————

/" AD=AO45 861 CALIFORNIA UNIV BERKELEY ELECTRONICS RESEARCH LAB F/6 9/2
RESOURCE ALLOCATION IN THE PIPELINED SYSTEM. (U)
‘ DEC 76 C V RAMAMOORTHY DA=ARO=D=31=124=73=G157
UNCLASSIFIED NL

™
ADAD4SE6
END
DATE
FILMED
[1-77
Do

—~ N
— ARD /343 #-rn]

RESOURCE ALLOCATION IN THE PIPELINED SYSTEM ;%’//

FINAL REPORT

C. V. RAMAMOORTHY

1 JUNE 1973 — 31 DECEMBER 1976

ADA04586 1

U. S. ARMY RESEARCH OFFICE

USA-DA-ARO-D~31-124-73-G157

]

ELECTRONICS RESEARCH LABORATORY
COLLEGE OF ENGINEERING
UNIVERSITY OF CALIFORNIA, BERKELEY 94720

b No=
PDC FiLE copy:

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

i s 3l i Vi

THE FINDINGS IN THIS REPORT ARE NOT TO BE
CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE
ARMY POSITION, UNLESS SO DESIGNATED BY

OTHER AUTHORIZED DOCUMENTS.

¥

£ uhclassified

g SECURITY CLASSIFICATION OF Twls PAGE /#hen Dote Entered)

: READ INSTRUCTIONS

REPORT COCUMENTATION PAGE ..ol g s o SO
[REPORT NUMBER 2. COVT AcCEsSION NOJ 3. RECIPIENT'S CATALOG NUMBLR

4. VITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

~ S

Resource allocation in the pipelined systemy’/, final 6/1/73 - 12/31/76
- %= - - y S VERFORMING ORG REPORY NUMBER i

TR

7. AUTHOR(e)

vl e
/QX C. V./Ramamoort_hy/ @ﬁ/ﬁA—AR{D-31-124-73-615T J‘

8. CONTRACT OR GRANT WUMBER"s)

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::gi".A:OrﬂLKt:s:"f‘ﬂ’u.lla.,!zg:' TASK
Electronics Research Laboratory g ‘ ;
University of California : 77 L
Berkeley, CA 94720 o /] \ 2] Dee, TL

1V CONTROLLING DFFICE NAME AND ADDRESS 12. REPORY DATE

U. S. Army Research Office

Post Office Box 12211 13. NUMBER OF PAGES [/ poe=="
. Research Triangle Park, NC 27709 //
T4, UONITORING ACENCY NAUE & ADORESSIII dilferent from Controlling Oflice) | 15. SECURITY CLASS. fof this report)
unclagsified
i5a, DCCLASSIFICATION DOWNGRADING
SCHEDULE RA

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

o s e i st PR

a |\ 7¢,/
| /) 7 2 o g 7L
@ >\}”’;"" ¥, 7 e L 27T D £ p p)

e o i s s

17. DISTRIBUTION STA#ENENY (of the adstsact entered In Block 20, i differ. - Jport)

NA

18. SUPPLEMENTARY NOTES

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

19. KEY WORDS /Continue on reverse side il necessary and identify by block number)

Pipelining, parallel processing, memory organization, modelling, sequencing
control, resource allocation, parallel language constructs, parallel execution
" of sequential programs

20. ABSTRAZY (Continue on reverse ol3n If necessary and ldentity by block mumber)

This report summarizes tls research findings obtained under grant
DA-ARO-D-31-123-73-G157. ~ Pipelining, parallel processing and memory organization
techniques to improve the capability of computer systems are investigated. In
pipelining, results obtained pertain to the modelling, sequencing control, :
design methods and resource allocation problems of generalized pipeline systems. i
In parallel processing, language constructs which would constraint the programmer ¢
to write parallel programs more amenable to analysis and efficient execution are
proposed and a scheme to detect and control the parallel execution of sequentially,

(see over)—

DD ,55:%; 1473 eoimion oF 1 nOV 6315 OBSOLETE saSiaetiteg
._____.._____-————-————-——-——..‘———_—

¢ o SECURITY CLASSIFICATION OF TuiS PAGE (Whet [igis I'ntread)

[R] S506°= P

" o2V

Abstract (cont.)

. W ———

organized programs is also developed. Finally, a scheme using intelligent i
buffers to improve the performance of interleaved memory is developed and
analyzed. |

1. Introduction

This report summarizes the findings of our research supported by the
U. S. Army Research Office through grant DA-ARO-D-31-124-73-Gl157. Most
of the results reported here are published in the technical papers, Ph.D.
dissertations and M.S. theses given in the References. Eleven graduate
students have been supported by the grant to pursue advanced degrees at
the Universitf of California, Berkeley.]
E This investigation has been an attempt to establish some foundation
for solving design and operational problems related to computer architectures

which utilize concurrency in computation to attain more computing power 1

than is allowed by today's electronic technology. The emphasis of our

research under the grant has been on pipeline architectures [Ram 77]. But

in the course of our research, some new results in parallel processing and b
memory organization are developed. Parallel processing complement pipe-
lining in increasing the capability of a processing system and the memory
bottleneck must be solved if all the advantages of pipelining and parallel
processing are to be realized.
We shall briefly discuss our findings in these research areas in
three separate sections, one for each topic. A summary section is given

at the end.

2. Pipeline Systems

2.1. Overview

Pipelining can be viewed as a mode of exploiting computational
parallelism. It can be roughly defined as a technique of imbedding

concurrency in execution by constructing a system configuration composed

of independent autonomous units each dedicated to perform a specific

- -

subfunction in an overlapped mode with the others [Ram 74b]. Such an
autonomous unit is sometimes called a pipeline segment or facility. A
task once initiated flows from segment to segment inside the pipe to be
processed. As an illustration, the schematic of a pipelined instruction

unit is shown in Fig. 1.

Instruction Operand
- Fetch - zggc§zec > | ool L Eggcut:on e
600 nsec *“] 1600 nsec nsec

Fig. 1. An example pipelined instruction unit.

It is easy to see that if an uninterrupted stream of instructions is
allowed to flow through the pipeline shown in Fig. 1, the throughput rate
of the system will be one instruction per 600 nanosecond. The basic
objective of pipelining is to maximize throughput through efficient
utilization of resources. Compared with parallel processing, pipelining
is not geared to shorten response time, but it increases system throughput
rate in a more economical way. Furthermore, the effect of overhead on system
throughput rate in operating a pipeline system is almost invisible. This
is mainly because this overhead can also be overlapped with the other
useful operations. Many modern computers (e.g. IBM 360/195, Amdahl 470
and the Cray computers) have extensively utili;ed pipelining in their
processor architecture.

The structure of a pipeline system can be quite complicated. A
segment may be used at different times to complete the processing of a
task (see Fig. 2). Sometimes there may be several pipelines in the system !
sharing certain facilities. The TIASC arithmetic unit as shown in Fig. 3
is a notable exampel of such systems. To complicate the issues further,

the tasks to be processed may have different processing and resource

wle

ade

INPUT
rE-Eh I B
OUTPUT :

Fig. 2. A single function pipeline with feedback.

FLOATING ADD FIXED MULT

)
(]
j |

| RECEIVER REGISTER |

') e |

| EXPONEN SUBTRACT |

o s i) e e

Fig. 3. Pipelined arithmetic unit in TIASC.

An example of multifunction pipeline.

requirements. The tasks may require different amounts of time to be processed

in a segment; they may be tightly coupled by some precedence relations; and .
if not appropriately controlled they may race for the service of shared

segments and resources (e.g. registers). The difficulty of most effectively

designing and controlling the operation of a pipeline system has presented

- a very challenging area of fruitful research. We have extensively surveyed
existing theoretical results and practices of pipelining in [Ram 77a].
The results we obtained in tackling some problems in pipelining can
be grouped into four areas: (1) modeling of pipeline systems for effective
control and performance evaluation; (2) sequencing strategies and their
inherent complexity; (3) design methods to optimize cost-effectiveness;
(4) program restructuring and optimal register assignment for pipelined

processors. These results are summarized in the following four sections.

2.2. Modeling of pipeline system

The objective of our earlier pipelining studies was aimed at estab-
lishing an unified analytical model for the design and control of pipeline
systems. In [Red 72], we developed a scheme for categorizing various
types of pipeline systems based on the flow pattern of tasks in the
pipeline, amount of intermediate storage and the nature of the tasks
(e.g. absence or presence of dependence). Subsequently, a study was made
on the various scheduling algorithms for each category [Red 73].

In [Ram 74a], reconfigurable shared resource pipeline (RSRP) systems
were considered in full generality. A useful concept of efficiency
measure which considers cost, speed and space-time span of the segments
of a pipeline system was established so that the effectiveness and

feasibility of a pipeline system can be analyzed. A RSRP system can be

aidjen

@ \ P,: 1-2-3-4

/ \@2 1
p. \D25 b Pyt " 2-5-3-6

1 / 2
3 (Speed of each facility
is as labeled.)
s 30
l] Collision matrix:
t1p = (15,

t), = ((4,10), (16,=))

ty, = (4,°)

Fig. 4. Example collision matrix.

=5

modeled by a digraph where a node represents a segment and an arc indicates

the flow of control from one segment to the other. A collision matrix

was introduced in [Ram 74a]. It can be used to avoid collisions inside

a RSRP system. (A collision occurs when more than one task attempts to
use a shared segment at the same time.) Figure 4 shows a RSRP system with
its corresponding collision matrix. The (1,j)th entry of the matrix
represents the time intervals after the initiation of a task to flow
through pipe i so that the excitation of a task to flow through pipe j
will not casue a collision.

Concurrently with the research reported above a scheme called the
dynamic sequencing and segmentation model (DSSM) was developed with the
objective of concealing the run-time overhead required to control the
operation of a general parallel and pipeline system [Ram fAb]. A
simulation study [Ram 73] showed the steady and high performance of the

DSSM and the high teasibility for implementation.

2.3. Sequencing in pipeline systems

In general, the major obstacles to high efficiency in pipeline systems
are caused by: (1) the inherent relationship between the tasks, (2) the
scarcity of some expensive facilities, (3) the unequal and sometimes
unpredictable execution time of the tasks in a given segment; and (4) the
conflicts at some shared resource in the system. These factors indicate
one critical problem to be solved: the optimal sequencing of the tasks to
be admitted into the pipeline system. A sequencing strategy is optimal in
the sense that maximum throughput is achieved while collisions on shared
resources are avoided.

For simple RSRP systems with a bounded queue of ready tasks, an

-6=-

efficient lookahead scheme to produce locally optimal sequences was
developed in [Ram 74a]. The method can be extended to the dynamic case
where huge tasks are involved, for example, in a computer network. The
inherent complexity of sequencing tasks in a RSRP system was studied in

[Ram 75b]. It was found that cven under very strong assumptions when we
have a static set of ready tasks and the execution time of the pipeline
segments are deterministic, the optimal sequencing problem of pipeline
system is NP-complete. This implies that its complexity is in the same
class as the classical traveling salesman problem. From this result, the
semi-exhaustive nature of an optimal strategy for pipeline system sequencing
is justified. One implication is that for low level pipeline implementations,
faster heuristics are necessary. Some efficient heuristics were proposed

in [Li 75] and simulation experiments have demonstrated their effectiveness.

2:5 Design methods

The design problem can be informally stated as the following: Given
an application, its throughput, reliability, cost and other requirements,
how to most cost-effectively design a pipeline system for the application.
In [Li 75], we developed a set of algorithms so that the design problem can
be approached in a systematic way rather than using pure instinct,
experience and ad hoc solutions. The design of a pipeline system can be
approached in tﬁe following manner. First a basic skeleton machine and
some relevant cost and effect functions can be derived based on the system
and application objectives. A set of semi-dynamic programming strategies
developed in [Li 75] can then be applied to obtain analytically the most
cost-effective pipeline design without exhaustive enumeration. Further

by appropriate duplication of some shared resources, a complex RSRP System

-

-

can be partitioned into simplier system. The result of the appropriate
partitioning will lead to reduced control complexity, improved throughput
and reliability. The partitioning algorithms are extended from the
algorithms of Kerninghan-Lin and Fora-Fulkersen. Details of them can

be found in [Li 75]. Another problem of interest is how to introduce
redundancy to a ASRP system for improvement in reliability under cost
constraints. A semi-dynamic programming algorithms for this problem
under weak assumptions was developed also in [Li 75].

It should be mentioned here that these analytical derign algorithm
are developed not for the decision making, but as a tool o test decision
and justify prediction or experience. In all cases it is recommended
that both analytical and simulation evaluations be used to search for

a good design.

2.5. Program restructuring and register allocation

The characteristics of a program have significant influence on the
effectiveness and applicability of pipelining. In general, a program
must possess suitable structures as well as abundant parallelism in order
to fully utilize the multi-pipelines available. Restructuring a program
is the process of organizing the original program in such a way that

"good" characteristics with respect to the system

the final code has
configuration available. These characteristics would simplify the control
procedure and thus improve the performance of the system. In general,

how to best restructure a program is a difficult problem and lt.is intimately
related to the pipeline configuration and the sequencing scheme used.

Some efficient program restructuring strategies were developed in [Li 75]

and they are studied, using simulation experiments, in the context of

G

some sequencing heuristics on systems whose models were based on some
existing machines. (They include the STAR 100 and TIASC pipes).

A closely related problem is how to most effectively assign pipeline
resources to tasks. We looked into the special case of assigning
registers to instructions to be executed in a pipeline processor. In
a pipeline processing system, the operand fetch and preparation phase
of one instruction can be overlapped with the actual execution phase of
some preceding instructions. While the latter time varies from
instruction to instruction, the former is also variable depending on
the register assignment. It is crucial for pipeline processors to
employ a good register assignment that is not completely insensitive
to the processor architecture, otherwise the overlapping power can be
severely damaged. This problem is formulated in detail in [Li 77]. 1In
general the problem is also inherently difficult. A non-exhaustive optimal
algorithm is found under some strong assumptions. Efficient heuristics

with certain performance bounds are proposed for other cases.

3. Parallel Processing

The term parallel processing can be defined as the mode of operation
in which different sections of a program are processed by several units
of a multi-processing system. The fundamental objective of parallel
processing is to execute a program as fast as possible often at all
costs which may be incurred. Although parallel processing is quite
different from pipelining in the means used to achieve high computing
power, these two techniques domplement each other gjn imporving the per-
formance of a processing system. Modern computers, almost without

exception, utilize both techniques in their architecture. The parallel

-9~

execution unit of the instruction pipeline of the IBM360/91 is a notable
example.

Under this grant, we have considered two different approaches
to the identification of parallelism in a program. A set of language
constructs were developed by which the programmer can explicitly indicate
parallelism. On the execution level, a scheme was also developed to
detect and control parallelism at run time.

In [Ram. 75a), control parts of parallel programming constructs,
one at the machine level and the other at the source level were defined.
With respect to these constructs'technical foundation is established
for detecting useful parallelism hidden in a source parallel program
as well as for restructuring a program into the one leading itself to
easier analysis and more effective execution. Another objective of
these language construct is to impose constraints on the program structure
so that the program reliability can be improved. Details of these
constructs can be found in [Kim 74].

More recently, we developed a scheme to detect and control the
execution of parallel tasks in run time [Ram. 76]. Unlike the
traditional lookahead approach, parallelism detection is done by controls
local to the processors in the new scheme. With information about how
variables are used in the program and the status of tasks being executed,
these local controls cooredinate with each other and synchronize the
action of the processors so that precedence among tasks are preserved.
The scheme minimized the overhead time before parallel execution and thus
in effect removed the parallelism detection procedure as a bottleneck

of the parallel processing system.

-10-

T

Associative search methods are also studied. An algorithm for ordered

retrieval was developed in [Ram. 77b]. It is believed that the algorithm is

the best one ever presented.

4. Memory Organization

The problem of memory contention has a significant effect on the
efficiency of any pipeline and/or parallel system. This problem occurs
when more than one task being executed concurrently needs to access the
same memory module.

A scheme using intelligent buffers was developed for an interleaved
memory in [Wah 76]. The goal there is to improve the performance of the
memory by the addition of a small number of buffers. An analytical
model based on discrete Markov chains has been developed to evaluate
the scheme. The results show that significant improvement can be achieved
with a small number of buffers. The analytical result is verified

by a trace driven simulation.

5. Summary

This report summarizes the research findings obtained under grant
DA-ARO-D-31-123-73~-G157. Three related areas of advanced computer
architecture are investigated. In pipelining, results obtained pertain

to the modelling, sequencing control, design methods and tasks resource

allocation problems of generalized pipeline systems. In parallel processing,

language constructs which can effectively identify parallel tasks and

a new scheme to detect parallelism in run time are developed. An efficient
associative search algorithm for ordered retrieval is also proposed.
Finally, a scheme using intelligent buffers to improve the performance of

interleaved memory is developed and analyzed.

a]l=

il o e e e

e L

A LIS Sl £ S e

e A S A S AR it R Sl i IS

[Kim 74]

[Leu

75]

[Li 75]

[Li 77]

[Ram

[Ram

[Ram

[Ram

[Ram

[Ram

73]

74a]

74b]

75a]

75b]

75c]

REFERENCES

Kim, K.H., "Optimizing Architecture in Parallel Processing,"

Ph.D. Thesis, Mem. No. ERL-M482, U.C. Berkeley, Nov. 1974.

Leung, W.H., "A New Approach to the Parallel Processing of

Sequential Programs,'" M.S. Thesis, U.C. Berkeley, 1975.

Li, H.F., "A Structured Study of Parallel Pipelined Svstems,'

T

Ph.D. Thesis, Mem. No. ERL-M530, U.C. Berkeley, Aug. 1975.

Li, H.F., "Register Assignment in Overlapped Processing
Systems,' To appear.

Ramamoorthy, C.V. and Kim, K.H., "Dynamic Sequencing and

nd

Segmentation in the Generalized Pipelining System," Proc. 2

Texas Conference on Computing Systems, Austin, Texas, Nov. 1973.

Ramamoorthy, C.V. and Li, H.F., "Efficiency in Generalized

Pipeline Networks,'" AFIPS, Vol. 43, 1974.

Ramamoorthy, C.V. and Kim, K.H., "Pipelining — the Generalized

Concept and Sequencing Strategies,' AFIPS, 1974.

Ramamoorthy, C.V. and Kim, K.H., "A Method of Structuring

and Validating Parallel Programs,'" Compcon Spring, 1975.

Ramamoorthy, C.V. and Li, H.F., '"Sequencing Control in .
Multifunctional Pipeline Systems,' Sagamore Computer

Conference, 1975.

Ramamoorthy, C.V. and Li, H.F., "Pipeline Processors — A

Survey,' Sagamore Computer Conference, 1975.

-12~

[Ram

[Ram

[Ram

[Ram

(Ram

[Ram

[Red

[Red

[Wah

75d]

75e]

76a]

76b]

77a)

77b]

72]

73]

76]

Ramamoorthy, C.V. and Kim, K.H., "A Method of Structuring

and Validating Parallel Programs," Proc. Compcon 1975.

Ramamoorthy, C.V and Li, H.F., "The Design Operations
and Performance of a Multiprocessor System," INFOTECH

Series on Multiprocessors, July, 1975.

Ramamoorthy, C.V. and Leung, W.H., "A Scheme for the
Parallel Execution of Sequential Programs," Proc. International

Conference on Parallel Processing, 1976.

Ramamoorthy, C.V. and Krishnarao, T., "Software-Hardware
Support for the Application of Microprocessors," 7th

International Congress on Microelectronics. 1976.

Ramamoorthy, C.V. and Li, H.F., "Pipeline Architecture,"

ACM Computer Surveys, March 1977.

Ramamoorthy, C.V., Turner, J.L. and Wah, B.W., "A Design

of a Fast Sorting Associative Memory,' to appear in IEEETC.

Reddi, S. and Ramamoorthy, C.V., "Sequencing Strategies in
Pipeline Computer Systems," Technical Report No. 134,
Information Systems Research Labotatory, U.T. at Austin,

Aug. 1972.

Reddi, S.S. and Ramamoorthy, C.V., "A Scheduling Problem,"

Operation Research Quarterly, Vol. 24, No. 3, Sept. 1973.

Wah, B.W., "The Analysis of Buffering in an Interleaved

Memory System,' M.S. Report, U.C. Berkeley, 1976.

«l3=

WOSESRPRE

R i v

Personnels Supported (all grad students in Berkeley)

I. Ph.D.
(1) 0. Alton Dec. 1974
(2) H.F. Li Aug. 1975

(3) K.H. Kim Nov. 1974

EE. " M.S.,
(1) I. Wendel Dec. 1974
(2) A.C. Yao Nov. 1976
(3) F.S. B. Ho June 1976

(4) T. Krishnarao Aug. 1975

(5) W.H. Leung Dec. 1975
(6) B.W. Wah Dec. 1976
4
III. Others

(1) G.S. Ho candidate for M.S.

-

