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FOREWORD

This project has been accomplished as part of the U.S. Army
Materials Testing Technology Program, which has for its objective the
timely establishment of testing techniques, procedures or prototype
equipment in nondestructive testing to insure efficient inspection methods
for materiel/material procured or maintained by DARCOM.

The project was performed by the Southwest Research Institute
under Contract DAAG46-76-C-0028 to the U.S. Army Materials and
Mechanics Research Center. Appreciation is expressed to the Contracting
Officers Technical Representative, Mr. Harold Hatch, DRXMR-MI,
for his technical guidance and cooperation throughout the performance of
this program.

This report covers work performed under Phases I and II of the
project. In Phase III, a portable Barkhausen Noise Stress Measurement
System was fabricated and delivered to the Army Materials and Mechanics
Research Center along with an Instruction Manual describing its operation.

The Project Manager for this program was G. A. Matzkanin;
much of the experimental work was performed by G. L. Burkhardt.
Special thanks are due W. D. Perry and E. H. Cooper for considerable
assistance in the design and fabrication of the Barkhausen Stress Measuring
Instrument.
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I. INTRODUCTION AND SUMMARY

One of the prominent problems in nondestructive evaluation is the
determination of residual stress in both ferromagnetic and nonferromagnetic
materials. One method which has been developed for the measurement of
applied and residual stresses in ferromagnetic materials is the Barkhausen
noise analysis method(l). Refinement of this method to date has resulted
in several important applications including residual stress measurements
in helicopter rotor blade spars(2 , autofrettaged gun tubes(3), and rolling
element antifriction bearing components(4). In at least one case, this
method is being used as an alternative for X-ray diffraction(5). Although
the Barkhausen noise analysis method is being used successfully for residual
stress measurement, continued development and application of the method
have been impeded because in the present form of applying the method, it
is difficult to compensate for the influence of factors other than stress.

Such factors include probe-to-specimen liftoff, magnetization rate, speci-
men metallurgical constitution, and previous thermal and mechanical treat-
ment.

Current versions of Barkhausen stress measurement instrumentation
are based on analog signal processing whereby the peak amplitude of the
envelope of the train of Barkhausen pulses obtained during a reversal of the
specimen magnetization is used as an indication of the state of stress in the
specimen. For appropriate probe orientation, high peak amplitudes are
obtained when the specimen is in tension, intermediate amplitudes are
obtained from stress-free specimens, and low amplitude signals are ob-
tained when the specimen is in compression( ).

The overall objectives of the present program have been to inves-
tigate advanced methods of signal analysis for Barkhausen noise stress
measurement and to develop an instrumentation system based upon the
most suitable alternatives. Although previous fundamental investigations
of the Barkhausen effect have involved counting and amplitude-sorting of
the individual pulses composing the raw Barkhausen noise(7), the under-
lying statistical nature of the Barkhausen noise signal has not been adequately
characterized. Therefore, a specific objective of the present program was
aimed at defining and characterizing the statistics of the Barkhausen noise
signal and determining how these statistical parameters are influenced by
stress, probe liftoff, magnetization rate and specimen metallurgical con-
stitution and microstructure. It was anticipated that this investigation
would lead to improved methods for residual stress measurements sub-
stantially expanding application of the Barkhausen noise approach to the
nondestructive determination of stress in ferromagnetic materials.



The approach utilized in this program involved the detection and
analysis of Barkhausen noise bursts in various types of specimens.
Existing Barkhausen noise detection apparatus was used. The specimens
were plate specimens of AISI 4340 steel and AISI 4130 steel. Oscilloscope
photographs were analyzed to determine the detailed characteristics of both
the processed and unprocessed Barkhausen noise signals. For investigation
of the statistical characteristics of Barkhausen noise, pulse counting and
sorting methods were used, as well as real-time analysis of correlation -
functions, probability amplitude functions and probability distribution
functions. These parameters were analyzed for specimens subjected to
various applied stress fields, including uniaxial tension and cantilever
bending, and for variation of parameters such as magnetization rate and
probe liftoff.

The investigation showed that the Barkhausen noise signal often
consists of two distinct parts which respond differently to stress. This
observation applied to both the processed analog Barkhausen signature and
results of pulse counting approaches. It was found that measuring the
ratio of the amplitudes between two segments of the Barkhausen signal is
a viable approach to stress measurement and could potentially provide an
approach for overcoming the difficulties associated with parameters other
than stress. Experiments on specimens stressed in uniaxial tension and
cantilever bending showed that the shapes of the Barkhausen signals and
the statistical characteristics depend on the mode of loading. Although
further work is needed to clarify the results, these experiments suggest
that analysis of the shape of the Barkhausen signal may provide a means
for determining different stress configurations. Frequency spectrum
analysis showed that although there are frequency components in the
Barkhausen noise extending as high as 500 kilohertz, the dominant noise
components are contained within the frequency range of 10 kilohertz to
100 kilohertz. The lower frequency components were found to change
more drastically with stress than the higher frequency components.

Investigation of the autocorrelation function, amplitude probability
density, and amplitude probability distribution of Barkhausen noise signals
showed that these functions correspond closely to those obtained from
random noise and are therefore indicative of the random nature of the
Barkhausen phenomena. Data obtained as a function of cantilever bending
stress for various magnetization rates and amounts of probe liftoff showed .
that, although the correlation function is not strongly sensitive to stress,
it is more sensitive to stress than to magnetization rate or probe liftoff.

Thus, analysis of the correlation function could be a viable approach to -
obtaining a stress indicator which is insensitive to magnetization rate and
probe liftoff.




Based on these findings, an improved Barkhausen stress measuring
instrument was developed and fabricated. The instrument contains a num-
ber of special features such as two adjustable gates for selecting portions
of the Barkhausen signal for analysis, digital readout of either gate or the
ratio of the gates, outputs for both the processed and unprocessed Barkhausen
signals and a Hall-effect element in the probe for sensing and controlling
the applied magnetic field. The instrument was tested and delivered to
AMMRC in conformity with the contractual requirements.

Recommendations for further work include additional analysis of
the statistical parameters, especially the correlation functions, as a basis
for improved stress measurements. At the present time, one limitation
to exploiting this approach is the lack of stress sensitivity exhibited by the
correlation function. A cursory investigation was conducted directed toward
analyzing only selected portions of the Barkhausen bursts, and selected
frequency bandwidths, for increased sensitivity to stress, however, the
results were inconclusive. Additional investigations of the relationship
between the statistical parameters and the detailed characteristics of the
stress field could be important as a potential means of distinguishing
between various stress configurations.



II, EXPERIMENTAL PROCEDURE

For most of the investigation, two specimens of AISI 4340 steel and
one specimen of AISI 4130 steel were used. The AISI 4340 steel specimens
were numbered AA36 and AA4l. These specimens were approximately
6-1/2 inches long, 1-1/2 inches wide and 1/8 inch thick. The AIST 4130
specimen was approximately 10 inches long, 1-1/2 inches wide and 0.111
inch thick. Y

The experiments were conducted using Barkhausen noise analysis
methods discussed in Appendix A. A Kepco bipolar operational power
amplifier was used to supply current to the magnet. The magnetizing
frequencies utilized were in the range of 0.5 Hz to 5 Hz with magnetizing
currents of up to +1 amp. The frequency response of the Barkhausen noise
system was checked and found to be flat from approximately 1 kHz to 100 kHz.
For pulse counting, a Nuclear Data 1024-channel pulse height analyzer was
used. This device sorts and counts incoming pulses according to their
amplitudes. In application to Barkhausen noise, the discriminator thres-
hold on the pulse height analyzer was set just above the amplifier background
noise level so only Barkhausen pulses above this level were counted. In
addition to the pulse counting exXperiments, a number of experiments were
performed using the multiscaling mode of operation on the pulse height
analyzer. In this mode, the number of incoming pulses is counted regard-
less of the pulse amplitude, for a selected dwell time per channel. Thus,
one obtains the distribution in number of pulses versus time, or in the case
of Barkhausen noise, the distribution in pulse number along the burst.

The statistical characterization experiments were conducted using
a Saicor 400-channel correlation analyzer. This instrument allows corre-
lation functions, amplitude probability density, and amplitude probability
distribution functions to be obtained in real-time. The advantage of a
real-time approach is that rapid and immediate analysis of the results is
available so that the influence of changing experimental parameters can be
immediately assessed. Any required instrumentation adjustments can then
be readily made. For most of the experiments, a sample increment time
of 0.2 microseconds was utilized to obtain the greatest available resolution.
A trigger pulse unit was fabricated to provide adjustable trigger pulses
synchronized with the magnetizing current waveform. This device allowed
the correlation analyzer (and other instrumentation) to be synchronized with .
any point during the Barkhausen bursts. The total analysis time of the
correlation analyzer could be adjusted to obtain either a certain portion of
the burst or the entire burst. .




Power spectral density results were obtained by utilizing a Biomation
transient recorder in conjunction with the correlator and a spectrum ana-
lyzer. The correlator was used to obtain the autocorrelation function of the
Barkhausen noise which was then digitized and recorded by the Biomation
instrument. The output of the Biomation recorder was repetitively fed into
the spectrum analyzer to obtain the power spectrum. Results of the pro-
cedure were verified by comparison with those obtained by direct frequency
spectrum analysis.

The stress experiments were conducted utilizing both cantilever
bending stress and uniaxial tensile stress. The cantilever bending test
fixture is shown in Figure 1. Data could be obtained for both tensile and
compressive cantilever bending stress using this fixture. The stress in
the specimen was determined by measuring the deflection of the edge and
using the specimen dimensions to compute the stress at the location of the
Barkhausen probe. The uniaxial stressing fixture which was made entirely
of nonmagnetic alloys is shown in Figure 2. This device is equipped with a
calibrated load cell whose strain gage output can be read on a standard
readout instrument. However, for the experiments reported here, strain
gages were mounted on the specimen and used to measure strain directly
during axial loading.

In the experiments performed, the AISI 4340 steel specimens could
be stressed only in the cantilever bending stressing fixture; however, the
AISI 4130 specimen was stressed both in the cantilever bending stressing
fixture and the uniaxial stressing fixture. The maximum stresses applied
were 50 ksi which is well below the yield stress for all of the specimens
investigated.
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III, RESULTS AND DISCUSSION

A. General Characteristics of Barkhausen Noise

To investigate the characteristics of Barkhausen noise pulse
trains, oscilloscope photographs were taken of Barkhausen noise at four
temporal locations during the burst. The adjustable synchronizing unit
described in the previous section was used to trigger the oscilloscope
trace at specified times during the burst. The photographs were made on
a sufficiently expanded time scale (5 psec/cm) so that the individual pulses
of the noise could be resolved. Data were taken on specimen AA36 as a
function of both tensile and compressive cantilever bending stress. Exa-
mination of the photographs showed that, on the specimen investigated,
the general characteristics of the Barkhausen noise are uniform throughout
the burst, and increasing tensile stress tends to primarily increase the
low frequency contributions to the noise.

In addition to investigating the general characteristics of the
Barkhausen noise at various locations during the burst, an analysis was
carried out of the entire Barkhausen burst by taking oscilloscope photo-
graphs of both the unprocessed noise and the signatures obtained by
amplitude-detecting the envelope of the noise burst. These data were .
taken on AISI 4340 steel specimens AA36 and AA4l as a function of canti-
lever bending stress. The trigger synchronizing circuit was used to
ensure that the oscilloscope triggered each time at the same point rela- .
tive to the Barkhausen burst. In general, for the two specimens investigated,
it was found that the Barkhausen signature consisted of two distinct parts
as shown in Figure 3. The first half tended to change noticeably with
stress whereas the second half remained almost constant. Plotting peak
voltage measurements of the two halves showed that the ratio of the two
peaks varied with stress in the same way as the first peak alone. Thus,
the ratio of the two peaks may be a candidate method as an indicator of
stress instead of the amplitude of the first peak. The general applicability
of this approach for stress measurement requires further exploration.
If it is found that both halves of the signal are affected in the same way by
probe liftoff and magnetization changes, then the ratio approach to stress
measurement might afford a means of circumventing the detrimental in-
fluence of these former parameters.

B.  Pulse Analysis

Examples of pulse amplitude spectra obtained at a magne-
tizing current rate of 0.4 amp/sec for a counting time of two minutes are
shown in Figure 4a. Although the total count number, NT, is essentially .
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the same for zero stress as for a tensile stress of 40 ksi, the shapes of
the spectra are quite different. For example, for the case of tensile
stress, the number of large amplitude pulses increases relative to that
for zero stress, while the number of small amplitude pulses decreases.
This implies that the increase in amplitude of the processed Barkhausen
signal with tensile stress, which is usually observed(4), may be due
primarily to an increase in the number of large amplitude pulses rather
than an overall increase in the total number of pulses. For comparison,
similar spectra obtained for a magnetizing current rate of 0.8 amp/sec
and a counting time of 1 minute (providing the same number of Barkhausen
bursts as the magnetizing current rate of 0.4 amp/sec) are shown in
Figure 4b. Although the relative changes in the spectra with stress are
similar to those shown in Figure 4a, comparison of Figures 4a and 4b
shows that the shape of the spectra are dependent upon magnetization rate.
For example, in Figure 4b, the ratio of large amplitude pulses to small
amplitude pulses is increased relative to that indicated in Figure 4a for
comparable stress conditions. These results suggest that analysis of the
pulse amplitude spectra could provide a means for compensating Barkhausen
noise measurements for effects of magnetization rate changes. However,
utilization of this approach in a practical stress measuring instrument
would entail an extensive electronics development effort.

A number of experiments were performed using the multi-
scaling mode of operation on the pulse height analyzer. The results for
" specimen AA4l are shown in Figure 5 for several conditions of applied
stress. Note that for tensile stress, the number of pulses increases at
the beginning of the burst and then becomes practically constant until
decreasing sooner than for the case of zero applied stress. On the other
hand, for compression, the pulse number is drastically reduced during
the first half of the burst while remaining almost as high during the latter
part of the burst as for the case of zero applied stress. These results
were further explored by performing multiscaling experiments on the two
halves of the Barkhausen burst individually as a function of stress. The
total number of pulses occurring during each half of the burst were deter-
mined and the results are shown graphically in Figures 6 and 7. As can
be seen, for both specimens, the pulse number during the first half of the
burst increases slightly with tensile stress while decreasing rapidly with
compressive stress. On the other hand, the pulse number during the
second half remains relatively high even in compression, and for speci-
men AA36 shows a steady decline with compressive stress. These results
indicate that more responsive indications of tensile and compressive
stresses might be obtained by measuring the changes in pulse number
during selected portions of the Barkhausen burst.

11
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C. Statistical Characteristics of Barkhausen Noise

Shown in Figure 8 are examples of a typical autocorrelation
function, amplitude probability density, and amplitude probability distri-
bution of Barkhausen noise. These functions correspond closely with
those obtained from white noise and are therefore indicative of the random
nature of the Barkhausen phenomena. Autocorrelation functions were
obtained as a function of cantilever bending stress for various magneti-
zation rates and amounts of probe liftoff. Listed in Table I is the width
of the correlation function at half amplitude for different condtions. The
results indicate that although the correlation function is not strongly sen-
sitive to stress, it is more sensitive to stress than to magnetization rate
or probe liftoff. The change in correlation function with probe liftoff for
compression is not entirely understood at this time, but may be due to the
decreased Barkhausen signal amplitude associated with compressive stress.

As the results in Table I indicate, analysis of the correlation
function could be a viable approach to obtaining a stress indicator which
is insensitive to magnetization rate and possibly also to probe liftoff.
However, it would be desirable to have comparable sensitivity to stress
as the presently used method which involves a measurement of the ampli-
tude of the Barkhausen noise envelope(4). For this reason, operating
conditions other than those shown in Table I were investigated with the
hope of finding conditions for which the Barkhausen noise correlation
function exhibited increased sensitivity to stress. Operating conditions
investigated included analyzing only selected portions of the Barkhausen
burst and selected frequency bandwidths. No increased sensitivity to stress
was observed by examining selected portions of the Barkhausen burst, but
using selected frequency bandwidths may hold promise. Autocorrelation
functions obtained for bandwidths of 1 kHz to 100 kHz and 1 kHz to 50 kHz
are shown in Figure 9. Note that reducing the bandwidth introduces
oscillations into the correlation function (compare with Figure 8). A
cursory analysis showed that the shape of the oscillating function is slightly
dependent upon stress (probably due to the changes in frequency spectrum
associated with stress). Thus, appropriate selection of bandwidth and
comparative analysis of the correlation function zero crossings may pro-
vide an acceptable stress measuring approach. As in the case of pulse
height analysis, however, the development of electronic processing instru-
mentation for practical application was outside the scope of the present
program.

15
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TABLE I

WIDTH OF AUTOCORRELATION FUNCTION AT HALF¥F -AMPLITUDE
FOR SPECIMEN AA36 (AISI 4340)

(Bandwidth 200 Hz to 3 MHz; sample increment 0. 2 psec. )

Magnetizing Current Rate Stress
(Liftoff = 0) 0 50 ksi tension 50 ksi compression
0.2 amp/sec l.OPs 1.9 ps 0.7 ps
0.4 amp/sec 1.0 .0 0.8
0.8 amp/sec 1.0 1.9 0.7
Probe Liftoff (Magnetizing
Current Rate = 0.4 amp/sec)
0 1.0 2.0 0.8
0.016 in. .0 .0 0.4
0/ 052l 1.0 1.9 0.5

17
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D. Comparison Between Cantilever Bending Stress and
Uniaxial Tensile Stress

An investigation was conducted using a flat tensile specimen
of AISI 4130 steel which could be loaded in both uniaxial tension and canti-
lever bending in order to compare results for these two different stress
modes. In general, it was found that the Barkhausen signals differed
noticeably, depending on whether the applied stress was uniaxial or canti-
lever bending. Figure 10 shows the amplitude-detected Barkhausen signal
envelopes for cantilever bending tensile and compressive stress of 30 ksi;
Figure 11 shows the results for uniaxial tensile stress of 30 ksi. As can
be seen, for the uniaxial case, application of tensile stress produces a
pronounced double peak whereas only a single peak is observed for canti-
lever bending tensile stress. Also, in the case of cantilever bending,
primarily the first half of the signal is affected by stress whereas the
entire signal is modified by uniaxial tension. The differences between the
results for the two cases may be associated with the different stress fields
that exist, that is, relatively uniform stress for uniaxial loading and a
stress gradient through the specimen for cantilever bending. These results
suggest that analysis of the shape of the Barkhausen signature may poten-
tially provide an approach for distinguishing between different stress
conditions.

A plot of the peak Barkhausen signal amplitude versus stress
is shown in Figure 12 where the two halves of the uniaxial stress signature
are individually plotted. As is seen, for cantilever bending, a smooth
S-shaped curve is obtained from compression through tension similar to
the results reported in a number of previous investigations 8). In uniaxial
tension, the two peaks of the signature behave slightly differently with
stress, but generally show an increase in amplitude with increasing stress.

Differences between uniaxial stress and cantilever bending
were also observed for the statistical parameters. Figure 13 illustrates
the probability density functions obtained for the two stress conditions for
a stress level of 40 ksi. For cantilever bending, the probability density
at zero amplitude increases with both tensile and compressive stress,
whereas, for uniaxial tension, the probability density decreases at zero
amplitude but increases for larger amplitudes. The amplitude probability
distributions were found to behave similarly to the probability density
functions with regard to the different stress conditions; however, the auto-
correlation functions were found to be affected very little by stress for
either mode of application.
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FIGURE 10.
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FIGURE 11.
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E. Characteristics of New Barkhausen Stress-Measuring
Instrument

Based on the results of the foregoing investigation, a Bark-
hausen Noise Stress Measurement System was developed, fabricated,
and delivered to the U.S. Army Materials and Mechanics Research Center.
To provide desired flexibility for stress measurement, the new Barkhausen
instrument possesses a number of special features, such as, adjustable
gates for selecting portions of the Barkhausen signal for analysis; outputs
for both the processed and unprocessed Barkhausen signals; and a Hall-
effect element in the probe for sensing and controlling the magnetic field.
In addition, the instrument has controls for varying the magnetizing current
rate and amplitude; outputs for the sweep voltage, magnetizing current,
and Hall-effect voltage; and a monitor oscilloscope. Additional details can
be found in Appendix B.

Oscilloscope traces of some of the signals obtained with the
Barkhausen Noise Stress Measurement System are illustrated in Figure 14.
In Figure 14a is shown a typical processed Barkhausen signature obtained
from an AISI 4340 steel specimen. In Figure 14b, a gated portion of the
same signature is shown. Two gates are available; each is variable in
width and location. A digital readout provides the maximum amplitude .
appearing in either gate or the ratio of the maximum amplitudes in the
two gates. With the gate feature, selected portions of the Barkhausen sig-
nal may be analyzed and compared providing useful information regarding -
stress as discussed in previous sections. Figure 14c shows the Hall -effect

element output without magnetic feedback. This is essentially a measure
of the magnetizing force at the surface of the specimen. Note the non-
linearity at the zero-crossing caused by demagnetizing effects. Figure 14d
shows the Hall-effect element output with magnetic field change to be
retained as the specimen geometry, and other conditions which affect the
applied field, are varied.

The Barkhausen Noise Stress Measurement System developed
during this program provides considerable flexibility for the measurement
of stress enabling it to be adapted to a variety of applications. In most
cases, the specific measurement approach used will depend on the appli-
cation and on the desired results. In general, the instrument is suitable
for both laboratory and field measurements. '
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Iv, CONCLUSIONS AND RECOMMENDATIONS

The following conclusions were reached as a result of the Barkhausen
noise investigation program:

1. The autocorrelation function, amplitude probability distribu-
tion and probability density function of the unprocessed Barkhausen noise
correspond with the comparable statistical functions for random noise. -
This result may be associated with the broad-band characteristics of the
Barkhausen noise phenomenon and the detection instrumentation.

2. The Barkhausen noise autocorrelation function is independent
of magnetizing current rate and is only slightly dependent on stress in the
broad-band mode. Reducing the detection bandwidth for the correlation
function may lead to increased sensitivity to stress.

B, In some cases, the Barkhausen signal is composed of two or
more distinct parts which respond differently to stress. This result was
corroborated by multiscaling and pulse counting experiments.

4. The capability for measuring selected portions of the Bark-
hausen signal provides flexibility in adapting the Barkhausen stress
measurement method to specific applications.

51 Barkhausen noise pulse height spectra respond differently to
stress and magnetizing current rate changes potentially providing an
approach for separating these two effects.

6. Several Barkhausen noise parameters, including statistical
parameters, behave differently depending on whether the applied stress is
uniaxial or cantilever bending. Thus, with appropriate auxiliary signal
processing it may be possible to use Barkhausen noise to obtain information
on stress configurations and gradients.

The following recommendations are made as a result of the Bark-
hausen noise investigation program:

1. Further explore the detailed statistical characteristics of
Barkhausen noise with a view toward developing an approach which en-
hances the sensitivity of the statistical parameters to stress. Included
in potential avenues is the use of cross-correlation techniques.

2 Further explore the feasibility of utilizing pulse height
analysis and pulse counting for Barkhausen noise stress measurement.
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Sk Investigate the relationship between various characteristics
of Barkhausen noise and the mode of applied stress as a potential means
of utilizing Barkhausen noise to determine stress configuration and gradients.

4. Determine the effect of plastic deformation on the statistical
characteristics of Barkhausen noise and compare with results obtained for
elastic stress.

5. Develop analytical models for explaining the influence of
stress and metallurgical features on Barkhausen noise.
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APPENDIX A
BARKHAUSEN NOISE ANALYSIS

The Barkhausen effect is associated with the abrupt, discontinuous
movements of magnetic domain walls as the magnetization of a ferromagnetic
material is changed 1) In applications, the domain arrangement is usually
altered by a controlled time-rate-of-change of an externally applied magnetic
field. The discrete changes in the specimen magnetization can be detected
by means of voltage pulses induced in a coil placed in proximity to the
specimen as shown in Figure Al. The voltage pulses are found to be random
in amplitude, duration, and temporal separation, and may be described as
""noise!; hence the term Barkhausen Noise. Figure AZ shows an example
of Barkhausen pulses sensed by an induction coil near the surface of a low
carbon steel bar.

The size,shape, and arrangement of the domains in a bulk ferromagnetic
specimen, and thus the detailed dynamics of domain wall motion, are
strongly influenced by various parameters of the specimen, in particular
the state of mechanical stress(A2), Figure A3 shows several photographs
of magnetic domains (made visible by a magnetooptic method) on the surface
of a single crystal of silicon iron and illustrates the manner in which domains
change under the influence of an applied stress(A3), A compressive stress
was applied to the specimen from left to right in the illustration. A careful
examination of these photographs shows marked changes occurring as the
compressive stress is increased; for example, in the top photograph, the
domains are principally oriented approximately 45 degrees upward and to
the left, while in the bottom photograph, several domains have grown in a
direction oriented upward and to the right.

In general, two approaches are available for processing Barkhausen
information: analog methods, where a signal is obtained proportional to
the envelope of a train of Barkhausen pulses, or digital methods, where
the individual pulses are sorted and counted usually by means of a multi-
channel pulse height analyzer. Thus far, in applications of the Barkhausen
Noise method to stress measurement, the analog approach has generally
been used, resulting in a typical signature for a reversal of the specimen
magnetization as shown in Figure A4,

The peak amplitude of the Barkhausen signal obtained during a
reversal of the specimen mangetization has been empirically found to provide
a good qualitative and, under favorable conditions, quantitative indication
of residual stress. For appropriate probe orientation, high peak amplitudes
are obtained when the specimen is in tension, intermediate amplitudes are
obtained from stress-free specimens, and low amplitude signatures are
obtained when the specimen is in compression(A4).

Al
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APPENDIX B
BARKHAUSEN NOISE STRESS MEASUREMENT SYSTEM

The Barkhausen Noise Stress Measurement System was designed,
developed and built at Southwest Research Institute. The purpose of this
instrument is to indicate, qualitatively, the state of stress in ferromagnetic
materials. The theory of operation is based on measurement of a magnetic
signal as the specimen is magnetized. In operation, the specimen is mag-
netized by means of an applied time-varying magnetic field and the magnetic
signal is detected by means of a small induction coil located at the surface
of the specimen. The detected signal consists of a sequence of voltage
pulses of random amplitude, duration, and separation called '"Barkhausen
Noise'. The influence of stress on the Barkhausen Noise signal is used to
obtain a qualitative indication of the state of stress in the specimen.

A photograph of the Barkhausen Noise Stress Measurement System
is shown in Figure Bl and a simplified block diagram is given in Figure B2.
A hand-held probe, connected to the Barkhausen instrumentation system
by means of a cable, contains a C-shaped electromagnet for applying a
time-varying mangetic field to the specimen, and the Barkhausen Noise
detection coil. Also included in the probe are the lst stage Barkhausen
Noise preamplifier and a Hall effect magnetic field detector for monitoring
the applied magnetic field at the surface of the specimen. The voltage from
the Hall sensor is used in a magnetic feedback arrangement to provide
control of the magnetic field variation applied to the specimen. In the feed-
back mode, the magnetic field at the specimen surface is forced to follow
a reference waveform, either internally generated or supplied externally.
This feature is useful for compensating for factors which influence the
applied magnetic field such as variations in specimen thickness.

The basic electronic components of the system are contained in
modules which are inserted into a power supply case (Refer to Figure Bl).
The magnetizing section comprised of the waveform generator, power
amplifier and magnetic feedback circuitry, is contained in the Detection
Module along with the post-amplifier and detector-processor. The waveform
generator provides the basic triangular waveform for cyclically magnetizing
the specimen. This waveform is used as the input to a power amplifier,
the output of which is a linearly varying current at sufficiently high voltage
to drive the coil of the magnet. The frequency, rate of change and amplitude
of the magnetizing current are all adjustable from the front panel of the
instrument. A connector is provided at the rear of the instrument for
supplying an external magnetizing waveform if desired. The Barkhausen
Noise signal is available at a front panel connector labeled BARK. SIG.

In addition, the amplitude-detected envelope of the Barkhausen Noise signal
is available at a front panel connector labeled BARK. SIG. ENV.

Bl
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In the Analysis and Display Module are contained gating circuitry
signal analysis circuitry and a digital display. The electronic gating
system allows two portions of either the Barkhausen Signal or the
Barkhausen Signal Envelope to be selected for further analysis. The gates
are adjustable in width and position relative to a synchronizing signal
derived from the waveform generator. The signal analyzer section consists
of peak/hold circuitry to capture and retain the maximum voltage of the
Barkhausen Signal Envelope resulting during the "on' time of each gate, 3
and also ratio circuitry to provide a voltage proportional to the ratio
between the maximum voltage values obtained from the two gates. The
voltage from either gate or the ratio of these voltages is switch-selectable
for digital display on a panel meter. In addition, averaging circuitry is
provided so that the average of a selectable number of readings can be
displayed as well as the individual instantaneous readings.

A modular oscilloscope is included in the instrumentation system
for monitoring the Barkhausen Noise signals or other waveforms of interest.
The two modules located at the far right of the instrument (See Figure Bl)
are storage modules to be used for storage of the hand-held Barkhausen
detection probe and cables.

Additional performance and operational details can be found in the
Operating Instruction Manual prepared for the Army Materials and
Mechanics Research Center, Watertown, Massachusetts under
Contract No. DAAG46-76-6-0028.
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