—

D=-A045 800 MICHIGAN UNIV ANN ARBOR HUMAN PERFORMANCE CENTER F/G 5710
CONSTRAINING NONMETRIC MULTIDIMENSIONAL SCALING CONFIGURATIONS,. (U)
AUG 77 E NOMAr J JOHNSON NO0OO14=76=C= 06“8
UNCLASSIFIED 014523=3-T

=
| ¢ | '
ADADASE00

END
DATE
FILMED
.-77
poC




014523-3-1

HUMAN PERFORMANCE CENTER

DEPARTMENT OF PSYCHOLOGY
The University of Michigan, Ann Arbor

Constraining Nonmetric
Multidimensional Scaling
Configurations

ELLIOT NOMA and
JANICE JOHNSON

=) { Ir
1] & i
0. ot 0 m |

D

Technical Report No. 60
August 1977

[

— 4




THE HUMAN PERFORMANCE CENTER

DEPARTMENT OF PSYCHOLOGY

The Human Performance Center is a federation of research
programs whose emphasis is on man as a processor of information.
Topics under study include perception, attention, verbal learning and
behavior, short- and long-term memory, choice and decision proc-
esses, and learning and performance in simple and complex skills.
The integrating concept is the quantitative description, and theory,
of man's performance capabilities and limitations and the ways in
which these may be modified by learning, by instruction, and by task
design.

The Center issues two series of reports. A Technical Report
series includes original reports of experimental or theoretical
studies, and integrative reviews of the scientific literature. A Mem-
orandum Report series includes printed versions of papers presented
orally at scientific or professional meetings or symposia, methodo-
logical notes and documentary materials, apparatus notes, and ex-
ploratory studies.
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Abstract

The interpretation of multidimensional scaling outputs is
usually based on the identification and labeling of geometric
structures in the space. Some of thei most commonly used structures
are reviewed. Interpretation of the scaling outputs requires many
psychological and mathematical assumptions including the assumption
that the configuration with the lowest stress is the output desired.
Unfortunately, little is known about the uniqueness of a configuration
generated from fallible data and this non-uniqueness also affects
the interpretation of the spatial outputs. A scaling method incor-
porating information in addition to the dissimilarities is proposed
and the implications of this approach for the interpretation of

a configuration are discussed.
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Constraining Nonmetric Multidimensional
Scaling Configurations 1
Elliot Noma and Janice Johnson

The University of Michigan
Introduction

People organize their experience of the world. In some fashion,
they build a cognitive structure allowing them to see the similarities
and differences among events. This facility is crucial, since people
can then use knowledge derived from past experiences to deal with
present or anticipated future situations. Similarities and dif-
ferences among events may be modeled as aggregates of similarities
(or differences) along psychological continua or between psychological
categories. In addition, these psychological continua and categories
are assumed to correspond in some way to identifiable stimulus
properties. For example, they may correspond to the physical dimen-
sions or semantic categories of the stimuli.

Many scaling techniques attempt to define correspondences among
three measures: similarity judgments, subjective measures, and ob-
jective measures. In most methods, however, the experimenters make
a priori assumptions about certain aspects of cognitive structure.

For example, in magnitude estimation a subject judges the extent
to which a stimulus manifests a prespecified characteristic. This
estimate is assumed to be function of objectively measured parameters.

By contrast, structures in a multidimensional scaling need
not be identified beforehand. In the model used by Shepard-Kruskal

nonmetric multidimensional scaling, each stimulus is represented




as a point in a coordinate space. The interpoint distances are

measured using a Minkowski metric, which means that if points j
and k have coordinates xjk’ sz, sty xjd and X1 Xk2® Xkq res-
pectively in a d-dimensional space, then their interpoint distance
is r]]/r.

d
djk = L2 1%5 = Xl

The exponent r, which can range from 1 to =, determines the type
of Minkowski metric. When r = 2, the above equation yields the
Pythagorean Theorem, which of course defines the Euclidean distance
function. The Euclidean metric is by far the most commonly used,
but sometimes it is fruitful to consider other metrics. Another
common metric, in which r = 1, is often referred to as the City-
Block metric.

Starting with a measure of interpoint similarity, dissimi-
larity, distance, or other measure of interstimulus association,
the nonmetric multidimensional scaling algorithm attempts to
place stimuli in the space such that stimuli which have been
judged to be very similar, not dissimilar, close together, etc.
are represented by points that are close to each other in the
space. Conversely, very dissimilar . .stimuli should be represented
by points that are far apart. This relationship between simi-
larity and distance is called the monotonicity requirement,
because the interpoint distances should be monotonically related
to the input dissimilarity measures.

In most cases, however, no set of points in a space with a
fixed metric, r, and dimensionality, d, can satisfy the mono-

tonicity requirement. It is assumed, however, that deviations
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from a perfect fit are due to measurement errors, and an attempt
is made to find the constellation of points that best satisfies
the monotonicity requirement. That is, a scaling algorithm tries
to find a set of point coordinates that minimizes some loss func-
tion in the same way that a linear regression finds parameters
that minimize the sum of squared deviations of expected and ob-

served values. Kruskal (1964a) defines a loss function called

stress: 2 SN2
S ik(dg = dj¢)
sTRessy = [ T
ik ik

where the djk's are the distances derived by the scaling algorithm,
and the ajk's are the values of the interpoint distances satisfying

he monotonicity requirement. Note that a stress of zero indicates

perfect fit in the sense of satisfying this requirement. That is
to say, nonmetric multidimensional scaling attempts to define a
configuration that minimizes stress, and then uses this measure b
as an indicator of goodness-of-fit (in the same sense as the mean
square due to error in a linear regression).

To minimize stress, an algorithm is employed that starts with
an arbitrary initial configuration and iteratively steps the point
coordinates toward a lower stress configuration. After a pre-
specified number of iterations, or after several iterations that
do not appreciably decrease the stress, the algorithm terminates

and a final configuration is printed. This configuration is often

called the local minimum solution, since any movement of one or

more of the points away from the current location in space will




increase the stress. This does not mean, however, that this is
the absolutely lowest stress configuration. There may exist many
local minimum solutions for a given set of dissimilarities. If
all these solutions could be located, at least one would have the
lowest stress associated with it. This configuration, or group of

configurations, is called the global minimum solution. In most

cases it is assumed that the local minimum found by the multi-
dimensional scaling algorithm is actually the global minimum.

The configuration is then interpreted in terms of correspondences
between groupings of points and psychological, physical, or
semantic dimensions or categories.

On the surface, it seems that multidimensional scaling
methods render a final configuration without reference to any
external constraints or a priori hypotheses. Therefore, multi-
dimensional scaling can be very helpful if a priori hypotheses
are vague or nonexistent, since post hoc interpretations are
often possible (their validity depending, of course, on the repli-
cability of the orderings or groupings). It can also be helpful
in suggesting alternative interpretations by alerting the experi-
menter to qualitative as well as quantitative deviations from
the expected results. Two reasons for the ease of interpretation
of a multidimensional scaling output are the (usually) low dimen-
sionality and Minkowski metric of the output configuration.

However, the unconstrained nature of multidimensional scaling
also has its drawbacks. Aside from the many hidden psychological

assumptions, little is known about the uniqueness of configurations




generated from fallible data, but the programs blindly search out

the configuration with the lowest possible stress, and give no infor-
mation about any other possible configuratians. Thus, there is no
way to predict how perturbations from the local minimum solution

will affect either the stress or the interpretability of the spatial
output. It might well be that the configuration with the lowest
stress is very difficult to interpret, or does not manifest hypo-
thesized structures, whereas a configuration with only slightly
higher stress is dramatically more interpretable or in accord with
previous hypotheses.

In this paper we will review some of the theoretical assumptions
underlying multidimensional scaling, as well as some of the more
traditional methods of interpretation. We also survey the research
on the uniqueness of the scaling solution. Finally, we propose an
alternative approach to the interpretation problem - CONSCAL, a
mul tidimensional scaling program which allows a user to constrain
the scaling solution in accordance with certain hypothesized
structures.

In order to understand the questions involved in interpretations,
we must review the basic assumptions underlying multidimensional
scaling. These assumptions are both mathematical and psychological.
We first examine the psychological assumptions, and their implications

for deriving and interpreting configurations.




. Psychological Assumptions of Multidimensional Scaling

The most crucial psychological assumption of multidimensional
scaling is that people's internal stimulus representations may be

meaningfully modeled in spatial terms. In other words, it is

assumed that a person internally organizes representations of stimuli

in a form functionally analogous to a “psychological map." Within

this map, the stimuli are points and the interstimulus similarities
(or subjective distances) are an increasing function of the distances
between points in the map. The interpoint distances in the psychological
map are generally taken to be fixed and to be accessible to a subject
in a judgment task. This psychological map is th: "underlying con-
figuration” thch multidimensional scaling methels seek to recover.
This assumption has led directly to two lines of research that con-
sider (1) the conditions that perfectly scalable data must satisfy
and (2) why deviations from perfectly scalable data, or errors,
occur. No satisfactory axiomatization of spatial models has been
developed, but some necessary conditions are outlined by Beals,
Krantz and Tversky (1968). The testability of such axioms is,
however, in doubt. A possible explanation for errors has been
explored by Ramsay (1969). He models the errors by accepting

the validity of the spatial model and assumes the distances to

be constantly varying according tn some probability distribution,

with any individual judgments being based on a sample taken

from this distribution.
Most multidimensional scaling programs also assume that a

subject's psychological map can be modeled successfully, or at




least satisfactorily, by a Minkowski r-metric. This is despite the
fact that Minkowski r-metrics are only a small subset of the metrics

which might be considered (see Shepard, 1974).
It is furthermore assumed that a person can meaningfully organize

any set of stimuli. Specifically, the stimuli may be ordered or
classified with respect to some psychological referent or referents.
These referents are usually assumed to correspond to geometric shapes
superimposed on the scaled output. Relating psychological referents
to the output configuration is often done by labeling the axes of
the coordinate space. After examining the first coordinate of all
points, attempts are made to define a psychologically meaningful
criterion for distinguishing points with large positive first coor-
dinate values from those large negative values. This process is
repeated for all d coordinate axes in a d-dimensional space. Another
method attempts to assign psychologically meaningful labels to
groups of points that are scaled near each other in the multidimensional
space. Such groups of points are referred to as clusters.

As Cliff and Young (1968) point out, a subject's responses
depend only indirectly on physical characteristics of the stimuli,
and more on how the subject has personally organized the items.
A subject's personal organization, moreover, will depend on which
similarities or differences between stimuli are most salient or
significant to him. It follows from the assumption of personalized
psychological referents that, unless there is a high degree of
agreement across subjects as to which types of interstimulus relation-
ships are most significant, multidimensional scaling outputs might
be expected to vary across subjects. Not only can relative interpoint

distances vary, but in many instances the dimensions of variation, the




dimensionality, and even the metric of the space have been shown to
be different for different individuals (Hyman & Well, 1967; Spector,
Rivizzigno & Golledge, 1976). This means that care must be taken
when pooling subject responses. Even though the pooled configuration
may be easy to analyze, it also may lead to an incorrect or unrepre-
sentative interpretation. It is better to analyze and interpret
scaling plots separately for each subject, or to use a scaling method
that creates a group space and indicates how each of the individual
spaces may be mapped onto this space. A program which does the latter
is INDSCAL (Carroll & Wish, 1974), which assumes that all subject
spaces are characterized by the same dimensions, dimensionality,

and metric, but which allows for differential weightings of the
common dimensiens in producing individual configurations. The
INDSCAL model 1is usually interpreted to mean that all subjects
evaluate stimuli with respect to the same psychological aspects.

They then use a common method of amalgamating these many aspects,

but differentially weight them according to individual saliency

or attention factors.
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Deciding on a Configuration

Although multidimensional scaling programs yield a single
“best" configuration in terms of minimizing stress (assuming that
a global minimum is obtained), this does not imply that they auto-
matically yield the "most correct" or "most acceptable" configuration.
Nor is there any algorithm which does. This is because stress is
only one of several factors used in evaluating a configuration.
Others include metric, dimensionality, degree of degeneracy, and
meaningfulness or interpretability.

Stress and other goodness-of-fit measures can only be rough
guidelines which help one to decide among alternative configurations.
One reason for this is that there are no concrete statistical guide-
lines for determining whether certain stress values imply "signifi-
cantly" good fit, or a "significant difference" in goodness-of-fit
between configurations. Kruskal (1964a) has published some rough
guidelines indicating what he considers to be "excellent", "good",
“fair", etc. stress values. These guidelines, however, are strictly
rule-of-thumb, since stress values are a function of the metric of
the space and the number of points to be scaled, as well as of the
scalability of the data. Monte Carlo studies (see Klahr, 1969)
scaling random distances, and producing stress distributions, have
presented tables of stress values at the .05 Tevels of the distri-
butions. However, these cannot be taken too seriously because,
in scaling noise, they provide only an irrelevant comparison. Any
sort of redundancy or consistency in the data will increase the

chance of a good fit. Therefore, most subjects in almost any
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reasonable task will be more consistent than the 95% least consistent
random orderings. The question most experimenters wish to answer

is not whether there is structure in the data - that is assumed.

The question is the nature of the structure, and whether it has been
reasonably represented in a given multidimensional scaling configuration.

Other Monte Carlo studies, such as that of Young (1970), have

randomly picked configurations and added noise to the interpoint dis-
tance matrices. Unfortunately, these analyses confound the measures
of recovery of the true interpoint distances (metric determinacy)

and the stress values.

Since there is no statistic for determining the “correct" con-
figuration, the usual approach is to obtain several different solutions
using a variety of metrics and dimensionalities. Choice of an appro-
priate Minkowski metric is often based upon comparison of stress
values across metrics. As noted by Shepard (1974), this is invalid
because degeneracies, with resultant lower stress values, are more
prevalent in the City-Block (r=1) than in the Euclidean metric (r=2,
see Arnold, 1971), and most prevalent of all in the dominance metric
(r==). This means that one should primarily rely on interpretability
or theoretical considerations, such as the hypothesized integrality or
non-integrality of stimulus dimensions (see Hyman & Well, 1967, 1968;
Garner, 1974; Somers & Pachella, 1977) in determining an appropriate
metric.

Goodness-of-fit measures, interpretability, and theoretical
considerations are also used to determine the appropriate number

of dimensions. One frequently used rule-of-thumb is "looking for
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the elbow" in the stress curve. Since stress decreases with increasing

dimensionality, one must look for something besides mere increase

in goodness-of-fit (in fact, there will always be a perfect solution

for N points in N-2 dimensions - see Lingoes, 1971). Obtaining so-

lutions in a number of different dimensions (for a given metric) and

plotting stress versus dimensionality yields a curve which often

shows that stress decreases dramatically for increasing dimensionality

up to a certain point. After this point, adding dimensions decreases

stress minimally. The usual interpretation of this phenomenon is

that the added dimensions are needed to accurately fit the distances

up to the correct dimensionality, and extra dimensions only fit noise.

The point offering the "most for one's money" - minimizing dimensionality

while maximizing goodness-of-fit - is called the "elbow" of the curve

(see Figure 1). Once again however, interpretability and theoretical

considerations must weigh heavily. If the elbow indicates that the

appropriate dimensionality is three, but only two of the dimensions

can be identified, then the third dimension is of little theoretical

value (see Torgerson, 1965). In addition, there are distinct advantages

to configurations of low dimensionality, since they greatly facilitate

the visualization of structure. Shepard (1974) reports that in

spite of the advantages of low dimensionality, most people tend to

err on the side of deciding on too many dimensions, rather than too few.
A further consideration in determining the appropriateness of

a configuration is the possibility of obtaining a degenerate solution.

1
{
(
|
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Figure 1. Diagram of stress plotted as a function of dimensionality.
The break or "elbow" in the curve at four dimensions indicates
that this is the proper number of dimensions needed to adequately

describe the psychological space.
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This means that the scaling program attempts to increase goodness-of-
fit by collapsing points upon one another. This can often mean that
thé dimensionality is too low. Lingoes (1977b) has specified a number
of characteristics of degeneracy, including: (1) many points are

lying atop one another (dij = 0 for many 1,j); (2) the stress approaches
zero for a large number of points and low dimensionality; (3) the
maximal r- °r of iterations is used to obtain the configuration; (4)
stress inp~-ves with decreasing dimensionality; (5) there are outliers -
points only weakiy related to the rest of the configuration; and (6)
the function relating input and derived interpoint distances (called
the Shepard diagram) is step-like in nature. This indicates a large
number of tied derived distances. In addition, Lingoes and Guttman
(1967) have developed a coefficient of deformation, which indicates

the degree of degeneracy in a configuration. In order to minimize

or eliminate degeneracy, one can use one of several procedures.

(1) Remove outliers from analysis, since they obscure structure

among the ramaining points by pushing them together into one section

of the configuration (Lingoes, 1977b). (2) Analyze subsets, or
clusters, separately (Lingoes, 1977b; Shepard, 1974). This may

clarify structure within groups. On the other hand, relationships
between clusters are not accounted for, and therefore intercluster
comparisons cannot be made. (3) Increase the dimensionality

(Lingoes, 1977b). This may prevent groupings from collapsing to

a point. This method, however, is not always helpful, since increasing
the dimensionality may obscure rather than elucidate inter- and intra-
cluster structures by making visualization more difficult. (4) Use

metric methods, such as restricting the shape of the function relating

§




input and derived interpoint distances to eliminate step patterns
in the Shepard diagram (Shepard, 1974; Shepard & Crawford, 1975).

We must reiterate our emphasis on two points. First, meaning-
fulness and ease of interpretation of a configuration are crucial,
and interact with all other guidelines for deciding upon a "most
correct" configuration. That is, interpretability is very important
for deciding on a "best" configuration.

Second, determination of the metric, dimensionality, and
"acceptable" stress level, as well as the interpretation, are almost
entirely post hoc, unless there are strong theoretical limits on the
metric and dimensionality. This fact has two major implications.
First, the criteria for "acceptability" are highly subjective.. That
is, there are no statistical tests with significance Tevels for the
goodness-of-fit measures. Second, even though interpretability is
crucial in deciding on a configuration, the dangers of over-inter-
pretation are particularly acute. This means that some interpretation
can be found for almost any configuration if one has enough creativity
and persistence. Thus, the validity of any interpretation must rely
heavily on the replicability of the basic structures in the config-

uration. We now discuss the problems and methods of interpretation.

Interpreting Configurations

The interpretation of multidimensional scaling outputs is based
on the identification and labeling of different types of structures,

several of which will be reviewed here.
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1. Vectors. The order of points projected onto a vector through
the space may suggest interpretations of the point constellation.
Vectors are generally found by searching for orderings in the con-
figuration which correspond to objective orderings of physical continua.
One can also use subjective orderings of physical continua obtained by
methods such as magnitude estimation or unidimensional similarity
Judgments. Usually, the vectors of most interest are the axes of
each of the dimensions, but one may also plot other vectors through
the space by regressing external variables onto the coordinates of
each point. Chipman and Carey (1975) use a similar technique to
locate vectors corresponding to loudness, pitch, volume and density
in a space of noise bands.

An alternative method for locating vectors through a Euclidean
output space is to apply principal components analysis or factor
analysis to the scaled interpoint distances (see Napior, 1972).

In the case of principal components analysis, the results correspond

to rotating the coordinate system to maximize the variance of the

first coordinates of all points. The second axis maximizes the
variance of the second coordinates of all points with the restriction
that this axis is orthogonal to the first. The process is repeated for
all d dimensions in the space. Factor analysis yields similar results.
In neither case, however, is a substantive interpretation offered.

The procedures merely attempt to elucidate any structure that may be
hidden in the scaling output. Degerman (1970) has introduced an
interesting variation of this approach which divides the space into

discrete, qualitative clusters and continuous, Minkowski space.
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2. Polar coordinate patterns. These patterns are interpretations

of the point coordinates projected onto a two-dimensional plane.
Instead of relating external variables to the orderings of the points
projected onto vectors, the points are located in reference to their
polar coordinates. That is, external values are associated with
distance from an origin and the angular separation of points. The
days of the week and the color circle are two examples of item sets
that may be treated in this fashion.

One can also use an "ideal points" model to characterize a
configuration (Shepard, 1972; Cl1iff & Young, 1968). In this model,
it is assumed that the important parameters are the distances of
each point in the configuration from some hypothetical "origin" or
"ideal point" in the space, from which one or more relevant vectors
might emanate. This model is a form of the polar coordinate pattern

interpreting only the distances from the origin.

3. Clusters. Looking for groupings of items in the space is
another method of interpreting multidimensional scaling outputs.
Such regions or groupings might simply be areas of the space parti-
tioned from the rest of the space with no specific restrictions on
intergroup or intragroup relationships between points. In most cases,
however, one is interested in groupings in which the points are re-
lated to each other in some meaningful fashion, often called clusters.
These clusters may be overlapping or non-overlapping subsets of the
items in a given configuration. There is no rigorous or universally
accepted definition of a cluster. Intuitively, however, an item in

a cluster is more similar to other items in the cluster than to items
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outside the cluster. In addition, the items in a cluster should share
some attribute aside from their proximal locations in the multi-
dimensional space.

Two major methods are used for locating clusters. One method
is clustering algorithms (Jardine & Sibson, 1971; Sneath & Sokal,
1973), which usually determine the membership and boundaries of
clusters solely on the basis of the original dissimilarities or the
derived interpoint distances. The second is a visual examination
of the configuration to locate items which are grouped together in
the space and which also share common features.

Clustering algorithms, which mechanically group items into
clusters, can be very helpful in elucidating structure for high-
dimensional, not-easily-visualized configurations where structure
is often not apparent. There are algorithms for finding clusters
or partitions with non-overlapping boundaries, such as Johnson's
(1967) hierarchical clustering and Lingoes' (1977b) PEP-U. One
non-hierarchical clustering algorithm which permits overlapping
boundaries is the additive clustering technique of Shepard and
Arabie (1975).

Visually examining the configuration for clusterings of items
is a widely-used method, although there is disagreement concerning
what characterizes a "good" cluster (cf. Lingoes, 1977b; Shepard,
1972; Shepard & Chipman, 1970). It is important to note that
different clusterings based on common attributes may be derived
from different theoretical considerations. One should also be

apprised of the danger in conclud’..; that one has found "clusters"
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in two-dimensional projections of a higher-dimensional space, since
points may cluster in a particular projection of the space, yet be
far apart in the actual space.

Statistical and substantive clustering methods need not, of
course, be mutually exclusive. Lingoes (1977b) points out that
statistically significant but uninterpretable clusters (and struc-
tures in general) will usually be useless. One must have a theory

or explanation to render a cluster meaningful or useful. On the

other hand, clusters which do not appear upon replication must be

regarded with suspicion. This is also the case when other tasks, such

as stimulus sorting, yield different clusterings.

4. Manifolds. Manifolds, like clusters, are subsets of the
scaled items. However, they differ from clusters in that specific
relationships among members of the subset, such as orderings, are
hypothesized. That is, manifolds are subsets of items which have
a particular structure in and of themselves. Generally, manifolds
are structures of a dimensionality of d-1 or less, embedded in a
d-dimensional space. Some such structures (see Figure 2) are the
simplex (points that may be placed on a vector in the space), the
circumplex (points that may be placed on a circle around an arbi-
trary origin), and the radex ( a polar coordinate pattern which is
a combination of simplices and nested circumplices). Often the
Structure of a set of items which should be scaled in d-1 or fewer

dimensions is distorted by the addition of extraneous dimensions.
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One example of this phenomenon is the "horseshoe" pattern which may
result when a simplex is scaled in two~dimensional space, and uses

the extra degrees of freedom to bend back upon itself (Kendall, 1971).
In 3-space, a simplex may form a helical pattern.

In order to identify candidate manifolds, one may first use the
scaling algorithm to suggest the existence of "interesting” structures.
Such structures are then analyzed separately to see if they can
indeed fit into a space of lower dimensionality. The I items composing
the structure can be extracted and the IxI matrix of dissimilarities
can be examined to "confirm" the structure. Lingoes and Borg (1977)

detail a number of methods for identifying spatial manifolds.

5. Isovalue contours. Plotting the "isovalue contours" for

a given external variable is another way to interpret a configuration
(Abelson, 1954). In this procedure,a function of the external rating
of each scaled item such as rated preference, assigns a rating to

each point in the space. The rating of an item close to a given point
strongly affects the rating of the point. The further away the

item is, the Tower its effect on the rating. The rating of a point

is the sum of the effects of all items upon that point. To compute

Rp, the rating of a given point p, Abelson uses the formula:

N ri
R = L —
p = <
i=1 1+dpi

where ry is the rating for the i-th item and dpi is the distance be-
tween the point p and item i. Using this formula, each point on the
plane is assigned a value, and contours are drawn connecting the

points with equal value.

—
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6. Relating different representations. Yet another interpre-

tation method is exemplified by procrustean analysis algorithms
(Gower, 1975; Cl1iff, 1966; for applications see Shepard & Chipman,
1970). These methods rotate, translate, and reflect points to

obtain a "best fit" of one configuration onto another. The basic
rationale for such methods is that comparing a scaied output to

a pre-interpreted configuration gives some indication of the validity
of placing the same interpretation on the scaled configuration. The
customary statistics are the sum of squares error of the fit and the
product-moment correlation of the point coordinates given the best
fit up to a rigid translation, rotation, and reflection of the
coordinates. Unfortunately, these statistics, at present, do not
have significance levels indicating true goodness-of-fit. Therefore
the interpretation of these statistics is as subjective as the inter-
pretation of stress.

A variation upon the fitting-of-one-configuration-to-a-target
approach is the use of several scaled outputs to generate a group
space - a space which represents the "important" features of the
aggregate of all individual outputs. An example of this approach,
PINDIS (Borg, 1977), uses a model similar to that employed by
INDSCAL (Carroll & Wish, 1974). Basically, the model postulates
a group space with fixed axes. Each individual, when assigning
values to stimuli, uses this space to generate the inter-item
dissimilarities after stretching or shrinking each axis. This
means that each individual evaluates the coordinates of each point
according to the group space coordinates, but then multiplies

this coordinate by a stretching factor to indicate the dimension's
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relative saliency. Using a multi-configuration extension of the
procrustean analysis algorithm, PINDIS generates a group space and
dimensional weights for all dimensions for all individuals. The
argument is that all individuals are using a common set of dimensions,

so the axes are fixed and can therefore be interpreted.

8. The confiquration itself. Last, but not least, it is

possible to regard the configuration as meaningful in and of itself,
without reference to any physical dimensions or categories (Bailey,
1974; Chipman & Carey, 1975). This approach allows one to characterize
an internal arrangement of a stimulus domain, perhaps defining new
"dimensions" or groupings, on the basis of a multidimensional scaling
output. One example of this is the color space (Shepard, 1962).
Several different interpretation methods can, of course, be
used in analyzing a single data set. Some analyses may be more
appropriate for some configurations and others for other configurations.
The different types of structure are not mutually exclusive. Compari-
sons among structure-recovery methods are, however, not meaningful
for two reasons. First, many methods are difficult, if not impossible,
to compare due to differences in representations and ways of calculating
goodness-of-fit. Second, the heuristic value of a given method depends
upon the problem being addressed.
We now discuss the stress, the goodness-of-fit measure, and
some of the mathematical considerations when applying the nonmetric

multidimensional scaling algorithm.
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Stress

Since the introduction of the stress parameter (see Kruskal,
1964a, b), much attention has been paid to stress as (a) a goodness-
of-fit measure (Kruskal & Carroll, 1969; Stenson & Knoll, 1969;
Klahr, 1969; Wagenaar & Padmos, 1971; Spence & Ogilvie, 1973),

(b) an index of recovery of the "true" configuration obscured by
noise (Young, 1970; Sherman, 1972), (c) an indicator of the appropriate
dimensionality of the representation (Isaac & Poor, 1974; Spence &
Graef, 1974), and (d) a measure of the underlying metric (Arnold,
1971). A1l these papers are based on the observation that, in a
Euclidean space, ordered data on interstimulus proximities suffi-
ciently constrain the solution to an interval scale (see Abelson

& Tukey, 1959, 1963; Shepard, 1966). In a Monte Carlo study to
validate this claim, Shepard (1966) reports correlations in excess
of .99 between "true" and reconstructed distances for all test
configurations of 10 or more points. This means that an excellent
reconstruction of the original point configuration is made from
error-free data. Young (1970) and Sherman (1972) evaluated the
reconstructive powers of multidimensional scaling for fallible
data. They arbitrarily placed points in a space and generated

a dissimilarities matrix by randomly moving the points before
calculating the interpoint distances. They also report good
recovery of the "true" configuration under conditions of moderate
perturbations of many points. These studies, however, obscure

one important point. The scaled outputs may be solutions to very

ill-conditioned functions. That is, large deviations from the




local minimum configuration may produce only small increases in
stress. One of these non-optimal solutions, moreover, may be more
interpretable than the local minimum solution. This means that
small rank reversals in the ordinal dissimilarity measures due to
experimental error could easily have obscured key structures by
leading to the best-fitting rather than the "true" configuration.
By the same token, there are situations in which the local minimum
is in a deep valley of the stress function, so that even slight
changes in any of the point coordinates lead to large increments
in stress. In this case, the function is well-conditioned.

A method of interpretation should distinguish between these
two cases, since a perfect fit to one of the basic structures
(e.g., vector, polar coordinate pattern, cluster) usually requires
movement of points away from their local minimum locations. If it
were possible to constrain the spatial configuration to perfectly
fit a prespecified structure, observing the amount of increase in
stress and thereby determining how well- or ill-conditioned the
stress function is for any particular set of input proximities,
one might gain some indication as to the validity of an inter-
pretation. For this reason we propose just such a method for con-

strained scaling and interpretation called CONSCAL.

Confirmatory Multidimensional Scaling (CONSCAL)

Placing constraints on either the form of the monotone distance
function (the function relating input proximities and derived distances)
or the locations of the points is not a new concept in multidimensional

scaling. Shepard and Crawford (1975) add penalty functions to the
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standard stress measure to specify the shape of the Shepard diagram
(the monotone distance function). One option in McGee's (1968) "common
elastic multidimensional scaling" (CEMD) program permits the simul-
taneous scaling of several individual proximity matrices into different
configurations with a penalty function constraining all configurations
to be "somewhat" alike.

In our basic model for confirmatory scaling, the interpoint

distances are a function satisfying the following:

(a) DECOMPOSABILITY. The distance between points is a function

of componentwise contributions.

(b) INTRADIMENSIONAL SUBTRACTIVITY. Each componentwise con-

tribution is the absolute value of the scale difference.

These are two of the three assumptions used by Tversky and Krantz
(1970) to characterize the Minkowski metric.

Assumption (a) means that the distance between two points,
x and y, is:

d0xy) = Floglxpayyds woe o (xps vl (1)

where F is an increasing function in each of its n arguments. The
¢'s are symmetric on both arguments and nonzero except when Xy = Y5
in which case ¢i(xi’yi) = 0. Psychologically, one interpretation
of this assumption is that the proximity of two stimuli is determined
using a two-stage evaluation. First, an aspect is picked and the
subject judges the relative difference of the two stimuli with
respect to the particular aspect. This process is repeated until

all relevant aspect differences have been evaluated, at which time
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these judgments are amalgamated into a single index of overall
proximity.

Assumption (b) means that the proximity measure may be
written as follows:

d(x,y) = F[]xl-yll, ...lxn-ynl] (2)
This differs from Eq. 1 primarily in that the X3 and ¥ values
are points along an axis.

In addition, we make the assumption that the X; values along
each aspect axis may be evaluated, at an ordinal scale, using other
physical or psychological measurement methods. For example, assume
the dissimilarities of pairs of rectangles are scaled in two dimensions
and the axes are identified with psychological area and shape. One
way to test this model is to use magnitude estimates of area and
shape for each of the scaled rectangies to establish an order of
x]'s for area and xz's for shape. These orders are then viewed
as constraints on the coordinates of each point. So, if SIRRAT
then the points x and y must be located so that the first coordinate
of point x is smaller than the first coordinate of point y. That
is, the magnitude estimates establish a weak order of projections of
all points onto the axes. Operationally this means that a set of
numbers from some ordering task, such as a magnitude estimation or
a Thurstone scaling of paired comparisons (Thurstone, 1927), is
given as supplementary information to the scaling program. As the
program iterates toward a configuration of lowest stress, the con-
figuration is forced to satisfy the ordinal constraints from the

ordering data. This process may be implemented by stepping the




configuration at each iteration and then moving the points to conform
to the ordering constraints. Figure 3 illustrates the procedure

for one hypothetical iteration of two points in a two-dimensional
space. Furing the t-th iteration, points located at x(t) and y(t)
are moved to x'(t) and y'(t). Since there is now a violation of
the ordering requirement along one dimension, the points are moved

(t+1)

to x and y(t+]) to satisfy this requirement. This process

is repeated at each step until a Tocal minimum is reached.
For two or more points the monotone order of projection onto

each axis is determined using Kruskal's (1964a, b) monotone regression
on the éoordinates in place of its more usual application to the
interpoint distances. Within the permissible range of values for
a coordinate, the movement toward a minimum stress configuration
proceeds as in regular nonmetric multidimensional scaling, but
the specified order of any two points along any one dimension can
never be reversed.

Kruskal's monotone regression, as applied to interpoint distances,
has two options known as the primary and secondary approaches. In
the primary approach, tied interitem dissimilarities need not be
mapped into equal interpoint distances, while in the secondary
approach the mapping must be onto equal interpoint distances.
In both cases, violations of the general monotonicity requirement
mean contributions to the stress. In CONSCAL, these two options
are also available when specifying the monotone order of projection

onto the axes. Here, the primary approach is called weak dimensional
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(e)

(trl)

| (t)

0 S

Y(t+1) (t)

Figure 3

During each iteration Confirmatory Scaling moves all points twice. First,
points x(t) and y(t) are moved to locations x'(t) and y'(t) using the
method of steepest descent. Second, these points are moved to locations
x(t+1) and y(t+1) to satisfy the monotonicity requirement of the point

coordinates with respect to the horizontal coordinate axis.
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monotonicity, while the secondary approach is called semi-strong
dimensional monotonicity. Semi-strong dimensional monotonicity is
usually used for scaling stimuli in a factorial experimental design,
since all tied values of the independent variables used to create the
factorial design should map into tied coordinate values. When psycho-
logical variables specify the order of projection onto the axes, weak
dimensional monotonicity should usually be used since there is little
reason to believe, for example, that two stimuli which elicit category

estimates of 6 on a 1 to 10 scale are precisely equal psychologically.

An Example: Multidimensional Scaling of Ellipses

The following examples come from a study of the interactions
among dimensions of stimulus variation (for a theoretical discussion
see Somers & Pachella, 1977). One way of studying these interactions
is to investigate the relationship between unidimensional judgments
and interstimulus dissimilarity ratings. Previous studies using
rectangles as stimuli in scaling tasks indicate that two dimensions -
size (width times height = area) and shape (width divided by height)
were the relevant psychological dimensions for predicting dissimilarity
ratings (Krantz & Tversky, 1975; Nema, Note 1). For ellipses, it
was therefore hypothesized that the two dimensions of area and
eccentricity (the "size" and "shape" dimensions of ellipses) would
be the relevant dimensions.

We were interested, basically, in three questions. First, how
relevant are the dimensions of area and eccentricity as predictors

of judged dissimilarity? Second, how do "physical area" and "physical
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shape" (derived from physical measurements of the stimuli) compare
with "judged area" and "judged shape" (derived from magnitude esti-
mation data) as dimensions characterizing the configuration? Lastly,
since area-eccentricity and and major axis-minor axis are physically
equivalent pairs of dimensions, are they also psychologically
equivalent? In other words, an ellipse can be uniquely specified

by noting either its area and eccentricity or the lengths of its a
major and minor axes. Therefore, one might hypothesize that the
area-eccéntricity and the major axis-minor axis pairs of dimensions
would equally well characterize the two-dimensional scaling configu-
rations. For rectangles, however, area and shape seem to be better
descriptors of the two-dimensional configuration than are height

and width (Krantz & Tversky, 1975).

A factorial design with four equally spaced levels of area
crossed with four equally spaced levels of eccentricity was employed ]
in constructing the stimuli. The largest ellipse was in a 3:1 ratio
to the smallest, and the most eccentric was in a 1.66:1 ratio to the
least eccentric. These sixteen ellipses, drawn by a CALCOMP plotter,
were photographed, and black-on-white slides were made.

Four subjects made global dissimilarity judgments for all
possible pairs of ellipses (excluding identical pairs). The entire

set was presented three times, in a different random order each time,

and the results were averaged for each subject. The subjects received

the following instructions verbally:
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We are interested in how people perceive complex
figures. In this experiment you will be asked to judge
how similar ellipses are to each other. You will be
shown pairs of drawings like this. [sample pair of
slides shown] Rate the similarity of the pair on a
scale of 1 to 10 (integers only), 1 being the most
similar, 10 the least similar (or most different).

If the two drawings of a pair were identical, for
example, you would rate the pair zero. (This will never
be the case, though - the two stimuli in a pair will
always be different.)

Base your judgment on the overall similarity of
the figures. To give you an idea of what the whole set
of figures is like, I'11 run through the slides briefly.
[the 16 ellipses shown singly, in random order.]

You will have as much time as you need to judge each
pair. Mark your judgment in the appropriate space on the
answer sheet. Be sure to use the full range of ratings.

Do you have any questions?

In another session, subjects made magnitude estimates, on
the same 1-10 scale, of four properties of the ellipses (which are
presented individually) - area, eccentricity, length of major axis,
and length of minor axis. The order of these four tasks varied
among subjects. Six judgments were made of each of the four pro-
perties for each of the 16 ellipses (384 judgments total), and the
results were averaged for each subject in each task.

Unconstrained multidimensional scaling of the global dissimi-
larity judgments showed generally good fits for all four of the sub-
jects in two-dimensional Euclidean space. One configuration (DT)
had a stress of 13.1% and the other subjects' configurations ranged
between 5.6% and 8.7% stress. We were reasonably confident that
the Tocal minimum problems were being avoided because starts from

either random or "hypothesized best fit" (area by eccentricity




factorial design) configurations resulted in virtually identical

stress values and configurations. For two subjects, a third dimen-
sion was added, but this made little difference in stress, and the
extra dimension was uninterpretable.

In all four cases, clearly interpretable dimensions of area
and eccentricity were present. There were a few minor deviations
from the hypothesized orderings along the dimensions, as can be seen
in Figures 4-7, and one major reversal of area levels within the
smallest eceentricity level in the highest-stress configuration
(DT, Figure 7). One question that cannot be answered using tradi-
tional interpretation techniques is, how meaningful are such reversals?
Are they merely noise, or does the subject actually have some anomaly
in his or her cognitive structure? One way we can try to answer this
is to use a constrained multidimensional scaling analysis.

As can be seen in Table 1, constraining the configuration to fit
the factorial design according to which the stimuli were constructed
causes increases in stress from about 2-4% for each subject, indicating
that this model does reasonably well for all four subjects. In fact,
the configuration with the major reversal (DT, Figure 7) shows the
second-Towest increase in stress - only 2.4%. This increases our
confidence in the factorial design with respect to DT, since even
though her deviations from the model appeared to be more systematic

than those of the other subjects, they seem to be no more important.

Comparing judged area and judged eccentricity with physical area |

and physical eccentricity produced 1ittle difference in either stress
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values (see Table 1) or configurations (see Figures 8 and 9 for
sample configurations). One would naturally expect the factorial
design, with strong monotonicity (see Figure 10), to produce higher
stress than any of the other models because of the large number of
ties which must be satisfied. These results indicate two things:

(1) that subjects' scalings of area and eccentricity are reasonably
veridical (which is not particularly surprising), and (2) that models
using physical versus judged area and eccentricity are for the most
part interchangeable, with preference perhaps going for the factorial
design model, because of its greater simplicity.

Comparing the "scaled area-eccentricity" to the "scaled major
axis-minor axis"models proved more interesting. For three of the
subjects, the area-eccentricity and major axis-minor axis models
were approximately equivalent in terms of stress, and produced
highly similar configurations (compare Figures 6 and 11, for example).
However, for one subject, there was a dramatic difference in stress
between area-eccentricity and major axis-minor axis configurations.
For RR, at least, even though the two models are physically equivalent,
they are not psychologically equivalent (compare Figures 8 and 12).
This comparison also shows that there can be dramatic individual
differences between subjects regarding the applicability of certain
models even though the configurations may appear quite similar.

Using confirmatory multidimensional scaling, it is also possible
to constrain only a subset of the dimensions. This might be especially
helpful if one has strong hypotheses only about some of the dimensions

a subject is expected to use, but not about all of them. For example,
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see Figure 13, in which eccentricity, but not area, is constrained.
Discussion

Most traditional interpretation techniques assume the uniqueness
of the configuration. Structures are imposed on the resultant con-
figuration to yield an interpretation (an exception being the inter-
pretation of manifolds by extracting subsets of points and analyzing

these submatrices of the original dissimilarity matrix). As we

have ,seen, however, there may be a wide variety of possible config-
urations with almost identical stress values. What this means in
terms of interpretations is not clear. It does mean that a measure-
ment theoretic or confirmatory analysis method is needed. The measure-
ment theoretic approach could be an extension of the Krantz and
Tversky (1975) tests, incorporating an error theory that measures
the degree to which their measurement axioms are violated. (This
would also allow a non-parametric goodness-of-fit test.) Another
extension of the tests would cover nonfactorial experimental designs.
Until such necessary and sufficient conditions are defined, con-
firmatory multidimensional scaling could fill the void. In fact,

confirmatory scaling may have an advantage over the Krantz and Tversky

tests in that estimates can be made of the "importance" of violations
of the conditions. For instance, one axiom of the Tversky and

Krantz (1970) axiom system is

(c) INTERDIMENSIONAL ADDITIVITY. The distance is a function of

the sum of componentwise contributions.
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One testable condition that may be derived from this is that the
dissimilarity judgments, &, must satisfy:

§(AS:5 A,S,) = 8(AyS,, AsS,)
where A] and A2 are two levels on dimension one and S1 and 52 are two
levels on dimension two with stimulus Aisj being on the i-th level
of dimension one and the j-th level of dimension two. If the subject
is asked to rank the dissimilarities of all stimulus pairs, systematic
violations of this condition could occur. What remains unanswered,
however, is whether these violations are psychologically important.
That is, is this systematic bias an artifact of the requirement
that the subject must report some ordering even if he is indifferent
with respect to several possible orderings? In this case, the sub-
ject will probably establish a unique ordering using a simple rule
even if this rule is of no importance in his actual handling of
the stimulus representation. By scaling this data using a confirma-
tory multidimensional scaling, these anomalies are shown to be un-
important, as they contribute 1ittle to the stress.

Even though the analysis is confirmatory only in the sense that
fixing certain axes in a factor analysis is a confirmatory factor
analysis, the resutts provide stronger support for a potential inter-
pretation than that provided by most traditional methods. Perhaps
the appropriate approach is to use one of the more traditional
methods or a theoretical analysis to formulate a family of possible
interpretations. By applying confirmatory multidimensional scaling,
a decision can then be made as to the relative validity of each

interpretation.

=S
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A situation in which the nonuniqueness of the solution is im-
portant is in analyses in which one or more scaled outputs are compared
among themselves or against pre-interpreted configurations. The
validity of these approaches may be questioned since there may be
slight modifications of each configuration that would produce vastly
different goodness-of-fit measures across configurations and change
the group space in an approach such as PINDIS.

One of the major unsolved problems of confirmatory scaling is
the interpretation of increases in stress with added constraints
to the configuration. One method for evaluating stress increases
proposed by David Krantz (personal communication) is a pseudo-

F-test. In the unconstrained multidimensional scaling of N points

in a d-dimensional space, using Young's (1970) terminology, there are
N(N-1)/2 degrees of freedom of the dissimilarities and d(N-1) - d(d-1)/2
degrees of freedom of the coordinates. Not surprisingly, Young (1970)
has demonstrated that, in general, the stress increases with either
increases in the degrees of freedom of the dissimilarities (number of
points) or decreases in the number of degrees of freedom of the coor-
dinates. In certain cases, such as that of strong dimensional mono-
tonicity with a factorial design, the degrees of freedom of the
coordinates are drastically decreased. For instance, in a four-by-
four factorial experimental design, there are 120, or 16(16-1)/2, de-
grees of freedom of the dissimilarities. In an unconstrained multi-
dimensional scaling of the points in two dimensions there are 29,

or 2(16-1) - [2(2-1)/2], degrees of freedom of the coordinates. By

contrast, a confirmatory multidimensional scaling in a two-dimensional
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four-by-four design using strong dimensional monotonicity has 5, or
2(4-1) - [2(2-1)/2], degrees of freedom of the coordinates. This would
seem to imply, extending Young's analysis, that the stress in the
| confirmatory analysis should be much higher than that of the unconstrained !
é solution. However, in our analysis of three of the four subjects we
7 found no large differences in stress when comparing unconstrained
and confirmatory analyses. Using the degrees-of-freedom point of
view, this seems to imply that the confirmatory factorial design
is the best representation of the data. Currently it is unclear how
weak dimensional monotonicity and non-factorial designs could be
interpreted in light of a degrees-of-freedom analysis.

Finally, we reiterate that the scaling solution which is optimal

in terms of some algorithm or goodness-of-fit measure should not

automatically be taken to be the optimal solution for other purposes,

such as interpretation of model-testing. Even though goodness-of-fit

measures tell us something about the appropriateness of the scaling

model, they indicate little in and of themselves about the interpre-
tability of the scaled results. As we have shown in the case of
multidimensional scaling, possible interpretations may be rejected

unwarrantedly, and "interesting" distortions in the unconstrained

scaled outputs may be only mathematical anomalies.

This new conceptualization of optimality can be extended to
other types of scaling. The correct question in most scaling situations
may be how the goodness-of-fit measure is affected if a given model is

satisfied, rather than how closely the scaled output resembles our pre-

interpreted hypothetical space.
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Reference Note

1. Noma, E. Analysis of the psychological dimensions of rectangles.

University of Michigan, unpublished manuscript, 1976.
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