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SUPPORTING SURFACE IN NONSTATIONARY FLOW NEAR SCREEN

B. N. Belousov, A. N. Lukashenko, A. N. Panchenkov

At the present time there exist a number of important studies
on the theory of a supporting surface in a nonstationary flow [1,
2, 3] with different approximate methods of calculating the wing.
As we know, the problem of a thin supporting surface of arbitrary
length is reduced to two-dimensional integral equations for which

there are no closed solutions.

One of the most important aspects is that of studying two-

dimensional integral equations in one-dimensional approximations ;
and obtaining on this basis final results for the hydroaerodynamic |
characteristics of a wing in a nonstationary flow.

Whereas for a wing in a stationary flow Prandtl's theory of
the supporting line defines the Prandtl equation in terms of the
one-dimensional approximation, for a wing in a nonstationary flow
the complexity of the physical phenomenon does not provide a unified
approximation method. Thus, there are a large number of approaches
(up to 20, as noted by R. A. Weisplinghoff, H. Ashley, and R. A.
Halfman [1]) which give different one-dimensional equations.

Developed in the works of one of the authors [6, 7, 8, 9] is a
method of integral operators for the theory of a lifting surface in
a nonstationary flow.
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The general solution to the problem is represented in the form
of three components. Two components are found from equations which
correspond in form to the equations of the theory of a wing in a
nonstationary flow.

Also examined in [8] is a method of constructing the Prandtl
equatlon based on the example of a wing in an unlimited fluid flow.
A significant advantage of this method is that the Prandtl equa-
tion is constructed for the parametric constant of a singular solu-
tion. This has made it possible to more deeply analyze the problem
and critically examine the existing theories of Reisner [1], Kusner
[2], and others.

In the present article a method of integral operators is §
applied to the problem of a supporting surface near a screen.
Obtained are two-dimensional integral equations and a one- :
dimensional intego-differential equation for the parametric k
constant. It should be mentioned that the downwash is associated

only with the singular solution corresponding to a singularity in
the leading edge of the wing. Transfer of this result to the
theory of stationary motion indicates that the classical theory of
a lifting line is strictly applicable only to a plane lifting
surface.

If the lifting surface is not planar, then in the expression
for the coefficient of the l1lifting force of the wing there appear
terms on the order of 1/A which are not considered by the classical
theory. From the physical standpoint they determine the effect of
aspect ratio on the angle of zero 1lift of the wing.

The present study adheres very closely to studies [6, 7, 8, 9],
for which reason we have attempted to very briefly introduce the
general results from these studies in the necessary cases and
discuss new results in more detail.
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1. Let us assume that a thin lifting surface S moves at

velocity VO near a solid screen. In additional to the main forward

motion it performs harmonic oscillations at frequency w.

Assuming that the disturbances introduced into the flow by
the 1lifting surface are small, in coordinate system oxyz moving
at velocity VO (see the figure) let us use a known method to
linearize the problem [4, 5].

In the case of harmonic oscillations for hydrodynamic poten-
tials of velocities @ and accelerations © and their derivatives
we have

0.0 =8 (p)e, -

L& 0= @egen, (1.1)

The index n denotes the derivative of the n-order of functions ©
and @ with respect to coordinate xi(xl = X5 X5, = Y5 x3 -,

In equations (1.1) and henceforth we shall only study the
real parts of the proper expressions, although we shall drop Re
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for simplicity. Relationships (1.1) make it possible to formulate
the problem for §(g) and @(g) and exclude time from our study.

By shifting to dimensionless space {2, assuming that the
velocity of the impinging flow equals 1 and removing the bar from
the top of corresponding 0(g) and ®(g) expressions, we get the
boundary problem in the space of the potential of the accelera-
tions O:

A@=0; ge€2;
6,=F(g): g€, (a.2)
, (a)
0,=0;  z=2k
—6_=0,
g+..o;' . g€L; (1.3)
X - +- oo,

Problem (A) is obtained by integral operator Ay, assigned in

space L.(S_) with values of C2Q. The reguired properties of
S

operator Ay are given in [5-8].
In the studied problem operator Ay has the form of
i AFE 1
a =gzl + s'gnﬁ—,;]dS; (1.4)
Sp o o B

here

=V +@—0+C=0%
n=V E—+@—a+@++ Mm%

-1 - solid screen

slgn F = J 41 1 free surfecs.

According to condition (1.2) we get the two-dimensional
integral equation of the problem

A;=F@, g¢S, (1.5)




Let us represent the solution in the form of three components

[6-8]:

1@=1@+n@+1@ - Zes,

where Yl is the solution of class Cl(Sp), related to the presence
of a break in tangent velocities during transfer of the surface
S0y ¥y = solution of class Cl(Sp), which describes inertial move-

p
ments; y3 - singular solution.

Analysis of equation (1.5) and the method of constructing
equations for Yy is given in [6].

Let us write equations for Yq and Yol

Nn?_ih =Fr4-G, gE Sa: ' (1.6)
NoiA;yy = —ikF,, geS,. (1.7)

Here Fl = -g; F2(g); Fz(g) - the function which describes the shape
X
of the surface S; N01 = —S drt.

Constant C is found from the condition of solvability of
equation (1.6) in the space of Cl(Sp) [6].

By performing calculations for NOIKZY we get [10] l

oo

?%3’"5/ » e ’j"f ' '{4 VOISR
”."‘J‘ .lAz 55 T(P) dy(y "l)(_ 3 (X—-—T o, *,.;,, 2 :.“
: ;'..‘ —'5 )’1' —)3 ]6)4‘ ...l‘ 1 2 )IBIT'” w
7‘-‘"_181“(' )y — w(r. wd UL :sm (1) 168G n‘ POl s (1.8
"ol " & od iy , - ,".': R ,..,_ B “?‘;_
where
)
10 =32
5




The singular solution is determined from equation

NAz=Fy(gy heSy
N = -—e"“scii*’dt, (1.9)

k is the Strouhal chord number.

Equation (1.9) is obtained by mapping equation (1.5) in the
space of the velocity potential.

2. Now let us examine the Prandtl equation for a wing and a

nonstationary flow. For a wing of great aspect ratio operator
NOIKZY is approximated by operator

. H .
L A U B —£ :
NoAjy = —,(,—y)j' 15 ¥) [(,—:—5 - s‘gnF(x—-E()x'-i-_——T)G-i—’_(T)] dy. (2.1)

For a plane flow the form of the singular solution y., is
known, and for a wing of great aspect ratio we use y3 in- the form
of the solution of the planar problem, although with a constant
which depends on the y-coordinate:

n=a )/ E.

If
‘ .
1, €C1(S) and Ta=—ik| 1dn geS,
e |

then we get [6]

NAj5 = NoAq: g€S, (2.2)

By examining equations (1.6), (1.7), (1.9) and property (2.2),

we get

NAjy=—C—N 1A 10

Equation (1.6) can be written in the form

-




NoA;1i = Fy+C1, (2.3)
No = - Sd‘c.
When A » = Cl = C, while for greater aspect ratio we use the
approximation

+1
V[ 1R i—(Ne—Na) A: 01}
—:S‘ ;},_;l hrt (2.4)

Then, by introducing operator p_l:

1.
P WA, = } T (®)ds
-1

and taking approximation (2.1) from (2.3), we get the Prandtl
equation for the regular solution, which in form coincides with
the Prandtl equation of the stationary problem [4]:

r‘(y):li’(‘—{ -—-—Sl‘()[ = - !:,):—:167.']"} k257

where i

hi={ nea
-1 F
Function Yoo is found from equation

NDIZIT;! = ik C(y). (2.6)

Now let us introduce a number of assumptions typical for the
Prandtl problem [4], [8]:

NAy =~ NpAg + NpAy;
100) =1 ©) 12 (9);
Nlo 2] = 27: (.'l) A (II) Nxo‘:‘h (E).
M=—wﬂrmw
& ! ‘
M$n=—(7mk_e+smF
+

+th¢‘“j T(Ojﬂ“ [‘——-&+ sign F E;:El)ﬁli'(y)] dr dE’

= 7l LR




then

3 (4) 28 (9) N1oA, 14 () = —C () — 2\ (5) Tasa (6) N0, ags —

;_’N\Ji,[a(y)]/%{—';+ Tn|: g €Sp. (2.7)

For a wing in an infinite fluid both parts of equation (2.7)
contain factors e K¥, By multiplying equation (2.7) by e—ikx, we
eliminate the variable x [5, 8]. This also occurs in the general
case, although the equation relative to eikx cannot be solved in
explicit form, since it is possible to calculate the integrals in
NlOA Y in a closed form. In this connectic- let us introduce

averaged equation (2.7) according to the fcllowing rule:

For NlOAzYl and Y222(y)NlOAzY221 we select representations in the

form of
N i, = ——__N.—‘;(_—k):; , ; " . 8
, 10471 ‘h(k‘. e (2.8)
b a2 (9) ik
Toz2 (4) N1oA 00y = 2xy, (k: ) 2 (y) A° (y)[ Ny () c ®+C:) N, (k)] (2.9)

When h + « representations (2.8) and (2.9) are transformed
into the expressions found in [9]. Functions Ni(k) are also
obtained in [9].

Then,
i N, (1) T3 (¥) By (¢) 4 Ny (k)| =
a2 G+ TR m[ N, (k) C(9) + Ca () Ny ( )] PR
=—-C(y)-;N¢fA,law) 'lfg-b Tal
8
s S »——~"WM
Sh. ‘L "LML
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With the introduction of a new variable a (y) -S[a(y)‘/.'HS

+ Y221(y; S{]dy equation (2.8) is transformed into

ey
a @) = “"":’,“’{a.-;- N‘(‘,‘)" : (2.11)

Here

c —L’&_—- g B Cw) +C@)F,
-{ ¥ aH'.,.m[ LB CE) +C ) .w]}

N, (k) ‘!

c.l=—

LAY ‘l'::z)) = 7”; ®) i Tan (8) dE.

As follows from the solution to the plane problem of the
nonstationary motion of a wing near a screen [7, 8], function y(S)
can be written as:

19 =~1»ea.f(y)1/{i§+¢1. () + 4a1a (S).

Functions yg(s), which correspond to the plane problem for an
unlimited fluid, have been calculated in [9]. By using these
results, we get

-

a=2_lEmwcw +aomnelE-)+acel. (2.12)

where Lai is the integral operator, whose core was obtained in
monograph [4].

Now we must establish the connection between the functions
which exclude ¢1 and ¢2 from (2.9). By definition when X\ + ®

9




Constants Cl(y) take the form of

(e f,(.r) ' iy =, —N.)‘Z.m
C_s(.v)_= 5 d” = s Vies .

,,-) ¥

. C,(y)=-:;fS ][:;;F.(_x)e_if.

From equation (2.9) we find

a(y) = "P{,‘f' al;

'al =q, =20 + "k Ca () —

, A
‘l

e LA cw) +a R )t —).

By comparing the two expressions for aA(y), we get the
relationship we need

o =5 =190

Now, combining the results of equation (2.9), we write the
intego-differential equation for a wing of great aspect ratio near a
screen in a nonstationary flow

41 ,
y = 8 2 |
al(y) _i—(y_) a. 2"7’“&)]5_‘“‘ ("I)K[k\(!l—"mdﬂ. (2- 13) i }

where %
=204 ac,q). |

The core K (9) has the form of [4] I

Ko = N Ply—nf b= | |
K@= ;, = +(, T _.(P Y — 0 + 168 — i

No(PV =7 + 16W).

T = v'+lsh'

10




Where K » 0, Nl(k) + -1 and from (2.11) we get the Prandtl equation
for a wing near a screen in a stationary flow [4]. Here

; AT, . =7
K(y.-—?)—“———_ﬂ):}_-sngnf—-——w_'y*_lw,

Thus, the Prandtl problem for a wing in a nonstationary flow
is reduced to two one-dimensional integral equations (2.5), (2.13),
where equation (2.5) corresponds to the equation of the stationary
theory.

This result, which is the direct result of breaking the
general solution down into three components, is significant in
that the authors of known theory [1, 2], by introducing integral
equations of the "reduced circulation" type, have found one one-
dimensional equation.

3. In determining aerodynamic coefficients Cy and Cx a good
first approximation gives us the solutions introduced in [3, 4].

Iy =0VT—%.

We use this representation for the approximate solution of (2.13).

By assuming ax(y) = /1 - y2 for constant ¢, we get
B )

(0 -
®e- . Ckl" (3-1)

=
¥ Q0| Ny (B} .

where ckA is obtained from a formula in [4]:
- R R L ‘
il == 9 AL et T
w=1-4] VIiP |y (Kme—a—giglen  .2)
and kA - 1is the Strouhal span number.

The coefficient of the 1lifting force of the wing is calculated
by formula

1 ¢
C, = {.Ir,a ndtdy " (3.3)

-] -}

FTD-ID(RS)I-0038-77 11
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Now let us write the coefficient for the 1lifting force of a
wing in the form of two components:

Cy =Cp +Cp,

where CyB is the coefficient of the 1lifting force determined by

vortex movements; Cyu - the coefficlent of the lifting force

determined by the connected mass of the wing.

- { .
Now let us find components CyB and Con’

17k ‘, : ..:1: cwj‘ V'T'l"(x)dx-}-

"l!ﬁﬂk)l h
1l —x 1
+2¢,.th ]/ F,(x)dx[l—-——-———-l v ]+
ullﬁ.ml "
o @ '
\ +2‘P£.V——x‘l d‘{ v e ok ]} (3.4)
mii.(m *;
——¢..2:k§ VT—2F,(x)dx. (3.5)

Here

Fu(x) = F1 (%) — [No — Noa A,

and C(k) is the Theodorsen coefficient [2].

In calculations the theoretical value of a_ = 27 (with the
effect of the viscosity of the fluid considered) can be assumed
to be a_ = 5.45.

For a stationary flow Cyn = 0, while

FTD=-ID(RS)I-0038-77




, i
a ¢ ; - 2
Cn=—‘ a.v V|+:Fs(x)dx+

L we R

’

Fy (1)

. ~ +l 2 .
st 5. < RERSFTL | ORI IRER
+2¢L ,.___l_x’xdx{; |+“'*c]
; ; i E9N

(3.6)

The first term in (3.6) gives us the well known value of the
wing coefficient in a limited flow; the second term, which has an
order of 1/A, represents the refinement which the present method
introduces into the Prandtl theory. For a plane 1lifting surface
the second term in (3.6) is equal to zero, and the results will
be in complete agreement with the classical theory of the support-

ing line [3, 4].

Functions ¢C, [0}

and reciprocal wing oscillations.
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