two-by-two matrix (in Ex-sy space) P'ij(z) is

8° |
pij(z) = raxj p.o(X)l (9.13)

The path O now appears only as a linear factor in the exponential and
integrating over it will produce a product of 6-functions which force

¥(z) to be equal to the special path i{z) which satisfies the differential

equation and boundary condition522

v."(2) +uij(z)vj<z) = 0
] i BT
~(R) = rl-rz (9.14)

Then setting V equal to ¢~ in d the remaining path integral just

produces17 |2k f’o[z and one finds Eq, (l.14)

ir <C*@ fw> = £)2) £) exp[-D]) (L 14")
with

R
D= 2[ d(¥(z), t,~t,;2)dz (9.15)
0
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The object D defined in Eq., (9.15) is just the phase structure
function of first order geometric opticsl' 7fox- a general inhomogeneous

anisotropic medium which satisfies (i), (ii) and (iii). Note that o

is always linear in ?01- ?02 and ?l-?z. When p . is a constant,
wlz) = (;01 -?02) (R-2)/R + (?1 -?2) z/R and for a homogeneous iso-
tropic medium Eq. (9.15) reduces to Eq. (1. 16).

For an isotropic medium where p depends only on the magnitude
of X-X' the Markov approximation is valid whenever the parabolic

wave equation is. The reason is the same as in Sec. (2). In App. (E)

the formula for the first correction to the Markov approximation to

*
<£ £ > is given. One can explicitly verify that the error is small

when the parabolic wave equation is valid.

The situation for anisotropic media is more complicated. Consider
an anisotropic but homogeneous medium with constant Boe Typical in-
homogeneities will not be spherically symmetric and one needs to
consider the three cases shown in Figs, (6a), (6b) and (6c). The
asymmetric inhomogeneities introduce a new small
angle 90 » the ratio of the small dimension to
the large one. Examining the error inthe Markov approximation as
given in App. (E) one finds that,for the case shown in Fig. (6a), the
Markov approximation fails when the r. m. s. multiple scattering angle
is of order 00 . For the case shown in Fig. (6b), it fails when the

r. m, 8. multiple scattering angle is of order of the angle of incidence

ai and for the situation in Fig. (6¢c), it fails when the r, m. s. multiple
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scattering angle is of order unity, i.e., when the parabolic wave equa-
tion fails. Since 80 can be small compared to unity the Markov ap-
proximation can fail in an anisotropic medium before the parabolic
wave equation does but only for some propagation paths. When it fails
Eq. (1. 14) is not valid and this represents a defect in the theory which
is not easy to remove,

It should not be surprising that the Markov approximation can
fail sooner in an anisotropic medium, The Markov approximation can
be interpreted as the statement that the system has ''no memory" in
range, i.e., that scatterings at a given range point are independent of
previous distant scatterings. In an isotropic medium this will be true
as long as the r. m. s. multiple scattering angle is small and the wave
keeps moving in the same direction, Howéver, in an anisotropic medium,
when the scattering by a given inhomogeneity can be highly dependent on
the angle of incidence, a distant scattering which has deflected the wave only
through a small angle will not be ''forgotten.'" For the inhomogeneities
shown in Fig., ( 6 ) the scattering is strongly dependent on angle of
incidence (measured from the long axis of the inhomogeneities) when

the angle is of order # When the incident wave is along the long axis

0°
as in Fig, (6a), it begins to remember previous scatterings when the
scattering angle builds up to 00 and the pieces of the wave have inci-
dence angles greater than 00. For the case shown in Fig. (6b) the past
history of the wave becomes important when pieces of the wave have
been deflected by 6. and are incident along the long axis. When o,
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approaches n/2 as in Fig. (6c) the process has no memory as long
as the r. m. s. multiple scattering angle is less than unity.

Yet another way to understand the peculiarities of anisotropic
media is to return to the remarks following Eqs. (6. 8) and (6.9). For
an isotropic medium the average of i integrated along a Fermat path
w will be the same as the average of " integrated along the unperturbed
ray 8 as long as the r.m.s. multiple scattering angle is small. How-
ever, in an anisotropic medium the average of p integrated along a
path can be very sensitive to the local direction W' of the path, In
fact, for the situation shown in Fig, (6a), the average of j integrated
along a Fermat path deviates from the average along an unperturbed ray
as soon as |W'| ~ 6, and for the situation in Fig. (6b) when | %] ~ 6, .
This leads to the same criteria as before,

The combination of an anisotropic medium and a spacially varying

po(x‘c) leads to a new set of complications, This will be illustrated for
propagation in a channel where the unperturbed rays niake loops as shown
in Fig. (7) and where the long «xis of the inhomogeneities is parallel to
the channel axis, The medium will also be assumed to be statistically
homogeneous in the direction of the channel axis but not necessarily in
the transverse directions. (This is a prototype of the physical situation

7 :
which occurs for sound propagation in the ocean, ) The scattering will

be strongest when the tangent to the unperturbed ray is pointing along
the long axis of the inhomogeneities, i,e,, atthe turning points,.

For small 0, one can in fact ignore all of the propagation path except

0
for a set of discrete regions around turning points where the tangent to

the ray is within 00 of the channel axis, Assuming that a Markov

57




approximation is valid for propagation through one of these regions, it
will also be valid for propagation through many turning points provided
only that the average scattering at a given turning point is at most
weakly dependent on scatterings at previous turning points. Assuming
that the turning points are separated by more than a coherence length
the effect of previous scatterings will be a random modulation of the
of a turning point. Now the

a -
range z, and (transverse) location s

0 0

average scattering around a turning point is dependent only on its

location §_. in the channel and not on its range z Thus the Markov

0 0’
approximation will be valid out to range such that random variations
in 30 are big enough to change the average scattering. This turns
out to be a much longer range7 than that for which the r. m.s. multiple
scattering angle (which is dominated by variations in zo) becomes of
order 90. The extended validity of the Markov approximation can be
demonstrated explicitly using the Fermat path formalism of Sec. (6).
One works out the properties of Fermat paths which are randomly de-
flected at turning points and then compares averages of p integrated
along these paths to averages of u integrated along the unperturbed
ray, For a given channel one can then find out when the Markov ap-

proximation will break down. The result is just the criteria stated

above,

B. The Saturated Regimes

It will temporarily be assumed that the medium has a single
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scale. Then in an anisotropic inhomogeneous medium the scale length
L becomes a z-dependent two-by-two matrix (in Ex- Ey space) defined

~ 22
by the expansion of p

BF. 0:2) = 505, 02 [1-HL @) wyw + 0] F[)) (9. 16)

The first task in discussing the saturated regimes is to find the
correct definition of 2 and establish their boundaries. The general
dzfinition of Q will involve L. and some geometric parameters asso-
ciated with the unperturbed problem. From Secs. (3) and (7) one can
cee that 2 measures the rate at which the phase of the oscillating
factor in the path integral varies as a path moves away from an unper-
turbed ray., To examine this in more detail consider paths that leave
the source at z = 0, go to the receiver at 2z = R and at some point z,
in between are separated from the unperturbed ray 3( zO) by f. Let
g(I, zo) be the minimum of So(path) - So(unperturbed ray) taken over
all paths of this class. The minimum is achieved for a path that follows
an unperturbed ray from the source to (§(zo) + I, zo) and then another

unperturbed ray from (s’(zo) + I, zo) to the receiver. When Fo is

a constant g(;, zo) is simply
1\
y = 3(£) B(zo) (9.17)

where B which already appeared in Eq. (6.11) is

kR

B(z,.) S T Y
0 zo(R-zo)

(9.
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and Q" is the average of s DA A
1 2 -1 - R
2 = LB = L [E{B (zy) dzo] (9.19)

Thus £ is a measure of the phase change required to move a path a

distance L away from the unperturbed ray. In general there is a

. -22
two-by-two matrix B defined by the expansion for small £

= 1 -3
S(4, 7)) = 5 tizj Bij(zo) +0(]£]) (9. 20)

- -2 -
and Q : will be an average of L. B 1. It is convenient to weight the

average by p(0, 0;z) and 2 will be defined e

F oo 0w ey
Ofp(  052) (L77(2))y (BT (2)); da

a7t . IE(L'Z)..(B_I). -

(9. 21)

-

RA
fp(o,o;z)dz
0

With this definition of 2 one can follow through the arguments of Sec. (3)
and verify that saturation and Gaussian statistics are expected when

®>1 and ®/Q >1. A more precise procedure is to compute

(<12> - <I>Z)/<I>2 in the Rytov approximation to find the boundary

of the saturated regime and then in the saturated regime compute the

corrections to Gaussian statistics and verify that they are small. A

straightforward evaluation of (< IZ> - <1>2) /< I >Zl shows that it

lRyi:ov
does in fact exceed unity when & >1 and &/Q >1 indicating that the

boundary is correct. Using the formulas of App. F one can verify that in
the saturated regime the corrections to Gaussian statistics are indeed

small.
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With the appropriate change in the definition of (L-z)ij for

p <2, the same procedure can be extended to media with multiple
scales. The result is that with Q defined as in Eq. (9. 21) the
boundaries given in Table 1 remain correct and that for p <2 the
partially saturated statistics given in Table 3 also remain correct,
To actually calculate Bij(z) the following result is useful.

Define a Green's function gij(z, z') by 2

2
g gij(z, z') + p.ik(z) gkj(z, z') = 6, 68(z-2"

8z2 ij
o S
gij(o’ z') = gij(R' z) = 0 (9. 22)
Then it is straightforward to verify that

-1
(B (Z))ij = -gij(z,Z) (9. 23)

C. Correlations in Frequency

In general one can write

<€*(w')€(w) e o r_
o 1
€, (") &(w) L

0)-(.0. -
( ) ]A(w-w') (1.19")

w

24

(30 L

where the exponential factor comes from geometric optics and A is
to be computed from the path integral. The geometric optics decor-

relation frcoquency wg is

-2 a7 [ :
wg = (‘d—u' { k L}"w(;w(Z) i i Ezz. t) - <Fw(§w(z) + Ezz't ) >]dz) (9. 24)

and for a general dispersive medium both p and the unperturbed ray 5




will depend on w. For a nondispersive medium wg is equal to /&
where ® is evaluated at the central frequency ©.
As before the path integral for A is tractable only for

media with p > 2. The derivation?roceeds as in Sec. (3) and
= 1

ke 3
->
- . ll - = -
after introducing scaled paths £ = <—g_2(w Ty > (v s;) where

@ = %(w +w') and cg is the group velocity at w = © the path integral

for A gives

A(w) = (9. 25)

where 22

R
K(o) = fd(paths)exp[—if [(E(2))% - £;(2) &,(2) (1, (=) +iwh (2))] dz]
0

(9. 26)
with

L Ny -2
hi(z) = < p(0, 0; 2) (L77(2) )5 (9. 27)

If the path integral for K is written out in its finite form it

becomes an ordinary integral of large dimension whose integrand is

the exponential of a quadratic form. Such an integral is proportional
to one over the square root of the determinant of the quadratic form
and in particular A will be the square root of the ratio of two determi-
nants. As the number of integration points goes to infinity the deter-
minants become functional determinants. There are two equivalent
methods6 for computing the ratio of these functional determinants.,

In the first method one has to find all the eigenvalues . of the

differential equation




|
(=]

gﬁ“’ (9. 28)

(2) + a(2) g;“’m - by (2) g;“’(z)

subject to.the boundary conditions E(n)(O) = E(n)(R) = 0. Having done

this A(w) is
%
1 2
Alw) = <T|— ——u_> (9. 29)
- l+iw_
n

In the second method one defines a two-by-two matrix Mij(z’ w) by

the differential equation

M;}(z, w) + pik(z) Mkj(z' w) + iwhik(Z) Mkj(z-w) =0 . (9. 30)
and boundary conditions 22 in z
Mi).(O, w) =0
M;j(O, w) = 6ij (9. 31)

Then A is given by the ratio of determinants

1
_ [det M(R, 0) \°
Saf = (det M(R,w)> (9.32)

As an example of how A is computed consider a homogeneous

isotropic medium where Hij = 0 and hij = 6ij cg-1 0(0, 0) L.Z. The

eigenfunctions of the operator in Eq. (9. 28) are then of the form

6“ sin(nl mz/R) and 6j2 z:xin(nZ mz/R) and the eigenvalues are -nl nzwl
e & A P g
and -n,m @ where w = ch /R”p(0,0) as in Sec. (4). The infinite

product in Eq, (9. 29) is then a product over two sets of integers
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00 o0
1 1
Aw) = H = ” P R R (9. 33)
l=1 1-1-—-——-nz 5 n2=l 1-1——-——2 >
T W n, T oW

and the two equal factors just cancel the square root., The result is

1
()
0 (> o] w
-1 1 1 1
Seeolr e T - T (9.34)
tes bt st 2 2 n:.pol+(-1-‘2) L sin(‘—""‘-)2
n wl n#0 wl nm wl

and with w = uoa/b Eq. (L 21) is reproduced. To compute A by the

W, \2 . i
2
second method one finds immediately that M. .(z,w) = 6., R(—l) si.n(E (—12-) >,
ij ij iw R W

Mij(z' )= 6_1jz and Eq., (9.32) yields the expected answer,

Once w and A have been determined everything proceeds as
in the homogeneous isotropic case. In particular Go satisfies Gaussian
statistics in the fully saturated regime and in the partially saturated
regime for p < 2 (where A is unfortunately not known) it is a phase
times a Gaussian, There is one new point worth mentioning. In the
calculation of Sec, (4) < ‘Q(T) > vanished for 7 < 0 because A was

analytic in the upper half plane. When p.ij(z) is non-zero there can

be a finite number of positive eigenvalues s Then A is no longer
analytic in the upper half plane and <<l (t) > is nonvanishing for 7 < 0,
This in fact happens for propagation of sound in the ocean,

The transition to inhomogeneous anisotropic media has now been
completed., The reader who is interested in seeing how the method
works in detail for a realistic problem can consult the book of Flatte,

et al.7




8 {0 8 Conclusions

The path integral has turned out to be a powerful tool.
It has provided a precise, (very nearly) complete and global
picture of what goes on in the saturated regimes. The unsat-
urated regime where the Rytov approximation is valid could
also be treated by path integral methods. While this would
lead to a more unified picture, in the end it would only
amount to a rederivation of the Rytov approximation. A more
fyuitful endeavor would be to make an attack on the remaining
unsolved problems in the saturated regimes. For situations
wheve a scalar wave equation is sufficient and the (multiple)
scettering angles are small the remaining problems are:

a) How to compute (except numerically) the coherence in fre-
quency, A{w), for multiple scale media with p < 2.

b) What are the detailed (beyond those given in App. (D))
statistics of & in the partially saturated regime for
4 >p > 29

¢) How to compute the second moment <€*(2) 8(1)) for those
propagation paths in highly anisotropic media where the
Markov approximation is not valid?

d) What is the detailed behavior of & at the boundaries
between the unsaturated and saturated regimes and between
the fully and partially saturated regimes?

These are difficult problems which may not have any
simple solution and, in particular, the path integral may not
be the best method for attacking them. On the other hand, it
is quite remarkable that the use of Feynmann's path integral
has reduced the problem to a few unknowns which occur only in

special cases.
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Among the other methods for treating wave propagation
in random media, the most powerful ones use the Markov ap-
proximation from the beginning. With the Markov approximation
one can derive local partial differential equations for the
moments of 67.3_5 These equations have been studied exten-

3,4

sively, especially by the Russian school. In the Markov ap-

proximation the path integrals for the moments are formal solu-

tions to these partial differential equations. The equations

for the first and second moments can be integrated analytically !
and correspondingly the path integrals can be done analytically.
For the higher moments, the differential equations have yielded

only some information about4 <I(1) I(2)> . The reason that

this approach has not yielded more is that to determine the

asymptotic (long-range) behavior of a function from its defin-
ing partial differential equation is highly non-trivial. The

path integral has the advantage that it works on a global rather

than local level, making it easier to determine the asymptotics.

The reader who is familiar with Mercier's12 treatment of
the phase screen problem (an idealized case where all the scat-
tering takes place on a thin sheet) will have noticed the
similarity between his methods and those used here. The simi-
larity is partly just the mathematics of manipulating integrals
but there is also a physical reason. Any medium can be approxi-
mated by a (perhaps) large but finite number of phase screens.
The wave field can then be expressed as a large but finite

dimensional integral over the surfaces of the screens. But

this is just the path integral in its finite form. Thus the
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path integral can be thought of as a scheme where one approxi-
mates the medium by n phase screens and then letting n go

to infinity recovers the original problem.




APPENDIX A CORRECTIONS TO THE MARKOV APPROXIMATION

The exact path integral for (8*(2)8(1)) can be expanded as

E*2)8)) = 2 —12 dz(paths) exp —1kf (-r)"(z))z -(—r)'(z))zdz-v
Z m! 2 1 2 o
m=0 0

x[v_ - v" (A.1)

where V is given by Eq. (2.10) and Vo is the Markov approximation
given by Eq. (2.11). The m = O term is the Markov approximation and

the m = 1 term will be computed below for the special case (5*(1)6(1)).

For (8*(1)8(1)) = (I) the first correction contains [Vo - V]
which can be replaced by -V because, as may be seen from Sec. (2)

the piece proportional to V0 vanishes. We then have to first order

(1) = <I> - dz(paths) exp ikf—v"(z) * :'(z)dz -V |v (A.2)
2 o
0 Lx 0

- - - - - -
where paths v(z) = rl(z) - r2(z) and u(z) = i(rl(z) + r2(z)) have been

introduced. 1In terms of the Fourier transform p of v (Eq. (5.3))V is

iq (z, - z.)
V=2k_/:iz_/ ﬂqdqp q+q 0) o s .
tq - (Uez) - ucz) g <oy iy
X e sin l}q . v(zli| sin[§ q° v(zzil (A.3)

.’
where q = (qx,qy) is a two-dimensional vector. Writing

1:‘(:(2) —:(z )) =5 -
3 27 = exp[iq « J u(z) [6(z - zl) -6(z - 22)]dz
0
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and inserting V as given by Equation (A.3) into Eq. (A.2)
- -
one finds that since Vo depends only on v the integral over u(z) can

-
be done and that it leads to a 6- functional which forces v to satisfy

the equation

=

V@ = ez - 2) - 8 - 2] (.9

- -
with the boundary conditions v(0) = v(R) = 0. In terms of the Greens

2
function g(z,z 'y which satisfies 1—5 g(z,z’) =8(z - z’) and g(O,z') =
dz
I gR,z’) = o0, v(z) is constrained te be vo(z) where
-5
| V@ =Yezz) - ezz) .5
G RS T BGSu g

- -
The path integral is then done by replacing v(z) by vo(z) in Vo and in

the representation of V and the final result is

(I> (Iz) 2 = iq,(z) - z,)
-2k dz d qdq q o ,0) e
5% > o 5> - -
sin [3q * Vo(zl)] sinl}q . vo(zz) exp[— d(lvo(z)l,o) dz
0

(A.6)

To estimate the size of the integral in Eq. (A.6), one notes that
|z 2 \ will be restricted to order L or less and that for |z -~ % | ~ L,
- ->
q ° %Jz) is of order q L/k ~ q/k which is assumed to be small. The

sines can then be expanded and using the identity

2
(z) -2, 8(z),2)
R

[g(zl.zl) - s(zl.zz)][g(zz.zl) - g(zz.zz)] = -

(A.7)
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' one finds

m = l—jfz ./:r:z ﬁzqdq ; Z“ % q2 0)—*4(2 =iz )2
<1> e z (V M o ™

-
X g(z,2,)exp [iqz(zl - z,) —j:: (I vo(z)|,0)dz} (A.8)
) 0

Ignoring the term J( a( |-\;o(z)|,0)dz in the exponential which can only
3 meke the integral smaller, changing to variables u = z,- Z, and

z = 35(z1+ 22), approximating their limits by -o<u < ® gnd 0 < z < R

and setting g(z,, z,) ~ g(2,2) then yields

I3 | = <> a 2
i 0 . _ Epfo,0) . _ Rep> (A.9)
<I>o 3L2 3L

*
The correction to Markov approximation to <é’ (2) £(1)> can be

2

analyzed in the same way. It is fractionally small as long as < u~> R/L

is small.
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APPENDIX B CORRECTIONS TO GAUSSTAN STATISTICS

2
To begin with something simple, consider (1I"). It is given by

the path integral in Eq. (3.1) with t1 = t and the end point conditions
- - O -
ri(O) = ri(R) = 0. Changing variables to U, Uy, v and v, defined by

- - - - >
rl(z) = ul(z) + ivz(z) + }uz(z) + §v1(z)

- > - -> -
rz(Z) = ul(Z) + ivz(Z) ~ iuz(z) - ivl(z)

7,2 =3 (@) - V(@ + i, - IV (@)

- - - - -

r4(z) = ul(Z) - ivz(z) - }uz(z) + ivl(z) (B.1)

-5
the integral over ul(z) can be done and it produces a 6-functional

-
which forces u’’(z) to vanish everywhere. With the end point conditions
> - -
u2(0) = uz(R) = 0, the only solution is u2(z) = 0. The quadruple path

- -
integral then reduces to the double path integral over paths v1 and Vv

2
glzz 1 [2 f’ -
5 ==£;é d (paths)exp|ik v{(z) = vé(z)dz - M (B.2)
0

where M was defined in Eq. (3.2) and for 32 = 0 it is explicitly
R
- - - -
M =f[2d(\v1(z)1,o) + 2d(\v2(z)|,o )- d(lvl(z) + v2(z)|,0)
0

- d(l-;l(z) -V, (2] ,o)] dz (8.3)

—
The two regions (a) and (b) discussed in Section III are lvl(z)| < L/%

-3 - -5
with v, arbitrary and \vz(z)l < L/¢ with v, arbitrary.

It was pointed out in the text that M is of order unity or smaller

throughout regions (a) and (b). Actually, there is a further region
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f

Q\ PRECEDING PAGE BLANK-NOT FILMED

T A g S ey




Lv....__—________~

(having some overlap with (a) and (b)) where M can be small. It is (c¢)

- -

|v1(z)| < L/, |v2(z)| < L//? and owes its existence to the fact that
Y - -

when both Ivl(z)| and [vz(z)| are small, M is quartic in the v's. In

all other regions of path space, e is exponentially small.

Our first task is to dispose of the extra region (c) by showing
that for small o the volume of path space occupied by this region is
exponentially small compared to the volumes occupied by regions (a)
and (b). An estimate of the volume of path space occupied by region (a)

is
1 2 - -> ¥ b )2
oY i (paths) exp|ik v{(z) . vz’(z)dz - = (z))“dz|= 1 (B.4)
LK 0 1°g 0 *

—,
where the integral is done by integrating over v2(z) which produces a
-
§ -functional that forces vl(z) to vanish. An estimate of the volume

occupied by region (c) is

R R
}-2 dz(paths) exp[ikj—\;'(Z) . V'(2)dz - . - (_\;2(2) + :;2(2)) dz]
Lk 1 2 2RL2 1 2
0

-243
(6/a) 24 o
‘ zf . 2J§ pe e (B- 5)
sinh — 4+ sin e
o o

where the value of the path integral is taken from Ref. (6). For small

o, the volume occupied by region (c) is therefore exponentially small
compared to the volume occupied by regions (a) and (b). This result,
which may surprise some readers, deserves an explanatié)n. In region (a)

PR sl et
1kbfvl(z) v2(z) dz]

->
where |v1| is always less than L/¢, the factor exp

L -
= exp -ikfv (z) * v!'(z)dz
1 2
0
; -5 2 -),,
¢ /(kLR). Typical values of \vzl will then be R |v2 |76 ~ L/a. At a

-
will restrict lvé'\ to values less than
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given range point zo, the variables 31(20) and 3;(zo) span a four-
dimensional space. In this space the volume occupied by paths in
region (a) is roughly L4/(¢a)2. At the same point the volume occupied
by paths in region (c¢) is roughly L4/§2. Thus at each point zo, the
volume associated with region (c¢) is a factor of az smaller than that
occupied by region (a). To compute the total volume in path space,

one has to multiply together the volumes at each range point zo, taking
into account the fact that the paths cannot bend too rapidly. The path
integrals in Equations (B.4) and (B.5) do just this. The resulting
exponential ratio of volumes should no longer be a surprise since at

2
each range point the ratio is down by o .

It is therefore sufficient to consider only paths lying in regions
(a) and (b). The fact that integrating separately over regions (a) and
(b) leads to a slight over-counting can also be ignored. The volume in

path space where regions (a) and (b) overlap is even smaller than the

volume occupied by region (c). Now as was pointed out in the Section III,

for most paths in region (a) M = Mia) where
-
M(a) = 2_£(\v (z)\,O)dz (B.6)
o B
0
(b)
and for most paths in region (b) M = Mo with
R
(b) =
M = 20/:1 (lvz(z)l,o)dz (B.7)

The path integral in Eq. (B.2) can then be expanded according to




R
f 2 Yex ikf_\)r'(z) . -;'(z)dz - M] ~
d" (paths P[ 1 2
0

5 (a) m
2 : = = (a) (Mo % M)
d"(pathslexp|ik] v, (z) * v,(2)dz - M | e
m=0 0

= R (b) m
i (- M
+ Z [ig(paths)exp ik[TI;(z) F Vi(@az - n ol (B.8)
=00

oJ mt

which is an asymtotic series in . It is not a convergent series because
(exponentially small) contributions from region (c) and the overlap of
regions (a) and (b) are not being treated correctly. The m = O terms
correspond to Rayleigh statistics and the m = 1 terms are the first

correction. They will be computed explicitly below.

Eq. (B.8) generalizes to an arbitrary correlation in the
obvious way. For a 2nth order moment there are n! important regions
of path space. In each such region there is an M0 given by the analog
of Eq. (3.4) or (3.5). The generalization of Eq. (B.8) is then a
sum of n' terms, each of which is a series of powers of the appropriate

M. =M.
()

The path integrals for the m = 1 terms in Eq. (B.8) can be evalu-
ated by inserting a spectral representation for M0 - M. If p is the
three-dimensional Fourier transfor of p (See Eq. (5.3)), then in region

(a)

% & - ¥
M(()a)—M = 4nk fd2fd q o(fa)ye’® " Y® [1 - cos (q - VI(Z)J (B.9)
0
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and

R ’
"1'-5 dg(paths) exp [ikf:'(z)-tz'(z)dz - Ja)] [Ja) - M] =
Lk o 1 o o

R R
Tr(_)ﬂi‘z"/.clzq S(It_;l) dz(paths) exp [-113’/72(2) . (:{'(z) - %é(z - z'))dz - sz)]

5> -
X [1 - cos (q . vl(z'))J (B.10)

a = -
Since M depends only on vl, the integral over__)v2 can be done and it
produces a §-functional which forces v "(z) - % 5§(z - z') to vanish.

In terms of the Greens function g(z,z’ ) defined by

52
= g(z,z’) =6(z - z”) (B.11)
oz

-5
with bgundary conditions g(0,z’) = g(R,z’) = 0, v2(z) is constrained
" q ’ (a) > -, =3
to be = glz,z ). In M and cos| q * v_(z")] one can then set v_(2)
k °5 o 1 2|
equal to % g(z,z') and the remaining path just gives (I). The calcula-

tion of the correction in region (b) is identical and to leading order

in o

’
D - 2<I = 4k _/;Z_/c.i a p(lah) QCz, |aD (B.12)
(1
*
with
-2 .
-

Q(z,lt-;l) = 2[1 - cos(ﬁ- g(z,z))J exp[-Z_/;(L]g;L g(Z.Z').O)dz']

Y0 |

.1 |

s (B.13) |
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An examination of the integral on the right-hand side of Eq. (B.12)

shows that for small o, (i) d(lEL g(z,z'),o) can be approximated by

- o 1g 2
ikza(o’o)(ﬂglfﬁf—l) ) 2[1 - cos(%: g(z,z)” can be set equal to

-2
2
(gi-g(z,z)) and (iii) the dominant contribution comes from the regions

z= 0 and z ® R where g(z,z') ~ z(R - z')/R and z'(R - z)/R. The con-

tributions from the regions z = 0 and z ® R are the same and

2 2 % -2 \2 o 22

SI Z - 2$IZ 2 2 M z Rp (0,0)z

- 8 nk fdz-/:i q p(‘ql)(gk—) exp|- —p—(—-zL'i'
(1) 0 3L

@

L [4%5(q,0)dq
a(glt')é (B.14)

4

J;;(q.o)dq

The correction to (In) involves n! regions of path space and in
each of these regions there are n(n - 1)/2 terms in M0 - M which differ
only by permutations of the patks. The result is that the correction to

2
(In) is n!(n)(n - 1)/4 times the correction to (I ).

Moving on to a more complicated object, consider (I(1)T(2)). It is

given by the path integral in Eq. (B.2) but the end point conditions on
- - = - - ¥ - -
the paths are now v_(0) = R) =0 and v_(0) = -r = -
p e 1( ) vl( ) 2( ) Toi 02’ VZ(R) r, - fy
and now M is )

R
—’
M =f[zd(|31(z)|,o) + 2d<|v2(z)|,t1 - tz) - d(|"',1(z) + 'Jz(z)l 't - t2)
0

- d(l?l(z) - 'v’z(z)l o tz)J dz (B.15)

2
The integration over region (a) gives (I) (1 + corrections) while the

2 -D(1,2)

integration over region (b) gives (I) e (1 + corrections). As
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indicated the corrections in region (b) are proportional to e-D and

are a small effect of no particular consequence. The corrections in

region (a), on the other hand, are small but do not contain e-D and

hence fall much less rapidly. This leads to a coherence tail in

{1(1)1(2)) which is not present in {(§*(1)8(2)). The interesting

corractions in region (a) are computed by changing variables from 31(2)
-> R -2

> - > - z -
and vz(z) to vl(z) and w(z) = v2(z) ~ 3 (r1 - rz) gl

and then proceeding in exactly the same way as before. The result is

-
(rol iy r02)

2 -D(1,2) N > = -
- C ' - : -
()I(2)) =) 1 + e + y(r1 ToT T T Y tz)]
(B. 16)
where
2 -> ’ - (R )—’ 5 e d e
Y@, 0 = omk® dzfd q exp[i ek f =—=2 (|3l vacz, 3D
0
(B.17)

and Eq. (B.12) is not reproduced for I(1) = I(2) because a small term

~D
of order Yye from region (b) has been dropped. For small o this integral
can be simplified in the same way that Eq. (B.14) was obtained from

Eq. (B.12). It becomes

LﬁzS(q,t>[J (a7 + 3_(a|?_|)]da
o} o o
=5 &) = /31t 0
Y(r)rO’ N 8 cn~
fqo(q,o)dq (B.18)

0

Corrections to more complicated correlations and terms of order
2
@ or higher can also be computed — the only obstacle being the labor

involved. The calculation of the general coherence tail involves only

some combinatorics. It is
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n
=" ian terms" + m -
= o Gaussian : §=l "/ JY(k J)
n (i) > :
k=1
(B.19)
> -> > >
where y(k - j) = Y(rk =By g o ¥y tk - tj)’ the "Gaussian terms" are
what one would compute from the Gaussian distribution and all terms of order
e have been dropped.
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APPENDIX C: CORRECTIONS TO GAUSSIAN STATISTICS FOR p < 2

Egs. (B.12), (B.13), (B.16) and (B.17) of App. (B) do not
assume a single scale media and will be the starting point. For
p < 2, in either the fully or the partially saturated regime Q

can be approximated by

>2 ¢2 p

Qz, lal) * [%— g(z,z)J2 eXP|- 531 (C.1)

19| g(z,2)
KL

where the cosine has been expanded, the short distance expansion
for p Eq.(7.2) has been used and the identity

R

jlg(z,zwlpdz' - Shplez,2)|P (c.2)

0

has been employed.

In the fully saturated regime the main contribution to
Egqs. (B.12) and (B.17) again comes from z ¥ 0 and z ~ R. Using
Eq. (C.2) for Q then yields Eqs. (B.14) and (B.18) with a re-
placed by a' where o' 1is defined in Eq. (7.3).

In the partially saturated regime all values of =z

contribute to the integral but the dominant contribution comes

from large |q| where

a P o
5(q,t) = o(O,t)Z3 (F(;+%p332 sin(mp/2) (C.3)
4n” |L|"|q]
For n = 2, Eq.(8.3) with

(p+1)(4"P)/P 2P (r(14apyr(p -1)2 sin(rp/2)T (& - p)/p)
pr 6¢2°P)  r(2p-2) (C.4)

C(p) =
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is obtained by inserting Eqgs.(C.3) (with t=0) and (C.1) in
Eq.(B.12). The extension to general n works in the same way
as before. The coherence tails in the partially saturated
regime are obtained by inserting Eqs.(C.3) and (C.1) into
Eq.(B.17). For ;, ;0 # 0 this leads to integrals which

cannot be done analytically.
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APPENDIX D: THE PARTIALLY SATURATED REGIME FOR p > 2

It is difficult to make quantitative statements about
the partially saturated regime when 4 > p > 2. There is how-
ever some qualitative information.

Eq.(1.14) holds and <€> 1is equal to € oeXP [—é(bz] in
all regimes as long as the Markov approximation is valid.
Furthermore <6°*(u)' ) é'(w)> continues to be given by Egs.(1.19)
- (1.21). The argument that any correlation involving an un-
equal number of & 's and A% 's vanishes also goes through as
before. Thus & is uniformly distributed in phase. The
difficulty arises when one attempts to compute the non-vanish-
ing higher moments.

The statistics are not Gaussian. This can be verified
by assuming that they are and then computing the corrections.
They are not small. Some information can be obtained however
by comparing the path integral for <(f$(2))2 (6(1))2> with
that for < |£’(2)|2 |¢f(1)|2) . Upon doing this one finds that
6 always phase wraps as shown in Fig.(5b). 1t turns out that-
the typical space time scales over which the phase and intensity
change are those listed in Table D-1 (the parameter ¢ was de-

fined in Eq.(8.4)).




Phase L/® T/®
. L p-¢$
B2 | (/ox/ot P | (/o)) P
e I (L/®)(Q/®)
p - &8§>2 2>p -8 >0
Scale Length Scale Time

Table D-1. Time and Space Scales Associated with
Phase and ¢n I in the Partially Saturated

Regime with 4 > p > 2.
Note that for partial saturation where ¢4/p/Q > 1 but
¢/Q < 1 the rate at which the intensity changes is always
small compared to the rate at which the phase changes. Ex~
amining more complicated correlations leads to the conclusion

that at a fixed frequency é? can be represented as
£y = £y exp[i (3] x(3) (D.1)

where ¢(j) 1is a real Gaussian random variable with ( ¢(j)> =0

and

(61) - 3)%) = D) (D.2) |

The other factor x 1is an independent (of ¢ ) complex random

variable about which only three things are known:

(1) any correlation involving an unequal number of yx's and
x*'s vanishes

2) <|x|% =1

and
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(3) the decorrelation lengths and times for X are those listed
under intensity in Table D-1.

To see what the representation in Eq. (D.l) means consider

* ?
Erbay - <exp[i(¢(1) - ¢<2))J>< x"(2) x(1)>

*
£0(2) (1)

exp [-30¢1,2)] {|x|® (D.3)

*
where to get the second line one notes that <x (2) x(1)>
will be approximately <|x|2> for all space or time separa-
tions such that exp [—%D] is not vanishingly small. Thus,

Eq.(1.19) is reproduced, as it should be. Similarly,

* 2 @ 5
(2)) (¢ (1)) ) 3 4
<<(§*<2);2 :g(<z>>2 = epni el dni) e
0 0

and this correlation is known up to a constant. However,

all that is known about the intensity correlation

i

(1c2) 1(1)) (I xani?) (D.5)

are its space and time scales.
The extension to unequal frequencies is straightforward.

At different frequencies <(¢(w) - ¢(w'))2> = (EitﬁL)z aid
<x*(w') x(©)) = A(w - w'). The higher order moments of x
are again non-Gaussian and unknown. However, their width in w
is large compared to wg. As in Sec.(8) this means that pulse

propagation is dominated by wander rather than spreading.
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As was mentioned in Sec.(8), there is a case where the
non-Gaussian statistics of X can be studied in detail. It is
for correlations in time when p = 2 and § = 0 and is explained
in Ref. (7).

The above results are most easily derived using the

Fermat path formalism of Sec.6. One can work out the joint
probability that two paths will satisfy the perturbed ray equa-
tion. In the partially saturated regime with p > 2 it turns out
that the Fﬁrmat paths are highly correlated and tend to lie with-
in L(¢/Q)Z:B of each other. Studying averages of ﬁ and u' along
correlated Fermat paths then leads to the above conclusions. The
detailed calculations are relatively straightforward but tedious

and will not be given here.
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R
- 0 - 2k2 J dzljdz2 J d2q dqzb{a +é G O é(zl+ 22)]
0

APPENDIX E: CORRECTIONS TO THE MARKOV APPROXIMATION
FOR INHOMOGENEOUS ANISOTROPIC MEDIA

If the ; dependence of p is evaluated along the unper-
turbed ray then the first correction to the Markov approximation
can be evaluated for a general homogeneous anisotropic medium.

Let
> - - 3, if-x
p€x, t: s(z) + ezz) = j d%rel 5(I,t;z) (E.1)
then the generalization of Eq. (A.6) is

<I> -~ <> R

22
<16 0

x exp[i(qz+ a°§'(é(zl+ 22))(z1— 22)]Sin{~a.;0(zl)}
{R
o sin[%q'vo(zz)}eXp[—oj d(vo(Z),O;z)dz] (E.2)

where q = (qx.qy) is a two dimensional vector, d is defined

in Eq.(9.11) and

o
vo(z)i o Kk (gij(z’zl) L gij(?‘zz)) (E-S)

with gij defined in Eq.(9.22),

For an isotropic medium Eq.(E.2) can be analyzed in the
same way as Eq.(A.6) and one finds that (<I> - <16)/ <16
is of order of the r.m.s. multiple scattering angle.

It is also straightforward to analyze Eq.(E.1) for a homo-
geneous but anisotropic medium. The result of doing this was

stated in Sec.(9A).




APPENDIX F: CORRECTIONS TO GAUSSIAN STATISTICS FOR
INHOMOGENEOUS ANISOTROPIC MEDIA

When the approximation of Eq.(9.7) for the correlation
between two paths is made, it is possible to compute the cor-
rections to Gaussian statistics in the saturated regimes. The
calculation is a fairly straightforward generalization of that
done in App.B and only the final result will be given.

Define a function 51(6;2) where a = (qx,qy) by 5l(a,t;z) =
B(d - ©,(3'(2)+3),t;z) where 5 is defined in Eq.(E.1). Then the

analog of Eq.(B.12) is

R
2 2 e i
= §<I> = 4m? IdZJ d%q 6,(a,0;2) Q(z,q) (F.1)
(¥ ¢
where
R

Ql(Z,a) = 2[1 - COS(qiqjgij(z’z)k—l)]exP[‘iJ d(sl(Z,Z'),O;Z')dZ':I
(F.2)

with
har Dl k—lqj g;5(2.2") (F.3)

and d and gij are defined in Egs.(9.11) and (9.22).
Using Q and ¢ as defined by Egs.(9.21) and (9.6) it is
possible to show that the right-hand side of Eq.(F.1) is small
in the fully saturated regime and in the partially saturated
regime for p < 2. As before, in the fully saturated regime the

dominant contribution comes from the regions z ~ 0 and z ® R

and in the partially saturated regime 51 can be approximated
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by its asymptotic form for large Ial. Also, Q, can be simplified
by expanding the cosine and replacing d by its expansion for
small 31. The detailed calculation which is then fairly straight-
forward will be left to the reader.

The generalization to <I"> works in the same way as in
App. (B).

The coherence tail is given by Eq.(B.16) with
-> - - ->
Y(ry-T5,Tg T t)
R
= 2mk? Idz szq exp[ia-az>]al<a.t;z>ql<a.z> (F.4)
0

where ¥ is defined in Eq.(9.14). The apvproximations mentioned

above can also be made in the integral for y . Finally, Eq.(B.19)

holds with y given by Eq.(F.4).
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The technical meaning of ''a single scale" is that the three

dimensional Fourier transform 5(3) of the covariance of

u should fall faster than Ial—e at large |q|. See Sec.(7).

The assumption that p's at different times are jointly
Gaussian places restrictions on the dynamics of the medium.
It is consistent with either the Taylor hypothesis (convec-
tion of a frozen field by a "wind") or time dependence due
to linear wave motion.

Boundary conditions corresponding to, say, a plane wave at
z = 0 can be obtained by superposition.

In deriving this equation one neglects 33_ £ relative

b 2 9Z
to 2ik 32 &, v relative to 2u and time derivatives of éﬂ
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12.
13.

14.

15.

16.

The latter requires the assumption that the medium does
not change while a wave travels a distance L. This is
true if condition (ii) (i.e., kKL << wT) holds. Because
R 1is always taken to be large compared to L, condition
(1ii) implies < u2>? << 1.

R. Mercier, Proc. Cambridge Phil. Soc. 58, 382 (1962).
The line ¢ = Q@ is actually in a transition zone where
the fluctuations are larger than Rayleigh, see Sec. (7).
Note that the r.m.s. multiple scattering angle is 6L/Ra
so that o is restricted to be greater than “v6L/R. How-
ever, R is usually very large compared to L and there is

no problem here.

In the optics literature (Refs. (4) and (5)) there is
some controversy as to whether or not P(I) 1is Rayleigh
in the saturated regime. Asymptotically it is but the
corrections may be substantial in some experiments, see
Secs. (7) and (8).

To make this rigorous, start with the finite form of the
path integral in Eq. (2.1) and repeat the steps (includ-
ing a summation by parts in the first term in the expo-
nential) leading to Eq. (2.14) which is now an integral
of finite dimension. Integrating over the discrete
variables ﬁk will produce a product of §-functions
which force the ;k to satisfy 3k_1-23k % $k+1 =0

60 = ?01— ;02 and v, = ;1- ;2. There is a unique

with n
solution and in the continuum limit Eq.(2.16) is reproduced.
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19.

20.

21.

22.

Up to a normalization it is the path integral for the
unperturbed problem. The correct normalization is ob-
tained by comparing both sides of the equation for the

case where the fluctuations vanish and d = O.

J. Lawson and G. Uhlenbeck, Threshold Siegnals, McGraw-

Hill, New York (19590).

It is also implicitlv assumed that the signal is in the

saturated regime for all important frequencies in %,

This is M for region (a). In App.(B) it is shown that
the integration over the center of gravity of all four
paths produces a §-functional which forces the difference
between members of each pair to be equal (31).

The case where there are many unperturbed rays is treated
in detail in Ref. (7).

When multiplying vectors and matrices the summation con-

vention (repeated indices are summed over) is used.
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FIG.1

FIG.2

FIG.3

FI1G.4

FIG.5

FIG.6

F1G.7'

FIGURE CAPTIONS

The difference between multiple large angle scattering

(a) and multiple small angle scattering (b).
Parameter regimes in ¢ - Q space.

Illustrating Eq.(1.18). The signal n' will lie, with
90% probability, within the circles: (1) for ¢t/T
small, (2) for ¢t/T ~ 1 and (3) for ¢t/T large. The
location of the signal n at t=0 was an unlikely one
lying outside the 90% probability circle for a

Rayleigh distribution.
A path in the path integral for n=6.

(a) The schematic track of a signal satisfying Gaussian
statistics in time.
(b) The track of a signal which moves faster in phase

than amplitude (phase wrapping).

Propagation through an anisotropic medium. The blobs
are schematic Inhomogeneities and the heavy directed
lines are the unperturbed propagation path at various

angles with respect to the long axis of the blobs.

Propagation in a channel. The channel axis (z-axis)
is parallel to the long axis of the inhomogeneities
(blobs). The medium is assumed to be isotropic in
the z direction and the unperturbed propagation path

(heavy directed line) makes periodic loops.
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