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ABSTRACT

The spanwise variation in pressure due to gravity (occurring
in experimental work) was included in the numerical calculations

of a supercavitating hydrofoil of finite span. The effect was

negligible on the lift and moment coefficients but a small
change in the cavity length was noticed at the foil centroid.
The major change was in the cavity shape. The cavity predicted
by the new numerical model was longer near the root and shorter

near the tip as was expected.
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NOMENCLATURE

chord length

lift coefficient

moment coefficient
accelleration of gravity
vertical displacement

cavity length

number of elements in cavity, chordwise
number of elements along the foil chord
number of elements along the foil span

cavity pressure

free stream pressure (at foil centroid)

source strength
wake surface
foil surface

free stream velocity

perturbation velocity in x direction

perturbation velocity in y direction

leading edge position
trailing edge position
cartesian coordinates

angle of attack

dummy coordinates for integration
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trailing vortex strength on foil
trailing vortex strength in wake
vortex strength

fluid density

cavitation number

cavity surface




15 INTRODUCTION

To insure the accuracy of numerical calculations, they
must be compared to experimental results. In the case of the
three-dimensional supercavitating hydrofoil a numerical model
has been developed and has compared favorably to experimental
results (Jiang and Leehey [1]). However, the experimental
results were obtained using a technique in which the foil was
mounted vertically in a water tunnel with the tip pointed
down (see Fig. 1l). This causes a spanwise variation of pressure
and therefore a spanwise variation of cavitation number
(o = (p, —Ek)/%pUmz). The experimental procedure most widely
used was to calculate the cavitation number based on the free
stream pressure at the foil centroid and the measured cavity
pressure (sometimes the vapor pressure is used as the cavity

pressure). It is the intent of this paper to test the effect

of altering the numerical calculation to include these effects.

IX. THEORY

A numerical lifting surface model for supercavitating
hydrofoils of finite span has been developed. It is a linear
theory for use on thin wings at small angles of attack. The
model uses discrete vortices and sources located on a lattice
to represent the foil. Each element of the lattice contains

a discrete bound vortex, a trailing vortex and a source. The




bound vortex is located at the quarter chord line of the element
and the source is a constant distribution along the three-
quarter chord except at the leading edge where the source is
located at the quarter chord line. The lattice used in this
model is one obtained by dividing the foil and cavity spanwise
into strips with cosine spacing and chordwise into strips of
constant spacing (see Fig. 2). The solution of the problem is
obtained by reducing the coupled integral equations to a set
of simultaneous algebraic equations. The cavity lengths were
iterated at each chordwise strip to obtain the proper cavitation
number over the cavity planform.

The foil and cavity surfaces are collapsed onto the X-Z
plane (see Fig. 3). The jumps in tangential and normal per-

tabation velocity components across the foil and cavity are:

= Y(xlz)

1. u(x,z,+0) - u(x,z,-0)

2. v(x,z,+0) - v(x,z,-0) g(x,z)

where y is the vortex distribution and g is the source

distribution. The boundary conditions are:

3. v(x,z,-0) = dy(x,z,-0)/dx on the wetted surface
of the foil,

4. u = 0/2 on the cavity,

5. Lf(z) q(g,z)dg = 0 closure,

2(z)




where the integration is done along each strip of elements
from the leading edge to the end of the cavity. The induced
velocities are calculated at the midspan, three-quarter

chord position of each element in the model. The condition

of fixed cavity pressure is also tested in each element, but

at the midspan, gquarter chord location. The integral equations

are:

6. v(x,z,-0) = - q/2
1 ([ v (&,n)[x-£1+8,(E,n) [y-n]
o d&dn
ar J)  ((x=E)2 + (y-n)2)3/?2
S
) s 8, (€/n) (y=n)
i dF,dn
an |) [(x-£) 2+ (y-n) 2172
RW
1 Q(E,,n) [X—E]
7= o ==y + — - d€dn
2m L (x-£) 2+ (y-n)2]3/2
z
2(2z)
8' q(glz)dg = 0
xQ(Z)

with the boundary conditions they become the following set

of algebraic equations.




9. 1/4m I aijk2 Yij/a -1/2 qu/a = -1 i i,g,...Ml
’

j= PR | |

) j

10. -y,,/o + 1/27 ¢ b..,.,9../a - 0/oo =0 i=1,2,...M
kg’ ij leR 13 j=l'2’ou-N
Yk1=0, for k>M1
15 55 i qij/a ASij =0 j=1,2,...N
where aijkz and bijkl are the v and u velocity components at

the control point (k,%), caused by a unit strength Vortex
and source at element (i,j). M is the number of elements
along the chord in the cavity and Ml and N are the number of
elements on the foil in the chordwise and spanwise directions,
respectively. The accuracy of this model has been tested by
Jiang and Leehey [1] and results compare well with both
analytical and experimental results (see also figures 4-6).

To include the spanwise effects of gravity for the foil
in the verticle (experimental) position, equations (4) and (10)

above must be changed to:

4'. u = 0(z)/2

10'. -y,,/a + 1/2mn £ b,., ,q../0=0,/a = 0 i=1,2,...M
ik T T AR j=1,2,...N

Yk2=0 for k>Ml1

where o, is now a function of span position (2). The change

in free stream pressure AP_ due to a change in vertical

position h is given by:




12. AP_ = pgh (see Fig. 1).

Therefore the change in cavitation number, Ac due to a change

in position, h is given by:

}: ! 1 2_ b 1 2
13. Ao = (P_° Pc)/i pU_ = (P Pc)/-z-pUm
= AP,/ 30U,% = 2gh/uU_%.

Experimental procedures quote cavitation numbers based on free
stream pressures measured at the centroid of the foil. There-
fore the variation of cavitation number over the span can be
determined using equation (13) and the "overall" cavitation

number (at the centroid of the elliptical planform).

II1. RESULTS

Equation (13) was added to the numerical technique and
the input cavitation number was taken as the corresponding
to the foil centroid. Then, an array of cavitation numbers,
each corresponding to the center of a strip of elements along
the chord of the foil were determined (see Fig. 2). The model
was also changed so that equation (10') was used in place of
equation (10). Several test conditions were calculated and
the results are plotted in Figures 4-7. The test conditions

used were for two foils of aspect ratio five and elliptical

SR
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planform, each at four different values of cavitation number
divided by angle of attack (¢o/a). One foil had a semi-span
of 10 inches, the other was 15 inches. (Experimental results
are available for foils of these sizes from Maixner [3], these
are shown for comparison. Analytical results of Leehey [4]
are also shown.) The values of o/o used were 1.0, 1.5, 2.0
and 2.5. The results show that the spanwise effect of gravity
is negligible in this model. Both lift coefficient over
angle of attack (Cl/a) (Fig. 4) and moment coefficient over
angle of attack (C /a) (Fig. 5) increased in magnitude over
the range of o/a tested, but the increase was only in the
third significant figure. The larger foil had larger values
of Cl/a and Cm/a, but again the differences were small. The
cavity length to chord ratio (2/c) (see Fig. 6) was larger
than the original numerical model by about 0.2 for high o/a
and shorter by about 0.2 for low o/a, but both models

agree well with experimental data. Figure 7 shows the

major difference between the two models, the cavity shape.
The cavity shape is plotted for the small foil at o/a = 1.5
as it was calculated by the two numerical methods. The

new model obtains a shorter cavity near the tip due to the
higher cavitation number there and a longer cavity near the
root due to the lower cavitation number. The experimental
result for this condition (from Maixner [3]) is also shown.

Figure 8 is the photograph used to determine this result.
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The experimental result compares favorably with the new model
near the tip but the cavity is shorter near the root due to

the boundary layer on the upper wall of the test section.

IV. CONCLUSIONS

It is clear from the results presented here that the
spanwise effect of gravity can be neglected for the numerical
model. The effect of including the spanwise variation in
cavitation number on lift and moment calculations has been
shown to be only on the order of one percent. The cavity
length calculations changed by about five percent (that is
when the cavity length is measured at the span position of the
centroid). The most striking difference found in the
numerical results when the spanwise variation in cavitation
number was taken into account was in the cavity shape predicted.
This shows that the reason for the insignificant differences
in the models is that the cavities predicted are about the same
length near the centroid, where the cavitation number was

measured in experimental work.
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FIGURE 8 Photograph of Cavity Shape.
(From Maixner [3]).
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