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series includes original reports of experimental or theoretical
studies, and integrative reviews of the scientific literature. A Mem-
orandum Report series includes printed versions of papers presented
orally at scientific or professional meetings or symposia , methodo-
logical notes and documentary materials, apparatus notes, and ex-ploratory studies.



-

~

--—-.

t1nr1~~csif i~~d
CLASSIFICATION OF TWIS  PAGE (Wh en 0.,. Entered)

READ IN STR U CTION SREPORT DOCU M ENTAT iON PAG E BEFORE COMPLETING FORM

~
‘l4523—3—T / ~2. GOVT ACCESSION NO. 3. RECIPIENT’S C)~ 44 OG NUMBER

~~~~~~~~ 4. T~1 ’!’7~~à Subtftë. .~ —~ — S. TYPE OF ~~~~~~~~~~~~~~~~~~~ ~~~~~~~

C0NSTRATh1!~~ N~~METhIC 11ULT IDIME NS I0NA L L~~1i 
ca~~~/~c,e~~f

)
~%CALING çONFrGURATI0NS: 

.

~~~~ / 
~rechnica1 Report No. 60 —
6. PERFORMING ORG. REPORTL4~M8€~~ 

—

7. AUT HOR(s ) ~~ C~~ NTRA (~T ~ m/~n ~~~~~~~~~~~ ~~~~~ I

~~~~ 
E1liot/4oma~~~nd Janice/ohnson 

/ ________________

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ NAM E AND ADOREES 10. PROGRAM ELEMENT . PROJECT . T A SK
AR EA & W ORK UNIT NUMBER S

Human Perfo rmance Center
Uni versity of Michiga n
Ann_Arbor._ Mi chi gan_4~1O9 ___________________________

__________________________________________________________________

It . CONT ROLL ING OFFIC ENAME A NO A DORESS ~‘ -I-B. U~ i—~~~io~Engineering Psychology Program Aug i~~’, ).977/
Office of Naval Researc h 1~~~~NUMBE ROF ~~~W~~,

1

800 N. Quincy Street, Arlington, Virginia 22217 56
IA . MONITORING AGENC Y NAME & AOORE$S(i( dillereat from Conuolling 0111cc) IS. SECURITY CLASS. (at th is report)

Unclassified
i~ //-“

~~ 

ISa. DECLASS IF ICAT ION/ OOWN GRAO ING
a 

/ 
SCHEDULE

IS. DISTRIBUTION S AT EME NT (of th is Report)

DISTRIBUTION_S T A T E M E N T A I

~~~~~~ for public release; I
Distribution Unlimited I

17. DISTRIBUTION STATEMENT (of the abs t rac t entered in Block 20 , If different from Report)

15. SUPPLEMENTARY NOTES

~9. KEY WORDS (Continua on reverse aid. if n.c.e,asy end ident ify by block number)

mul tid imens iona l scal i ng
i nterpretat ion of scal i ng outputs
goodness—of—fi t measures
model testing

i~~¼,~A B S T R A C T  (Continue on reverie sirs. If necessary and identify by block number)

~The interpretation of mul tidimensional scaling outputs is usually based on the
denti fication and labeling of geometric structures in space. Some of the most
ommonly used structures are reviewed. interpretation of the scaling Outputs re-
uires many psychological and mathematical assumptions incl uding the assumption
hat the confi guration with the l owest stress is the output desired . Unfortunatel ‘

~~

i ttle is known about the uniqueness of a confi guration generated from fallible
ata and this non—un iqueness also affects the interpretation of the spatial outpu’
3calina method inr 1rnt~r~ f ing  in FA r m ~ 1’i r~~ in ~~~~~~~~ir ~m tr~ fh ~ e c i m i l~~v.4~~ igç  i~

~~~~ FORM
JAN 73 1473 EDITION OF 1 NO V 6 5  IS OBSOLE T E Unclassified 

— 7
/ SECUR ITY C L A S S I F I C A T I O N  o r T H1S PAGE ~Wh.n ~~~~~~~~~~~~~ J



______________________________________________________________ 
-— -.

~~~~ -— -.-- —.-.-.

Unclass ified
SECURITY CLASSIFICATION OF THIS PAGE(Wh.n Data Ent.r.d)

Block 20 - con ’t.

proposed and the implications of this approach for the interpretation of
a conf iguration are discussed.

S E C U R I T Y  C L A S S I F I C A T I O N  OF THIS DAGE(*7,,r Data Ent.r~ d~

.—- -----.-

~

-- - .-

~

-

~ 

_ _ _ _ _ _ _



- 
- 

~~~ II 
-

~~~~~~~~~~ f l ,

U -
~T Y

Constraining Nonmetric Mul tidimensional

Scaling Configurations 1

Elliot Noma

Janice Johnson

The University of Michigan

August, 1977

I
n n c

~ 

~~ ~J~I
- 

- . - - -— U LL1L~..~~:~ J ~~~_pi 
.~~~~- , -

,
, 

-
~~ 

-I _) ~~~~~~ ~‘~ JL
Ai JY( t:~~ ‘‘ p.:~ - - .

— 
Distribut ion i~ n~~~~~



Abstract

The Interpretation of mul tidimensional scaling outputs is

usually based on the identification and labeling of geometric

structures in the space. Some of thei most commonly used structures

are reviewed. Interpretation of the scaling outputs requires many

psychological and mathematical assumptions incl uding the assumption

that the configuration wi th the lowest stress is the output desired.

Unfortunately, littl e is known about the uniqueness of a configuration

generated from fallibl e data and this non—uniqueness also affects

the interpretation of the spatial outputs. A scaling method i ncor—

porating information in addition to the dissimilarities is proposed

and the impl ications of this approach for the interpretation of

a conf~guration are discussed.
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Constraining Nonmetric Mul tidimensional

Scal ing Confi gurations 1

Ell iot Noma and Jani ce Johnson

The University of Michigan

Introduction

Peopl e organize their experience of the world. In some fashion,

they build a cogniti ve structure allowing them to see the similari ties

and differences among events . This facility is crucial , since peopl e

can then use knowledge derived from past experiences to deal wi th

present or anticipated future situations. Similarities and dif-

ferences among events may be modeled as aggrega tes of similari ties

(or diffe rences) along psychological continua or between psychological

categories. In addi tion, these psychological continua and categories

are assumed to correspond in some way to identi fiable stimulus

properties. For example , they may correspond to the physical dimen-

sions or semantic categori es of the stimuli.

Many scaling techniques attempt to define correspondences among

three measures : s imilar ity judgments , subjecti ve measures , and ob-

jective measures. In most methods, however, the experimenters make

a p ~fori assumptions about certain aspects of cogniti ve structure.

For example, in magnitude estimation a subject judges the extent

to which a stimul us manifests a prespecified characteristic. This

estimate is assumed to be function of objectively measured parameters.

By contrast , structures in a mul tidimens ional scal ing need

not be i denti fied beforehand. In the model used by Shepard-Kruskal

nonmetric mul tidimensional scaling, each stimulus i s represented

_  - - -  

j



_ _ _ _ _

3

as a point in a coordinate space. The interpoint distances are

measured using a Minkowski metri c , which means that if points j

and k have coordinates Xjk) xJ2~ ...~ 
X
i~ 

and Xkls Xk25 Xkd res-

pectively in a d-dimensional space, then their interpoint distance

is 
dik 

= [Z lX~1 
- Xki l~~~~~

.

The exponent r, which can range from 1 to ~~, determines the type

of Minkowski metric. When r 2, the above equati on yiel ds the

Pythagorean Theorem, which of course defi nes the Eucl idean distance

function. The Eucl idean metric is by far the most commonly used,

but sometimes it is frui tful to consider other metri cs . Another

common metric, in which r = 1 , is often referred to as the City-

Block metric.

Starting wi th a measure of interpoint similarity , dissimi-

larity, distance, or other measure of inters timulus assoc iation,

the nonmetric mul tidimensional scaling algorithm attempts to

place stimul i in the space such that stimul i which have been

judged to be very similar , not dissimilar , close together, etc.

are represented by points that are close to each other in the

space . Conversely, very diss imilar .stimul i should be represented

by points that are far apart. This relationship between simi-

lari ty and di stance is called the monotonicity requirement,

because the interpoint distances should be monotonically related

to the input dissimilarity measures.

In most cases , however , no set of points in a space wi th a

fixed metric, r, and dimensionality , d , can satisfy the mono-

tonicity requirement. It is assumed , however , that deviations

5-
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from a perfect fit are due to measurement errors , and an attempt

is made to find the constellation of points that best satisfies

the monotonicity requirement. That is , a scal i ng algori thm tries

to find a set of point coordinates that minimi zes some loss func-

tion in the same way that a linear regress ion f inds parameters

that minimize the sum of squared deviations of expected and ob-

served values. Kruskal (l964a) defines a loss function called

4. • Is~ress. ~ A

/ jk”1jk ujk
STRESS1 = 

2\1

where the djk’s are the distances derived by the scaling algori thm,

and the djk’s are the values of the interpoint distances satisfying

he monotonicity requirement. Note that a stress of zero indicates

1.erfect fit in the sense of satisfyi~ig this requi rement. That is

to say, nonmetric multidimens ional scal ing attempts to def ine a

confi guration that minimi zes stress, and then uses this measure

as an indicato r of goodness—of—fi t (in the same sense as the mean

square due to error in a linear regression).

To minimi ze stress, an algori thm is employed that starts wi th

an arbitrary initial configuration and iteratively steps the point

coordi nates toward a lower stress configuration. After a pre—

specifi ed number of iterations , or after several iterations that

do not appreciably decrease the stress, the al gori thm terminates

and a final confi guration is printed . This configuration is often

called the local minimum solutiqji, since any movement of one or

more of the points away from the current location in space will

..— ~~~~~~~~~~~~~~~~~~~~~~ 
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increase the stress. This does not mean, howe ver, that this is

the absol utely lowest stress confi guration. There may exist many

local minimum solutions for a given set of dissimilari ties . If

all these sol utions coul d be loca ted, at leas t one woul d have the

lowest stress associated wi th it. This confi guration, or group of
conf igurations , is called the global minimum solution. In most

cases it is assumed that the local minim um found by the mul ti-

dimensional scaling algori thm is actually the gl obal minimum.

The conf iguration is then interpreted in terms of correspondences

between groupings of points and psychological , physical , or

semantic dimensions or categories .

On the surface , it seems that mul tidimens ional scal ing

methods render a final configuration wi thout reference to any

external constraints or a priori hypotheses. Therefore, mul ti-

dimensional scal i ng can be very helpful if a priori hypotheses

are vague or nonex i stent, since post hoc interpretations are

often possible (their validi ty depending, of course , on the repl i-

cability of the orderings or groupings). It can also be helpful

in suggesting al ternative interpretations by alerting the experi-

menter to qualitati ve as well as quanti tative deviations from

the expected resul ts. Two reasons for the ease of interpretation

of a mul tidimensional scaling output are the (usually) low dimen-

sionality and Minkowski metric of the output confi guration.

However , the unconstra i ned nature of mul tidimensional scaling

also has its drawbacks. As ide from the many hidden psychological

assumptions , littl e is known about the uniqueness of confi gurations 

— .— ——.-~~~~~~~ —-
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generated from fallible data, but the programs blindly search out

the configuration wi th the lowest possible stress , and give no infor—

mation about any other possible confi gurations. Thus, there is no

way to predict how perturbations from the local minimum solution

will affect either the stress or the interpretability of the spatial

output. It mi ght well be that the confi guration with the l owest

stress is very difficul t to interpret, or does not manifest hypo-

thesized structures, whereas a confi guration wi th only sli ghtly

higher stress is dramati cally more interpretable or in accord with

previous hypotheses .

In thi s paper we w ill rev iew some of the theoretical assum ptions

underlying mul tidimensional scal i ng, as wel l as some of the more

tradi tional methods of interpretation. We also survey the research

on the uniqueness of the scaling solution. Finally, we propose an

al ternative approach to the interpretation problem - CONSCAL, a

mul tidimensional scaling program which allows a user to constrain

the scal ing sol ution in accordance w ith certain hypothes i zed

structures.

In order to understand the questions involved in interpretations ,

we must review the basic assumptions underlying multidimensional

scaling. These assumptions are both mathematical and psychological.

We fi rst exami ne the psycholog ical assumptions , and their implications

for deriving and interpreting configurations.
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Psychological Assumptions of Nbjl tidimensional Scaling

The most crucial psycholog ical assumption of multidimensional

scaling is that people ’s internal stimul us representations may be

meaningfully model ed in spatial terms. In other words, it is

assumed that a person internal ly organizes representations of stimul i

in a form functionally analogous to a “psychological map.H Within

this map, the stimul i are points and the )nterstimul us similari ties

(or subjective distances) are an increasing function of the distances

between points in the map. The interpoint distances in the psychological

map are generally taken to be fixed and to be accessibl e to a subject

in a judgment task. This psychological map is ti:. “underlying con-

figuration ” wh ich mul tidimensional scaling metho...s seek to recover.

This assumption has led directly to two lines of research that con-

sider (1) the condi tions that perfectly scalabl e data must satisfy

and (2) why deviations from perfectly scalable data, or errors,

occur. No satisfactory axiomati zation of spatial models has been

developed, but some necessary conditions are outlined by Beals ,

Krantz and Tversky (1968). The testability of such axi oms is ,

however, in doubt. A possibl e explanation for errors has been

explored by Ramsay (1969). He models the errors by accepting

the validity of the spatial model and assumes the distances to

be constantly varying according t’~ some probability distribution ,

wi th any individual judgments being based on a sample taken

from this distribution.

Most mul ti dimensional scaling programs also assume that a

subject’s psychological map can be modeled successfully, or a t

~
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least sati sfactorily, by a Minkowski r-metric. This is despite the

fact that Minkowski r-metrics are only a small subset of the metrics

which mig ht be considered (see Shepard , 1974).

It is furthermore assumed that a person can meaningfull y organize

~~~ 
set of stimuli. Specifically, the stimul i may be ordered or

classified with respect to some psychological referent or f eferents .

These referents are usually assumed to corres pond to geometric shapes

superimposed on the scaled output. Relating psychological referents

to the output configurati on is often done by labeling the axes of

the coordinate space. After examining the first coordinate of all

points, attempts are made to define a psychologi cally meaningful

cri terion for distinguishing points wi th large positi ve first coor-

dinate values from those large negative values. This process is

repeated for all d coordinate axes in a d-dimensional space. Another

method attempts to assi gn psychologically meaningful labels to

groups of points that are scaled near each other in the multid imensional

space. Such groups of points are referred to as cl usters.

As Cl iff and Young (1968) point out, a subject’s res ponses

depend only indirectly on physical characteristics of the stimul i ,

and more on how the subject has personally organized the items.

A subject’s persona l organ i za tion, moreover , will depend on which

similari ties or di fferences between stimuli are most salient or

significant to him. It follows from the assumption 0f personal ized

psychological referents that, unless there is a high degree of

agreement across subjects as to which types of interstimulus relation-

ships arc most signifi cant , multidimensional scaling outputs mi ght

be expected to vary across subjects. Not only can relati ve interpoint

distances vary, but in many instances the dimensions of variation , the

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~
_______________
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dimensional ity, and even the metric of the space have been shown to

be different for di fferent individual s (Hymen & Well , 1967; Spector,

Rivizzigno & Golledge, 1976). This means that care must be taken

when pooling subject responses. Even though the pooled configuration

may be easy to analyze, it al so may lead to an incorrect or unrepre-

sentative interpretation. It is better to analyze and interpret

scal ing plots separately for each subject, or to use a scaling method

that creates a group space and indicates how each of the individual

spaces may be mapped onto this space. A program which does the latter

is INDSCAL (Carroll & Wish , 1974), which assumes that all subject

spaces are characterized by the same dimensions , dimensionality ,

and metric, but which allows for differential weightings of the

common dimensions in producing individual configurations. The

INDSCAL model is usually interpreted to mean that all subjects

eval uate stimul i wi th respect to the same psychological aspects.

They then use a common method of amal gamating these many aspects,

but di fferentially weight them according to individual saliency

or attention factors. 

~*—.--------~-_ _ _ _ _ _ _ _ _ _ _ _
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Decidi ng on a Conf iguration

Al though multidimensional scaling programs yield a single

“best” configuration in terms of minimi zing stress (assuming that

a global min imum is obtained), this does not imply that they auto-

matically yield the “most correct” or “most accep tab le” configuration .

Nor is there any algori thm which does. This is because stress is

only one of several factors used in evaluating a confi guration.

Others incl ude metric, dimensionality, degree of degeneracy, and

meaningful ness or interpretability.

Stress and other goodness-of—fi t measures can only be rough

guidelines which hel p one to decide among al ternative configurations .

One reason for this is that there are no concrete statistical guide-

lines for determining whether certain stress values imply “signifi-

cantly” good fit, or a “signif icant difference ” in goodness-of—fit

between configurations. Kruskal (1964a) has published some rough

guidelines indicating what he considers to be “excellen t”, “good”,

“fa ir”, etc. stress val ues. These guidelines , however , are strictly

rule-of-thumb, since stress values are a function of the metric of

the space and the number of points to be scaled , as wel l as of the

scalability of the data . Monte Carlo studies (see Klahr , 1969)

scal ing random di stances , and producing stress distributions , have

presented tabl es of stress values at the .05 levels of the distri-

butions. However, these cannot be taken too seriously because ,

i n scal ing no ise , they provide only an i rrelevant comparison. Any

sort of redundancy or consistency in the data will increase the

chance of a good fit. Therefore, most subjects in almost any
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reasonabl e task will be more consistent than the 95% least consistent

random orderings . The question most experimenters wish to answe r

is not whether there is structure in the data - that is assumed.

The question is the na ture of the structure , and whether it has been

reasonably represented in a given mul tidimensional scaling configuration.

Other Monte Carlo studies , such as that of Young (1970), have

randomly picked configurations and added noise to the interpoint dis-

tance matrices . Unfortunately, these analyses confound the measures

of recovery of the true interpoint distances (metric determi nacy )

and the stress val ues .

Since there is no statistic for determining the “correct” con-

figuration, the usual approach is to obtain several different solutions

using a va riety of metrics and dimensionalities . Choice of an appro-

priate Minkowski metric is often based upon comparison of stress

val ues across metrics . As noted by Shepard (1974), this is invalid

because degeneracies , wi th resul tant lower stress val ues , are rnore

preval ent in the City—Block (r=l ) than in the Euclidean metric (r=2 ,

see Arnol d, 1971), and most prevalent of all in the domi nance metri c

(r=x’). This means that one shoul d primarily rely on interpretability

or theoretical cons iderations , such as the hypothesized integrality or

non— integrality of stimul us dimensions (see Hymen & Wel l , 1967, 1968;

Ga rner, 1974; Somers & Pachella , 1977) in determining an appropriate

metric.

Goodness-of-fi t measures, interpretability , and theoretical

considerations are also used to determine the appropriate number

of dimensions . One frequently used rule—of-thumb is “looking for
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the el bow ” in the stress curve. Since stress decreases with increasing

dimensional ity, one must look for something besides mere increase

in goodness-of—fit (in fact, there wil l always be a perfect solution

for N points in N—2 dimensions — see Lingoes , 1971). Obtaining so-

lutions in a number of di fferent dimensions (fo r a given metric) and

~,lotting stress versus dimensionality yiel ds a curve which often

shows that stress decreases dramatically for increasing dimensionality

up to a certain point. After this point, adding dimensions decreases

stress minimally. The usual interpretation of this phenomenon is

that the added dimensions are needed to accurately fit the distances

up to the correct dimensionality, and extra dimensions only fit noise.

The point offering the “most for one ’s money” - minimizing dimensionality

while maximizing goodness—of-fi t - is called the “elbow” of the curve

(see Figure 1). Once again however , interpretability and theoretical

considerations must wei gh heavily. If the elbow indicates that the

appropria te dimensionality is three, but only two of the dimensions

can be identi fied, then the third dimension is of little theoretical

value (see Torgerson , 1965). In addition, there are disti nct advantages

to confi gurations of low dimensionality , since they greatl y facilitate

the visual ization of structure . Shepard (1974 ) reports tha t in

spite of the advantages of low dimensionality , most people tend to

err on the side of deciding on too many dimensions , rather than too few .

A further consideration in determining the appropriateness of

a conf iguration is the possibili ty o-~ obtaining a degenerate solution.

.

~ 
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FIgure 1. DIagram of stress plotted as a function of dimensionality .

The brea k or “elbow ” in the curve at four dimens i ons indicates

that this is the proper number of dimens ions needed to adequately

descri be the psychologica l space.

---.-

~ 

-



- . -- .~-~ 
—. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— -  ..--

14

This means that the scaling program attempts to increase goodness-of-

fit by collapsing points upon one another. This can often mean that

the dimensionality is too low. Lingoes (1977b) has specified a number

of characterist ics of degeneracy, incl uding: (1) many points are

lying atop one another (d~~ = 0 for many i,j); (2) the stress approaches

zero for a large number of points and low dimensionality ; (3) the

maximal r.- r of iterations is used to obtain the configuration; (4)

stress j~~’- ves wi th decreasing dimensionality; (5) there are outliers -

points only weakly related to the rest of the confi guration; and (6)

the function relating input and der i ved interpoint di stances (called

the Shepard diagram) is step-like in nature. This indicates a large

number of tied derived distances. In addition, Lingoes and Guttman

(1967) have developed a coefficient of deformation, whic h indicates

the degree of degeneracy in a confi guration. In order to minimize

or eliminate degeneracy, one can use one of severa l procedures .

(1) Remove outl iers from analysis , since they obscure structure

among the ramaining points by pushing them together into one section

of the conf iguration (Li ngoes , 1977b). (2) Analyze subsets, or

clusters , separately (Lingoes , l977b; Shepard, 1974). This may

clarify structure wi thin groups. On the other hand , relationships

between cl usters are not accounted for , and therefore intercl uster

compari sons cannot be made . (3) Increase the dimensionality

(L ingoes , l 977b). This may prevent groupings from collapsing to

a point. This method, however , i s not always hel pful , since increasing

the dimensionality may obscure rather than elucidate inter- and intra-

cluster structures by making visualization more difficult. (4) Use

metric methods, such as restricting the shape of the function relating 

--~~~ -~~~~ -~~~~~~~-~~~- -- - - - —-~~~~~~~
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input and derived interpoint distances to elimi nate step patterns

in the Shepard diagram (Shepard, 1974; Shepard & Crawford, 1975).

We must reitera te our emphasis on two points . First , meaning-

ful ness and ease of interpretation of a confi guration are crucial ,

and interact with all other guidel ines for deciding upon a “most

correct” configuration. That is, interpretability is very important

for dec iding on a “best” configura tion.

Second, determi nation of the metric, dimensionality , and

“acceptable ” stress level , as wel l as the interpretation, are almost

enti rely post hoc, unless there are strong theoreti cal limi ts on the

metric and dimensionality. This fact has two major implications .

Fi rst, the cr i ter ia for “acceptability ” are h i ghly subjective. That

is , there are no statistical tests wi th si gnificance levels for the

goodness-of-fit measures. Second, even though interpretabilit y is

crucial in deciding on a configuration , the dangers of over-inter-

pretation are particularly acute. This means that some interpretation

can be found for almost ~~~ confi guration if one has enough creativity

and persistence. Thus, the validity of any interpretation must rely

heavily on the replicability of the basic structures in the config—

uration. We now discuss the problems and methods of interpretation.

Interpreting Configurations

The interpretation of mul tidimensional scaling outputs is based

on the i dentification and labeling of different types of structures,

several of which will be reviewed here.

L -  --  _ _ _
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1. Vectors. The order of points projected onto a vector through

the space may sugges t interpretations of the point constellation.

Vectors are generally found by searching for orderings in the con-

figuration which correspond to objecti ve orderi ngs of physical continua .

One can al so use subjecti ve orderings of physical continua obtained by

methods such as magnitude estimation or unidimensional similari ty

judgments. Usually, the vectors of most interest are the axes of

each of the dimensions , but one may also plot other vec tors through

the space by regressing external variables onto the coordinates of
each point. Chipman and Carey (1975) use a similar technique to

locate vectors corresponding to loudness , pitch , volume and dens ity
in a space of noise bands.

An al ternative method for locating vectors through a Eucl i dean

output space is to apply principal components analysis or factor

analysis to the scaled interpoint distances (see Napior , 1972).

In the case of princ i pal components ana lys i s, the results corres pond

to rotating the coordinate system to maximi ze the variance of the

first coordinates of all points. The second axis maximi zes the

variance of the second coordinates of all points wi th the restriction

that this axis is orthogonal to the first. The process is repeated for

all d dimensions in the space. Factor analysis yields similar results.

In neither case, however, is a substantive interpretation offered.

The procedures merely attempt to elucidate any s tructure that may be

hidden in the scaling output. Degernian (1970) has introduced an

interesting variation of this approach which divides the space into

discrete , qual itative clusters and continuous , Minkowski space. 

- ------~~~~~- -  -~~~-~~~~~~~~--~~~~~~~~ -~~~~~ ----~~~~~~--. -~~~~~~~ 
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2. Polar coordinate patterns. These patterns are interpretations

of the point coordinates projected onto a two-dimensional plane.

Instead of relating external variables to the orderings of the points

projected onto vectors , the points are located in reference to their

polar coordinates. That is , external values are associated with

distance from an ori gin and the angul ar separation of points . The

days of the week and the color circle are two exa~nples of item sets

that may be treated in this fashion .

One can also use an “ideal points ” model to characteri ze a

configuration (Shepard, 1972; Cliff & Young, 1968). In this model ,

it is assumed that the important parameters are the distances of

each point in the configuration from some hypothetical “origin ” or

“ideal point” in the space , from which one or more relevant vectors

mi ght emanate . This model is a form of the polar coordinate pattern

interpreting only the distances from the origin.

3. Clusters. Looking for groupings of items in the space is

another method of interpreting mul tidimensional scaling outputs.

Such regions or groupings mi ght simply be areas of the space parti-

tioned from the rest of the space with no speci fi c restrictions on

intergroup or intragroup relationships between points . In most cases ,

however , one is interested in groupings in which the points are re-

lated to each other in some meaningful fashion , often called clusters.

These cl usters may be overlapping or non—overlapping subsets of the

i tems in a gi ven configuration. There is no ri gorous or uni versa l ly

accepted definition of a cluster. Intuitively, however, an i tem in

a cluster is more similar to other items in the cluster than to i tems

_ _ _
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outside the cl uster . In addition , the items in a cl uster should s hare

some attribute aside from their proximal locations in the mul ti-

dimensional space.

Two major methods are used for locating clusters. One method

is clustering algori thms (Jardine & Sibson , 1971 ; Sneath & Sokal ,

1973), which usually determine the membership and boundaries of

cl usters solely on .the basis of the ori ginal dissimilarities or the

deri ved interpoint distances . The second is a visual examina tion

of the configuration to locate items which are grouped together in

the space and which also share common features.

Cl ustering algori thms, which mechan ically group items into

cl usters , can be very hel pful in elucidating structure for high-

dimens ional , not-easily—visualized configurati ons where structure

is often not apparent. There are algorithms for finding clusters

or partitions wi th non—overlapping boundaries , such as Johnson ’s

(1967) hierarchical clus tering and Lingoes ’ (1977b) PEP—U. One

non-hi erarchi cal clustering al gori thm which permi ts overl apping

boundaries is the addi tive clusteri ng technique of Shepard and

Arabie (1975).

Visually examining the confi guration for cl us terings of items

is a widely—used method, al though there is di sa greement concern ing

what characteri zes a “good” c luster (cf. Lingoes , 1977b ; Shepard ,

1972; Shepard & Chipman , 1970). It is important to note that

different clusterings based on common attributes may be deri ved

from different theoretical considerations . One should also be

apprised of the danger in conclud ,,~ that one has found “clusters ”
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in two—dimensional projections of a higher—dimensional space , since

points may cluster in a particular projection of the space , yet be

far apart in the actual space.

Statistical and substanti ve clustering methods need not, of

course, be mutually excl usive . Lingoes (l977b) points out that

statisti cally signifi cant but uninterpretabl e cl usters (and struc-

tures in general ) will usually be useless . One must have a theory

or explanation to render a cluster meaningful or useful . On the

other hand, cl usters which do not appear upon repl ica tion must be

regarded with susp icion . Th i s i s al so the case when other tas ks , such

as stimul us sorting, yield di fferent clusterings .

4. Manifolds. Manifol ds, like clusters , are subsets of the

scaled items . However, they differ from clus ters in that specific

relationships among members of the subset, such as order ings , are
hypothesized. That is , manifolds are subsets of items which have

a particular structure in and of themsel ves. Generally, manifolds

are structures of a dimensionality of d—l or less , embedded in a

d—dimensional space . Some such structures (see Fi gure 2) are the

simpl ex (points that may be placed on a vector in the space), the

circumplex (points that may be placed on a circle around an arbi-

trary ori gin), and the radex ( a polar coordinate pattern which is

a comb ination of simpi-ices and nested circumplices). Often the

structure of a set of i tems which shoul d be scaled in d-l or fewer

dimensions is distorted by the addition of extraneous dimensions .
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One example of this phenomenon is the “horseshoe ” pattern which may

resul t when a simpl ex is scaled in two—dimensional space, and uses

the extra degrees of freedom to bend back upon i tself (Kendall , 1971).

In 3—space , a simpl ex may form a helical pattern .

In order to identi fy candidate manifolds , one may first use the

scaling algori thm to suggest the existence of “interesting” structures .

Such structures are then analyzed separately to see if they can

indeed fit into a space of lower dimensionality . The I i tems composing

the Structure can be extracted and the lxi matrix of dissimilari ties

can be exam ined to “confi rm” the structure. Lingoes and Borg (1977)

detail a number of methods for identi fying spatial manifolds.

5. Isovalue contours. Plotting the “i sova lue contours ” for

a givers external variable is another way to interpret a configuration

(A belson , 1954). In this procedure,a function of the external rati ng

of each scaled item such as rated preference , assigns a ra t ing  to

each point in the space. The rating of an i tem close to a gi ven point

strongly affects the rating of the point. The further away the

item is, the lower its effect on the rating . The rating of a point

is the sum of the effects of all i tems upon that point. To compute

the rati ng of a given point p, Abelson uses the formula:
N r.

1

~ i=1

where r. is the rating for the i—th Item and ~~ is the distance be—

tween the point p and item i. Using this fo rmula , each point on the

plane is assigned a value , and contours are drawn connecting the

points with equal value.

— — —- _- —- — -—-----—- — rn — A.
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6. Relating different representations. Yet another interpre-

tation method is exemplified by procrustean analysis algori thms

(Gower , 1975; Cl iff, 1966; for applications see Shepard & Ch i pman,

1970). These methods rotate, transla te, and reflect points to

obtain a “best fit” of one configuration onto another. The basic

rationale for such methods is that comparing a scaled output to

a pre-interpreted confi guration gives some indication of the validi ty

of placing the same interpretation on the scaled configuration. The

customary statistics are the sum of squares error of the fit and the

product-moment correlation of the point coordinates given the best

fit up to a rig id translation , rotation , and reflection of the

coordinates. Unfortunately, these statistics , at present, do not

have significance levels i ndicating true goodness—of-fit. Therefore

the interpretation of these statistics is as subjective as the inter-

pretation of stress.

A variation upon the fitting—of-one-confi guration—to—a-target

approach i s the use of sever al scale d outputs to genera te a group

space - a space wh ich represents the “important” features of the

aggregate of all individual outputs . An example of this approach ,

PINDIS (Bo rg, 1977), uses a model similar to that employed by

INDSCAL (Carroll & Wish , 1974). Basically, the model postulates

a group space with fixed axes . Each individual , when assigning

values to stimul i , uses this space to generate the inter—item

dissimilari ties after stretching or shrinking each axis. This

means that each individual evaluates the coordinates of each point

according to the group space coordinates , but then multi plies

this coordi nate by a stretching factor to indicate the dimens ion ’s

— -_-- - _-—-----—-——————.—-—
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relati ve saliency . Using a mul ti—confi guration extension of the

procrustean analysis algori thm, PINDIS generates a group space and

dimensional weights for all dimensions for all individuals. The

argument is that all individuals are using a coninon set of dimensions ,

so the axes are fixed and can therefore be interpreted.

8. The conf~guration itsel f. Last , but not l east, it is

possible to regard the confi guration as meaningful in and of itsel f,

wi thout reference to any physical dimensions or categories (Bailey,

1974; Chipma n & Carey, 1975). This approach allows one to characterize

an internal arrangement of a stimul us domain, perhaps defi ning new

“dimensions ” or groupings , on the basis of a mul tidimensional scaling

output. One example of this is the color space (Shepard , 1962).

Several different interpretation methods can, of cours e, be

used in analyzing a single data set. Some analyses may be more

app ropriate for some confi gurations and others for other configurations .

The different types of structure are not mutually exclusive . Compari-

sons among structure—recovery methods are, however , not meaningful

for two reasons . Fi rs t, many methods are difficul t, if not impossible ,

to compare due to differences in representations and ways of calculating

goodness-of—fit. Second, the heuristi c value of a given method depends

upon the problem being addressed .

We now di scus s the stress , the goodness-of-fi t measure , and

some of the ma thematical considerations when applying the nonmetric

multidimensional scaling algori thm.
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Stress

,Since the introduction of the stress parameter (see Kruskal ,

1964a, b), much attention has been paid to stress as (a) a goodness-

of-fit measure (Kruskal & Carroll , 1 969; Stenson & Knoll , 1969;

Klahr, 1 969; Wagenaar & Padmos, 1971 ; Spence & Ogilvie , 1973),

(b) an index of recovery of the “true” configuration obscured by

noise (Young, 1970; Sherman, 1972), (c) an indicato r of the appropriate

dimensiona lity of the representation (isaac & Poor, 1974; Spence &

Graef, 1974), and (d) a measure of the underlying metri c (Arnold ,

1971). All these papers are based on the observation that, in a

Euclidean space, ordered data on interstimulus proximi ties suffi-

ciently constrain the solution to an interval scale (see Abelson

& Tukey, 1959, 1963; Shepard, 1966). In a Monte Carlo study to

validate this claim , Shepard (1966) reports correlations in excess

of .99 between “true” and reconstructed distances for all test

configurations of 10 or more po ints. Th i s means that an exce ll ent

reconstruction of the original point confi guration is made from

error-free data. Young (1970) and Sherman (1972) evaluated the

reconstructive powers of multidimensiona l scaling for fallible

data. They arbitrarily placed points in a space and generated

a dissimilari ties matrix by randomly moving the points before

calculating the interpoint distances . They also report good

recovery of the “true” confi guration under conditions of moderate

perturba tions of many points . These studies , however , obscure

one important point. The scaled outputs may be solutions to very

ill—con ditioned functions. That is , large deviations from the 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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local minimum configuration may produce only smal l increases in

stress. One of these non-optimal solutions , moreover , may be more

interpretable than the local minimum solution. This means that

smal l rank reversals in the ordinal dissimilarity measures due to

exper imental error coul d eas ily have obscured key structures by

leading to the best—fi tting rather than the “true” configuration.

By the same token, there are situations in wh i ch the local minimum

is in a deep valley of the stress function , so that even slight

changes in any of the point coord inates lea d to large increments

in stress. In this case, the function is well—condi tioned.

A method of interpretation should distinguish between these

two cases , s ince a perfect fit to one of the bas i c structures

(e.g., vec tor , polar coordinate pattern, clus ter) usually requi res

movement of points away from their local minimum locations . If it

were possible to constrain the spatial confi guration to perfectly

fit a prespecified structure, observing -the amount of increase in

stress and thereby determining how well- or ill—conditioned the

stress function is for any particular set of input proximi ties,

one mi ght gain some indication as to the validi ty of an inter-

pretation. For this reason we propose just such a method for con-

strained scaling and interpretation called CONSCAL .

Confi rma tory Mul tidimensional Scaling (CONSCAL)

Placing constraints on either the form of the monotone distance

function (the function relating input proximities and deri ved distances )

or the locations of the points is not a new concept in mul tidimensiona l

scaling. Shepard and Crawford (1975) add penalty functions to the 
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standard stress measure to specify the shape of the Shepard diagram

( the monotone distance function). One option in McGee ’s (1968) “commo n

elasti c mul tidimensional scal ing” (CEMD) program permi ts the simul-

taneous scaling of several individual proximity matrices into di fferent

configurations with a penal ty function constraining all configurations

to be “somewhat” al ike .

In our basic model for confi rmatory scaling, the interpoint

distances are a function satisfying the followi ng :

(a) DECOMPOSABILITY . The distance between points is a function

of componentwise contributions .

(b) INTRADIMENSIONAL SUBTRACTIVITY . Each componentwi se con-

tribution is the absolute val ue of the scale difference.

These are two of the three assumptions used by Tversky and Krantz

(1970) to characterize the Minkowski metric.

Assumption (a) means that the distance between two points ,

x and y, is:
d(x,y) = FEi (x i,yi)~ 

... 
~~~~~~~~~~ ~n~] 

(1)

where F is an increasing function in each of its n arguments. The

~‘s are symmetric on both arguments and nonzero except when x1 y
~

in which case 
~~~~~~~ 

= 0. Psychologically, one interpretation

of this assumption is that the proxim 4ty of two stimul i is determi ned

using a two—stage evaluation. First , an aspect is picked and the

subject judges the relative difference of the two stimul i with

respect to the particular aspect. This process is repeated until

all relevant aspect differences have been eva l uated , at which time 
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these judgments are amalgamated into a singl e i ndex of overall

proximi ty.

Assumption (b) means that the proximity measure may be

wr itten as follows :
d(x,y) = F [Jx1—~1l~ ~~~~~~~~ 

(2)

This di ffers from Eq. 1 pri marily in that the x
~ 

and y1 val ues

are points along an axis.

In addition , we make the assumption that the x1 values along

each aspect axis may be evaluated , at an ordinal scale, using other

physical or psychological measurement methods. For example, assume

the dissimilari ties of pairs of rectangles are scaled in two dimensions

and the axes are identified with psychological area and shape. One

way to tes t thi s model i s to use magnitude es timates of area and

shape for each of the scaled rectangles to establ i sh an order of

x1 ’s for area and x2
1 s for shape. These orders are then viewed

as constraints on the coordinates of each point. So, if x1 < y1,

then the points x and y must be located so that the first coordina te

of point x is smaller than the first coordinate of point y. That

is , the magnitude estimates establish a weak order of projections of

all points onto the axes. Operationally this means that a set of

numbers from some order ing task , such as a magnitude es timation or

a Thurs tone scal ing of pa i red compar i sons (Thurstone, 1927), is

given as supplementary information to the scaling program. As the

program itera tes towa rd a configura tion of lowes t s tress , the con-

figuration is forced to satisfy the ordinal constraints from the

ordering data . This process may be implemented by stepping the 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _  _ _ _
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conf i guration at each i teration and then moving the points to conform

to the ordering constraints. Figure 3 illustrates the procedure

for one hypothetical iteration of two points in a two-dimensional

space. Furing the t—th i teration, points located at ~
(-t ) and y(t)

are moved to ~
,( t) and ~1~t)• Since there is now a violation of

the ordering requirement along one dimension, the po i nts are moved

to ~
(t÷fl and y(t+l ) to satisfy this requirement. This process

is repeated at each step unti l a local minimum is reached.
For two or more points the monotone order of projection onto

each axis is determined using Kruskal ‘s (1964a , b) monotone regression

on the coordinates in place of its more usual application to the

interpoint distances. Wi thin the permissible range of values for

a coordinate, the movement toward a minimum stress configuration

proceeds as in regular nonmetric mul tidimensional scal ing, but

the specif ied order of any two po ints along any one dimens ion can

never be reversed.

Krus kal ’s monotone regression , as applied to interpoint distances,

has two options known as the primary and secondary approaches . In

the prima ry approach , tied interi tem dissimilarities need not be

mapped into equal interpoint distances , while in the secondary

approach the mapping must be onto equal interpoint distances .

In both cases , violations of the general monotonicIty requirement

mean contributions to the stress. In CONSCAL , these two options

are also available when specifying the monotone order of projection

onto the axes . Here , the prima ry approach is called weak dimensiona l

L 
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~~(t )

U

S

(t+1) 
______ 

, (t)Y . -4 — — — —  Y

S

Figure 3

During each i teration Confi rmatory Scaling moves all points twice . Fi rst,

points ~
(t) and ~(t) are moved to l ocations ~~

s ( t )  and ~.(t) using the

method of steepest descent. Second, these points are moved to locations

and ~(t+1) to satisfy the rnonotonicity requirement of the point

coordinates with respect to the horizontal coordinate axis. 
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monotonicity , while the secondary approach is called semi—strong

dimensional monotonici-ty. Semi-strong dimensional monotonicity is

usuall y used for scaling stimul i in a factorial experimental desi gn ,

s ince all tied values of the independent var iables used to create the

factorial desi gn shoul d map into tied coordinate val ues. When psycho-

logical variables specify the order of projection onto the axes, wea k

dimensional monotonici-ty shoul d usually be used since there is littl e

reason to believe , for examp l e, that two stimul i which elicit category

estimates of 6 on a 1 to 10 scale are precisely equal psychologically.

An Examp le: Mul tidi mens ional Scal ing of El lip ses

The follow ing examples come from a study of the interactions

among dimensions of stimul us variation (for a theoretical discussion

see Somers & Pachella, 1977). One way of studying these interactions

is to investi gate the relationship between unidin iensional judgments

and interstimul us dissimilarity ratings . Previous studies using

rectangles as stimul i in scaling tasks indicate that two dimensions -

size (width times height area) and shape (width divided by hei ght)

were the relevant psychological dimensions for predicting dissimilari ty

ratings (Krantz & Tversky, 1975; Noma , Note 1). For ellipses , it

was therefore hypothesized that the two dimensions of area and

eccentricity (the “s i ze ” and “shape” dimens ions of ell ip ses) would

be the relevant dimensions .

We were i nterested, basically, in three questions. First , how

relevant are the d imens ions of area and eccen tri city as predictors

of judged dissimilarity? Second , how do “physical area ” and “physical

--
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shape ” (deri ved from physical measurements of the s timul i ) compare

wi th “judged area” and “j udged shape ” (deri ved from ma gnitude esti-

mation data) as dimensions cha rac terizing the configuration? Lastly,

since area—eccentrici ty and and major axis—minor axi s are physically

equivalent pairs of dimensions , are they also psycholo gi cal ly

equivalent? In other words , an ellipse can be uniquely specified

by noting ei ther its area and eccentricity or the lengths of its

major and mino r axes. Therefore, one might hypothesize that the

area—eccentricity and the major axis-mi nor axis pairs of dimensions

woul d equally well characterize the two—dimensional scaling configu-

rations. For rectangles , however, area and shape seem to be better -

descriptors of the two-dimensional confi guration than are hei ght

and wi dth (Krantz & Tversky, 1975).

A factorial desi gn with four equally space d level s of area

crossed with four equally spaced l evels of eccentricity was employed

in constructing the stimuli. The largest ellipse was in a 3:1 ratio

to the smallest , and the most eccentric was in a 1.66:1 ratio to the

least eccen tric. These sixteen ellipses , drawn by a CALCOMP plotter ,

were photographed, and black-on-white slides were made .

Four subjects made global dissimilari ty judgments for all

possibl e pairs of ellipses (excluding identical pairs). The enti re

set was presented three times, in a different random order each time ,

and the resul ts were averaged for each subject. The subj ects received

the following instructions verbally: 
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We are interes ted in how people perce i ve complex
figures. In this experiment you will be asked to judge
how similar ellipses are to each other. You will be
shown pa i rs of drawings like this. [sample pair of
slides shown] Rate the similarity of the pair on a
scale of 1 to 10 (integers only), 1 being the most
similar , 10 the least similar (or most different).
If the two drawings of a pair were identical , for
example, you would rate the pair zero. (This will never
be the case, though — the two stimuli in a pair will
always be different.)

Base your judgment on the overall similarity of
the figures. To give you an i dea of what the whole set
of figures is ~ike , I’ll run through the slides briefly.
[the 16 ellipses shown singly, in random or der.]

You will have as much time as you need to judge each
pair. Mark your judgment in the appropriate space on the
answer sheet. Be sure to use the ful l range of ratings .

Do you have any ques tions?

In another sess ion, subjects made magnitude estimates , on

the same 1-10 scale, of four properties of the ellipses (which are

presented individually) — area, eccentricity , length of major axis ,

and length of minor axis. The order of these four tasks vari ed

among subjects. Six judgments were made of each of the four pro-

perties for each of the 16 ellipses (384 judgments total), and the

resul ts were averaged for each subject in each task.

Unconstrained mul tidimensiona l scaling of the global dissimi-

larity judgments showed generally good fits for all four of the sub-

jects in two—dimensional Eucl i dean space. One confi guration (DT)

had a stress of l3.lZ and the other subjects ’ configurations ranged

between 5.6% and 8.7% stress. We were reasonably confident tha t

the local minimum problems were being avoided because starts from

either random or “hypothesized best fit ” (area by eccentricity
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factorial design ) confi gurations resul ted in virtually identical

stress values and configurations. For two subjects, a third dimen-

sion was added , but this made littl e difference in stress, and the

extra dimension was uninterpretable .

In all four cases , clearly inte rpretable dimensions of area

and eccentricity were present. There were a few minor deviations

from the hypothesized orderings along the dimensions , as ca n be seen
in Fi gures 4—7, and one major reversal of area levels wi thin the

smallest eccentricity level in the highest-stress configuration

(DI, Fi gure 7). One question that cannot be answered using tradi-

tional interpretation techniques is , how meani ngful are such revers al s?

Are they merely no i se , or does the subject actually have some anomaly
in hi s or her cogniti ve structure? One way we can try to answer thi s

is to use a constrained mul tidimensional scaling analysis.

As can be seen in Table 1, constraining the configuration to fit

the factorial desi gn according to which the stimul i were constructed

causes increases in stress from about 2—4% for each subject, indicating

that this model does reasonably well for all four subjects. In fact,

the configuration with the major reversal (DT, Figure 7) shows the

second—lowest increase in stress - only 2.4~. This increases our

confi dence in the factorial design with respect to OT, si nce even

though her deviations from the model appeared to be more systematic

than those of the other subjects, they seem to be no more important.

Comparing judged area and judged eccentricity wi th physi cal area

and physical eccentricity produced littl e difference in either stress
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val ues (see Table 1) or configurations (see Fi gures 8 and 9 for

sampl e configurations). One would naturally expect the factorial

design, with strong monotonicity (see Figure 10), to produce higher

s tress than any of the other model s because of the large number of

ties which must be satisfied. These resul ts indicate two things :

(1) that subjects ’ scalings of area and eccen tr icity are reasona bly

ver idical (wh ich is not par ticularl y sur pris ing ) , an d (2) tha t models

using physical versus judged area and eccentricity are for the most

part interchan geable , with preference perhaps going for the factorial

des ign model , because of its greater simplicity .

Compari ng the “scaled area—eccentricity ” to the “scaled major

axis-mi nor axi s ”model s proved more interesti ng. For three of the

subjects, the area-eccentricity and major axis-minor axis models

were approximately equivalent in terms of stress, an d pro duced

h ighl y simi lar confi gura tions (com pare Figures 6 an d 11 , for example).

However , for one subject, there was a drama tic dif ference i n stress

between area-eccentricity and major axis-mi nor axis confi gurations .

For RR , at leas t, even though the two models are physically equivalent ,

they are not psychologically equivalent (compare Fi gures 8 and 12).

This compari son also shows that there can be dramatic indi vidual

differences between subjects regarding the applicability of certain

model s even though the confi gurations may appear quite similar.

Using confi rmato ry mul tidimensional scaling, it is also possible

to constrain only a subset of the dimensions. This mi ght be especially

helpful if one has strong hypotheses only about some of the dimensions

a subject is expected to use , but not about all of them. For exampl e, 

- -~~~-~~~~~ -~~~•‘ . - - 
- 
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see Figure 13, in which eccentricity , bu t no t area , is constra i ned.

Discuss ion

Most tradi tional interpretation techniques assume the uniqueness

of the configuration. Structures are imposed on the resul tant con—

figuration to yiel d an interpretation (an exception being the inter-

pretation of manifolds by extracti ng subsets of points and analyzing

these submatrices of the original dissimilarity matrix). As we

have seen, however, there may be a wi de variety of possible confi g-

urations wi th almost identi cal stress values. What this means in

terms of interpretations is not clear. It does mean that a measure-

ment theoretic or confirmatory analysis method is needed. The measure-

ment theoretic approach could be an extension of the Krantz and

Tversky ( 1 975) tests, incorpora ting an error theory that measures

the degree to which their measurement axioms are violated. (This

woul d also allow a non—parametric goodness—pf-fi t test.) Another

extension of the tests would cover nonfactorial experimental designs.

Unti l such necessary and sufficient conditions are defined , con-

firmatory mul tidimensional scaling could fill the void. In fact,

confirmatory scaling may have an advantage over the Krantz and Tversky

tests in that estimates can be made of the “importance ” of violations

of the condi tions. For instance , one axiom of the Tversky and

Krantz (1970) axiom system is

(c) INTERDIMENSIONAL ADDITIVITY . The distance is a function of

the sum of componentwise contributions.

~

-

~
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One testable condi tion that may be derived from this is that the

dissimilarity judgments, 5, must satisfy :

~(A 1S1, A2S2) 
= ~(A1S2, A2S1)

where A1 and A2 are two l evel s on dimens ion one an d S1 an d S2 are two

l evel s on dimens ion two wi th stimul us A~S~ being on the i—th level

of dimension one and the j-th level of dimension two. If the subject

is asked to rank the dissimilari ties of all  stimu l us pa i rs , systematic

violations of this condition could occur. What remains unanswered ,

however, is whether these violations are psychologically important.

That is, is this systematic bias an arti fact of the requirement

that the subject must report some ordering even if he is indifferent

with respect to several possibl e orderings? In this case, the sub-

ject will probably establish a unique ordering using a simpl e rule

even if this rule is of no impor tance in his ac tual han dl i ng of

the stimul us representation. By scaling this data using a confi rma-

tory mul tidimensional scaling, these anomalies are shown to be un-

important, as they contribute littl e to the stress.

Even though the analysis is confi rmatory only in the sense that

fixing certain axes in a factor analysis is a confirmatory factor

anal ysis, the resu 1~ts provide stronger support for a potential inter-

pretation than that provided by most tradi tional methods. Perhaps

the appropriate approach is to use one of the more tradi tional

me thods or a theore tical anal ysi s to formu l ate a fam i ly of poss ib le

interpretations. By applying confirmato ry multidimensiona l scaling,

a decision can then be made as to the relati ve validit y of each

interpretation. 
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A situation in which the nonuniqueness of the solution is im-

portant is in analyses in which one or more scaled outputs are compared

among themselves or against pre—interpreted confi gurations . The

validity of these approaches may be questioned since there may be

slight modifications of each confi guration that woul d produce vastl y

different goodness—of-fi t measures across configurations and change

the group space i n an approach suc h as PINDIS.

One of the major unsolved problems of confirma tory scaling is

the interpretation of increases in stress with added constraints

to the confi guration. One method for evaluating stress increases

proposed by David Krantz (personal comunication) is a pseudo-

F—test. In the unconstra i ned multidimensional scaling of N points

in a d-dimensional space, us i ng Youn g ’s (1970) terminology , there are

N(N—l)/2 degrees of freedom of the dissimilarities and d (N—l) - d (d-l)12

degrees of freedom of the coordinates. Not surprisingly, Young (1970)

has demonstrated that, in general , the stress increases wi th either

increases in the degrees of freedom of the dissimilarities (number of

points ) or decreases in the number of degrees of freedom of the coor-

dinates . In certain cases, such as that of strong dimensional mono-

tonicity wi th a factorial design , the degrees of freedom of the

coordina tes are drastically decreased. For instance , in a four-by -

four factorial experimental desi gn , there are 120, or 16 (16-1 )12 , de-

grees of freedom of the dissimilarities . In an uncons trained mul ti-

dimensional scaling of the points in two dimensions there are 29,

or 2 (16—1 ) - [2(2-1) 12] ,  degrees of freedom of the coordi nates . By

contrast, a confirma tory mul tidimensiona l scaling in a two—dimensional 

~.-/ ~,)-.~~ - -
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four-by -four desi gn us i ng strong dimensional monotonicity has 5, or

2(4—1 ) - [2(2—1 )12], degrees of freedom of the coordinates . Thi s would

seem to imply, ex tend i ng Youn g ’s analysis , that the stress in the

confirma tory analysis shoul d be much hi gher than that of the unconstra ined

solution. However, in our analysis of three of the four subjects we

found no large differences in stress when comparing unconstra i ned

and confirmatory analyses . Using the degrees-of-freedom point of

v iew, this seems to imply that the confirmatory factorial design

is the best representation of the data. Currentl y it is unclear how

weak dimensional monotonicity and non—factorial designs coul d be

interpreted in light of a degrees-of-freedom analysis.

Fi nally, we reiterate that the scaling solution which is optimal

in terms of some algori thm or goodness-of-fit measure should not

automati cally be taken to be the optimal solution for other purposes ,

such as interpretation of model-testi ng. Even though goodness-of-fi t

measures tell us something about the appropriateness of the scaling

model , they indicate littl e in and of themselves about the interpre-

tability of the scaled resul ts. As we have shown in the case of

mul tidimensional scaling, possible interpretations may be rejected

unwarrantedly, and “interesti ng” distortions in the unconstra i ned

scaled outputs may be only mathematical anomalies .

This new conceptualization of optima lity can be extended to

other types of scaling. The correct question in most scaling situations

may be how the goodness-of-fi t measure is affected if a given model is

satisfied , rather than how closely the scaled output resembles our pre-

L 
interpreted hypothetical space.
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Ref erence Note
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