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1. Introduction

In two recent papers [1], [2] this author considered the
problem of deriving stability and growth estimates for electric
displacement fields in rigid nonconducting material dielectrics;
in [1] we employed the constitutive theory of Maxwell-Hopkinson
(3] while in [2] a special class of isotropic holohedral dielectrics,
of the type first studied by Toupin and Rivlin [4], was considered.
In both [1] and [2] the initial-boundary value problems which
govern the evolution of the electric displacement field in the
dielectric lead one, in a natural way, to study the evolution of
solutions to certain initial-value problems associated with abstract
linear integrodifferential equations in Hilbert space.

The analysis of the abstract ir< -ial-value problems appearing
in both [1] and [2] are based on « - 1thmic convexity arguments
and a basic ingredient in any such argument is the a priori re=
striction to solutions which lie in certain uniformly bounded
classes; the desire to remove this a priori restriction is .the
basic motivation for the current work. As we emphasize below
the growth estimates derived in this paper are based on a simple
concavity argument due to Levine and Payne; while concavity ar-
guments have not previously been used to study the growth behavior
of solutions to integrodifferential equations they have been
employed, with some success, to prove nonexistence and instability
theorems for initial-boundary value problems associated with
nonlinear partial differential equations of both hyperbolic and

parabolic type.[5] - [8]; concavity arguments have also been used




to derive growth estimates for solutions to initial-boundary
value problems arising in nonlinear elastodynamics [9].
In the present work we employ the same basic abstract setting
that was previously used both in [1] and [2], namely, we take
H to be any real Hilbe;t space with inner-product <, > and let
H, ¢ H (algebraically and topologically) be a second Hilbert
space with inner-product denoted by <, >, ; we then define H_

to be the completion of H under the norm

By LS(H+,H_) we denote the space of all symmetric bounded linear
operators from H, into H_. The abstract initial-value problems

to be considered in this paper are of the form

(1.1) Yee = By ¢+ L:x(tQT)g(r)dr = s 0 £ 227
(1.2) BU0) = g, 8000 =y,

€1.3) ult) = U(t), -» < 1 <0

where y e C2([0,T);H,), such that u_ e C1([0,T);H,) and
u., € CC(LO,T);H,), and u,, v, € H . Also,

(i) N e Lg(H ,H )

(1) K(t), K (6) e LAC(-=,2)5 Lo(H,H ),
where 5t denotes the strong operator derivative; the past history
U (taken to be identically zero in both [1] and [2]) is required

to satisfy only fgmllg(1)||dr < w so that, in particular, we do

e ———




not require either that lim_||UCt)-y, || = 0 or that
t-+0

lim_||U, (t)-v,|] = 0.

In [1] and [2] the intrinsic structure of the logarithmic
convexity arguments employed required us to restrict our attention
to solutions of (1.1) - (1.3) which lie in uniformly bounded

classes of the form

(1.4) N = {y e c2o,m3H)| sup, ||y, < N
[o,T)

for some real number N. In addition to (i) and (ii) above the

operator K(t) was required to satisfy

(iii) -<y,K(0)y> 2 .<||g||f, Yy ¢ H, with

k 2 YT sup ||K, (t)]]|

where y 4s the imbedding constant for the map i: H, * H (i.e.,
[lvl] < Y||g||+, v &€ H and some y > 0); no definiteness condi-
tion was imposed on N, however, in either [1] or [2]. In the

present work we drop the a priori restriction that our solutions

lie in uniformly bounded classes of the type prescribed by

(1.4); furthermore, we may weaken (iii) and shall require that

(iii') =-<y, K(0O)v> 2 O, V! € H .

However, in addition to (i), (ii), and (iii') we now require

that N satisfy

(iv) <y, Ny> 2 0, Vy_ e H,




;
E
|
s

and that
(v) I0||5(p)|ILS(H+,H_)dp < « and

T t
Iof_col |5t(t-o‘)| ILS(H+,H_)dpdt e

for each T < ». Finally we restrict our choice of initial datum

(uy>¥y?) so that
(vi) <ygp,vg> > 0 and <y, 19w5<-1)g<1>d1> < 0,

i.e., in both of the problems considered in the next section it
will be assumed that the past history U and the initial data 4,

and v, have been chosen so as to satisfy condition (vi) above.

0

2. Growth Estimates for an Undamped Abstract Integrodifferential

Equation

-

We begin by considering two problems which are special cases

of (1.1) - (1.3), namely,

Problem A For any a > 0 we denote by ga € C2([0,T);H+) a strong

solution of

(2.1a) E:t - Nu? o+ ffwg(t—T)ga(r)dr B9y Ut =<T
a e a _

(2 1b) u (0) = auy, u (0) = v,

(2.1c) g €t = Yl1)y, == <t <@

We seek a lower bound for sup llgall+ in terms of a, the initial
-0<t<T

data ug, Yg» the past history U, the length T of the interval




[0,T), the imbedding constant Y, and the operator norms

IIEIILS(H+,H_)’ ||5||Lscﬁ+,ﬁ_)’ ||5tI|LS(H+,H_)’

Problem B For any B > 0 we denote by uB € C2([0,T);H+) a strong

solution of

(2.2a) u®, - Nuf + JE k(t-v)B(rdar = 0, 05t < T
(2.2b) gB(O) =Yg 95(0) =Yg

(2.2¢) qP(r) = gBU(T), -= < T <O

where g(8) > 0 is a monotonically increasing real-valued function

of B, 0 < B < w. We seek a lower bound for sup ||gB||+ in
—w<t<T

terms of g(B), the initial data Yys Yoo the past history U, the
length T of the interval [0,T), the imbedding constant Y, and
the" operator norms llgllLs(H+,H_)’ |IKIILS(H+,H_)’ and
1K :
t LS(H+,H_)
Before proceeding with the statements and proofs of the growth

estimates which apply to soluticns of Problems A and B, respectively,

we first need the following

Lemma If K(t) satisfies (ii) and (v) of §1 and y:(-«,T) =+ H,

is such that sup ||u||, s My < = then for all t, 0 s t < T,
—w<t<T

t e
(2.3) |<u(t), [_ K(t-t)ulr)dr>| < YMTfollg(p)IlLS(H+’H-)dp
and

t 2Tt
(2.4) f0<g,fzw51(t—k)g(k)dk>dt < YMTfof_mlIgt(t-T)IILS(H+’H_)det

- -




Proof To prove (2.3) note that

(2.5) |<u(t), [T K(t-T)ulr)dr>]

|<uct), f:g(p)g(t-p)dp>[

A

I 'B(t)l If;l Ig(p)”LS(H"_,H )Hg(‘t-p)] l+dp

2 '
£ YU sup |juce)]}) K(p) dp
AL G RE SIECSTTRp

2 po
YMT!0||5(°)||LS(H+,H_)dp

where we have employed the simple change of variable p = t-7,
the Schwartz inequality, and the definition of the embedding
constant Y. In order to establish the estimate (2.4) we again
employ the Schwartz inequality and the hypothesis that

sup ||ull, s M, < = so as to obtain
-w0<t<T

-

(2.6) [§<g, IEQKT(T-A)E(X)dX>dT

t
< Jol<ws JI K (x=2)u)dr>|dr

IA

t
PO N TN M 18001 ahar

IA

: t,t
¥ sup ||u col K _C(T=2) | JluCx) ||, dxdr
-°°<t<T| l I |+IOI I T l ILS(H+,H_) |+

A

2t (T
y( sup u ) ol 1K (T=2) dadrt
IR A IRK 1AM TR ST TP

A

2,T,t

Q.E.D.




Remark For future reference we also note here the simple estimate
2
|<E: ,«NE)I < Y||E||+||§E|| < YMT“NIILS(H_‘_,H_)
valid for any u:(-«,T) + H_ such that sup ||ul], s Mp < =.

—-w<t< T

We are now in a position to state and prove the basic growth

estimates which apply to the solutions-of Problems A and B cited

above:

(6]

Theorem II.1 For each real a > 0 let u € Cz([O,T);H+) be a strong

Jlution of (2.1a) - (2.1e). If T > ||ug||?/2<uy,yy>

'n for each a 2 a

0
= |l!0!|2/<20’N50>
¢ |<ugsJ 2K -0U(DIaT> []1/2
(2:7) sup ||u (B)]], 2 v ()
—w<t<T Y T J

where
P =
(2.8) ¥, = z IIN|ILS(H+,H_) + fo||§(p)IILS(H+,H_)dp

Trt
+ jof_mllgt(t—r)llLS(H+,H ydrdt

Proof Let T be chosen so as to satisfy T > ||50||2/2<30,¥0>

and a‘sume that for some a = a 2 oy

|<30,f9w§(-r)y(r)dr>| i/2-
Y¥p 'S

(2.9) sup ||u*|], <
—o< < T

For cach t, 0 < t < T, we define the real-valued function

F-(t) = <g®(t), u*(t)>. Then




a a . a
> + < >
Yy 20,408

$2.20F F-'(%) = 2<uy,u”

> Fo(t) = 2<y;

Direct computation (compare, Levine [5], § 2 ) now yields

(2.11) FF—" - (G+1)F='2 = H(@+1)5=> +

a Qa ) a

a _a - a o
2Pa{<g ST (2a+l)<gt,gt>}

where Saz = <gu,5“><g:,gz> - <Ea,gg>2 > 0 by the Schwartz
inequality. Therefore
(2.12)  FoEF - GRIE=t B ap o B2t ed

a o a o
where

S — a Q.

(2.13) 6=(t) = <y ug,> - (2a+1)<ug,up>.

We will show that provided (2.8) obtains, Ga(t) SR 0 s < T

First of all, by (2.1la)

-

<u®,Nu%> - <BG,IE“5(t-T)ga(T)dT>

(2.14) Ga(t)

e a a
o (2a+1)<2tagt>

so that

d a ot a
(2.15) GE'(t) 2<92,Ng A ,f_wg(t-r)ga(r)dr>

>
>

+ |

- 2(20+1)<yuf,u

- d o a
B —ua<E:,NE“> - = <Ea,ffm5(t—r)ga(r)d1>

+ 2023+ )<pd, [T K(t-0u* (1)dr>




where we have used the fact that N ¢ LS(H+,H_) and (again) (2.1l1a).

By combining (2.1%) with (2.1b) we easily obtain
(2.16) G=(0) = &2<u.,Nu > - (2a+1)|]yq||?
' a <0°~=0 ~0

\
- a<go,f9w5(-r)g(T)dr>

Therefore, if we integrate (2.15) from zero to t, (0 < t < T)

H we obtain

6=(0) - 2at<u®;Nu®
= u

~~

: (2.17)  G=(t) > - @l<y,Nu,>]

+ 22a+1) [g<ud, [T K(r-1p%(dr>dr
“teg®, JEKCt=Tu%(r)dr> - a<uy, ) K(-T)U(1)dT>)

= (2E+1)[52<g »sNuy> - leollzl

0

-2E<g“,gg“> = <ga, ffmg(t-r)ga(r)dt>
+ 202a+1) [o<ud, [T K(r-2u®()dr>dr
However,
(2.18)  [§ <u, [T _Kk(r-Mu()arsar

e & A 1 - a
B e B JZ KCt=2)u” (A)da>dr

- f§<gu(1), K(0)u®(1)>dt
- [e<utcn, [Tk (r-0pt Ddisdr

Substituting for the last expression in (2.17,) from (2.18) and

simplifying we obtain

5
; T . : & N prree—




N £ e s YO

~1 0=

O Ty 2,
(2,19) Ga(t) = (2a+l1)la <Mg-Nug> - ||g0|| ]

2a<u” ,Nu®>+ (ua+1)<u”, ]Emg(t-r)ga(r)d1>

~~

25 (2q+ 1)<y, fO EKA-1Y(TId

- 202a+1) [g<u®, [T K (r-0)u*()dr>dt

2(2a+1) [g<u® (1), K(0)u®(1)>dr

However, by (iii') of §1, —fg<ga, 5(0)ga»d1 > 0 and, therefore,
(2.19) yields
(2.20)  6=(t) > (2a+1)(a%<u.,Nu > - |]y.|]?
: a . =g Fasg =g
+ 20]<yg, f?mg(—T)g(r)dr>|] - 2a<y®,Nu’>
+ (u5+1)<ga, ffwg(t-r)ga(r)dr>

- 2¢2a+1) [o<u®, [T K (1-2)y%()dr>dr

where we have used the assumption that <go,f9mg(—r)g(r)dr>< 0.

For the sake of convenience we now set

|<ug, JoK(-DUDAT>| Y172
: T /2

Mr.a

where ¥, is given by (2.8). Then by the Lemma of §1 and the

assumed inequality (2.9)

o t a 2 o
(2.21a) <y s J_ K(t=tdp (t)der> & = YMT,E follﬁ(p)llLs(H+,H_)dp

and




e —

=l

(2.210) =[5 <u*, [T K Cr-2u*Qdrsdr

2 Tt
g YMT,EIOI-—ooI IEt(t“T)l ILS(H+,H_)det

Also, by the Remark which follows the lemma of §1 we have

& 0 2
(2.21c) ~Sg sl = = YMT,E'!N'lLSCH+’H_)

Combining the estimates (2.2l1a), (2.21b), and (2.21lc) with (2.20)

and making use of the fact that
A
— 2
a = Hzo” /<EO>NEO>
we obtain

(2.22) 6(t) > (2a+1{2&|<ug, Jo K(-T)Y(r)dr>]

2 20 b
el )||§||LS(H+,H_>

bo+l\ (=
* Jol 1KCo) || dp
(25+1) 0 g, 1))

ot
i 2;0[_m|lgt(t—T)l|LS(H+’H_)det]}
2 (23+1){23|<uy, [  K(-T)U()dr> |
2 ®
‘ - ” i 5
oG n u ) * 2 Jol 1K@ qn,,u )3
ot :
=135 0 B i
= 2(2a+1){a|<go,f_m§(—T)Q(¢)dr>| - YWTMT,E} = 0

in view of the definition of MT 5 Therefore, if (2.9) obtains
>

then




a}%m

(2:23) G;(t) 2 0.0 £ % =.F

and thus, from (2.12) and the fact that F; 2 A e o< Ty 4t

follows that

(2.24) FoP" - (@HF'Y 20, 0 st <T

However,

(2:25) (F=%)" = —qF—%"2(FF" - (3+1)F='") 5 0
a o a a o

by (2.24). Integrating this last inequality we obtain
o a+l -y -1
(2.26) F="(t) = F~ (0)[F=(0) - atF=*(0)] ~, 0 s t < T
a a a a
Clearly, the right hand-side of (2.26) tends to + = as t » t_

= FE(O)/EFOT'(O). But from the definition of Fz(t), (2.1b), and

(2.104)

F—(0) <au,,0u,>
(2.27y B B e SC T
SV
aFa (0) 2a<a20,go>

by virtue of our hypothesis relating the length of the interval

(0,T) and the initial datum. Thus 0 < t_ < T and

sup ||u®(t)]|| = + w. However
2
(2.28)  sup ||u*f] < sup ||u®|] s v sup ||u®||,
0st<T -w<t<T ~w<t<

and thus it follows that  sup l)gal|+ = + o; this, in turn, con-
-0<t<T
tradicts the assumption (2.9) and establishes the growth estimate

(2.7). QBB




R

Theorem II.1 has the following extension the proof of which

follows directly from the previous computation.

Corollary II.1 For each a > 0 let ga € C2([0,Tu); H,) be a strong

solution to (2.la), on\[O,Ta), subject to (2.1c) and the initial

conditions

a I o o
(2.29) g (0) = fladyy, u (0) = y,,

where f(a) > 0 is a real-valued monotonically increasing function

| 1y,
of a, 0 £ a < o;,-and T > (f(a) g Then for each
o 20 <50,xo>
St 1/2
e o (£C@) = |yl feugsNug>t'?}
r J<u,s S KG-T)UCTIdT>| T 172
(2.30) sup ||u ()], = v Yf(a)
—0<t<T b
a a
where i
X o
v = = |IN]], # K(p) || dp
v = 7 W, m * ol e, 10

T
t
+ IOGI_Q||5t(t-T)||LS(H+,H )drdt

We now turn our attention to Problem B and state

Theorem II.2 For each real B > 0 let BB € CZ([O,T);H+) be a
strong solution of (2.2a)-(2.2c). If <uy,,Nu > 2 ||}50||2 then

for each T > 0

(2.31) sup ||y

g |<ug» /2 K(-TUCTIaT> | q1/2
||+ > ] Vg (B)
-o<t< T

Y¥o

for all B, 0 < B < m,




=k

Proof Suppose that for some B = B, 0 < B < =,

g |<90,[9®5(-1)g(r)dr>| ol SIS
£2.32) _m§:£T|JE'||+ < [ Ty ] /g(g) = L§,T
Define cht) = <g§(t),\ggct)>, 0 <t < T. Then
(2.33) FgFg' - (a+1)Fg'? » 2FzH, =, 0 st <T,
for any o > 0, where
(2.34) B =(t) = <g§,§g§> - <gg, ]Ewg(t-r)gg(t)dr>

- (2a+1) <g%,g$>

A direct computation, similar to that employed in (2.15)—(2.172),

yields

2
(2.35)  Hy g(t) = (2o+Dl<ugNug> = |1yl 173

A 2a<58,28> - <BB, Ifmg(t-t)gs(r)dr>
+ 2(20+1) [§ <uf, [T k(r-0ufonarsa

By making use of the hypothesis that <w,,Nu,> 2 ||20||2, the

decomposition (2.18) with ga -+ EB, the condition (2.2c) with

B = B8, and the fact that —IE<EB, K(O)ge>dr > 0, we obtain the

estimate

(2.3¢) H Z(t) 2 2(20+1)g(B) | <yys f?wg(—t)g(r)dr>| - 2u<ge,§gs>

+ (uarD)<u?, [F k(t-1ubrrar

B

- 202a+1) [o<uf, [T (-0 ooarsar




=S

valid for all t, 0 < t < T, and all a > 0. In view of the lemma

—

of 8§81 and our assumption (2.32) on BB we have the lower bounds
(2.37a) <u§,ft K(t-T)gECT)dT> 2 = yie J7[[Kted ] dp
MR e g:T/’0! '~ LS(H+,H_)
and
(2.37b) ~f§<3§, fzng(T—A)EE(X)dA>dT
- yL—é—’T jg)'fwlj’lst(t-r)lILS(HPH_»)det

while by the Remark following the Lemma of §1,

e 2l - gls
(2.37¢) <u”,Nu"> > YLB,TII§|ILS(H+,H_)
Combining (2.37a) - (2.37c) with (2.36) we have

(2.38) Hy, g(t) > (2a+1)[2g(8)|<u j K(-1)U(t)dr>|

- Ylg o {(2avl)||N|lL (H, ,H_)

ba+l
ST fol|K(p)'|L CH, 48 53P

T,t
+ 2 K, (t-t) drdt})
Jol-al 1% IILS(H+,H_)
> (2a+1)02g(B) |<yuys f K(-7)U(1)d1>|
2 o
~ g elHBH ol * 2 Jol 1Ky qu, ,m_)9P

T,t
: 2IOI'“IlEt(t-T)IILS(H*,H_)det}]




JE— —

=G

in view of (2.32) and the definition of ¥;. By combining (2.33)

with (2.38) we now obtain for any a > 0
(2.39) Fgfg" - ca+1)r§'2 >0, 0<t<T

\
from which it follows that

(2.40) Fgt 2 r§“*1c0)[r§c0) = atF-B—'(O)]—l, 0<t<T

However, the right-hand side of (2.40) tends to + » as t > t_

= FE(O)/QFB'(O). From the definition of FE we have
_ 2
(2.41) T, = |lugll®/2a<uy5yv4>

and thus T_ < T provided we choose

2
o1 gl
(2.42) : a2 on = (§T zgajig;

Having chosen o so as to satisfy (2.42) it follows from (2.40)

that sup ||98|| = + » and thus
0,T)
(2.43)  + e = sup ||uBl] s sup [|uBll < v sup |6l
[0,T) (==,T) (-=,T)
contradicting (2.32)
Q.E.D.

3. Growth Estimates for the Electric Displacement

As in [1] we let (xl,t), i=1,2,3, denote a Lorentz refer-

ence frame with t being the time parameter and the x* rectangular




=17~

Cartesian coordinates. If B, E, H, and D denote, respectively,
the magnetic flux density, the electric field, the magnetic in-
tensity, and the electric displacement, then in a rigid noncon-

ducting dielectric Maxwell's equations have the form
A\

9B
(3.1a) 57 t curl E = 0, div B = 0
2D
(3.1b) curl H - 5= =0, divD=0

provided that the density of free current, the magnetization,

and the density of free charge all vanishj; in (3.l1a), (3.1b)

(3.1c) D= c,E+P and H = uy'B

n

where €g > 0, ug > 0 are physical constants satisfying €gMg = c-2

(c being the speed of light in a vacuum) and P is the polariza-
tion vector. So as to obtain a determinate system of equations
for the electromagnetic field in the dielectric we must append

a constitutive equation which relates the polarization vector to
the fields which appear in (3.1a) and (3.1b). Let @ < R® be a
bounded domain with smooth boundary 3Q; then for (x,t) € Q x (-=,T)

we take
(3.2)  P(x,t) = eE(x,t) + [T ¢ (t-1)E(x,1)dr

where ¢ < 0 is assumed to satisfy |e| > €, and ¢ is a twice
continuously differentiabie function which is monotonically de-
creasing on [0,»). Combining (3.2) with the first relation in

(3.1c) we obtain




:
:
T
;
:
i
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(3.3)  D(x,t) = €E(x,t) + [T 4(+-1)E(x,1)d1,

for (x,t) € @ x (-=,T), where e < 0.

In [1] we obtained (via a logarithmic convexity argument)
growth estimates for electric displacement fields which occur in
Maxwell-Hopkinson dielectrics that are governed by constitutive
relations of the form (3.3) with € > 0 and g(g,t) =40
(x,t) ¢  x (-»,0). In order to proceed with the derivation of
the integrodifferential equation which governs the evolution of
the electric displacement field in the dielectric which is speci-
fied by (3.3), with ¢ < 0, we will make the simplifying assumption
that there exists ty 0 such that the past history of E has the

form

p =}

’ t < -th

th,t), -th <t <0

E(x,t) =

with tii$+ JqCEy ) (Ey); dx = 0; in this case it is clear that
h

(3.3) reduces to
(3.3")  D(x,t) = €E(x,t) + fft ¢ (t-1)E(x,t)dTt, (X,t) € Q *x (-=,T)
h

We now invert (3.3') by employing the usual technique of successive

approximations and obtain

(3.4)  E(x,t) = ¢ 'Dlx,t) + ¢ 1 [T e(t-1)D(x,1)dr
h

where (x,t) € 2 x (-=,T) and




e

n.n

(3.5) olt) = F (-1)¢ (t)
n=1

olet) = Yot

o (t) = fft aL -1 36" L (x)dn, nz 2
h

Because of the assumed smoothness of ¢(t), $(t) will be conti-

nuously differentiable on [0,») if the series in (3.5), and the
associated series obtained by term by term differentiation of
(3.5) are uniformly convergent. The required integrodifferential
equation for D(x,t) is now obtained by employing the vector

identity
(3.6) AV(x) = grad(div ¥(x)) - curl curl V(x)

in conjunction with Maxwell's equations and the constitutive
relations (3.3') and (3.4). If fact, by (3.4%) and the vanishing

of div D, it follows that div E = 0; thus ]

(3.7) AE = - curl curl E = curl B, = y(curl H),

However, curl H = D, and so by (3.7,) and (3.4)

(3.8a) €D, (x51) = ADGx,t) + [T #(t-1)AD(x,1)dr
-t A

for (x,t) « B x (-=,T); to (3.8a) we append boundary and initial

data «f the form

(3.8b) D(x,t) = 0, (x,t) € 3@ x (-=,T)
(3.8C) 2(5,0) = QO(X), thgo) = 21(?5)’ E e 9
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where QO’ Ql are of class Cl on § and vanish on 3. Also,

by (3.3') and our assumption relative to the past history

E(x,t), -» < t < 0, it follows that

3 0, £ < -ty
(3.84d) D(x,t) =

D (X,t), -'t < t < 0

with 1lim, fn(gh(g,t))i(gh(§,t))id§ = 0. We note here that
=1t
h

the analysis presented below can be easily modified to accomo-

date boundary data of the form

(3.8b") grad D = n =20, k=1,2,30rD = n=0

where n is the exterior unit normal to 3Q.

As in [1] we now let C:(Q) denote the set of three dimen-
sional vector fields with compact support in Q@ whose components
are in C (Q) and we take H = Lé(ﬁ), the completion of~¢:(9)
under the norm induced by the inner.product <y,w> = IQgigigx;

we also take H, = H%(Q), the completion of C:(Q) under the norm

oV. OW.
induced by the inner-product <y,w> = f o gt e, Finally,

1

for H_ we take H ~(Q), the completion of C:(Q) with respect

to the norm ||v]| -1 = sup [|<!aE>|/|lE||H1( 1.

()  weHl(a) o)

For the operators N ¢ LS(H%(Q);H-I(Q)) and K(t) e Lz((-w,w);
L (i) ;H1(R)) we have

2
1 e

— 6
€dg

& 1
(3.9) (Ny); = 11852 R Yy  Hy@)

Yy e H3(2)

(3.10) (K(t)y), = -®CtIN,, Vv

k,

o




R

and with these definitions of N and K(t) the initial-boundary

value problem (3.8a) - (3.8d) now assumes the form
(3.11a) D, - ND + Ji_K(t-T)D(t)dr = 0, 0 st <T
q : 1

(3.11b) DC0) = D> Qt(O) = Dqs DysD, e HO(Q)

.g’ s -th
(3.11¢) D(t) =

tht), _th < t < 0
where D ¢ Cz([O,T); H%(Q)) and Qh(t), -th < t < 0 is prescribed
a priori and satisfies 1lim _||D, (t)]| = 0.

t+—th+ h L,(Q)

In order to apply the results of the previous section to.
the situation at hand we must first consider the implications of
conditions (i) - (v) of §1. Conditions (i) and (ii) on N, K(t),
and gt(t) are trivially satisfied in view of our smoothness
assumptions on ¢ and the fact that v = 0 on 3Q for all
¥ & Hé(ﬂ) by virtue of a standard trace theorem; thus the de-

finitions (3.9) and (3.10) and integration by parts yield, re-

. spectively
\{ 1
(3.12a) <W,Ny> = <Nw,y>, Vy,¥ ¢ Hj(Q)
and
. Y 1
(3.12b) <wK(t)yv> = <K(t)w,v>, VW € HO(Q), 1 (-o,o),

with a2 similar result for K-

Condition (iii') assumes the form




-2

i - K(CO = -
(3.13) <y,K(0)y> [y [XC0IY] dx
82v
- 90) k
= Rt 8.V, —=— dx
€My fﬂélk A axjaxl ~
EAY av, dv
$(0) k k k
= Efon wo n.ds. - [ox— m—— dx]
€Mg Q~k ij 3 Qij axj
= e G40 bgyift 2 0

€My § Hﬁ(n)

for all v € H%(ﬂ). As € < 0, My 0, condition (iii') is equi~
valent to ¢(0) > 0. (By using the definition of ¢, i.e. 32750,

it is not difficult to show that

1 PR o
(3.14) $eE) + "= gled = = 5 Lgf(t51)0(r)d1
and, thus, (0) = — = ¢(0) + [° -¢(-T)e(r)dD).

4 h
As for condition (iv) of §1 we have, by a similar

-

computation
‘ : ézv
(3.15) <yv,Nv> = L fgéiks'lvi ) gx ax
% 2
= - Hyell 2 0
Vo H%(Q)

for all v ¢ Hé(ﬂ). Turning to condition (v) of §1 we note that

for any t € (-»,)
7

| [y [K(E)y] dx]|
Qeit=mt et T
(3.16) | |KO ]} (yleqy.n2 B -1
LgWHg @ sH =@ =y uliay | |yll%,
H

0(Q)
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a V.
|e|p0 Q 13 kl ) axkaxl

Sup
yeid () 1yl 12,

ot |/ ]e|ng
In a similar manner we have, for any t € (-»,»)

(3.17) ||5t(t)||LS(H%(Q);H—1(Q)) = [$C0)|/]elng

and therefore, the conditions represented by (v) of §1 will be

satisfied provided
© i
(3.18) [olett)]dt < = and [ [” |Kt-1)|dtdt < =

for each T < «. Finally the conditions repreaented by (vi) of

§1 will be satisfied if

(3.19) Jq@y € %)), (D, (x));dx > 0
and
0 3
(3.20) [_th¢( /g 3 (D (%)) 5;; (D}, (%,7)),dxdt > 0.

In all that follows we will assume that ¢(t), as given by
(3.5), satisfies (3.18), that ¢(0) 2 0, and that Qo(z), 21(5),

and D (x,t), -t, s t < 0O,satisfy (3.19) and (3.20) as well as the

h

condition that llm+
t-’-th

growth estimate for D(x,t) is then a direct consequence of

fg(D (g,t))i(gh(g,t))idg = 0. Our first

theorem II.1l, namely

IS ety SR T

Ao 5

@ S
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Theorem I1I.1 For each real o > G, let Qa € C2(10,T);H%(Q)) be

a solution of (3.8a) subject to the initial conditions Qu(§,0)
= ago(g), Qi(z,O) = Ql(g), X ¢ Q, and the specification of the

past history which is given by (3.8d). If
(3.21) T 19(90(5)>i(90c5))idg/zjn(go(g))i(gl(§>>id§

then for each a = %gs

f2

€3.22) o

s 9 ) 1L
o = cle|u019(glc§))iCQl(g>)id§/IQ §§§(Q0(x))i 55—(Dg (%));d%)

i j

it follows that

) a P (o] 3l
(3.23) sup (f, =D (x,t)). x=—(D (x,t)).dx)
—wet<T !Q E)x:.1 ~ = £ ij ? i
Ya 0 2 9 1/2
> 3; (f_th¢(—1)fQ 5§§(20(§))k §§5(Qh(§,1))kd§dr)

where ¢, is the positive square root of

2 o Tt oy
(3.28) op = L o+ ylelug¢fglect)jdt + [of " |8Ct-1)|drde)

In addition to the theorem above we also have the following

extension (a direct consequence of Corollary II.1 of §2):

Corollary III.1 For each real a > 0, let Qa € C2([0,Ta);H%(Q))

be a solution of (3.8a),=on [O’Ta)’ subject to the initial condi-
tions 93(5,0) = f(a)90(§), 91(5,0) = 21(3), x € @ (and the speci-
fication of the past history that is given by (3.8d) where

f(a) > 0 is a real-valued monotonically increasing function of

as, 0 < a < «» and




S

f(a)
(3.25) T, > (5[ oDy &x)) . (D (x2) dx/ [o (R (%)) Ry (x));dx]

Then for each a 2 50,

¥ lelngfq@ &) (D, (x)),dx
(3.26) a, = inf{f(a) = [ Of = = ']1/2}
X

4 O a
a jQ a (D &x2)4 axj (D, (x));dx
if follows
(3.27) sup (o som (D%(x,t)); 5o-(D®(x,t)) dx) /2
—co<'t<T :] J 1
i —g a (19 °< TXfo a (DyGe))y 32—(Dy (%,7)) dxdr) /2
a j ki

l; where ¢, is given by (3.24) with T -+ Ta' Our last growth esti-

a
mate for the electric displacement field corresponds to theorem

I1.2 of §2 and assumes the following form:

-

Theorem III.2 For each real B > 0, let QB € C2([0,T);Hg(9)) be

a solution of (3.8a) subject to the initial conditions (3.8c)

and a past history of the form

0, Eiat

(3.28) pPig, ey =

where g(g) > 0 is a monotonically increasing real-valued function

: of By 0 € B ¢ ®», IT

1 f 9
o ™
Teluo x:l 0

(3.29)

> [o(Dy D) (D, (%)), dx

3
L—‘———u—*




—lolg
then for each T > 0
9 8 L) B
€3.30) sup — (D (x,t)). ———(Q (§,t)).d5
—0<t<T IQ axj o T 3 axj 1
/g (B) 0 L} o ) 1/2
> —&——@T cj_thu il axj(Qo(’é”k -———axj(gh(g,r))kdgdt)

where ¢T is determined by (3.24).

We conclude with some preliminary observations concerning
the applicability of the growth estimates represented by (3.23),
(3.27) and (3.30) and for convenience sake we will concentrate
our remarks on the last estimate in this set. Suppose that a
material dielectric occupies some region § ¢ R3 and that it has
already been determined that the electric field and the electric
displacement field in Q are related by a constitutive equation
of the form (3.4) where ¢ < 0, D(x,t) = 0, (X,t) ¢ Q X (-w,-th)

-t

with t. some positive constant, and ¢(t)-= e ; however, the

h
rate at which ¢ decays exponentially, governed by A > 0, has not
yet been determined. Consider the initial-boundary value problem
(3.8a) - (3.8d) which gaverns the evolution of the electric dis-
placement field in Q; in the course of an experiment all of the
quantities appearing in (3.8a) - (3.8d) are either known or
controllable with the exception of the as yet undetermined decay
rate A, i.e., the quantities T, ty» 90(5), Ql(g), X € Q and
ph(g,t), (x,t) ¢ Q x (-th,O) are controllable in the experimental
sense while the constants yg, Y and |e| are either known a
priori, determined by Q, or determinable via simple experiments

(to determine |e| prescribe D , take D(x,t) = 0, (X,t) € @ x (-=,0),

0,
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and measure Eg; then (3.4) determines le| as

. 1/2 1/2
lel = g Ge2) (D)) dx)™" */ o (B (%)) (Eg(x));dx)™" %)

Suppose that we now carry out a series of experiments holding

T, Dy» D, and Dy x,t), (x,t) ¢ @ x (~t;,0) all fixed but

Th> 1
modifying the past history as per (3.28) by continuously varing

B; as we vary B we compute sup |lge(t)|| . Set

-o<t<T HO(Q)

(3.31)  0Ct) = [ 5B &), 5o (B, (x,1)) dx, -t <t <O
3 3,

and assume Dj(x), x € @, and D, (x,t), (x,t) e @ x (%t ,0) chosen

so that D(t) > 0, =k, % t < 0. From (3.24), with &(t) = e~At,
we have
(3.32) ¢; = y/2 + ylelpo(]:e_xtdt + Ajgjfme-l(t-r)drdt)

¥/2 + ylelug€i/a + 1)

and, therefore, from (3.30) we have

(3.33) ( swp llgs(t)ll 1 L %Sﬁl (f?t e*Tp(1)d1)

-o<t<T 0(9) A,T h
-Ath
2 giﬁ%g____ (I?t D(1)dt)
A,T h
or
At
(3.3u) e Po, o2 [O ptr)an E(B) 2
’ h ¢ sup [[DYCOX[| ; )
—o<t<T Hy ()
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From (3.34%) we see that the quantity

/e8Y/C sup ||DP()]] ; ) = G(B)
-0<t<T Ho(ﬂ)

is bounded for all B > 0 and thus

(3.35) e Mo, . = (sup 67801 DlIAt
: g>0 h

providing a bound on the exponential decay rate A.
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