
t~~’t
•_/AD— AOkS 861 CALIFORNIA UNIV BERKELEY ELECTRONICS RESEARCH LAB FIG 9/2

RESOURCE ALLOCATION IN THE PIPELINED SYSTEM.(U)
DEC 16 C V RAMAMOORTHY DA ARO D 31 12U—13—6157

UNCLASSIFIED NL

I~~~I
~fl4O45~~

.
END

11-7 7

• A

RESOURCE ALLOCATION IN ThE PIPELINED SYSTEM

FINAL REPORT

• C. V. RAMAMOORTHY

1 JUNE 1973 — 31 DECEMBER 1976 r,j 0

0 ~~~~26 191

U. S. ARMY RESEARCH OFFICE

USA—DA—ARO-D—3 1— 124—73— G157

>-
C-

ELECTRONICS RESEARCH LABORATORY
C...) COLLEGE OF ENGINEERING

LU
U

~ UNIVERSITY OF CALIFORNIA , BERKELEY 94720

C-,

APPROVE D FOR PUBLIC RELEASE ;
DISTRIBUTION UNLIMITED.

r

THE FINDINGS IN THIS REPORT ARE NOT TO BE

CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE

ARMY POSITION , UNLESS SO DESIGNATE D BY

OTHER AUTHORIZED DOCUMENTS .

~- — --—~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~

uhclass if ted
SECURITY CLASSI~~ICATI OW Or Ti~t~ PaG(‘~~~~..i bar. £nr.,.)

READ I?lSTP.UCT~ONSREPORT DOCUMENTATION PACE BEFORE CO~ PLET~UG FORM

i~~~~LPORT Nus~BIR ~2. GOVT ACCESSION 140 2. RECIPIINT S CATALOG NUMb~~ t

4. TITLE (and Sirbfl hI.) 6. TYPE OF REPORT 6 PERIOD COVERED

),~esource allocation in the pipe1ined s;~~~~.~~~. fi~~l 6/1/73 — 1213L/ 76
I PERFORMING ORG REPOR’ NUMRCA

_ __

1. AUYNOR(.) 1 CONT KACT OP GRANTNUMSER(a)

,L
~:

t
~~~:_~~~~

amamoorthy
j  V~ A—ARØ~D — /

L PERFORMING ORGANIZATION NAM E AND ADD RESS i~~~PR3GRAu ELEMENT. PROJECT . 1AS*
AREA I WORK U’OT NUMIERS

Electronics Research Laboratory
University of California
Berkeley , CA 94720 __________________________

U. S. Army Research Office
II CONTROLLING OFFICE NAM E AND AD DRESS 12. REPORT DATE I- T

~~~~~~~
J —

Post Off ice Box 12211 W NUMDEROF PAGES

Research Triangle Park, NC 27709 ____________________________

IA . MONITORING AGENCY NAME S AODRESS(aS ~ãff. ,.nt Ire. , Cor~rsotSSng QWc.) 1~~~1ECURITY CLASS. ~.V ffiS* a.pofl)

unclass if ied
ii ~ DCCLAS SIFICA TIOW DOW IGRADING

SCM EDULE NA
II. DISTRISUYIOM STATEMENT (ol ihS. Report)

Approved for public release; distribution unlimited . _
/

(
~

j
~~
i

~

.
’

_ ———-

~~~~~~~~~~~~~~~~ 
.
~~~~~~~~~~~~~~~~~ I 2 ~~~

— ~~
7

17. DISrR ,euTIow Sl A ENEMY (ol 1k. ab.t,acI .nt.r.dln Block 20. •IdlU.r~
por t)

NA

1$. SUPDLEUENTARY NOTES

The f indings in this repor t ar e not to be cons trued as an off icial
Department of the ~rmy position, unless so designated by other authorized
documents.

l~~. KEY WORDS lContSn&i. on nova,.. .~d. II n.c. a.~~y and td.ntIt, by block ~ u~,b.r)

Pipel ining, par al lel process ing, memory organization , modell ing, sequencing
control, resource allocation, parallel lanjuage constructs, parallel execution
of sequential programs

20. A5 .4 ’ tCantje.. an ,.•r~~~~~~~~ lt n.c.e.~~~ and 1d.ntI ~~ by êIock ~~~ b•t~
This repo r t summar izes research f ind ings obtained under grant
DA—ARO—D—31—123--73—G157. Pipel ining, parallel process ing and memory or ganiza tion
techniques to improve the capability of computer systems are investigated . In
pipelining, results obtained pertain to the modelling, sequenc ing control ,
design methods and resource allocation problems of generalized pipeline systems
In parallel processing, language constructs which would constraint the progra~~er I
to write parallel programs more amenable to analysis and efficient execut ion are
proposed and a scheme to detect and control the parallel execution of seguentlaik

~
~~~ F ORM (see ov~~~).—~~
~~&‘ , ~~~ ~ 

1413 EDITION OP I NOV IS IS OBSOL IT( unclassified _ l
~i~

_
~

_
,..,I59 4AECURITY CLASSIFICATION OF TMIS RAGE ~~~~~~~~~~~~ 

~~~~
/ ~~V~~ / ~V 4

Abstract (cont.)

organized programs is also developed. Finally , a scheme using intelligent
buffers to improve the performance of interleaved memor y is developed and
analyzed.

H

I.’.

...

\

1. Introduction

This report sunmiarizes the findings of our research supported by the

U. S. Army Research Office through grant DA—ARO—D—3l—124—73—Gl57. Most

of the resu l ts repor ted here are published in the technical papers , Ph.D.

dissertations and M.S. theses given in the References. Eleven graduate

students have been supported by the grant to pursue advanced degrees at

the Univers ity of California, Berkeley.

This investigation has been an attempt to establish some foundation

for solving des ign and operational problems related to computer architectures

which utilize concurrency in computation to attain more computing power

than is allowed by today’s electronic technology. The emphasis of our

research under the grant has been on pipeline architectures [Ram 7 7] . But

in the course of our research , some new results in parallel processing and

memory organization are developed. Parallel processing complement pipe—

lining in increasing the capability of a processing system and the memory

bottleneck must be solved if all the advantages of pipelining and parallel

processing are to be realized.

We shall briefly discuss our findings in these research areas in

three separate sec tions, one for each topic. A summary section is given

at the end.

2. ~~peline Systems

2.1. Overview

Pipelining can be viewed as a mode of exploiting computational

parallelism. It can be roughly defined as a technique of imbedding

concurrency in execution by constructing a system configuration composed

of independent autonomous uni ts each ded ica ted to perform a specif ic

—1—

- — — —.. -— —.--- ——- ----------- ----- — ---- — -

-- .— --- ----— .--
~~~~

-
.-- —rn—- -—.-



subfunction in an overlapped mode with the others [Ran 74bJ. Such an

autonomous unit is sometimes called a pipeline segment or facility. A

task once initiated flows from segment to segment inside the pipe to be

processed. As an illustration , the schematic of a pipelined instructL,n

unit is shown in Fig. 1.

Inst ruc t ion  Operand
Fetch , Decode 

~ Fetch ~ Execution 1200 nsec 400 nsec600 nsec 
__________ 

600 nsec 
___________

Fig. 1. An example pipelined instruction uni t .

It is easy to see that if an uninterrupted stream of ins t ruct ions  is

allowed to flow through the pipeline shown in Fig. 1, the throughput ra te

of the system will be one instruction per 600 nanosecond . The basic

obj ective of pipelining is to maximize throughput through e f f i c ient

utilization of resources. Compared with parallel processing, pipelining

is not gea red to shor ten response time , but it increases system throughput

rate in a more economical way. Furthermore , the e f f e c t  o f overhead on sy stem

throughput rate in operating a p ipeline system is almost invisible. This

is mainly because this overhead can also be overlapped with the other

useful operations . Many modern computers (e.g.  IBM 360/195 , Amdahl 470

and the Cray computers) have extensively utilized pipelining in their

processor archi tecture.

The s t ruc ture  of a p ipeline system can be q u i t e  complicated . A

segment may be used at d i f f e r e n t  t imes to complete the processing of a

task (see Fig. 2 ) .  Sometimes there may be several pipelines in the system

sharing certain facilities. The TIASC arithmet ic unit as shown in Fig.  3

is a notable exampel of such systems . To complicate  the issues fu r the r ,

the t asks to he processed may have d i f f e r e n t  process ing  and resource

- . —.----—— —---- . - -- . - .



_ _ _ _ ___  - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• 1

~~~~~~~

• OUTPUT

Fig. 2. A single function pipeline with feedback.

FLOATING ADD FIXED MULT

[RECEIVER REGISTER 1

[EXPONEN SUBTRACT] I

1~LAu~ 1

L~~~ TIPLY 1
ADD

I— ~~ P
L~~!NALIZE

I ACCUMULATE J

LQUTPUTI

RESULTS

Fig. 3. Pipelined arithmetic unit in TIASC.

An example of multifunction pipeline.

—3-.

• - -~~~~~~~~~~~~~~~~~ ---.- _
~~~~~i,.~

_ _ -~~~
_ __ 

-- ~~~~~~~~~~~ - -~~~~~~~~~~~~~-



requirements. The tasks may require different amounts of time to be processed

in a segment; they may be t igh t ly  coupled by some precedence relations; and

if not appropriately controlled they may race for  the service of shared

segments and resources (e.g.  registers) . The d i f f i c u l t y  of most e f f ec t ive ly

designing and controlling the operation of a pipeline system has presented

a very challenging area of f ru i t fu l  research. We have extensively surveyed

existing theoretical results and practices of pi pelining in [Ran 77a ] .

Th e results we obtained in tackling some problems in pipelining can

be grouped into f our ar eas: (1) modeling of pipeline systems f or e f f ec t ive

control and performance evaluation; (2) sequencing strategies and their

inherent complexity; (3) design methods to optimize cost—effect iveness;

(4) program restructuring and optimal register assignment for pipelined

processors. These results are summarized in the following four sections.

2.2.  Modeli ng of pipeline system

The objective of ou r earlier pipelining studies was aimed at estab-

lishing an unif ied anal ytical model fo r  the design and control  of p ipe l ine

systems. In [Red 72 ] ,  we developed a scheme for categorizing various

t ypes of pipeline systems based on the flow pa t te rn  of tasks in the

pipel ine , amount of intermediate storage and the nature  of the tasks

(e.g.  absence or presence of dependence) . Subsequently,  a s tudy was made

on the various scheduling algorithms for each category [Red 7 3 ) .

In [Ram 74a}, reconfigurable shared resource pipeline (RSRP ) systems

were considered in fu l l  generality. A useful  concept of e f f ic iency

measure which considers cost , speed and space—time span of the segments

of a pipel ine sy stem was establ ished so tha t t he ef f ec tive ness and

f e a s i b i l i t y  of a pipe l ine system can be analyzed . A RSRP system can he

—4—

•— -.=- .— —~~~.- - --- ---“



::: ~:~:::(Spe:d

Collision matrix:

(l5 ,~o)

((4 , lO) , ( l6 ,~~))

~ (4 ,oo)

~ (4 ,~~)

Fig . 4. Example collision matrix.

L______ - ~~~~~~ __________



— - •  ., •- - -

modeled by a digrap h where a node represents a segment and an arc indicates

the flow of control from one segment to the other. A collision matrix

was introduced in [Ran 74a]. It can be used to avoid collisions inside

a RSRP system. (A collision occurs when more than one task attempts to

use a shared segment at the sane time.) Figure 4 shows a RSRP system with

its corresponding collision matrix . The (1 J)
th entry of the matrix

represents the time intervals after the initiation of a task to flow

through pipe i so that the excitation of a task to flow through pipe j

will not casue a collision.

Concurrently with the research reported above a scheme called the

dynamic sequencing and segmentation model (DSSM) was developed with the

objective of concealing the run—t ime overhead required to control the

operation of a general parallel and p ipeline system [Ran 74b]. A

simulation study [Ram 73] showed the steady and high performance of the

DSSM and the high feasibility for implementation .

2.3. Sequencing in p i peline systems

In general , the major obstacles to high efficiency in pipeline systems

are caused by: (1) the inherent relationship between the tasks, (2) the

scarcity of some expensive facilities, (3) the unequa l and sometimes

unpredictable execution time of the tasks in a given segment; and (4) the

conflicts at some shared resource in the system . These factors indicate

one critical problem to be solved : the optimal sequencing of the tasks to

be admitted into the pipeline system . A sequencing strategy is optimal in

the ~;ense that maximum throughput is achieved while collisions on shared

resources are avoided .

For simple RSRP systems with a bounded queue of ready tasks, an

—6—

- - -•-~~~~~~~~-~~~~~~~~~ -:~~_• .- --•~~~~~~~~~—- - -~~~~~~~~~.—--— ~~~-- -



r

efficient lookahead scheme to produce locally optimal sequences was

developed in [Ram 74a1. The method can be extended to the dynamic case

where huge tasks are involved, for example, in a computer network. The

inherent complexity of sequencing tasks in a RSRP system was studied in

[Ran 75b]. It was found tha’ even under very strong assumptions when we

have a static set of ready tasks and the execution time of the pipeline

segments are deterministic, the optimal sequencing problem of pipeline

system is NP—complete. This implies tha t its complexity is in the same

class as the classical traveling salesman problem. From this result, the

semi—exhaustive nature of an optimal strategy for pipeline system sequencing

is justified. One implication is that for low level pipeline implementations,

faster heuristics are necessary. Some efficient heuristics were proposed

in [Li 75] and simulation experiments have demonstrated their effectiveness.

2.5. Design methods

The design problem can be informally stated as ‘-he following: Given

an application, its throughput, reliability , cost and other requirements,

how to i~~st cost—effectively design a pipeline system for the application .

In [Li 75], we developed a set of algorithms so that the design problem can

be approached in a systematic, way rather than using pure instinct,

experience and ad hoc solutions. The design of a pipeline system can be

approached in the following manner. First a basic skeleton machine and

some relevant cost and effect functions can be derived based on the system

and application objectives. A set of semi—dynamic prograimning strategies

• developed in [Li 75) can then be applied to obtain analytically the most

cost—effective pipeline design without exhaustive enumeration. Further

by appropriate duplication of some shared resources, a complex RSRP Sys tem

7...



r

can be partitioned into siniplier system. The result of tli ,~ i i~~r ~t’riat e

partitioning wil.1 lead to reduced control complexity , improved throughput

and reliability. The partitioning algorithms are extended from the

algorithms of Kerning han—Lin and Foru Fulkersen. Details of them can

be found in [Li 75J . Another problem of Interest is how to introduce

redundancy to a ASRP system for improvement in reliability under cost

constraints . A semi—d ynamic prograimning algorithms for this prob1~~

under weak assumptions was developed also in [Li 75].

It should be mentioned here that these analytical de~ •gn algorithm

are developed not for the decision making, but as a tool ~~ test decision

and justify predic tion or experience. In all cases it is recommended

that both analytical and simulation evaluations be used to search for

a good design .

2
• 5 ~ Program reHtructuring and register allocation

The characteristics of a program have significant influence on the

e f f e c tiveness and app licability of pipelining. In general, a program

must possess suitable structures as well as abundant parallelism in order

to fully utilize the multi—pipelines available. Restructuring a program

is the process of organ iz ing the ori ginal program in such a way that

the f inal code has “good ” characteristics with respect to the system

configuration available. These characteristics would simplify the control

procedure and thus improve the performance of the system. In general ,

how to best restructure a program is a difficult problem and it is intimatel y

related to the pipeline configuration and the sequencing scheme used .

Some efficient program restructuring strategies were developed in ILl 75]

•iti- .~ they are studied , i~;ing 4tmulat Ion experiments , in the context of

-8-



some sequencing heuristics on systems whose models were based on some

existing machines. (They include the STAR 100 and TIASC pipes).

A closely related problem is how to most effectively assign pipeline

resources to tasks. We looked into the special case of assigning

registers to instructions to be executed in a pipeline processor. In

a pipeline processing system, the operand fetch and preparation phase

of one instruction can be overlapped with the actual execution phase of

some preceding instructions. While the latter time varies from

instruction to instruction, the former is also variable depending on

the register assignment. It is crucial for pipeline processors to

employ a good register assignment that is not completely insensitive

to the processor architecture, otherwise the overlapping power can be

severely damaged. This problem is formulated in detail in [Li 77]. In

general the problem is also inherently difficult. A non—exhaustive optimal

algorithm is found under some strong assumptions. Efficient heuristics

with certain performance bounds are proposed for other cases.

3. Parallel Processing

The term parallel processing can be defined as the mode of operation

in which different sections of a program are processed by several units

of a multi—processing system. The fundamental objective of parallel

processing is to execute a program as fast as possible often at all

costs which may be incurred. Although parallel processing is quite

different from pipelining in the means used to achieve high computing

power , these two techniques doniplement each other Jn imporving the per-

formance of a processing system. Modern computers, almost without

exception, utilize both techniques in their architecture. The parallel

—9—

-



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

execution unit of the instruction pipeline of the 1BM360/9l is a notable

example.

Under this grant , we have considered two different approaches

to the identification of parallelism in a program. A set of language

constructs were developed by which the programmer can explicitly indicate

parallelism. On the execution level, a scheme was also developed to

detect and control parallelism at run time.

In [Ham. 75aJ, control parts of parallel programming constructs ,

one at the machine level and the other at the source level were defined.

With respect to these constructs technical foundation is established

for detecting useful parallelism hidden in a source parallel program

as well as for restructuring a program into the one leading itself to

easier analysis and more effective execution. Another objective of

these language construct is to impose constraints on the program structure

so that the program reliability can be improved. Details of these

constructs can be found in [Kim 74].

More recently, we developed a scheme to detect and control the

execution of parallel tasks in run time [Ram. 76]. Unlike the

traditional lookahead approach, parallelism detection is done by controls

local to the processors in the new scheme. With information about how

variables are used in the program and the status of tasks being executed ,

these local controls cooredinate with each other and synchronize the

action of the processors so that precedence among tasks are preserved .

The scheme minimized the overhead time before parallel execution and thus

in e f fec t removed the parallelism detection procedure as a bot t leneck

of thc pa r a l l e l processing system.

— 10—

Associative search methods are also studied. An algorithm for ordered

retrieval was developed in [Rain. 7Th]. It is believed that the algorithm is

the best one ever presented.

4. Memory Organization

The problem of memory contention has a significant effect on the

efficiency of any pipeline and/or parallel system. This problem occurs

when more than one task being executed concurrently needs to access the

same memory module.

A scheme using intelligent buffers was developed for an interleaved

memory in [Wah 76]. The goal there is to improve the performance of the

memory by the addition of a small number of buffers. An analytical

model based on discrete Markov chains has been developed to evaluate

the scheme. The results show that significant improvement can be achieved

with a small number of buffers. The analytical result is verified

by a trace driven simulation.

5. Sumsary

This report sunsuarizes the research findings obtained under grant

DA—ARO—D—3l—l23—73—Gl57. Three related areas of advanced computer

architecture are investigated. In pipelining, results obtained pertain

to the modelling, sequencing control, design methods and tasks resource

allocation problems of generalized pipeline systems. In parallel processing,

language constructs which can effectively identify parallel tasks and

a new scheme to detect parallelism in run time are developed. An efficient

associative search algorithm for ordered retrieval is also proposed.

Finally, a scheme using intelligent buffers to improve the performance of

interleaved memory is developed and analyzed.

— ii—

I

4

REFEREN CES

[Kim 74] Kim, K.H., “Optimizing Architecture in Parallel Processing,”

Ph.D. Thesis, Meni. No. ERL—M482, U.C. Berkeley, Nov. 1974.

[Leu 75] Leung, W.H., “A New Approach to the Parallel Processing of

Sequential Programs,” M.S. Thesis, U.C. Berkeley , 1975.

[Li 751 Li, H.F., “A Structured Stud y of Par allel Pipellued Systems ,”

Ph.D. Thesis, Mem. No. ERL—M530, U.C. Berkeley , Aug . 1975.

[Li 77] Li, H.F., “Register Assignment in Overlapped Processin g

Systems,” To appear.

[Rain 73] Ramamoorthy, C.V. and Kim, K.H., “Dynamic Sequencing and

Segmentation in the Generalized Pipelining System,” Proc. 2
nd

Texas Conference on Computing Systems, Austin, Texas, Nov. 1973.

[Ram 74a] Ramamoorthy, C.V. and Li, H.F., “Efficiency in Generalized

Pipeline Networks,” AFIPS , Vol. 43, 1974.

[Ram 74b] Ramamoorthy , C.V. and Kim, K.H., “Pipelining — the Generalized

Concept and Sequencing Strategies ,” AFIPS , 1974.

[Rain 75a] Ramamoorthy, C.V. and Kim , K . H . , “A Method of Structuring

and Validating Parallel Programs,” Compcon Spring , 1975.

[Ham 75b] Ramatnoorthy, C.V. and Li, H.F., “Sequencing Control in

Multifunctional Pipeline Systems ,” Sagamore Computer

Conference, 1975.

[Rain 75c] R.ainamoorthy , C.V. and Li, 1{.F., “Pipeline Processors — A

Survey,” Sagainore Computer Conference, 1975.

—12—

~

_ --~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~-~~~~~-~~~~~~~--

[Ram 75d] Ram~moorthy, C.V. and Kim, K.H., “A Method of Struc tur ing

and Validating Parallel Programs ,” Proc. Compcon 1975.

[Rain 75e] P~1nR1nnorthy, C.V and Li, H.F., “The Design Operations

and Performance of a Multiprocessor Sys tem,” INFOTECH

Series on Multiprocessors, July , 1975.

[Rain 76a] RAmrnnoorthy, C.V. and Leung, W.H., “A Scheme for the

Parallel Execution of Sequential Programs ,” Proc. International

Conf erence on Parallel Process ing, 1976.

[Rain 76b] Rrnn~ivnoorthy, C.V. and Krishnarao, T., “Software—Hardware

Support for the Application of Microprocessors,” 7th

International Congress on Microelectronics , 1976.

[Rain ha] R~1nRmoorthy, C.V. and Li, H.F., “Pipeline Architecture,”

ACM Computer Surveys , March 1977.

[Rain 77b] Ramamoorthy, C.V., Turner , J.L. and Wah, B.W., “A Design

of a Fast Sorting Associative Memory,” to appear in IEEETC.

[Red 72] Reddi, S. and Ramarnoorthy, C.V., “Sequencing Strategies in

Pipeline Computer Systems,” Technical Report No. 134,

Information Systems Research Labotatory, U.T. at Austin,

Aug. 1972.

[Red 73] Reddi, S.S. and RRm~lmoorthy, C.V., “A Scheduling Problem,”

Operation Research Quar terly, Vol. 24, No. 3, Sept. 1973.

[Wah 76] Wah, B.W., “The Analysis of Buffering in an Interleaved

Memory Sys tem,” M.S. Report, U.C. Berkeley, 1976.

—13—

--~~ .- ~~~---~~~~~~~ --~~~~~~~~~

Personnels Supported (all grad students in Berkeley)

I. Ph.D.

(1) 0. Alton Dec. 1974

(2) H.F. Li Aug. 1975

(3) K.H. Kim Nov. 1974

11. M.S.

(1) I. Wendel Dec. 1974

(2) A.C. Yao Nov. 1976

(3) P.S. B. Ho June 1976

(4) T. Krishnarao Aug. 1975

(5) W .H. Leung Dec . 1975

(6) B.W. Walt Dec. 1976

III. Others

(1.) G.S. Ho ca ndidate for M.S.

-14-

____ ___ ___________ _____

