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INTRODUCTION 

Tine classification of sonar contacts as submarine or 

non-submarine is a primary concern to Naval forces assigned an 

ASW mission.  Incorrect classification results in undue 

expenditure of resources to investigate or conduct an attack on 

a non-submarine, or in permitting a true submarine to proceed 

unchallenged.  Though the classification problem at short sonar 

ranges has not been solved, the effects and sources giving rise 

to short range false contacts have received considerable 

attention and, in most cases, can be described.  Sufficient 

experience in the use of Bottom Bounce (BB) and Convergence Zone 

(CZ) modes of propagation has not been accumulated to adequately 

evaluate the character and extent of the classification problem 

with long range sonars using these propagation paths. 

' ^A study.was initiated at TRACOR, Inc., in March 1969 

under Contract No. N00024-69-C-1255 devaluates the character 

and extent of the long range classification problem.  It was 

decided to investigate first the BB mode of propagation, 

reserving the CZ mode for future work.  An investigation;by 

TRACOR^has shown that schools of fish are probable sources of 

false contacts for sonars operating with a CW pulse in the BB 

mode.^ 

D 

For the purpose of that investigation a false target 

was considered to be any non-submarine producing an echo whose 
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characteristics caused it to be classified as a submarine echo 

on the basis of echo strength and duration.  For a school of fish 

to be mistaken for a submarine several conditions must exist. 

First, the target strength of the school must be comparable to 

that of a submarine.  Second, the extension of the school in the 

direction of sound propagation should not be greater than the 

length of a submarine so that the echo will not be longer than 

that expected from a legitimate target.  Finally, since the 

azimuthal beam width at ranges of interest in bottom bounce 

operations is much greater than the length of a submarine, 

detection on more than one beam is highly unlikely. Hence, the 

school of fish should subtend an azimuthal angle no greater than 

the azimuthal beam width of the sonar. 

Ray theory was used to determine the volume which could 

be occupied by the fish school consistent with the above 

constraints.  The target strength for the school was then 

calculated by multiplying the target strength of a single fish 

by the number of fish in the volume.  This procedure, of course, 

neglects all multiple scattering effects.  The target strength of 
2 

a single fish was taken from measurements made by Cushing, et. al. 

It was found that schools of fish could exist which have a target 

strength comparable to that of a submarine. 

Now it is known that some schools of fish are so dense 

that the fish are in actual physical contact. One would expect 
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for such a school that multiple scattering effects could not be 

ignored.  If this is the case, then classification characteristics 

such as (1) echo duration, (2) spectrum, (3) sharpness of onset 

and trailing edge, (4) highlight structure, (5) doppler, (6) target 

strength and (7) ping-to-ping consistency and persistence would 

differ from those calculated on the basis of neglecting multiple 

scattering.  Thus, since this initial investigation showed that 

fish schools posed a problem to long range classification, it 

was decided that the only way to adequately evaluate the 

character and extent of this problem was to formulate a realistic 

model of the multiple scattering of a pulse from a school of fish. 

This preliminary report takes the first step in developing such 

a model. 

In Part I, the general theory of the multiple scattering 

of an acoustic pulse from a random collection of point scatterers 

is developed in some detail.  Only the first order statistics of 

the scattered signal will be considered in this report.  The 

second order statistics, which are related to the scattering cross 

section of the fish school, will have to be reserved for future 

work. 

In Part II, the general theory developed in Part I is 

applied to the case where the random collection of point scatterers 

.. 
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represents a dense school of fish.  The scattering properties 
3 

used for a single fish are those reported by D. E. Weston . 

Thus, it is assumed that the scattering is due entirely to 

the air bladder of the fish and that the fish can be represented 

as an isotropic point scatterer.  This will be approximately the 

case for a fish of length L if the frequency of the sound wave is 

less than c /L, where c is the speed o£ sound in water.  For 

frequencies greater than c /L scattering from the fish tissue 

becomes increasingly important and the simple theory of isotropic 

scattering from an air bladder does not apply.  The theory of 

scattering from bladder fish takes into account dispersion 

and absorption in the scattering volume. 

Two cases are consider;d for the geometry of the 

scattering region simply bee. .^ they are the most amenable 

to solution:  (1) the fish are contained within a spherical 

region; (2) the fish are contained within a layer with infinite 

plane boundaries.  In the first case, spherical schools of fish 

have been observed in the open sea, but the diameter of the 

schools and the distribution of fish in them were not reported. 

In the second case, while a layer with plane boundaries is 

amenable to solution, it does not meet all the requirements 

imposed on fish schools which were discussed at the beginning 

of this section.  It does not meet the requirement that the 

school be contained entirely within a single beam since the 
n 

I 
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plane boundaries of the layer extend to infinity. However, this 

|       would serve as a good model for the Deep Scattering Layer (DSL) 

since there is a growing amount of evidence to indicate that the 

DSL is composed of bladder fish. 

. At this time it is anticipated that the first order 

statistics for the scattered field will be numerically evaluated 

for the spherical school.  However, no further work is planned 

on the model for the DSL. 

I y • 
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Part I.  MATHEMATICAL THEORY OF MULTIPLE SCATTERING 

A.  INTRODUCTION 

The problem of scattering of an incident wave by a 

single obstacle has been considered rather thoroughly in the 

literature, beginning with Rayleigh's work in fluids, and 

continuing to the present day with various quantum-mechanical, 

electromagnetic, and elastic cases.  The literature on multiple 

scattering, on the other hand is not so extensive.  Regular 

arrays of scatterers were treated by Huygen's principle or various 

perturbation schemes, mainly with an eye to obtaining their 

"strong" filtering properties arising due to periodicity. 

Out of this work came X-ray diffraction theory and the band 

theory of solids.  Until 1945 multiple scattering from a random 

distribution of scatterers was restricted to the scattering of 

particles based on the Boltzmann integro differential equation 

describing transport processes.  This formulation is merely the 

expression of conservation of particles in phase space; hence 

the treatment is classical, with no account taken of the 

quantum-mechanical wave nature of the particles or photons. 

Such a theory would be expected to be valid only it the wavelength 

of the particles is much smaller than the average distance of 

separation between the scatterers. 

There are also a large number of problems of multiple 

scattering in which the wavelength is comparable to the average 

.—...--• . 
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scatterer separation; some examples of this latter type of 
• 

problem are acoustic wave propagation in bubbly water, scattering 

1.       from a school of fish and the scattering of electrons or x-rays 

by the nuclei of liquids or amorphous solids.  Any treatment of 

these problems must include the reflection, refraction, and 

interference phenomena that are characteristic of wave problems; 

hence it must be based on the wave equation, rather than on the 

simple conservation statement leading to the Boltzmann equation. 

The first systematic treatment of the problem of the 

multiple scattering of waves from a random distribution of 

scatterers was published by Foldy in 1945.  Foldy's unique 

contribution was the introduction of the concept of "configurational" 

averaging of relevant physical quantities by defining a joint 

probability distribution for the occurrence of a particular 

scatterer configuration.  By averaging the equations of multiple 

scattering over the statistical ensemble of scatterer 

configurations, Foldy was abla to derive integral equations 

governing these configurational averages. 

Foldy's work dealt only with a random collection of 

isotropic point scatterers.  This was later generalized by Lax 

to treat the multiple scattering of quantum  mechanical waves 

by point scatterers having quite general scattering characteristics, 

—'"'••"••"Hi- I II T,  I        ,„, •        ...   
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and by Waterman and Truell to treat scattering regions having 

non-vanishing dimensions.  A unified picture of the propagation 

of the coherent and incoherent radiation associated with multiple 

scattering is given by McCloskey .  Surveys of the entire field 

of the multiple scattering of waves have been published by 

8 9 Twersky , and Burke and Twersky . 

To the best of the author's knowledge, the theory of 

multiple scattering from a random collection of scatterers which 

has appeared in the literature to date has only been concerned 

with the scattering of an incident monochromatic wave.  In this 

report an attempt is made to extend the theory to include the 

scattering of a pulse (time limited signal).  Only the first 

order statistics of the scattered signal will be considered here. 

The second order statistics of the scattered signal will be 

considered in a later report. 

In Part I a detailed description of the theory of 

multiple scattering of a pulse from a random collection of 

volume scatterers will be presented.  Results found in 

References 4-7, mentioned above, will be freely used without 

any additional references to these papers being made. 

B.  STATISTICAL PRELIMINARIES 

Assume we have a collection of N point scatterers and 

that the i  scatterer can be characterized by its position 

8 
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vector r. - (x.,y.,z.) and a scattering parameter a..  Here 

x.,y. and z. are the Cartesian coordinates of the i  scatterer. 
• * 

The only application that will be considered is the scattering 

from bladder fish.  For this case it is assumed that the scatterir'- 

is due entirely to the swim bladder of the fish and that the 

actual elongated bladder can be replaced by an equivalent spherical 

air bladder.  Consequently, the scattering parameter a. will be 

taken to be the radius of the equivalent spherical bladder.  There 

is no difficulty in generalizing the theory if more than one 

scattering parameter must be associated with each scatterer. 

We shall say that we have a particular configuration 

of scatterers if the position vectors r. and the scattering 

parameters a. are specified for each of the N scatterers.  This 

configuration may be regarded as one state in an ensemble and 

an average over all states may be taken.  In order to simplify 
—-^ 

the notation in what follows, a four dimensional vector q^ will 

be introduced and defined to have as its components q. = 

(r.,a.) = (x.,y.,z.,a.).  Also, dcf. will represent a four 

dimensional volume element and will be defined as dq. = 

d?.da. = dx.dy.dz.da..  Thus, we can now say that we have a 
J-    -L J_    A.    J,    X. 

particular configuration of scatterers if the vectors 

q. (1<  i<N) are specified.  This four dimensional space will be 

called phase space. 

: 
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To further specify this ensemble, we introduce a 

joint probability density function p(qi,...tq«) so that 

p(qi». • • »qN)dqi- • -dqN 

represents the probability of finding the scatterers in a 

configuration in which the first scatterer lies in an element 

of volume dr-, about the point ?, and has a scattering parameter 

lying between a-, and a-j+da-, , while at the same time the second 

scatterer lies in an element of volume d^ about the point r^ 

and has a scattering parameter lying between a2 and a.^^^,   etc. 

The integral of the joint probability distribution over all 

configurations of scatterers is normalized to unity; i.e., 

J...J p(qj»...»qjj) dqV-,dq~N = l ' (1) 

We can also introduce the number density n(q1}...,a ) of 

scatterers by multiplying through Eq. 1 by N and letting 

n^ qN)=Np(qp...,qN) • (2) 

The integral of n(qi,...,q^) over all of phase space gives 

the total number of scatterers present; i.e., 

J...J n(qj,-..,qN) 
dq\---dq^ = N •        (3) 

The probability of a configuration having the i 

scatterer occupying the volume element dq. regardless of the 

location and value of the scattering parameter of all the other 

10 
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scatterers, may be obtained by integrating over all but the 

_.th coordinate as follows 

-> 
(4) 

In terms of the number density we can write 

N p(qt) - n(tt)   • (5) 

It is also convenient to introduce the notion of 

conditional probabilities.  The conditional probability, 

P(qp•••»^i-i» q^+^>•••,q^!q^), for a configuration having the i 

scatterer fixed at the known location"?, and having a scattering 

parameter with the known value a. is defined to be 

-> —> 
p(qp--->qi_i>qi+i>--->

/'cJNl
cii< - 

p(qx>--• qN) 
(6) 

For example, if i = 1, Eqs. 4 and 6 become 

p(qi) - j"J P<<JI>-">%) ^"-^N » 

and 

p(q2»---» y <ii> = "35 
p(q*i>•••>qN) 

p(q\) 

(7) 

(8) 

These notions can be generalized to the case where 

more than one scatterer is held fixed.  To facilitate writing 

let us take the case where scatterers 1 and 2 are held fixed 

instead of the more general case where the i  and j   scatterers 

are held fixed.  First, the joint probability of finding the first 

I 11 
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scatterer in the volume element dq, and the second scatterer in 

the volume element dq~ is given by 

P(q].»"?2) "/•••/ P(?i»-••»"?«) «iq3. . . dc|  . (9) 

The conditional probability for a configuration having 

the first scatterer fixed at r-. and having a scattering parameter 

with a value a-, and the second scatterer fixed at r2 and having 

a scattering parameter with a value a2 is defined as 

p(qi > • • • >qM) 
P(?3,...,5N?I,«2) •      * =     N 

1      p(qpq2) (10) 

Another useful relation can be obtained from these 

results.  Combining Eqs. 8 and 10 gives 

p(q 
^ > .,,   p(q2»---»qN|qi)p(qi) 

p(q1}q2) 
(ii) 

' 

Moreover, Eq. 8 for the case N=2 yields 

'(t2|?i) " 
-> —•>• 

p(qlsq2) 

p(q1) 
(12) 

Solving Eq. 12 for p(q\ >q2) 
anc* substituting this result in 

Eq. 11 gives the desired result 

p(q2,...,"q   ("?-,)   = p(13,..-,q   Jqj^r^)   P(q2|~qi> (13) 

1 12 
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As a final illustration of the use of number densities, 

we can write Eq 12 as 

-•> ->     -^   -'? |~>   n(q1)n(q2| <h) 
pCq^qV - p(qi)p(q2' <L> 

= —ZT^T\ • <14> 

Here the conditional number density n(q2|qi) has been introduced. 

The conditional number density n^q^lq-i) is related to the 

conditional probability density p^ojq,) in the same way that 

"> -*? 
n(q^) is related to p(q-i) (cf. Eq. 5); i.e., by the relation 

n(t2|qi)  = (N-i) P(32|?I>  •        '     (15) 

The factor (N-l) appears in Eq. 15 simply because one particle 

is held fixed. 

The generalization of these results to the case where 

an arbitrary number of scatterers are held fixed with known 

values of their scattering parameter is immediate. 

Now consider a function f(r,tfq,,...,q ) of space 

coordinates r, time t and the N vectors q,,...,q .  The 

configurational (or ensemble) average of f(r,t| q,,...,d, ) is 

defined by 

(f(r,t^ -J...Jf<1fttfl,...ÄH) P(ql,...,\) dqV-.dq^ •   (16) 

13 
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The partial average with one or more scatterers held 

fixed is obtained by averaging over the appropriate conditional 

probability:  Thus, the average of f(?,t | q^,...,qN) over all 

configurations for which the first scatterer is held fixed at 

r-, with a value a-, for its scattering parameter is denoted by 

^f(r,t | q\))> and defined by 

(f(?,t| 5^))= J...J f(r,t) q\,...,qN)p(q2,...>qNjq'1)dq2...dqN>(17) 

and so on. 

If it is assumed that the locations and radii of the 

scatterers are statistically independent, then by definition we 

have 

p(q\,-.-»qN) - p(q\) pCq^)--- v(%) * (18) 

that is, the joint probability density function is expressible 

as the product of the individual probability density functions 

for each scatterer. 

C.  ACOUSTIC PULSES 

Let Y(r,t) be the acoustic pressure at the space point 

r and at the time t. We will assume that Y(?,t) is a real 

function of its arguments r and t.  Since we are interested in 

pulse wave forms, we shall use the Fourier integral 

representation for Y(?,t). 

14 
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That is, we let 
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I 

Y(~r,t) = ff Re J 4(r» e    du, , (19) 

where t(r,tt>) is the Fourier transform of Y(r,t) and is given 

by the inversion formula 

•        iuut 
*(*»«>) - J Y(?,t) e   dt . (20) 

-OS 

The symbol Re denotes the real part of the integral which is a 

complex number and the real quantity OJ/2TT is the frequency of 

the sound wave. 

The Fourier transform ty(i?,u)) must satisfy the 

Helmholtz equation 

y2 *(?»>») + k2 •<?,«») * o , (21) 

2 11 wherey  is the Laplacian operator.  If absorption is present, 

then k is a complex number, say 

k - K+ia , (22) 

where a is the absorption coefficient and K is the wave number 

which is related to the wavelength \  of the sound wave by the 

expression 

K«2*-. (23) 

0 

15 
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[1 CP = ^- <24> 

The phase velocity c of the sound wave is then given by 

In analogy with Eq. 24 a complex velocity c can be 

defined by 

ou c - -g- . (25) 

Upon using Eqs. 22 and 24, we can express c in the form 

c_ 
c = 

1 + iac /uu 
(26) 

In general the medium will be dispersive, so that both c and 

a will be a function of m. 

Now consider a medium in which there are embedded 

N point scatterers which are randomly distributed with respect 

to position and with respect to the scattering parameter a.. 

Let Y(r,t|~^1,. . . ,"q^ ) be a scalar field (acoustic pressure 

field) produced by the multiple scattering of an incident wave 

f (r,t) by a configuration 

ensemble average of Eq. 19 

1 (r,t) by a configuration of scatterers.  Let us take the 

- J...J ^...dq^ p^,...,^)!»^ J •(J,«»ll1,...,tN.) 
-iujt 

e    duj 

Upon interchanging the order of integration, we obtain 

16 
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»  -iuut 
(v(r,t))- ±-Re ]    e" ' dw J. . .J   Kr\w\\,. . . ,\) 

x p(q^».-«»"?N) d?i"-dciN 

or 

<Y(r,t))= i-Re | (*(£">)) e    dUJ ' (27) 

Consequently in developing the theory of multiple scattering, 

we need only be concerned with the Fourier components 

<^i(r,uu)).  A more rigorous discussion of the Fourier transforms 
12 of stochastic processes is given by Papoulis 

D.  EQUATIONS OF MULTIPLE SCATTERING 

Consider a homogeneous, isotropic, non-absorbing 

medium capable of sustaining wave motion according to the 

Helmholtz equation 

y2 K?» + Ko *<*.«) = © (28) 

where 

01 

c 
K0 - -S_ , (29) 

Bad (30) 

17 
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B , being the adiabatic bulk modulus and p the mass density 

of the liquid medium. 

Suppose there are embedded in this medium N point 

scatterers which are randomly distributed with respect to 

position"? and scattering parameter a^ (1 SüI^N) .  Under the r m m 

influence of an incident wave ^(r,ID) and the scattering from 

other scatterers, a scattered wave %  (r,tDjq \ q, ,. . . ,cf ) is 

generated by the m  scatterer.  Here the first argument r 

specifies the field point of evaluation, the second argument m 

is the angular frequency of the incident and scattered radiation, 

q gives the location and value of the scattering parameter of 

the scatterer originating the radiation and q••,...,q indicate 

the dependence of the scattered wave on the specific 

configuration chosen.  Employing the radiation condition, the 

scattered wave has the form of outgoing radiation and is a 

regular solution of Eq. 28 everywhere but at r = r , where a 

singularity is present. 

The properties of a single scatterer are assumed 

known, so that a rule is available relating the scattered wave 

and the exciting field ir(r,oj)"^ ] q^,. . . ,qN) acting on the m 

scatterer to produce scattering.  This rule defines a linear 

scattering operator T (q ) by the relation 

: 

D 
18 
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The exciting field is assumed to be a regular solution of the 

Helmholtz equation, Eq. 28, in the neighborhood of r^ in order 

that the single scatterer computation be applicable. 

By the principle of superposition, the total field 

ty(r,a>jq, ,. . . ,q ) may now be written as 

N 

Hr,^,.../^) = f(?,w) + \   ^(r>|q^lq^,...,q^) ,    (32) 
L i 
m=i 

or using Eq. 31, 

N 

m=l 

Now the exciting field acting on the m  scatterer 

is just the total field minus the wave scattered by the m 

scatterer, i.e., 

f&A q^l?!, • • • ,\)=K?, «H q"i, • • • ^N)- ^
S(?, <"l\i ?!»..• ,%) • (34) 

Using Eqs. 31 and 33, this last relation can be written as 

N 

^»itjtx. • •. ,1N)=^(r,^)+ ]T 
T<V > *E &«l^ 1^1» • • • »?N>- (35> 

i 

m =1 
i 

(m M) 

19 
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Eq. 35 represents a set of N algebraic equations for 

the N function ^E(r,uuj"5mj q-^ . . . ,qN) , l<m<N.  Once these N 

functions, representing the exciting field on each scatterer, 

are known, they can be substituted into Eq. 33 to give the total 

field. 

These relations account completely for the effect on 

each scatterer due to the presence of other scatterers.  In 

terms of  multiple orders of scattering approach where 

primary (or first order) scattering is due to the incident wave 

alone, secondary (or second order) scattering represents one 

rescattering of the primary waves, and so on, all orders are 

included in Eqs 33 and 35. 

To summarize, the self-consistent field equations of 

multiple scattering are given by 

K?,(.|?1,...,q^N)=f(r,u))+^  T(4m)*
E(?,a|q^|^1,...,tN) ,  (36) 

m-1 

D 

N 

m =1 

(m ^m) 

^(r^r^Jq'p . . • ;?N)=*
i(r,«))+ ^ T(q\ ) *E(r>lqm< | f^,. . . ,tN) . (37) 

In order to gain some insight into Eqs. 36 and 37 

let us consider the case when N=2.  Eq. 36 becomes 

20 
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• (r'ffil^.'qj)  =   «1(F>)+T(qpt£(;>
>a.)5>

1Jq>
1,q

>
2) 

i 
+T(?2)   fi(?,v\\\ti%2)   * 

and  Eq.   37  becomes 

(38) 

<F(^mti|1i^2)  "   +<?.*)  +T(q^)^(r>fi2i*q1Tq2)   , (39) 

fF(?,<A2\\&2)  =   ^(^a,> +T(qJ)   ^(^»»ql]3x»^)   V <40> 

Solving Eqs.   39  and 40  for   *r(r,u) jq, I q, ,q2)   and 

JE/-*    ff  •'> *?   \ •   1 J 
*  (r,^iq2: ^1*^2^   »   yields 

rA«R!l\Ä2)  , (41) 
1  -   Ttf2)   T(qL) 

E _>    ,=7    >     > * (r,«J)  + T(q1)*:L(r,aJ) 
*   (r,u> q2jq1,q2)   - •  

21    1     Z 1   -   T(q\)   T(q2) 
(42) 

; 

I 
I 

The total  field is obtained by substituting these 

values,   Eqs.   41 and 42,   into Eq.   38. 

H?A\i%2)   -   **<*>)  + T(q\) I 

1.1/r? —> \ .1.1 / r* r(r,uu)+T(q2)^(F,uü) 

1   -  T(q~)   T(q,) 

+ T(q^2) 
f(r»  + T(q\)^(r>) 

1   -   T(qL)   T(q2) 

(43) 
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To show explicitly that Eq. 43 includes all orders 

of multiple scattering, we expand the denominator of the last 

two terms on the right side of Eq. 43 in a power series. 

Assuming that T^) T(q2) = T(q"2) T(qx) , we then have for 

both denominators 

;i - T(q"2) TCqp""
1 - 1 + T(q2) T(q1)+T(q2)T(q1)T(q2)T(q^) 

+  ...   , (44) 

provided  that   ;T(q2)  T(<fj>] < 1-     Thus  Eq.   43 becomes 

Kr,^,^)   =   ^i(r',^)+T(q1)^i(r>)+T(q2)^
i(r» 

+T(q1);T(q2)(Fi(rVO   +T(q2)   [T^) ^(r,w)J 

+T(q\)  {T(q2)[T(q\)f(r,«))]j 

+T(q2) (T(qi) :T(q2>r(r,u.) j   +...   . (45) 

The term ? (?, uu) is the value of the incident wave at 

the point f after having undergone no scatterings;  T(q-, ) if (r,w) 

is the value of the incident wave at the point r after having 

been scattered once by the scatterer located at r,; T(q2) i' (r,tu) 

is the value of the incident wave at the point r after having 

been scattered once by the scatterer located at r2; T(q,) 

x [T(q2) ^(r, w)j is the value of the incident wave at the point r 

22 
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after having been scattered twice - first by the scatterer 

located at r2 and then by the scatterer located at r^; etc. 

It is important to note that the explicit resolution 

of the total field into multiple orders of scattering, Eq. 45, 

is valid only if the interaction between the scatterers is 

sufficiently weak so that the condition |T(cft) T(q~2)| <  1 

holds.  If the wave about each scatterer is profoundly influenced 

by the presence of the other scatterer, i.e., if there is a strong 

interaction between the scatterers, then this condition may not 

be met and the explicit resolution into multiple orders of 

scattering loses its meaning.  In this case the more rigorous 

Eq. 43 must be used.  While this equation accounts for all 

orders of multiple scattering, it does so implicitly. 

If the scattering is extremely weak, i.e., if 

|T(q,) T(q'2)| 
<<rl> then all second and higher order scattering 

terms can be neglected in Eq. 45 and we have 

Kr\uü|q\,q^2)=f(r',u;)+T(q1)^(r,a))+T(q2)^(r,u)) . (46) 

This is called the Born approximation. 

E.  AVERAGED FIELDS 

Because of the complicated nature of Eqs. 36 and 37, 

it does not appear feasible to attempt to invert Eqs. 37 to 

obtain explicit expression for the exciting fields.  Instead, the 
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equations will be averaged as they stand.  First let us average 

Eq. 36 for the total field: 

<*(?,»)>- J*. . ./•(?.»I?if • • • »q>
N)P(q\» • • • ^dq^. . .dq N 

N _. 
-r<?,«)+ y     J*. . ./T(q^) t (^«-Iq^iq^,. . . .q^pCq^,. . . ,q\j)dq\. . .dq^ 

m=l 

N 

= f (r»+ ][ /• • .jT(q^) ^E(r,U)| qmt q\, . . . ,q»N) 

m=l 

x p(q^)p(q\,. . . ,%_!, q^+]. . . ,qN j qfj dq\. . .dq^ 

N 
-«*(?,<•)+ ^ jT(qm)p(qm)dqmJ. . .Jdq\. . . d^_ ^q^ , 

m=l 

*f N 

x lF(r, *| qj q\... ,q*N)p(q\, . . . ,qm-l»W» • • • >?H| %? 

N 

-f(?,<«)-»• I /T(qMp(qr)<tE(?,to|q;jq;)> d? 
m=l 

(47) 

- 

\   I 
1 

Here use has been made of Eqs. 6, 16 and 17.  Thus to evaluate 

the ensemble average of the total field, (K^,^)^, we need to 

determine the partial averages <(^ (r,wjq |q )/for 1 £m^N.  The 

quantity <^(r,o)| q |q ))> is the ensemble average of the exciting 
'm1 nir 

field acting on the m  scatterer when the m  scatterer is held 
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fixed.  Let us compute the first of these quantities, viz., 

From Eq. 37, we have 

N 
n    ~\ i£( ^(r^\q\\q\t . . • ,qH)-*V,«>>+ L   T(qm) f (r, »| qj qx, 

m-2 

.,qN) 

Consequently, 

<^(r,*|q\|qi)> -J. • J ^(^^^1 |q"p • • • »%)P(?Z*'' ' >%\ ^V^Y • -d% 

N 
• -> ^ .,£,-> ..,,-> ,-•> r-(r,«))+ ^ J\ . . jT(qm) r(r,CD| qm|q1, . . . ,qN) 

m=2 

<» v .-*> X p(q2,...,qN!q1)dq2...dqN (48) 

A slight generalization of Eq. 13 yields 

.-•> . -> -•> 

P(q2>"-^Niqi)=P(qm|qi)P^2"">
c»m-l'%+l""^Nlcll'qm> • <49) 

Thus Eq. 48 can be written as 

25 

«j»-*-—"•»»-—-^- • - ,. ._ —..- I  MH  I I • I    I   -•••-•• ul 



^•^       ••.•!'••.' 
""•     "" - ~  1 

ur» 

I 
! 

." 

N 

<r(?,Hq\|q\)> -r(?,«>)+2      J,T(^n)p(qm|q1)dq m 
m=2 

xf.. ./*  (r,tt)|q^{q\,. . . »q^pCq^, • • • >%-l>%+V ' ' ' '^NI^I'^ 

^V-^Ar*^ N 

,E,-> <*   (?Hlll*l>> =t1(r,UJ)+\>-      jT(q^)p(q^|  q\) 
N 
) 
rn=2 

x<* ^'HVl^V^m (50) 

Thus we get the very unsatisfactory result that the 

average of the exciting field with one scatterer fixed is given 

in terms of the average of the exciting field with two scatterers 

fixed.  Further calculation shows that higher partially averaged 

exciting fields will involve the integral of the exciting field 

with one additional scatterer held fixed.  This lack of 

completeness is the basic difficulty encountered in the implicit 

13 approach to multiple scattering.  Lax  has suggested breaking off 

this hierarchy of equations at some stage by arbitrarily replacing 

the exciting field in an integrand by the corresponding field with 

one less scatterer held fixed.  The resulting equation is then 

solved, and each of the preceding equations solved by quadrature. 

1 
±1     
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The system of exact equations governing multiple 

scattering is now complete. There are three known methods for 

obtaining a solution to these equations.  First, one can in 

principle obtain an exact solution by solving the implicit 

initial representation, Eq. 37, for the N quantities 

t (r,u)| q' | q, , . . . ,q' ) .  This method was illustrated by the 

example for* the case when N = 2 with the solutions being given 

by Eqs. 41 and 42.  The solutions for ty (r,a|q^ iq^,. . .,q'N), 

obtained by solving the system of equations, Eq. 37,ican then be 

substituted into Eq. 47 to give an exact expression for the 

ensemble average of the total field.  However, this scheme must 

be discarded because the labor is prohibitive.  Second, one 

might iterate the system (eq. 37), replacing the exciting field 

in the summation of one equation by the right-hand side of the 

following equation, and continuing to replace the exciting field 

wherever it occurs, ultimately obtaining an infinite series 

representation for each of the exciting fields which involves 

only operations on ^(f*, ui).  This result expresses the exciting 

field in terms of multiple orders of scattering and leads to the 

system of equations 

' 
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N 

^(?^|?m)q\,...,$N)=^
i(?)aJ)+^ Ti^yHr.m) 

m'=l 

(mVm) 

N N 
+Z   T<C>I    T(q>

m')^
i(r>,aO+...   . (51) 

m"=l      m*-l 

(m'Vm)     (mVm) 

This result is then substituted into Eq. 47 to obtain the average 

for the total field.  Such series rapidly become cumbersome to 

treat exactly when more than one or two terms are considered, 

so that this scheme is only feasible when multiple scattering 

effects are very weak.  Finally, one can average Eq. 37 as it 

stands.  This is the technique that was used in this section and 

it was seen to lead to a complicated hierarchy of equations. 

Even if Lax's suggestion is used, the labor may be prohibitive. 

Thus, if we are to arrive at a solution, some kind of approximation 

must be used.  One such approximation will be discussed in the 

next section. 

F.  APPROXIMATE EQUATIONS 

We begin by expressing the exciting field 

| (rjuulq* | q-*,,... ,q')incident on the m  scatterer in terms of the 

total field ^(r, uuJq\ ,. . . ,q__i ,cf .i »• • • ><Li) that would exist in the 
f"Vi t"H 

neighborhood of the m  scatterer if the m  scatterer were not 

present.  That is, we first remove the m  scatterer from our 

configuration.  Then let f(?, wiqp . . . >qm_i>?m+i> • • • *%)  be the 

total field in the neighborhood of the position where the 
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m  scatterer was originally before removal.  We now insert the 

m  scatterer back into its original position.  Due to its 

presence, the wave ll(^»tl,|<h » • • • »^m-l'^ri-l* * * * »^N^» whicn existed 

in the vacant neighborhood of the m  scatterer, is scattered 

by the m  scatterer and then rescattered by the other 

scatterers, consquently, changing the value of the wave 

incident on the m  scatterer from ^'(^»Hq-p • • • >%i-l %+! > • • • ><tta) 

to iji (r, uu|q jq,,...,qN).  We can express this as 

* (r,aJ|qml qlt • • • >%)m *(r,«*|qp . . • »qm-i»Vl-l» ' ' ' ,qN' 

N 

+ )    X (r,u)lqk|q1,...,qN) , (52) S/-> 
L 

k=l 
(Mm) 

where X (r,uu| q, | q, , . . . ,qN) is the wave scattered by the k 

scatterer.  Let x (**, w\ qf.J q,,. . . ,qN) be the wave incident on 

the k  scatterer to produce the scattered wave 

XS(r,u)|qk|q1,...,qN), i.e., let 

XS(r\^|qk|q\,...,qN)=T(?k)x
E(r^!u|qk|q\,...,q

>
N) . (53) 

From the above discussion we can write 

X (r^jqyqp . . . ,^,
N)

s=T(q^n) *(?,i»|q\,. . »S^-l»^!. • • • >?N) 

am 

N_ 

+ 1 T(q>.)xE(r\t«|q |q\,...,qN) .      (54) 

(j/m,k)      29 
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We now apply the same iteration technique to Eq. 54 that we 

-• 
used to obtain Eq. 51 from Eq. 37.  This yields 

XE(r,w|qkjq\,. . . ,qN)
=T<V> Kr,U)|q\,. . . ,4-l»^ri-l»' ' ' •**> 

N 

3-1 

+ . . •    • (55) 

If we now combine Eqs.   52,   53 and  55,  we have 

+ ).   T(?k)ri + ^        T(ft) +     •      T(?J   ...       T(q^n) 
k^m      k  L j^k,m        J jA,m      J     itfj ,m 

v- v r l 
+     2 T<£)    *-       T(q^)   £-       T(q   )   +. . . j 

j^k,m        J    n^j,m      n    p^n,m      F 

x n^)K?i»i!i v^iiVfi V • (56) 

It should be stressed that this representation, while not in 

closed form, is exact. 
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I 
I Now a great simplification in the equations of 

multiple scattering would result if we could make the 

approximation 

*E(?,«>l^n|?L)...,qN) 
w *<r,«)|q>

1,...,^n_1,%ri.1,...,?H) ,   (57) 

obtained by neglecting all but the first term on the right side 

of Eq. 56.  Unfortunately, there are no known general conditions 

which tell us when these terms can be neglected.  However, for 

the case of isotropic scattering an estimate can be made and this 

will be discussed in Section G. 

Using the approximation given by Eq. 57, that the 

exciting field on a scatterer may be approximated by the total 

field existent in the neighborhood if the scatterer were not 

there, we can write Eq. 36 as 

N    b 

•C?,»!^,...,^ «•*(*>)+£ T(qm) 
m=l 

Now let us assume that the locations and radii of 

the scatterers are statistically independent so that Eq. 18 

holds.  Then taking the ensemble average of Eq. 58 yields 

<•<*»•»• tte«)* "   JP(q;)T(q;)dq; /. . .J"dq\. . . dq^dq^. ..<#„ *m •   u 'i-    m- 

m-1 1 
| X p(q1)...p(q

>
m_1)p(q

>
m+1)...p(?N) *(?, ">| q\, • • • ,?m.1,qJn+1» • • • ,<fN) • (59) 
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The (N-l) - fold integral in Eq. 59 is independent of qm and, 

in fact, is precisely the average total field for the same 

problem with one less scatterer involved.  As the number of 

scatterers increases, this quantity must differ from the total 

field with N scatterers by terms of order 1/N.  Thus, assuming 

a large number of scatterers, we make the approximation 

<;Kr, (a))- |. . . Jdqx. . . dq^ *< r, u>| q±, . . . , q*N)p(q\) . . . p(<?N) 

Q 

I 

: 

[ 

-/• • .Jdq\. . .dq^.idq^. . . dq*N«?, <o| q\,. . . ,qm.P?m+i, • • • ,?N> 

x p(q7
1)...p(qJn.1)p(qm+1)...p(q'N). (60) 

Consequently,  Eq.   59 becomes 

N 
<*<*>)>-   •*•(?»««)   +')     jT(q;)p(q>

m)<H?,a))>dq>
r 

m=l 

Now using Eq. 5 and assuming that 

P(q"l) • P(<?2) = •••= P(<fN) » 

nCqj^) = n(qJ2) = •••= n(qN) , 

m 

We can write Eq. 61 as 

(«?,•)>- fl(?,«) + JT(?,)r,(q',)<Kr,^)>dq, 

(61) 

(62) 

(63) 
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This integral equation will be the starting point for our 

investigation of the multiple scattering from fish schools. 

G.  ISOTROPIC SCATTERING 

For the case of isotropic scattering, the operator 

T(q^) is defined by 

"!• • • Jp(q\» • • • ,qN)T(q ) •(?• ^ifp • • • >qN)
d3r • .dqN 

iK jr-r'l 
=J---jP(qi>--.>qN)g(q >a>)Kr ,u)|qp. ..,qN) e  °   dq^...dq. 

|r-r | 
-> -,' 

•     iKJr-r| 
= g(q ,1«) e ;   <K? ,w)> .        (65) 

r-r 

The operator TCcf ) commutes with the N-fold integration since 

<? is independent of q*»**.,qL and, so far as the N-fold 

integration is concerned, the variables cfi,. . . ,qt. are simply 

dummy variables. 

33 i 
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Thus, the integrand on the right side of Eq. 63 becomes 

T(!,)<H<?,<»)>-T<q»,)J\ . ./Kr>|q\, . . . ,qN)P(q\, . . . ,qjj)dq\. . . dq^ 
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Consequently, using Eq. 65, our integral equation 

for multiple scattering, Eq. 63, becomes for the case of 

isotropic scattering 

ii ii iMW 
<•<?»>-   ^(r>)+fJn(? »«  )g(?  >a  »*$(* »a')>  e. °, d? da  .   (66) 

|r-r | 

ii        ji 

Defining 

G(? ,uu)«Jn(r  ,a  )g(r  ,a  ,x)da  , 

Eq.   66  takes  the final  form 

lKjr-r 
<Kr»> = ^(?,u,)+jG(r?;aO<^(?;c,)>e_lT dr   . 

r-r 

To see the physical significance of this equation, 

let us apply the operator 

2 . „2 
o V" ; 

to both sides of  the integral  equation,   Eq.   68,   remembering 

that 

2 2 iKJr-rl 

|r -  r | 

where 6(r-? ) is the three dimensional Dirac 6-function 

defined by the equation 

(67) 

(68) 

(69) 

(70) 

I 
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/ f(r )6(r-r )dr    = f(r)   ,   if r€V 
V 

- o, lf ? 4 V . 

We then obtain 

y2<^(rVi;)>+k2(?,.i.)<K?,UJ)>= o , 

where 

k2(r,u) = K
2
 +4n G(r,a>) . 

(71) 

(72) 

(73) 

In general, g(r,a,uu) will be complex, so that k(r,u)) will be 

complex.  Thus, we see that /f(r,w)') satisfies the Helmholtz 

equation having a complex wave number that depends, in general, 

on position and frequency.  Consequently, the incident wave and 

the scattered waves from all the scatterers interfere, on the 

average, to form a new wave traveling at a different phase 

velocity and undergoing attenuation.  This wave will display the 

reflection and refraction aspects of coherent scattering at 

surfaces of discontinuity. 

The problem of finding the average value of the wave 

function has been essentially reduced to solving a boundary 

value problem in the wave equation.  The boundary conditions are 

implied in the integral equation itself and depend on the 

function G(?,u)).  If G(r,u) is everywhere continuous and 

approaches a constant value or zero at infinity, then the 

35 

-.»..Li..  •--   •  .1-. j 



,. ..W/Mmnvmmmmmmmmmm^**•**••••**• »i i 

:: 

boundary conditions are that {•(?»w)/" ^ (r>w) be everywhere 

continuous and have a continuous gradient and at infinity 

represent outward traveling waves.  in another important 

case, that in which G(r,ui) is sectionally continuous, the 

boundary conditions are that <(^(r, JJ)") - $ (r,w) be everywhere 

continuous and have a continuous normal derivative across a 

surface of discontinuity of G(r,uo) and at infinity represent 

outward traveling waves, provided again that G(r, ua) approaches 

a constant value or zero at infinity.  In both cases," of course, 

/•(?,»)/ must approach $ (r,uü) as G(r, w)  becomes zero everywhere. 

We note also that the integral equation, Eq. 68, can 

in principle be solved directly.  One method of solution is the 

Liouville-Neumann method of successive substitutions or iteration 

method.  It consists in repeatedly substituting the expression 

for {ii:(r,<i')^> as given by the right side of the integral equation 
i 

for ^(r  ,w))> under the integral sign, thus yielding in our 

case the infinite series 

CO 

m=o 

D 

. i 

where 

y?,u,)  - ;G(?;») *m.l(?.'»>  -1X-"  dr',(^o)   , (75) 
l?-f' 

-1     -•> r-r 

36 

 -   •• • ••• - 



1ßimBmiimmmii^*im^m*v!"-,ii  ^—— 

I 

I 

which, if it converges uniformly, is the desired solution. 

In the above notation (< (r, i») = % (x?,w).     If the scattering 

is very weak, it may be possible to neglect all terms for 

which m > 2.  In this case Eq. 74 takes the form 

. „        i.i     iK jr-'r | 
<*<?,«>)> - r(r,u>) + JG(?,») ^(?,Uü) e   ° df 

I r-r I 

This approximation is known as the Born approximation. 

In order to obtain the approximate integral 

(76) 

equation, Eq. 63, or for the case of isotropic scattering, Eq. 68, 

we made the assumption that 

r(?,«»f<y q\, . • . ,qN) * K?,«|q\>. . • »^.pVfp • • • »?N> • 

Let us now examine the conditions under which this 

approximation is valid for the case of isotropic scattering. 

The argument while plausible is by no means rigorous.  Consider 

the first term, say cp , of the series in Eq. 56, i.e., let 
< 1 

cp0(?) =2_ T(qk> 
T<^»>K?»«»i?1....»4-i»^B+1».-,?N).    (77) 

k^m 

Each term in the summation represents rescattering from one of 

the obstacles of an outgoing scattered wave from r .  Furthermore, 

since the exciting field is only required in the immediate 

neighborhood of the scatterer, in question, in this case the 

Ith 
m  according to Eq. 56, we need only estimate cpQ(?) in this 

I 
I 37 
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neighborhood; for simplicity consider tp  (r ).  Surfaces of equal 

phase of the outgoing wave will be spherical so that the phase 

of rescattered waves returning to r retard according to the round 

trip distance 2 Ir, - r I from r to the individual scatterer.  A r i K   mi      m 

set of concentric half-period zones may be constructed about 

r , each zone defined by the requirement that its rescattered 

waves are no more than half a period out of phase at r.  These r * m 
zones are illustrated  in Fig.   1. 

\3(\0/4) 

\2(Xo/4) 

\V4 

c i . t> r 

rm 
ft 

?k 

Fig.   1 
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Suppose there is a uniform random distribution of 

density n and further that the scattering amplitude 

g(r, ,a,,x), defined by Eq. 64, is independent of the position 

r, of the k  scatterer and that g(a,w) is identical for all 

scatterers.  Then using the fact that the scattering operator T 

is defined by Eq. 64 for the case of isotropic scattering and 

using the abbreviation $(r^) = *(r^, tujq^,. . . >qm_i»qm+1> • • • >%) , 

the expression for c-» (r ) becomes r o v m 

V*.> -2L 8  «fr    rg-g , r~ - (78) 
k/m I rk m | 

The contributions from succeeding zones are the 

same order of magnitude but alternating in sign, the square 

law increase of number of scatterers with distance being 

precisely compensated by the inverse behavior of both scattered 

and rescattered waves.  One concludes that summation over the 

first zone should suffice to give an order of magnitude estimate 

of cp_(f'), and further approximating the sum by an integral we 

obtain 
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1st zone      2iK   |r -r | 

cp0(rm)« g   V(rm) 

k^m 
rlTrml 

« n g2K?)J 
2iK   I?'-? o i m 

1st zone ?'-g2 
dp 

4rtni 
g2 K4>- (79) 

Thus cp  (r  ) may be neglected in comparison with 

*(^»"l^l»#'-»^-l»%rtl»'*'»3ijP in Eq- 56 Provided 

4nni 
g 

4tm 
« 1  . (80) 

Since 4rr|g|  can be shown to be just the scattering 

cross section a of a single scatterer, the above criterion 

simplifies to 

no « 1. (81) 

The above estimates have only been concerned with the 

primary order of the multiple orders of scattering correction 

to the exciting field, i.e., the first term of the infinite 

I 
I 
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1        series appearing on the right side of Eq. 56.  One can then 

fi 

n 

I 

I 

I 

I 

infer that the estimate remains valid when the entire series 

is considered . 
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Part II.  SCATTERING FROM FISH SCHOOLS 

A.  INTRODUCTION 

The general theory of the multiple scattering of 

a pulse by a random collection of point scatterers that was 

developed in Part I is now applied to the case where the 

scatterer is a bladder fish.  The reason for confining our 

attention to bladder fish will be explained later in this 

section.  In general, we may distinguish between "scattering 

groups" and "scattering layers".  By a "scattering group" we 

shall mean a collection of fish such that the horizontal 

dimensions are at most only a few times larger than the vertical 

dimension.  By a "scattering layer" we shall mean a collection 

of fish such that the horizontal dimensions are a great many 

times larger than the vertical dimension.  A "scattering layer" 

can be represented mathematically by a volume bounded by two 

horizontal planes which extend to infinity.  In general, the 

planes will have an uneven surface.  As far as this report is 

concerned, a school of fish will mean a "scattering group" 

while the only "scattering layer" that we shall be interested 

in is the Deep Scattering Layer (DSL).  Even though we 

mentioned in the Introduction to this report that the DSL does 

not appear to be a likely source of false contact for operation 

in the BB mode of propagation since it would be detected 

simultaneously on more than one beam, we are considering it 
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briefly in this report because of its importance in producing 

reverberation and because it is an immediate consequence of our 

theory. 

Large areas of the deep ocean have a virtually 

continuous DSL.  These are formed of various sorts of marine 

organism, but especially of bathypelagic fish.  Out of the many 

studies attention should be drawn to those that have looked at 

the frequency structure, and by using wide-band underwater 

explosion sources have demonstrated resonances.  »  '   These 

results are in fact the strongest evidence that resonant swim 

bladders do play an important part in fish acoustics.  Extensive 

scattering layers can also occur in shallow coastal waters and 

are frequently associated with summer thermoclines. 

Tightly packed schools of fish can occur in both the 

deep ocean and in shallow water, and they come in a great 

variety of shapes, sizes and concentrations.  The records  . 

obtained by Voglis and Cook21 show some of this variety for 

schools of pilchard. The school sizes which have been seen with 

the Voglis equipment vary from a few yards across to those with 

a maximum dimension of about 40 yards (the soundings were taken 

looking down obliquely from above).  The shapes vary from the 

near circular to the line, a surprising number have U-shape. 

The differences in the apparent strength of return, as measured 
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by Voglis, must not be interpreted solely in terms of mean fish 

concentration, it may also depend on the roughness or 

diffuseness of the school boundary. 

While scattering of sound by fish is often observed, 

the possibility of significant attenuation due to fish has not 

been discussed in the literature.  The status of the subject of 

low frequency attenuation is that in deep water its high value 

is still unexplained, and in shallow water Weston and his 

colleaques have made direct observations proving that a large 

part of the long range attenuation is sometimes due to fish. 

While this report is only concerned with calculating the 

first order statistics of the signal scattered by a fish school, 

future work will deal with the second order statistics of the 

scattered signal.  Consequently, once the second order statistics 

are known, the question of whether there is significant 

attentuation due to fish schools will be answered. 

Now let us examine the theoretical and experimental 

work which has been done on sound scattering from fish.  For 

the deep scattering layer, we have already mentioned that 

sound scattering measurements have been made, e.g., by 

Hersey, et. al., Marshall, et. al. ,  and Andreeva .  The 

scattering of a pulse from the DSL, neglecting multiple 

scattering, has been theoretically calculated by Glotov , 

I! 
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Glotov, et. al. , and Kuryanov ?    There seems to have 

been no work done which describes the multiple scattering of 

either an incident monochromatic wave or an incident pulse by 

the DSL. 

No theoretical work of any kind appears to have been 

done on sound scattering from fish schools and only a very 

limited amount of experimental work.  Only three papers could 

20 be found which reported measured values:  Wickham, et. al.  , 

21 22 Voglis, et. al.  , and McCartney, et. al.   Of these three 

papers, only the first two and another paper by McFarland, 

23 et. al.  , contained any useful information on the structu: 

fish schools and even this information was rather sketchy. 

The work which has been done on the scattering of 

sound by a single fish is considerably more extensive.  Most of 

the measurements deal with the scattering cross-section of 

the fish which gives information as to the form of the scattering 

amplitude g(r>,a,w)defined by Eq. 64.  However, there is 

considerable discrepancy and variability among the results 

reported by the various investigators which warrants a close 

look at these papers. 

2 
First, consider the work of Cushing, et al .  In this 

series of experiments the scattering cross section of fish 

were measured.  The measurements were made at 30 kHz on fish 
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which were between 15 cm and 100 cm in length.  This data allows 

one to plot a single curve of the scattering cross-section versus 

the length of the fish, L, for 15<L< 100 cm.  However, Cushing 

first extrapolates this curve to include fish in the range 

0<L<100,000 cm.  Then he extrapolates in the frequency domain 

by plotting curves of the scattering cross-section versus fish 

length for 0<L< 100,000 cm and for a frequency range from 

1 kHz to 10 MHz.  All this from one series of measurements of 

30 kHz on fish between 15 cm and 100 cm in length! Moreover, 

there is considerable variability in the scattering cross-section 

of fish of similar size.  For example, the cross-section, o, 

from rome measurements on perch is given by: 

L(cm) a(cm ) 

24.0 3.1 

22.5 28.7 

21.5 71.0 

20.5 9.8 

To quote Cushing:  "No satisfactory explanation could be found 

to account for these results". 

The experimental work of Haslett  is much more 

carefully performed than that of Cushing.  Haslett made 

measurements on guppies and sticklebacks (0.93<L<6.2 cm) at 

frequencies of 360 kHz., 625 kHz and 1.48 MHz.  However, like 

i 
I 
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Cashing, he also extrapolated his measured values. 

An examination of the work of Cushing and Haslett 

shows that the actual measured values were made for fish 

lengths L-'X , where X  is the wavelength in water, and in both 

papers the results were extrapolated into the region L<X . 

However, measurements have been made in the region L<X  by 

Coate   and Andreeva  and they disagree with the extrapolated 

values of Cushing and Haslett.  Thus it must be concluded that 

the extrapolated curves of Cushing and Haslett do not hold 

in the region L<X . °      o 

Now two questions must be asked:  (1) VJhat causes the 

difference in the scattering properties of fish in these two 

regions; (2) Is LM  a valid criterion for the transition point 

between these two regions?  Unfortunately, the answers to these 

two questions are not forthcoming t  .1 one can only speculate. 

Weston's opinion is that the return from the fish tissue 

becomes important when the fish dimensions are comparable to 

the wavelength, but in fact the height and width dimensions 

are also significant and the transition really occupies a wide 

frequency interval.  Above this transition, wave interference 

effects occur between different parts of the fish, different 

parts of the bladder, and between fish and bladder.  Above 

the transition the tissue and the bladder returns have the same 
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order of magnitude.  Below the transition the bladder echo 

predominates and below bladder resonance both bladder and tissue 

are in the Rayleigh scattering region (a oc 1A ) .  Weston 

concludes by stating that "at the low frequencies (i.e., LA <1) 

there is a great need for comprehensive target strength 

measurements, especially those covering a wide frequency range 

about the resonance." It would be best to use undamaged live 

fish, removing uncertainties such as the possibility of bladder 

shrinkage." This latter remark was made since measurements to 

date have been performed on dead fish:  some freshly killed, 

some kept in formaldehyde for several weeks before use, some 

kept frozen for several weeks and thawed before use and others 

fitted with artificial swim bladders. 

Weston's remarks are borne out by the work of Coate 

in the region L<X .  Coate showed conclusively that for fish 

of length 20.5 cm and 21.7 cm and for the frequency range of 

150 Hz to 1000 Hz, the scattering was due entirely to the air 

bladder and moreover, for purposes of calculation, the actual 

elongated bladder could be replaced by an equivalent spherical 

bladder. 

The effect that these results have on the 

investigation of the long range classification problem posed 

by fish schools can be summarized as follows:  The theory of 
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multiple scattering is based ultimately on the scattering 

properties of a single fish.  Thus it is imperative to have a 

reliable model for'single fish scattering.  For definiteness 

consider a sonar operating at a frequency of 3000 Hz so that 

X. = 50 cm.  Using the approximate criterion above, it can be 

said that the scattering from fish of length L < 50 cm is due 

entirely to the bladder.  A detailed mathematical model 
3 

describing scattering by a bladder has been developed and 

agrees quite well with experimental results.  For fish of 

length L > 50 cm the scattering from the fish tissue is as 

important as that from the bladder.  However, no mathematical 

model has been developed to describe the scattering process in 

this region.  This is unfortunate since these larger fish may 

cause more of a false alarm problem than the smaller fish. 

The reason for this is that experimental results indicate that 

the scattering cross-section increases as the length of the 

fish increases.  However, it is not known if these larger fish 

school and if they do, just how large the schools actually are. 

Thus, for the reasons just explained, we will 

consider only the case for scattering from bladder fish in the 

region L/X  < 1.  Two geometries will be considered for the 

, boundary surface of the fish school:  (1) the fish are contained 

within a spherical region; (2) the fish are contained within a 

layer with infinite plane boundaries.  In both cases it will be 
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assumed that the boundary surfaces are smooth.  These two 

geometries are considered first simply because they are the 

most amenable to solution and understanding the scattering 

characteristics of obstacles with simple shapes and simple 

acoustic properties, such as the sphere and the plane, is a 

necessary stepping stone to an adequate understanding of 

scattering from obstacles more complicated in shape, composition 

and structure. 

B.  SCATTERING FROM A SINGLE FISH 

In the region LA  <1> scattering is due entirely 

to the air bladder of the fish and, to a good approximation, 

the actual elongated bladder can be replaced by an equivalent 

25 
spherical air bladder for purposes of computation  .  The 

scattering characteristics of the bladder are completely 

specified once the scattering amplitude g(r,a,uu), defined by 
3 

Eq. 64, is known.  This function is given by Weston and 

Andreeva      as 

I 

! 

I 
I 
I 

g(a,ti))  --Tr- 
ie U) 

-1 -i 
, w uuQ 

(82) 

where a is the radius of the equivalent spherical bladder, 

IU/2TT is the frequency of the incident sound wave, w /2rr  is the 

resonant frequency of the bladder and Q is a damping factor 
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which describes the sharpness of resonance.  Note that we are 

assuming that the scattering amplitude g(a,oi) is independent 

of the position r of the fish.  Moreover, we will assume that 

the scattering amplitude is identical for each fish. 

The resonant frequency ai of the swim bladder is given 

by 

i 

_ l  - /3YPh+4u1 (83) 

- r  a V    p 

where P is the density of water, P, is the hydrostatic pressure 

on the bladder and y  - C /C , is the ratio of the specific heat 

at constant pressure, C , to the specific heat at constant 

volume, C , of the gas in the bladder.  The complex shear 

modulus, u, of the bodily tissues of the fish which surround 

the air bladder is written in terms of its reö.1 and imaginary 

parts as |i = ^(l+i^) • 

The Q-factor, which describes the energy losses 

incurred in the pulsations of the bladder, can be expressed 

as a sum of three terms 

+ ~k  +  TT—  » (S^) Q     Qr    Qt     % 

where Q  describes energy losses due to reradiation, Q~ 
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describes thermal losses and Q7 describes viscous losses in 

the fish tissue. 

For radiation damping 

ai a 
r 

Q     c xr     o 
(85) 

For thermal damping 

V  2u> Q t 2 3 p in a Ko r 

For viscous damping 

1 4MLu2 

Qf p ID a o  r 

(86) 

(87) 

by 

Here c is the speed of sound in water and is given 

c_ = 
B ad 

° V    Po ' 
(88) 

where B ^ is the adiabatic bulk modulus of water, and v' is the 

thermal diffusivity of the gas in the bladder and is defined by 

• i  K 
v = -E , (89) 

P C 8 v 

where K. is the thermal conductivity of the gas and p is the 

density of the gas in the bladder. 
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I C.  SCATTERING FROM A SPHERICAL SCHOOL OF FISH 

Consider a random collection of fish, all with 

identical scattering properties, contained within a spherical 

volume of radius A.  Let the center of the sphere be located 

at the origin of the polar coordinate system r,ö,cp (cf. Fig. 2). 

Since the fish are represented acoustically by their air bladders, 

the density p^ of the medium enclosed by the spherical boundary 

will be simply the density of the mixture of the water and the 

air within the bladders.  Further, we assume the water to be 

9— Z 

x = r sin  9 cos <f> 

y = r sin 9 sin  <f> 

z = r cos 0 

Fig.   2 

1 
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:. nonabsorbing and infinite in extent.  Let p denote the 

constant density of the water and c  the constant speed of 

sound in the water as defined by Eq. 88. 

A plane acoustic CW-pulse of frequency a /2Tf, pulse 

length 2T and acoustic pressure f (?,t), traveling parallel to 

the polar axis in the positive z-direction, impinges upon the 

spherical school of fish.  (Choosing the incident wave in such 

a manner eliminates the dependence on ep.)  The incident pulse 

gives rise to an average internal wave /V  (r, t)])> and an average 

external scattered wave <^Ys(r,t)^>. 

The incident CW-pulse can be expressed in the form 

Yi(r,t) - n 
r t z/c 

2T 
COS (K Z - ID t) , (90) 

where we have put 

UL 
Kt " (91) 

I 

The function ü(?) is defined by 

D (5) - 1 , if |S| < 1/2 , 

= 0 , if|5| > 1/2. 

Now let us compute the Fourier transform of 

(92) 

1 (?,t).  Using Eq. 20, we obtain 
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iu>t 
^(F,tu)  = J  ^(r,t)   e dt 

^ (r>) 
»      rt  -  z/c   1 
p    n o cos   (K

tz 
la* 

u.i z)   e dt 

Z/C0+T 

^  (r,w)  = J cos   (K z  - 
io)t 

ID.Z)   e dt 
Z/C0-T 

*    (r,U>)    *   J 

z/c +T    r   i(K  z  -   IB t)   -i(K  z  -   ID t) 1        . iwt 
e       c z    +e e dt 

Z/CO-T 

**<£,«>)  = 
fflB-lU    \T! sin   I('JL'-U) )T| Ln   r(a+a.t)T]   1 iKo5 

(aj-t«t) (uH-iot)       J 
(93) 

where we have put 

K    = ÜL 
o      c (94) 

If we  let 

.              sin   :(uj-ir )T                 sin     (uH-ui.)T 
$1(UL1)  =  : E—L_       +     i £—: 

(tu-ujt) (aH-U)t) 

(95) 

I 

we can write  Eq.   93  in the  form 
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Let n(rl,a!) da' be the average number of scattcrers 

per unit volume in the neighborhood of the point r' having 

their scattering parameters lying between a' and a'+da'.  The 

function n(r',a') is just the number density function 

introduced in Part I, Section B.  Then using Eq. 82 for the 

scattering amplitude of a single fish g('af, to }, the scattering 

amplitude for the school G(?'»»)» defined by Eq. 67, becomes 

n(r\a') a'da* 
G(?',aO = / 

'uu 

U) / 

. ' (1) (97) 
/ 

We will assume that there are no fish outside the 

spherical volume of radius A and that the fish inside the 

spherical volume are uniformly distributed, i.e., we put 

n(?',a») - n6(a'-a), ?*eV\ 

(98) 

= 0, ?7 V, 

where n is a constant representing the number of fish per unit 

volume and V' is the volume of the sphere of radius A. With 

this choice for n(?',a'), Eq. 97 can be integrated to yield 
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. G(rV) = na 

U) ,1, -i  ! 
uu uQ 

F'eV* (99) 

= 0, r'^V1. 

Now the Fourier transform of the average scattered 

signal<^ (r,uj))> and the Fourier transform of the average signal 

within the school^ (r,uu)) both satisfy appropriate forms of the 

Helmholtz equation, Eq. 72. 

Since G(?',u;) = 0 exterior to the school, we have 

2JJS,*  ...X\ . „2 /3ß.^ y*<r<?,«o> + Kj<r<*,•» - o, (100) 

where K is given by Eq. 94. 

For the wave in the interior of the school we have 

XsS.* V  <* (?»> + k^(w)  <f(r,io)> = 0 (101) 

where 

. 

I 
: 

k2(») a,2 

5 + 4TTna 

ID 
r 
T -l 

O) 

ID 

\ «<3 

(102) 
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To obtain this expression for k (<H) we have used Eq. 73 and 

Eq. 99 for r'eV'. 

Letting 

k =Y+iP, (103) 

where Y and ß  are real,  we find from Eq.   102  that 

2       4TTnaa2   (u2-w2) 
Y   -   T  + 

(u)r-iu  )   +o)  Uir/Q 

(104) 

ß  - 
4TTnau> i» /Q 

(UJ
2
  -   (D2)2 +u>2u,2/Q2 

Then 

f   1 - / 2    2'  1   1^2 

-   -j (Y+V/YZ^Z )J 

(105) 

(106) 

.. and 

"   [4  (-Y+\/Y2+02     ) 
1/2 

(107) 

where K and a have been defined in Eq. 22.  Thus, the wave 

propagating through the school experiences absorption, which is 

frequency dependent since a is a function of u>, and dispersion 

since K is a function of IU.  The. phase velocity c of the wave 

is then given by Eq. 24 and in general this will differ from c . 
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We note for future reference that the radial 

components of the average particle velocities <(u (r, u))), and 

<(u (r, uo)/ for the scattered and internal waves respectively, 

are given in terms of the average pressure fields by the 

relations   : 

<uS(r»> 1 

ip0«) 

<uf(r»> 1 
ipfu> 

a 
a 

Tr   <f (?.»>> » <108) 

— <f(r»>  .    •     (109) 

Likewise for the incident wave we have 

ui(r,u.)=^-  —2-  f(rVu)    . (110) 
ip w   5r o 

The boundary value problem then consists of 

finding solutions of the Helmholtz Eqs. 100 and 101 that satisfy 

the boundary conditions (1) at the surface of the sphere (r=A), 

the acoustic pressure and (II) the radial components of the 

particle velocity must be continuous.  We now proceed with the 

solution to this boundary value problem. 

27 The required separated solution   in spherical 

coordinates of Eq. 100 is 

hv(Kor) P
v
(cos 6) » V= o»1»2»---»        (m> 
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28 
where P (cos G) are the Legendre polynomials   and hv(KQr) is 

a spherical Hankel function of the first kind defined by 

h (K r) = i (K r) + i n (K r) , (112) 

29 
i (K r) and n ,(K r) being a spherical Bessel function  and a Jvo       vvo 

29 spherical Neumann function   respectively. 

The required separated solution in spherical 

coordinates of Eq. 101 is 

jv(kr) Pv(cos 6) , v=o,l,2,...  . (113) 

Due to symmetry these solutions (Eqs. Ill and 113) are independent 

of cp. 

The expansion of the incident wave %  (r, 9, t») , given 

by Eq. 96, in terms of the eigenfunctions of the Helmholtz 

equation yields 30 

IK r cos 6 
r(r,e,«j) = S1^) e ° 

•(w) y       iv(2v+l)Pv(cos G)Jv(KQr) 

v=o 

(114) 

The scattered wave is expanded in a similar series 

with coefficients B which are to be determined: 

60 

•M mmm 
••--* •' •- 'in ii   . U 



<;S(r,e,u/)> -l1^) T,     1V(2NH-1)BV Pv(cos 0) hv(«or) .    (115) 

v=o 

Similarly, for the internal wave, we write 

CO 

< Är.e.u.)) = iV) Y      iV(2vfl) AvPv(°os 6)Jv(kr) •    (116) 

v=o 

The coefficients A and B are found by applying 

the boundary conditions I and II above.  The first boundary 

condition requires that 

f(A,G)UJ)+ <f(A,0,tt))> =<*f(A,6,u))> , (117) 

and the second boundary condition requires that 

ui(A,e,UJ) + <^u
s(A,e,o,y> = <(uf(A,e,tu)) . (ii8) 

Substituting Eqs. 114, 115 and 116 into Eq. 117 

yields 

VKoA) + BvVKoA> = NPV^)' <119> 

Similarly, substituting Eqs. 114, 115 and 116 

into Eq. 118 after having made use of Eqs. 108, 109, and 110 
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yield 

j;<«coA) + Bvh;(KoA)= Z(u.) A^^kA) , (120) 

where the prime denotes differentiation with respect to the 

argument and Z(w) is the ratio of the acoustic impedance of water 

Z  to that of the fish school Zf('u)>   i.e., 

Z. 
Z(u.) = 

Zf(«>) 
(121) 

where 

Z~ = P^c o o 

Zf(o)) - pfcf , 

cf = u)/k . 

(122) 

(123) 

(124) 

Note that since k is complex, the speed of sound 

in the fish school cf is complex and consequently the ratio of 

impedances Z(u>) is complex. 

Solving Eqs. 119 and 120 simultaneously, we 

obtain 

B, 
|_Jv(kA)hv(KoA) - Z(^j;(kA)hv(KoA)  j 

(125) 

J 
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Next let us eliminate the derivatives of the 

Bessel functions in Eq. 125 by use of the well known relation 

*;<« - -r fv<^> - W§) • (126) 

where fv(?)  can be Jv(5)  or nv(?)   . 

Using this result, we can write the expression 

for B in the form 

N 
Bv " 1\  » 

where 

Nv= [vC^-^l-^j^K^-j^C^A)] jv(kA) 

+ Z(») Jv(KoA) JsH-l(kA) ' 

Mv - [vC^Aj^d-h) hv(»coA) - h^C^A)] Jv(kA) 

+ *<•) hv(KQA) 3v+i(^A) . 

and we have put 

h = p0/p£  . 

(127) 

(128) 

(129) 

(130) 

Since we want to consider the scattered wave only 
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at large distances from the fish school, we can use the 

following asymptotic expansion for the Hankel function 

w> 
-v 

i  e 

IK r o 

,  (KQr—>») (131) 

iKor 

Thus the expression (Eq. 115) for the scattered 

wave becomes in the asymptotic region 

<Os(r,e,«0> - ^(«Osce,«)) 
iK r 

o 
(132) 

where 
00 

S(e,oj) - (£*<,) y       (2v+l)Bv(u))Pv(cos 6). (133) 

v=o 

Consequently, the expression for the scattered 

signal becomes 

<*s(r,6,t)> =4-Re I *lW  S<9>UJ) 
-iiu(t-r/crt) 

duo .  (134) 

Now if we write 

S(9,u>) - Sj_+ i S2 , 

where S, and S- are real, Eq. 134 becomes 

(135) 
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<Js(r,6,t)> = ^ J *i(«>) [s1(9,w)cos u)t*4S2(8,«))8in iut*]dtt>, (136) 

where t* is the retarded time 

t* = t - r/cQ . (137) 

Finally, let us calculate the scattered signal 

in the Born approximation.  The Fourier transform of the signal 

is given by Eq. 76 ^ [?__>r( 

<V(r,9,aO) - J GC?»^?» * °       d?' . (138) 
N r - r'| 

-•> 

I 

Let (r,0,cp) be the spherical coordinates of r 

and (r'jQ'jCp1) those of r'.  Further, let © be the angle between 

r and r1 (c^. Fig. 3). 

•• 

.- 

B-S 

..*• 

r-r' 

i/ 

fen -—-—t 

-'V 

- j 

Fig. 3 
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Using Eq. 99 for G(?',u>) and Eq. 96 for $*•(?',a>), 

the expression for the scattered wave given by Eq. 138 becomes 

TT 2TT 
<*S(r,0,o))>= G(«))*1(CB) j dr' J de' J dcp' r,z sin 6 

x e 

i    «'  lK ; r-r iK r' cos 0  •  o1 o e 
ßPrH 

(139) 

Now 

|r-r'| = [r2 + r»2 - 2rr' cos ©] 
1/2 

(140) 

where 

cos 8 = cos 6 cos 8' + sin 6 sin 0' cos (cp-cp1) (141) 

Since we want to consider the scattered wave 

only in the far field, we have r'<< r.  Consequently, we can 

expand Eq. 140 retaining only first order terms: 

,1/2 
|?-f»| = r [l + -^2 - 2 f- cos e] 

V 
r 

.i 

cos © 

r-r' cos © (142) 

I 
1 

While it is necessary to retain the first order 

term r1 cos © as far as the factor |r-r'| which appears in the 

phase is concerned, it is not necessary for the factor 

|r-r'|which appears in the amplitude.  Consequently for the 
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amplitude we can write Ir-r'J« r. 

Moreover, we wish only to consider the back- 

scattered wave in the direction G = IT, so that cos 9  • - cos G' 

from Eq. 141.  Collecting all of these results allows us to 

write Eq. 139 as 

r iKor~iA    TT    2TF    9        2iK r'cos G1 

O  (r,Tr,u;)> = G(tt))*i(u>) £-— 'J dr' j dO ' J dcp'r,Z sin 8' e  ° 
L    J0 

iKQr A    ^ 
2iKor' cos6' 

^\lfS(r,TT,uj)\> = 211 G(uj)*i(u)) £—  J dr1 J dG'r'2 sin G ' e 
o    o 

<f (r,ff,«)>> = 2TTG(i»0 ^(u)) 

iK r   A o    A 

K r 
o 

J sin (2K r*) r'dr1 

(f (r,TT,,.:)) = TTG(«-)*1(U.)  [sin(KoD)-KoD COS^D)] 
iK r 

e °     (143) 

2K- 

where D • 2A. 

then becomes 

The scattered pulse in the Born approximation 

-nut 
(YS(r,TT,t)> = -jr Re j   ^S(r,TT,u;)> e   d« 

K3 
o 

-lust' 
<YS(r,Tr,t*)> = ^i- Re J G(c,;>* ^ [ sinOy^-y) cos(KoD)] e '  ' d«j (144) 

where, as bvfore, t* is the retarded time defined by Eq. 137. 
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If we let 

6(w) • 6j + i G2 , (145) 

where from Eq. 99, we find that 

2/22. 
na-t  (»-«1 ) 

Gl ~ri 2,2 . 2 2/n2 » (146) 

(u>r - o )  + B)r« /Q 

o 
nay;  tl) /Q 

G9 =  5 7-7J ^r~7 7  > (147) 

then we can write Eq. 144 as 

00      I 

<(Ys(r,Tr,t*)> - 4? I    ^^  [sin(KoD)-KoD COS(KOD)] 

x [GJ COS u;t* + G2 sin iut*] duu . (148) 

This is the average of the scattered signal in 

the Born approximation.  Note that the scattered signal is 

directly proportional to the average number of scatterers per 

unit volume n as can be seen from Eqs 146 and 147. 

68 

^ 

1 ___  J 



""< 'fimm^mmmtmmm 

I 
D.  SCATTERING FROM A LAYER OF FISH WITH PLANE BOUNDARIES 

Consider a random collection of fish, all with 

identical scattering properties and uniformly distributed 

within a volume bounded by two parallel, infinite planes.  Let 

us choose a coordinate system so that the planes are parallel to 

the xy-plane and let one plane intersect the z-axis at z = h 

and the other intersect at z = h + Ah (Ah > 0).  The geometry 

is illustrated in Fig. 4. 

z * 

Oi> 

(o,o,h+Ah) 

<*2> 

(0,0,h) 

Ci> 

Medium 3 

Medium 2 

Medium 1 

 > x 

Fig. 4 

i 

1  am 
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In reference to Fig. 4, media 1 and 3 are water while 

medium 2 is a mixture of xvater and fish.  Since the same 

assumptions will be made for the layer of fish as were made for 

the spherical school, full use will be made of the results in 

Section C without restating or rederiving them here. 

Let p. be the density and c. the sound velocity in 

th the i  medium.  Then, from what was said above, p, = Po = PQ> 

Po = Pfj c, =* c, = c and C2 = c^. 

Let Y^ (r,t) be a plane pulse, traveling in medium 1, 

which is incident on the layer.  Since the boundary of the layer 

is a plane, it is more convenient to use the Fourier plane wave 

expansion for Y^" (r, t) than the general expansion given by 

Eq. 19.  To obtain the plane wave expansion from the general 

expansion (Eq. 19), one simply lets the Fourier transform 

K (?,ou) be a plane wave: 

•1* Ik-, 
•J (r\a>) - $i(a0 e l (149) 

where $x(ui)   is the amplitude of the wave and depends only on 

the frequency a).     For the case of a CW-pulse, I (a) is given 

by Eq. 95. 

—• 

The vector k, is called the wave vector.  Its direction 

is that of the normal to the wavefront and its magnitude, 

denoted k,, is given by 
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(150) 

Let n be the unit normal vector to the wavefront and 

let n , n , n be the components of n along the x, y and x   y  s 
z-axes, respectively.  Since n is a unit vector, the components 

must satisfy the relation 

2   2   2, n + n + n =1 x   y   z 

Now we can write k, in the form 

(151) 

\  • kjn , 

and the x, y and z components of k, , denoted k-. , k-, , k, . 

in the form 

(152) 

klx = klnx>  kly=klny>  ki-  kin wlz 1  z (152) 

so  that 

kL+ kly + kL • kl  <nx + ny + nz>  " kl (153) 

Now consider the situation illustrated in Fig. 4 where 

the unit normal n to the incident wavefront lies in the xz-plane 

and makes an angle 0-,, with the positive z-axis.  In this case 

n • sin 6,, n = 0, n = cos •*, and Eq. 149 becomes 
X X j z * 

4   (*    >       .1/   *   „i(kl*X + klyy + klz  Z) 
K   (r, a<)  • •   (ID)   e ' 

§i#  ,     
ikl<V + nzz> • I   (uu)   e 

, Ikj   (x sin lj + z cos  9L) (  54) 
• *   (x)   e v       ' 

! 
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Thus the Fourier integral representation (Eq. 19) 

for Y|(r,t) becomes 

Y^x.z^) = i Re /  * (u)) e 
o 

.    ik, (x sin 6, + z cos 9,) -iiut 
du) . 

(155) 

A similar Fourier plane wave expansion can be made 

for the average of the signal scattered back into medium 1: 

<Y*(x,z,t)> =^Re J R(u,)e 
ik,(x sin 0, - z cos 6,) -iuut 

dio , 
(156) 

where R(w) is the reflection coefficient to be determined by 

boundary conditions. 

Let <(Y-. (x,z,t)^> denote the total sound field in 

medium 1 so that 

<(Y1(x,z,t)> = Y*(x,z,t) +<jS(x,z,t)) (157) 

0 
1 
I 
I 

We can represent the average of the total sound field 

in medium 2, <^Y2(x,z,t)^ , and in medium 3, /Y3(x,z,t))> , in a 

similar manner: 

<^Y2(x,z,t)) = -jj Re j* A2(a) e 
ik2(x sin 62 + z cos G2)-i uot 

duj 

,    08       ik9(x sin G9 - z cos 89)-iu± 
+ ij Re J  B2(-x) e dm , 

(158) 
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<f3(x,2,t)> - fr Re J T(u)> e 
iko(x sin 0„ + z cos 0„)-iu:t 

duu . 

(159) 

Here k2 = k , k~ = K and 6„ is the angle of refrac- 

tion in medium 2 while 6~ is the angle of refraction in medium 3 

(Cf. Fig. 4).  The amplitudes A2(ua), B2(u>) and T('u) of the 

respective waves are to be determined by the boundary conditions, 

The first integral in Eq. 152 represents the total sound field 

which is propagating in the direction with k~  > 0 and the 

second integral represents the total sound field which is 

propagating in the direction with k2z 
< 0. 

Since the normal to the boundaries is parallel to 

the z-axis, the normal components of the particle velocities 

are given by 

<«<x,«t «)>-,!- ^ <*m0w>>        (160) 
m 

for m = 1,2,3. 

The boundary conditions are then that the pressure 

and the normal components of the particle velocities must be 

continuous across both planes comprising the boundary. 

D 
Continuity of pressure at z = h: 

<fj (x,h,iu)> = <J.2(x,h,u;)]> . (161) 

Continuity of pressure at z = h + Ah: 

I. 

:. 

; 

<^2(x,h + fih, »)> = <^'3(x,h + Ah,uj)> . 
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Continuity of the normal component of particle velocity at 

z = h: 

^(x.h.to» =<u2(x,h,a)> . (163) 

Continuity of the normal component of particle velocity at 

z = h + Ah: 

<u 2(x,h + Ah,uO) =<Ja3(x,h + Ah,a>)> . (164) 

Using Eqs. 155-158, the first boundary condition 

(Eq. 161) becomes 

ik, (x sin 6, + h cos 9,)       ik,(x sin 0, - h cos 8,) 
«r(a0 e i       J-        L    + R(UJ) e i       L L 

ik2(x sin 02 + h 
cos °?) ik2(x sin 82 - h cos 82) 

= A2(ty) e + B2(w) e 
(165) 

Rearranging the terms in this equation, allows us to 

write it as 

ikohcosQ. 1 ix(kx sin *j - k2 sin 82) _ ^ oik2hcos02 + ^ ^«j-•»^ 
A2e + B2e 

x ', re i 
-ik,h cos 6, 1 -1 

+ Re  l L  j 
f  . ik,h COS b1       -j.r.,11 v„wo "]_ 

(166) 

Since the right side of this last equation is 

independent of x, the left side must also be independent of 

x.  Consequently, we must have 
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k, sin G, = k2 sin S« (167) 

This is just Snell's law of refraction for media 1 and 2. 

Using Eqs. 158 and 159, the second boundary condition 

(Eq. 162) becomes 

A2(uu) e 
ik2(x sin 8« + h cos G? + Ah cos G2) 

+ B2(w) e 
ik„(x sin G? - h cos 02 - Ah cos &2) 

ik-,(x sin 0~ + h cos S„ + Ah cos G-) 
= T(u>) e J       J        J J  .   (168) 

Rearranging this last equation, we get 

ix(k2 sin G„ - k~ sin 0.,)   -   ik2(h cos 02 
+ An cos G2^ 

=   ,A2e 

-ik2(h cos  62  + Ah  cos   02) 1  -1 iko(h cos   G-   + Ah cos   GO 
+ B2e A3e 

(169) 

Again, the right side of this last equation is 

independent of x, so we must have 

k2 sin 02 = k~ sin G~ . 

This is Snell's law of refraction for media 2 and 3. 

Combining Eqs. 167 and 170, yield 

k, sin P. = k2 sin I« 
= ^-» s*-n ®** 

(170) 

(171) 

-I 
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Using Eqs. 155-158 and 160, the third boundary 

condition (Eq. 163) becomes 

ik,(x sin B± + h  cos 6]L) 
Ji_ f ik, cos(6 )5L e 

- ik-L cos(0L)R e 

ik1(x sin 01 - h cos 6^1 

„ 1  rik9 cos (62)A2 

ik2(x sin 62 + h cos 62) 

- ik2 cos(e2)B2 e 
ik2(xsin 02 - h cos e2)l ^    (172) 

Finally, using Eqs. 158-160, the fourth boundary 

condition (eq. 164) becomes 

ik2(x sin G2 + h cos 62+Ah cos %£ 

1 rik9 cos(62)A2 e 
iujP2  L 

i k2 cos(62)B2 e 
ik2(xsin 62 - h cos   62-Ah cos  e2)j 

ik,(xsin e„+h cos  G3+th cos  63)] 
1    rik, cos(6jTe^ 3 J   .(173) 
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If we use Eq. 171 and the fact that k^-tö/c^ Eqs. 

165, 168, 172 and 173 can be simplified to 

-ikJi cos92 . lk.h cos B1   -ikjh cos 9X   i^2h cos 92 
*xe 

U+Re 
+B2e ,(174) 

A2e 

ik0(h+Ah)cos 62      -ik2(h+6h)cos 62 
z * +B0e 

ik3(h cos 63+ Ah cos 83) 

= Te 
(175) 

fl  ik,h cos B, _ _R_  -ttib cos 9, = A^ e ik2h cos 9, 

B9   -ik2h cos 62 

r~ e 
Z2 

(176) 

A9   ik2(h+Ah)cos 92    B2   -ik2(h+Ah)cos 92 

Z. 

ik3(h+Ah) cos 03 (177) 

where we have defined the impedance Zj_ as 

7 « pi°i^ - zi " cos r^ 
(178) 
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i 
D 
D 
1 

Eqs. 175-178 represent a system of four equations 

for the four unknown amplitude functions R, A~, B2 and T. 

When they are solved simultaneously for R they yield 

R(w) = ^(«B) 

„    ,7    2ik9Ah cos 89 
V21 + V32 e   A _ 

2ik9Ah cos G9 
l+V21V32e 

2ik,h cos 6, 
(179) 

where we have put 

V. .= -a- 
1J   Z. + Z 

!i (180) 

Since we are only interested in the reflected wave, 

the other amplitudes will not be determined. 

The result, Eq. 179, can be put into a more 

convenient form for computation.  If we let 

D 
[ 

2 z. 

ij z. + z. 
1  J 

(181) 

and expand the denominator of Eq. 179 in a power series, we 

obtain 
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I 
[ 
i 

-2ik,h cos  6, 0.lr   .*,  „^c   Q 
n/   \             1               1 ZiknÄn cos  B0 SL£Le_ . + V32  D21 e 2 2 

flV) 
4ik2Ah cos 92 

+D12 V32 V12 V32 D21 e +<  ^  (182) 

or written more compactly, 

-2ik,h cos 0-, 0., ..     - 
D/,.A     *      1 2ik0Ah cos 60 

i V21+D12 V32 D21 e 

• 1(o)) 

sf- c        2ik9Ah cos 0«"] n (183) 
x }_    \ V12V32 e 

n=b 

This last form (Eq. 183) for the reflection coefficient 
31 

has an interesting physical interpretation.  It is the resolution 

of the total reflected wave into individual waves which 

represent the various multiple orders of reflection at the 

boundaries of the layer.  The coefficient V . . can be interpreted 
1J th as the reflection coefficient of the boundary between the i 

and j  media for a wave that is traveling from the j 

medium to the i  medium.  Likewise, the coefficient D . . can 

be interpreted as the transmission coefficient of the boundary 

between the i  and j  media for a wave that is traveling from 

the j   medium to the i  medium. 
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Using this interpretation of V.. and D.., let us 

consider the individual terms in Eq. 182.  The first term 

V?-| is the complex amplitude of a wave that has been reflected 

once from the boundary between media 1 and 2.  The second term 

D21 V32 D21 

2ik~Ah cos G« 
e is the complex amplitude of the 

wave which has been transmitted from medium 1 to medium 2 

(D?i)> passed through medium 2, was reflected at the boundary 

between media 2 and 3 (V^)» passed back through the layer and 

back into medium 1 again (D-^)«  The additional phase shift 

which occurs in the exponential is simply due to the slant 

distance across the layer which is just (Ah cos 9„).  The 

succeeding terms may be interpreted similarly. 

80 

*•*.*. «m»«^».!..».,, „ .•|rM|1,.,i | ,,-|, . |, 



"' ' ^'^^wwwpwmpni ii.u 

1. 

2- 

3- 

4. 

5. 

6. 

7. 

8. 

9. 

10 

REFERENCES 

J. Lobdill, "Long Range Classification - Preliminary 
Investigation," TRACOR Document No. RL/69-036-U (1969). 

D. H. Gushing, F. R. Harden Jones, R. B. Mitson, G. H. Ellis 
and G. Pearce, "Measurements of the Target Strength of 
Fish," J. Brit. I. R. E. 25_, 299-304 (1963). 

D. E. Weston, "Sound Propagation in the Presence of Bladder 
Fish," A. D. No. 806078 (1966). 

L. L. Foldy, "The Multiple Scattering of Waves," Phys. Rev. 
67, 107-119 (1945). 

M. Lax, "Multiple Scattering of Waves," Rev. Mod. Phys. 
23, 287-310 (1951). 

P. C. Waterman and R. Truell, "Multiple Scattering of 
Waves," J. Math. Phys. 2, 512-537 (1961). 

D. J. McCloskey, "Multiple Scattering of Acoustical Waves," 
California Institute of Technology, Pasadena, California, 
A. D. No. 653 868 (1967). 

V. Twersky, "On Multiple Scattering of Waves," J. Res. 
Natl. Bur. Std. 64D, 715-730 (I960). 

J. E. Burke and V. Twersky, "On Scattering of Waves by Many 
Bodies," J. Res. Natl. Bur. Std. 68D, 500-510 (1964). 

A. Papoulis, The Fourier Integral and Its Applications, 
McGraw-Hill Book Company, Inc., New York (19bZ)~      • 

11. R. B. Lindsay, Mechanical Radiation, McGraw-Hill Book 
Company, Inc., New York (i960), p. 22. 

12. A. Papoulis, Probability, Random Variable and Stochastic. 
Processes, McGraw-Hill Book Company, Inc., New York (1965) 
p. 465. 

13. M. Lax, "Multiple Scattering of Waves. II. The Effective 
Field in Dense Systems," Phys. Rev. 85, 621-629 (1952). 

14. J. B. Horsey, R. H. Backus and J. Hellwig, "Sound- 
Scattering Spectra of Deep Scattering Layers in the Western 
North Atlantic Ocean," Deep Sea Res. 8, 196-210 (1962). 

81 

t 



—^1 

" "•" •"•" 

15. J. R. Marshall and R. P. Chapman, "Reverberation from a 
Deep Scattering Layer Measured with Explosive Sound 
Sources," J. Acoust. Soc. Am. _3<35 16A-167 (1964). 

16. I. B. Andreeva,"scattering of Sound by Air Bladders of 
Fish in Deep Sound-Scattering Ocean Layers," Soviet 
Physics - Acoustics 10, 17-20 (1964). 

V. P. Glotov, "Coherent Scattering of Sound from Clusters 
of Discrete Inhomogeneities in Pulsed Emission," Soviet 
Physics - Acoustics 8, 220-222 (1963). 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

V. P. Glotov and Yu. P. Lysanov, "The Scattered Field for 
a Spherical Source above a Plane Layer Containing Discrete 
Inhomogeneities," Soviet Physics - Acoustic 9, 142-146 
(1963). 

B. F. Kuryanov, "Coherent and Incoherent Scattering of 
Waves by a Set of Point Scatterers Distributed Randomly 
in Space," Soviet Physics - Acoustics 1_0, 160-164 (1964). 

D. A. Wickham and S. B. Drummon, "The Fish-Finding Sonar 
of Oregon II," Commercial Fisheries Review ^0, 46-49. 

G. M. Voglis and J. C. Cook, "Underwater Applications of 
an Advanced Acoustic Scanning Equipment," Ultrasonics, 1-9 
(Jan. 1966). 

B. S. McCartney, A. R. Stubbs and M. J. Tucker, "Low- 
Frequency Target Strength Measurements of Pilchard Shoals 
and the Hypothesis of Swim Bladder Resonance," Nature 207, 
39-40. 

W. N. McFarland and S. A. Moss, "Internal Behavior in Fish 
Schools," Science i_56, 260-262 (April 1967). 

R. G. W. Haslett, "Determination of the Acoustic Back- 
Scattering Patterns and Cross Sections of Fish," Brit. J. 
Appl.Phys. 13, 349-357 (1962). 

M. M. Coate, "Effect of a Single Fish on Low Frequency 
Sound Propagation," NAVORD Report 4514 (1957). 

P. M. Morse, Vibration and Sound, McGraw-Hill Book Company, 
Inc. , New York, 2ncT~ed. p. 295. 

P. M. Morse and H. Feshbach, Method? of Theoretical Physics, 
McGraw-Hill Book Company, Inc., New York, Part II, 
pp. 1483-1490. 

82 

 ; ,  



28. 

29. 

30. 

31. 

M. Abramowitz and I. A. Stegun, cds., Handbook of 
Mathematical Functions, National Bureau oi~Standards, 
Washington, D. C. (19"ü6) p. 773. 

Cf. ref. 28, p. 437. 

R. B. Lindsay, Mechanical Radiation, McGraw-Hill Book 
Company, Inc., New Yor1c~(T7u"Ü) , p. 102. 

L. M. Brekhovskikh, Waves in Layered Media, Academic 
Press, New York (196U) pp 4Ö-5Ü. 

83 

- ••••• •••- 




