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PREFACE

This 18 the final report of work performed at the Westinghouse
Research & Development Center, Pittsburgh, Pennsylvania 15235 to
determine the feasibility and scale-up potential of composite multi-
spectral windows for use in airborne common-aperture electro-optic
systems.

The work was accomplished under Contract No. F33615-76-C-5085
for the Laser Physics Branch, AFML/LPO under the guidance of
Mr. David W. Fischer.

This report, submitted by the authors on 28 February 1977 is
a summary of work done between 1 February 1976 and 31 January 1977.
Dr. R. Mazelsky, Manager, Crystal Science & Technology Department,
was the Project Supervisor and Dr. R, H. Hopkins was the Technical
Program Manager. Mr. W. E. Kramer served as Principal Investigator and
also directed the window development, fabrication and scale-up effort.
Optical evaluation of the windows was performed by Mr, K. B. Steinbruegge
and Dr. G. B. Brandt. Dr. R. A, Hoffman conducted the coating experi-
ments and transmittance studies. Dr. J. S. Schruben performed some of the
optical analyses.

We gratefully acknowledge the competent technical assistance
of P. A, Piotrowski, E.P.A. Metz, R. F. Farich, D. M. Matusa,
D. A, Yeager, C. Chamberlain, S. Pieseski, and B. Blankenship, without
which the program would not have reached a fruitful conclusion.
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SECTION ‘I

/ INTRODUCTION

$ 1.1 Background and Objective

e i e s o St b

Future generations of airborne electro-optical systems are

Feny

being designed with a common aperture for all sensor components -- TV,

FLIR, and laser designator/ranger -- to minimize overall system cost
and size and to maximize performance. So far, the deployment of these
systems has been hindered, however, by the lack of a suitable window
to shield the sensors from the environment. The window must be highly

s AR s S L

transparent from 0.5 to 12 um, cheap to produce, and resistant to
environmental attack, particularly high speed raindrop impingement.
Clearly, the materials requirements are stringent, and in fact none of
the monolithic broadband windows — alkali halides, semiconductors or

i

i

glasses -- possess all the necessary characteristics. Polyerystalline
chemically vapor deposited (CVD) ZnSe2 and ZnS3 are promising candidates,
but the former lacks rain erosion resistance while the latter exhibits

light absorption at visible wavelengths.

A logical way to circumvent the inherent limitations of

monolithic optical structures is to form a composite window which
combines the most useful features of diverse optical materials while
minimizing their respective deficiencies. The composite, or sandwich-

4
]
1

window, formed by bonding a hard erosion-resistant cladding to a weaker,

e ——

but highly transmissive, substrate would exhibit erosion resistance
comparable to that of the protective layer with minimal loss in overall

et

optical performance,

The primary objective of this study thus was to develop a
composite window with the combination of optical and mechanical properties

required for airborne common aperture systems. This involved

L.J B A it el




identification of materials suitable for the substrate, cladding and
adhesive of the composite window, development of a fabrication technique

and identification of the scale-up potential for the composite window.

1.2 Summary of Results

We have tested the composite window concept on nearly forty
combinations of substrate, cladding and adhesive; the approach definitely
appears feasible for fabricating rain-resistant multispectral yiniows.
CVD-ZnS bonded to CVD-ZnSe via atechnique we call optical brazing

emerged from screening studies as the most promising sandwich window

for systems applications. We have successfully fabricated both 2 x 2 ;n.
and 4 x 6 in.‘ZnS/ZnSe windows to illustrate .the scale-up potential of
the method. The bonding technique is also versatile; for example,
MgFZ/ZnSe windows were also readily made.

The optical homogeneity of the ZnS/ZnSe windows is compatible
with systems applications. Computer analysis of interferograms indicated
that residual optical path differences (OPD) as low as about 1/5 fringe
(0.63 um) across the apertures of 2 x 2 in. ZnS/ZnSe windows could be
obtained. Examination of interferograms taken from component window
parts before assembly shows that most of the OPD variations were due to
the material properties, not the joining process, Much of the path
variatioﬁ can be corrected by polishing; The transmittance of the com-
posite windows is sufficiently good that with anti-reflective (AR)
coatings they meet or exceed the mipimum system specifications. Moreover,
rain erosion tests verify that optically-brazed ZnS/ZnSe composites
resist rain attack as well as ZnS alone. What remains to be demonstrated
1s that 14 x 20 in. windows, the size ultimately required for systems

applications, can be made.

"
"Patent applied for.




SECTION II

COMPOSITE WINDOW FABRICATION

2.1 Composite Window Concept

The composite window is conceptually simple: a thin, hard
laminate is bonded to a conventional broadband window substrate, as
depicted in Fig, 1, The joining may be accomplished in situ, e.g., by
the direct chemical vapor deposition of ZnS on ZnSe as practiced by
Raytheon,4 or by means of any bonding agent, or adhesive, which meets
the transmittance requirements. We adopted the latter approach, a
courée'of action facilitated by the Westinghouse-developed bonding
technique, optical brazing;s'thatnis both versatile and simple to use.
Note from Fig. 1 that the cladding layer need only be thick enough to
protect the substrate; thus, even materials that exhibit low transmittance
in thick sections can be used without impairing the transmittance of the
composite, Further, there is no limitation in principle in the choice
of materials that are used to form the composite. Hence, a variety of
materials combinations are possible for tailoring the properties of the
window and minimizing its cost.

The selection of a suitable substrate is based mainly on
optical performance. For example, ZnSe and the alkali halides are
among the few materials which transmit well from 0.5 to 12 ym in thick
sections. Rain erosion resistance is the main criteria for cladding
selection. Since impingement erosion imposes a unique loading condition
which is not yet adequately understood, considerable theoretical and
experimental effort has been expended recently to determine the

mechanisms of rain erosion in transparent materialu.6-17

The damage caused when a raindrop strikes a brittle window
material derives from (1) the high pressure generated as the droplet

ileakg s

By
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_ Cladding.Layer

Adhesive "t_—___'_Ti_ Window Substrate

Fig. 1.

Schematic depiction of a
composite multispectral window.

st il Kt




PP

e =

-

TR R VT

e

is suddenly stopped and (2) the rapid lateral outflow of liquid as it
escapes from the high pfessuré zone.la When the droplet impact velocity
exceeds a critical value, the tensile stresses generated in the window
are sufficient to initiate failure or propagate pre-existing flaws.

During continued rain exposure, the cracks grow and interact to form a
distributed network. The transmittance is severely reduced by reflections
at the window-crack interfaces so the window becomes effectively useless

well before catastrophic failure occurs.

Semi-empirical rules suggesta-lo that erosion resistance
improves with material hardmess and ultimate strength. Although there

14,15 .they can

may be mitigating factors in these relﬁtions,
be used to guide cladding selection, recognizing, of course, that

lattice absorption generally shifts to shorter wavelengths with increasing
hardnes;lsothat improved erosion resistance may be bought at the price

of reduced transmittance.

2.2 Optical Bfazing

Our studies indicate that chalcogenide glasses, particularly
those from the.As-s4Se system, are practicél'aqd versatile bonding
agents. In addition, the refractive inde#, softening temperature, and
thermal expansion coefficient of. the glasses are composition-dependent17
so that the properties of the bond can be tailored somewhat to match
those of the cladding and substrate. The glasses are stable over wide

limits in the ternary system, Fig. 2.

In practice, a composite window is formed by the following
simple sequence of operations performed with the aid of the apparatus
illustrated in Fig. 3. The mating surfaces of each window component
are polished flat and parallel (Section 3.2) and a 10 to 20 mil thick
slice of glass is inserted between them to form a sandwich. The
assemblage is heated (200-250°C) under fifty lbs per in2 pressure. When
warmed, the chalcogenide glass wets the materials to be joined and flows

e | met it o
g i L "
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Fig. 2,

The range of glass stability in the As-S-Se system
(after Reference 17) and typical compositions
employed during this study. Glasses are often

referred to in the text by their sulfur content,
e.g., glass C is the 60X S glass and glass B is
the 502 S glass.
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to form a thin layer. As the glass is transparent, we termed the process
"optical brazing” by analogy to conventional metal joining technology.
The composite when cooled to room temperature forms a coherent structure
joined by a 5 to 10 um thick glass layer, Fig. %. The layer thickness
can be controlled by appropriate adjustment of the applie& pressure

and temperature. :

2.3 Optical Cements

At the outset we had no indication as to what types of adhesives
would prove optimal. Theréfore, we also evaluated the utility for
window fabrication of a number of organic optical cements like those
identified in a recent Naval Weapous Centef Sufvey.18 These compounds
exhibit absorption bands whose strength and spectral position are
sensitive to chemical structure. The properties of several of the
suggested adhesives and some we identified are 1isted in Table 1. Trans~
mittance curves were measured on thin layers of each material formed
between two 5 mm thick slices of.NaCI;l8 tﬁe long wavelength specta
appear in Figs. 5 through 11. ‘

Cladding and substrate test pleces to be joined with the
optical cements were prepared the same way as for optical brazing
(see Section 3.1). The adhesives were handled and cured according
to manufacturers instructions. Loctite adhesive and epoxies 2114 and
2211 exhibited the best combination of properties of those materials
listed in Table 1, and were subjected to further testing, Section 3.2.




Fig. 4. Five micron thick As-S-Se glass layer bonding a ZnS
cladding to a ZnSe substrate (the lines parallel to
the interface are scratches created during polishing).
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SECTION III

WINDOW MATERTAL SCREENING STUDIES

To identify the optimum cladding-substrate combination, we
fabricated test specimens both by optiéal~brgzing and by using the most
promising optical ceﬁents. Known properties of candidate materials
(Section 4) were used to form the initial cladding-subétrate matrix
indicated below.

Cladding/Substrate Matrix
Cladding/Substrate ZnSe NaCl KC1
MgF2
CaI-‘2
ZnS

(Very cursory tests of GaP claddings were also made.)

Each combination of substrate, cladding and adhesive was subjected to

the screening sequence illustrated in Fig., 12. The transmittance, bond
integrity and thermal compatibility werefirst assessed on 0.5 x 0.5 in.
test pileces; those pairs passing preliminary evaluation then were fabri-
cated into 0.5 x 1.5 in. erosion test specimens and later into successively

larger windows.

3.1 Window Component Preparation and Evaluation

The sources and/or manufacturers for the materials used to
fabricate the composite windows are compiled in Table 2 along with some
general comments pertaining te material purity and overall quality.

Flat samples of each cladding and substrate were prepared in our optical
shop. The polishing procedure was essentially independent of specimen
size and is outlined below.
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Substrate/Cladding Matrix

¥

Candidate
Window

b 4

Fabricate
Test Pieces

y

Transmittance Evaluation
‘Bond Compatibility
Thermal Compatibility

y

Fabrication of
2" x 2" x 0,5" Windows

Reject Window Candidate

1

Evaluate Joining Method,
Bond Quality, Thickness
Control, Compatibility

%

Fail Test Criteria

Fabricate 4" x 6" x 0,75"
Window

4

A

Validation Testing

I}

Project Scale Up To
14" x 10" x 0.75" Sizes

Fig. 12.

h 4

Erosion Test

Composite window fabrication and test screening sequence.




Rough grinding was accomplished by standard optical methods:
the samples were first mounted to an aluminum plate using either wax or
doub;e-backed tape and then ground to appropriate thickness in steps
using 225 grit aluminum oxide followed by 50 grit aluminum oxide. Faster
surface grinding machines can be used to remove large amounts of material
from the substrates and cladding. The slower lapping procedure was
selected in these first studies to preclude the generation of cracks

and strain in the materials.

Final finishing was done_by standard pitch lap polishing
techniques employing first 3 um diamond powder and then 0.5 ym diamond
to achieve the final low scratch and dig finish. The abrasive 1is conveyed
by means of a water vehicle with small amounts of detergent added to
aid wetting the lap. KCl and NaCl were processed as described except
for an additional last step employing a Politex polishing pad loaded
with a small amount of Linde A abrasive and wet with methanol. The salt
crystals are polished quickly on this medium and rubbed dry on a
second Politex Pad to produce the final high quality surface.

Surface regularity of 0.5 fringe and surface parallelism of
less than 15 arc seconds are routinely obtained by these methods, with
the following exception. The thin ZnS samples (typically less than
1/8 inch thick) lost surface figure when demounted from the backing
plate. Although the surfaces of the larger ZnS samples were then irregular
by many wavés, this apparently caused no difficulty in bonding to the
ZnSe substrates. After polishing the composite window, the surface

regularity was restored (see Section 4).

Prior to composite fabrication, each polished plece was
examined visually for overall homogeneity and under a polarascope to
test for residual strain. The Irtran claddings exhibited some scattering,
typical of other transparent hot-pressed materials, but were otherwise
uniform. The CVD ZnS while visually homogeneous displayed considerable
structure under polarized light, e.g., Fig. 13. The ZnS 18 composed of




Fig. 13.

Photograph of a 4 x 6 in. ZnS plate placed between
crossed polarizers. The structure, composed of
columnar "grains" overlayed by random strain centers

(crosses, e.g., like that at arrow) 1is typical of
the ZnS we used.




a three~dimensional columnar "grain" structure overlayed at random by
cross-marked strain centers (arrow). At each location in the ZnS where
the cross patterns appeared, we detected clusters of inclusions like
those in Fig. 14, These features were typical of all the CVD ZnS we
examined. In contrast, the CVD ZnSe was generally devoid of light
scattering and structure. Both the KC1l and NaCl appeared inclusion-free
and optically uniform.

3.2 Results of Initial Composite Evaluation

Composites were successfully produced from ZnS/ZnSe, MgF2/ZnSe,
CaFZ/ZnSe, ZnS/KC1, CanlKCI, Mngll(Cl, ZnS/KC1, CaF2/KCI, MgFZ/KCI, and
GaP/ZnSe in 0,5 x 0.5 in. size, confirming that optical brazing has
general utility for joining transparent materials with dissimilar
properties. The better organic cements also worked for many of the
small composite test pleces.

As sample size was increased to 0.5 x 1.5 in. and larger,
significant thermal incompatibility developed in many of the pairs and
the composites failed as the data in Table 3 indicate. Specimens made
from materials with the largest difference in thermal expansion coeffi-~
cient, i.e., ZnS/KC1l and ZnS/NaCl, sometimes delaminated near the edges.
In most cases, the glass bond was so tenacious that, depending on the:
relative fracture resistance, either the cladding or substrates themselves
fractured following specimen fabrication. The behavior of the CaFZ/ZnSe
composite, Fig. 15, illustrates cladding failure; substrate failure
occurred for almost all composites based on NaCl or KCl, e.g., Fig.A16.

We found the organic adhesives generally difficult to apply to
larger sﬁecimens without bubble formation. While the organic compounds
appeared to form good bonds, the adhesive layer thickness and uniformity
was hard to control. Since the adhesive layer had to be kept thin to
obtain the required transmittance, viz., Figs. 9 to 11, this put the

method at a serious disadvantage for the proposed application. Moreover,
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Fig. 14.

Cluster of inclusions at the origin of the strain
center indicated by the arrow in Fig. 13.
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TABLE 3

Evaluation of Window Composites Fabricated Prom
Various Substrates, Claddings, and Bonding Media

Substrate Cladding Adhesive Results
ZnSe Zns 50Z S glass OK
2nSe 2ns 60Z S glass oK
ZnSe ZnS 2114 Epoxy delaminates
ZnSe ZnsS 2211 Epoxy bubbles
ZnSe 2nS Loctite layer too thick
ZnSe MgF, 502 S glass delaminates
ZuSe MgP, 607 S glass 0K
ZnSe Hgl'z 2114 Epoxy delaminates
ZnSe MgP, 2211 Epoxy delaminates
ZnSe MgPy Loctite oK
ZnSe CaF, 50Z S glass delaminates
ZnSe CaPy 60Z S glass CaFy cracks
ZnSe CaFy 2114 Epoxy CaFy cracks
ZnSe CaFjy 2211 Epoxy CaFp cracks
ZnSe CaF, Loctite Ca¥3 cracks
KC1 2nS 50% S glass delaminates
KC1 ZnS 60Z S glass delaminates
KCl Zns 2114 Epoxy KC1 cracks
KC1 ZnS 2211 Epoxy KC1 cracks
KC1 ZnS Loctite KC1 cracks
KC1 CaF3 50Z S glass delaminates
KC1 CaFy 60Z S glass small pieces OK
KC1 CaPF, 2114 Epoxy Ok
KC1 CaF, 2211 Epoxy KC1l cracks
KC1 CaFy Loctite KCl cracks
KC1 MgP2 50% S glass KC1 cracks
KC1 MgP; 60X S glass KC1 cracks
KC1 MgP, 2114 Epoxy KC1 cracks
KC1l MgP, 2211 Epoxy KC1 cracks
KCl MgPy Loctite KC1 cracks
NaCl CaF2 602 S glass OK in thick layers
NaCl CaPFjy 50% S glass NaCl cracks
NaCl CaF, 2114 Epoxy NaCl cracks
NaCl CaF, 2211 Epoxy NsCl cracks
NaCl CaF, Loctite NaCl cracks
NaCl MgPs - 60% 8 glass NeCl cracks
NaCl MgPy 507 S glass NaCl cracks
NaCl MgP2 2114 Epoxy NaCl cracks
NaCl MgPy 2211 Epoxy NaCl cracks
NaCl MgF, Loctite NaCl cracks
NeCl ZnsS 602 S glass delaninates
NaCl ZasS 50% S glass delaminates
NaCl ZnS 2114 Epoxy NaCl cracks
NaCl ZnS ‘Loctite NaCl cracks
NaCl ZnS 2211 Epoxy NaCl cracks
KC1l 2114 Epoxy —— sent for test
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Fig. 15. Erosion specimen E-13, Irtran CaF, clad to ZnSe
with glass C. Note transverse cracks in the
CaFy formed due to thermal expansion mismatch
between cladding and substrate. Bond is intact. !
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Fig. 16.

Irtran CaFy clad to KC1l with glass C. Cracks
developed in the salt substrate due to the thermal
expansion mismatch with the cladding. Fringes
indicate area where bond began to delaminate
after the cracking occurred.
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specimen delamination was noted for the organically bonded composites
subjccted to rain erosion (Section 4.5).

The data in Table 2 indicate that of the pairs tested
ZnS cled-ZnSe and HkFZIZnSe are the most promising candidates for
composite vindow fabrication. Optical brazing was the better joining
method, the glass composition being adjusted somewhat depending on the
particular materials to be bonded. Loctite exhibited the best combina-
tion of transmittance, joinability and durability of the organic cements
we evaluated; it suffers, to some extent, the disadvantages noted above
for that class of bonding media.
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SECTION 1V

CHARACTERISTICS OF OPTICALLY-BRAZED COMPOSITE WINDOWS

4.1 Window Scale~Up

Successful deployment of multispectral composites will require
windows as large as 14 x 20 in. so it must be shown that the fabrication
techniques are scalable to sizes greater than used for screening and
erosion test pleces. The goal of thl- program was to achieve composite
windows 2 x 2 in, and finally 4 x 6 in. in size. This has been success-
fully accomplished. A description of these windows and their properties

follows below.

2 x 2 in. Windows. Screening studies suggested that the
ZnS/ZnSe composite most closely fulfilled the optical and mechanical
requirements for multispectral applications with the MgFZ/ZnSe window
a potential alternative. We fabricated three 2 x 2 in. ZnS clad-ZnSe

composites to develop scale-up techniques; a fourth 2 x 2 in. window
was made from Mng clad-ZnSe. Each window proved to be transparent,
porosity-free and visually uniform as Figs. 17 through 20 indicate.

4 x 6 in, Windows. The 4 x 6 in. windows, Figs. 21 and 22,
were made by the same procedure used for the smaller windows. As before,

the joint between the cladding and substrate was pore-free, thin, and
tenacious. There was no apparent thermal incompatibility in going from
the 2 x 2 in. to 4 x 6 in. ZnS/ZuSe window. We did not attempt to make
4 x 6 in., MgFZIZnSe because of the relatively poorer optical properties
exhibited by this combination, viz., the following sections.

4.2 Interferometric Evaluation

4.2.1 General

A major part of this program was to determine whether the

optical brazing technique introduces any undesirable optical deviations
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Fig. 17. A 2 x 2 in. optically-brazed composite window (#2-2-1) composed
of a 0,060 in. ZnS layer clad to ZnSe with a 502 S glass,

"y

Gla§sznS

Fig. 18, A 2 x 2in, optically-brazed compositewindow (#2-2-2) formed
by cladding a 0.070 in. ZnS layer to ZnSe with a 50Z S glass.
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Fig. 19. A 2 x 2 in. optically-brazed composite window (#2-2-3) formed
by cladding a 0.040 in. Irtran MgFj layer to ZnSe with a
602 S glass.

.

Pig. 20. A 2 x 2 in. optically-brazed composite window (#2-2-4) formed
by cladding a 0.070 in. ZnS layer to ZnSe with a 50% S glass.
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Fig. 21. Optically-brazed 4 x 6 in. ZnS/ZnSe window (#4-6-1) ZnS ‘7

cladding is 0.040 in. thick.

Fig. 22. Optically-brazed 4 x 6 in. ZnS/ZnSe window (#4-6-2)

ZnS 1is 00080 thickc

USE




into the window structure which were not already present in the starting

i material. Apart from scattering, optical path differences through an

optical element are the most important influence on the image quality
of a system containing that element. Sources of optical path difference i
are irregularities in the interface between two materials of different ‘
refractive index and changes in refractive index of the bulk material ;
itself, Optical path differences induced by thickness or dimensional

changes between two media are proportional to the amount of dimensional
change, At, and the refractive index difference (nl-nz) across the 3
interface. At a given wavelength A, the number of wavelengths, N, that

an interference pattern will be displaced by a given OPD is given by

Thus, the surface figure is most important where the refractive index 1
difference is greatest, namely, between the outer window surface and air.
Table 4 lists the values of refractive index for the various materials

used to fabricate the windows at the three wavelengths of interest.

TABLE 4 :
Material Refractive Indices

Material 0.6328 um 1.06 um 10.6 um f
Zns 2.26 2.25 2.20 1
ZnSe 2,57 2.48 2.40

Bonding#* 2.20 NA NA

Glass

®
Estimated from reflectivity data, Section 4.3.

From these data, it is clear that irregularities in the surface between
the ZnS and the chalcogenide bonding glass are relatively unimportant
since the refractive indices of the two materials are close.




At 0,6328 um, an irregularity of one wavelength in the figure of the
ZnSe surface is over five times worse than for the same irregularity
between the bonding glass and ZnSe. This is because the refractive
index difference is 1.57 in the first case and it is only 0.37 in the
second. As a result, by its very nature, the optical brazing technique
is not expected to introduce large optical path differences across the
bonding joint., If the surface figure is good, as can be checked easily
with conventional polishing shop methods, then the remaining influence
of the window on optical system performance is limited to that which is

introduced by compositional and refractive changes in the materials
themselves.

S m——

Optical path itself does not influence image quality, but ,
rather what is more important is the spatial variation of the OPD. A ]
gradually varying OPD has little effect on imaging systems but a rapidly

varying excursion can be very damaging to image quality. As an extreme
example of the latter case, a shower glass is virtually useless as a |
window because of the short spatial variation of the optical path. In

our analysis we have tried to handle the data in a manner which reduces

the gradual variations so that we can better estimate the rapid changes

in OPD.

For example, if a window is wedged, there is an optical path
difference whose magnitude is

OPD = (n1 - 1) 6 L/x

vhere 6 is the angle of the wedge and L the distance along it measured
from the vertex., This OPD gradient, whether it be caused by dimensional
or refractive index gradients can always be compensated by grinding a
thin wedge in one of the optical surfaces. Similarly, a circular varia-
tion in optical path corresponding to a weak lensing effect, can be
compensated by grinding a spherical surface on one face of the window.
The damaging OPD variations are those which cannot be compensated. We




have, in the data reduction, chosen to subtrect the wedge end spherical
veriations in order to illustrate the random veriationa in OPD which
could be expected to influence image quality.

4.2.2 Interferometry of Window Components and Completed Composites

At the beginning of the fabricetion process for the 2 x 2 in.
wvindows, and throughout the subsequent portions of this program,
interferograms were routinely made of the component materisls both before
end efter they were formed into e completed composite window. An example
of one ssquence of these interfsrograms is illustreted in Figs. 23, 24,
and 25 vhere the optical homogeneity of the ZnS, ZnSe, and the completed
window, respectively, cen be compered. From Pig. 23, it is evident that
in addition to the wedge in OPD there is a significant spherical varia-
tion of several wavelengths et 0.6328 ym. This veriation is not due to

surface figure (which was flat to 1A/4) but rather due to refractive
index verietions in the meterial itself. The interferogram of the
completed window in Fig. 25 shows the same behavior, indicating that
the bonding process has at least not introduced eny large changes in
the OPD compered to those in the starting materials.

Figures 26, 27, and 28 show e similer set of interferograms
for the components end the first completed 4 x 6 in. window. Due to the
larger diameter, the materisl veriation in refrective index is much
greater. In the cese of the thicker ZnSe, the OPD forms e gradual "hill"
in one corner of the window (Fig. 26) which is elso epperent in the
final window. These veriations ere attributed to refrective index
changes in the matsrial since in both cases the surfeces were flet to
better than one half wave. Por the thinner ZnS (Fig. 27), the problem
is compliceted by the fect that the intsrferograms of the unmounted
piece shows e saddle-shaped structure vhich does not eppear in the final
window. This is probably becauss the two sides of this thin piece were
ground and polished seperetely with e demounting step in between. Even
though the first fece is flat to a fraction of e wvave, it is difficult

T = N T W g o
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Fig. 23.

Pig. 24.

InS 0.060" Thick

Interferogram of ZnS sheet used for cladding composite
window #2-2-1.

nSe 1/4" Thick

Interferogram of ZnSe substrate used in composite window #2-2-1.
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2=2=1 ZnSe~502 glass-ZaS

Fig., 25. Interferogram of composite window #2-2-1, ZnS clad to
ZnSe with 50Z S glass.

5 T e e S e e s bl i

Pig. 26. Interferogram of ZnSe for window #4-6-1. Origin at upper
left hand corner just off photo. The x-axis points down 3
and y-axis to right. .
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IR IR

Fig. 27. Interferogram of ZnS for window #4-6-1. Origin at upper
right corner above photo; x-axis points down and y-axis
to left.

Yol

Fig. 28, Interferogram of completed 4 x 6 in. 2nS/ZnSe composite
window #4-6-1. Origin at upper left hand corner; x-axis ]
points down and y-axis to right. ]
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to retain this flatness during the remounting to polish the second side.
Thus as a result, we suspect the ZnS varied slightly in thickness B
acréss its diameter. This variation, however, was apparently removed

in the final polishing step of the composite window structure since it

ot o ok ok el s

; does not appear in Fig. 28. It is easy to rule out the possibility

j that warping of the ZnS in the interferometer is the cause of the addi-

% tional fringes which form the saddle in Fig, 27. As a parallel plate
of thickness, t, is tilted in the interferometer, it increases the

: optical path thfough it. Thus, if the edges of the plate are warped

to an angle 6 relative to the center, an increased OPD equal to

-
i

OPD = t'OZ/ZnX {

results., If the ZnS were warped by an amount equal to its thickness
(which it was not), this would produce an OPD of only 0.75 fringe.
Thus, we conclude that a combination of refractive index variation and a

slight fhickness‘change in the ZnS is responsible for the fringe pattern ;
in Fig. 27. The ZnSe and the completed sandwich window are much thicker 1
than the ZnS so that warping between polishing of the two sides is less a |
problem. Thus, in both Figs. 26 and 28, the fringe pattern is due to |j

index inhomogeneities in the material..

One feature which deserves notice in Fig. 28 is the discontinuity

of the fringe pattern near the middle of the window. This indicates
either a refractive index change of the bonding glass of 0.1 or a thick-

T
PN

ness change of the layer of about 2 ym. Since nothing can be seen
visually in this region, the former is the more likely explanation for
the artifact in the interferogram.

The interferograms of the MgF,, ZnSe, and the ngzlthe composite
indicated much higher fringe counts in this window than in the 2nS/ZnSe ‘
vindow. The high fringe content stemmed mainly from difficulties incurred
when polishing the MgF, cladding. Several repolishings of the Hg?z j
failed to reduce the piece to the required flatness since the slab warped

e




repeatedly on dismounting from the back plate. The piece also contained
considerable scatter and a large blemish. Thus, while optical brazing
of the HQFZIZnSc wvindows presented no apparent difficulty as Fig. 19
suggests, further polishing studies are required to produce distortion-
free composites of these materials.

Our observations suggest the following important points which
should be considered when scaling the fabrication process to larger win-
dows., First, inhomogeneity in materisl refractive index is a problem if
diffraction limited performance is to be obtained. Fortunately, much of
the variation in material properties appears to be gradual which, in
principle, can be corrected by changing the figure of the window's sur-
face. The second point involves the mounting and polishing of large,
thin sections such as the ZnS. Considerable care must be given to the
mounting process; if the cladding has to be very thin, it may be difficult
to guarantee perfect flatness or parallelism without special preparation.

4.2,3 Reduction of Interferometric Data

To get a measure of the "random" phase deviations of these
vindows which can be expected to influence the imaging of systems placed
behind them, we have digitized the interferograms in Figs. 26 to 28 and
have used a computer program to interpolate the OPD on a uniform grid
over the aperture of the window.

First ve examined the effect of combining the ZnS and the ZnSe
layers by adding their individual fringe patterns and comparing this
with the interferogram of the composite window. The interferograms
can most easily be measured in the middle of each fringe. Since the
fringes of two interferograms are in different locations so are the
data points on the x-y plane of the window. In order to add the fringe
orders, we interpolated the data on a common grid. This was done with
a2 1.0 cm grid spacing in the long edge of the window (y-direction) and
0.6 cm spacing along the shorter edge (x-direction). The grid size is
16 by 16 and is centered on the interferugrams.
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We used parabolic interpolation in the x-direction and then
again in the y-direction. The resultant matrices of fringe orders are
shown in Figs. 29 and 30 for ZnS and ZnSe respectively. The contour
lines sketched in the figures represent the center of the white fringes
in the interferograms. Figure 31 represents the addition of the matrices
from Figs. 29 and 30. Ten fringe orders have been subtracted to
facilitate comparison with the fringe matrix of the composite window
(Fig. 32) since the fringe orders were not me#sured absolutely.

Figures 31 and 32 are similar in contour; the one only peak is shifted from
one figure to the other. As noted above, we do not expect the figures

to be identical. What remains to be determined is the extent to which

the composite window can be corrected by prism and spherical optics.

A wedge centered at angle 6 from the x-axis towards the y-axis
with a wedge angle a and a sphere centered at (xo,yo) with radius R
would cause a fringe order N given by the equation:

AN/(n~1) = JEZ - p2 -~ R+ tan a(x cos 6 + y sin 6) + C,

where
2 2 2
P -(x-xo) +(y-yo)

and C is a constant vwhich accounts for the relative nature of the

fringe order measurements and the thickness of the window which is
assumed to be taken into account in the final optical design. We took
n=2.,57 and ) = 0.6328 ym., The results for the other wavelengths can
be found by scaling. A modified Levenberg-Marquardt algorithm was used
to find the values of the six parameters L yo, R, a, 0, C which minimize
the root mean square of the fringe order matrix for the difference
between the window fringes and the prism and sphere fringes. Since R

is very large, only the first three terms of the Taylor series expansion
of ch - p2 about p = O were used in order to improve numerical accuracy.
Also, by considering only the first two terms in the expansion, a linear
optimization problem could be formulated and solved to get the initial
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parameters for the nonlinear optimization. The final optimization
yielded the values:

x = 1.20 cm

y = 3.20 cm
73,363 cm
0.00029 cm
= 1,2
0.000051.

2 o O WO O
[ ]

The resulting corrected fringe pattern is shown in Fig. 33. It is
evident that nearly half of the window can be corrected to zero fringe
order. The root mean square deviation from a perfect window is three-
fourths of a fringe at 0.6328 ym. This corresponds to a residual phase
error of one half a fringe at 1.06 ym and one twentieth of a fringe

at 10.6 um.

4.3 Transmittance Studies

4.3.1 General

Window transmittance is determined by the combination of
interfacial reflection losses and losses due to bulk and interfacial
absorption. A ray of light passing through a monolithic window whose
refractive index is ng will suffer a reflection loss, R = [%E%a 2, at

8
each surface; with no absorption the amount of light transmitted will
be T = =
[14R ) *
negligible ZnSe (ng = 2.62) transmits about 67% of the incident light

and 2nS (ng = 2.29) about 73%. At wavelengths where absorption is

For example, in the spectral regions where absorption is

significant, transmittance falls below these values,

In a composite window reflection at the cladding-adhesive and
adhesive-substrate interfaces must be considered in addition to
reflections at the external window surfaces. Hence, both the refractive

index and absorption coefficient of the bonding material are important

46

s




*MOPUTM Pa192110d JO XFajew 1apio aBurai °*¢¢ ‘813

NT 49
€ Tt ne 0° Ne 0° Ne (AR 0 ne e* o= | ne ne wet €1
9 [ qe Ne ne e ne ne o 0e ne ae ne e 0 feot
(34 [ & g "o ne Qe ne f0e 0° ne ne ©0 oe Ne (4 102«
1e1 [} ne e Ve 0° (O ne 0° ne a° LD o* 0° a* Pe
9 'Y ae o e e*? ne ne 0e ne ce ~e ne 0 0e fe
e he 9 0 1 [ 34 tey 0 o* ne a° 5 ne 0e ne Ne
t X (K 2 Qe re 9 Pe 0e 0° ne ne ne 0ne ne ne ne
0 Nee 1e Pe ceo o “e ?e o ne oe re ne Qe ne o “
hee Coe foe (s te Ce ' ?e : 0° ne e ~e ne e ne ne
9t hoe foa 7%= hte 0°*e e 2 0* rre ce ~e o ne ae Ne
hee 9e hoe fre Com N fre ne 1o= Nea coa - re ne ne e 1
b ) hoe Qe fre tea Cee Cee S foa 2% Poe a0a o ne ne 0e
'Y ne P0a Coa Coa fe 1%a Ade 9ce 1%« hoe Cta € le e e ne
(A0 Ne g Ne (R 2ce Pe 2°e a0 1% 2%e coa coa A le ne 0e
€t nel 71 L e Com vee te Com , 6% 9. aoa l%= ee= ~o 2. ne
c*! ey e €y Ae () 1*e 1%e 1oa S%a Pl LA Ve fce 1 1eCe
(4] v LLIV?0 v LTI L3




in determining the transmittance of the composite. Figures 34a and b
illustrate the transmittance of a 0.032 in. thick (about 810 um) sample
of the glass B used to join composite windows; the short wavelength
data were measured on a Cary Model 14 Spectrometer, the long wavelength
data on a Digilab Fourier Transform Spectrometer. There is no appre-
ciable absorption from about 0.7 to 10 um; what absorption is present
between 0.6 to 0.7 uym and 10 to 12 ym in this thick sample will be
negligible in the actual bond layers which are less than 10 um thick.
?rom the magnitude of the transmittance in the absorption free region,
about 752, we estimated that the refractive index of the glass is about
2,20 to 2.25,

4.3.2 Transmittance of Uncoated Composite Windows

The long wavelength transmittance of a composite formed by
cladding a 0.060 in. ZnS layer to ZnSe with glass B is illustrated in
Fig. 35. Note that since the refractive indices of the ZnS cladding
and the glass bonding material are nearly identical, there is negligible
reflection loss at the ZnS-glass interface. Analysis of the composite
reduces to the case of a layer of ZnS, where thickness is much greater
than the wavelength of the incident radiation, on a ZnSe substrate.
Calculation shows that there i1s some reduction in reflection for a layer
of lower refractive index in intimate contact with a higher refractive
index substrate, although the reduction in reflection is not as great as
might be achieved with a thin anti-reflection film of the same material.
Indeed, Fig. 35 shows that the transmittance of the composite window is about
75% compared to 67% calculated for the ZnSe window alone. As described
beiow, anti-reflection coatings deposited onto the composite window will
further enhance the transmittance. It should be noted here that if the
refractive index of the bonding agent were significantly greater (or smaller)
than the materials being joined, additional reflection losses would occur
and the transmittance of the composite window would be reduced. Figure 35
also shows that the ZnS/ZnSe composite has absorption losses in the
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vicinity of 6 um and 11 ym. The transmittance of a 0.050 in. thick
plece of ZnS, Fig. 36, closely resembles that of the ZnS/ZnSe composite
indicating that the absorption is due to the cladding, not the substrate.
Subsequently, we made a composite with a 0.015" thick ZnS cladding;

its transmission spectrum, Fig. 37, showed negligible absorption from
0.6 to 14 ym demonstrating that the optical brazing technique does not
degrade the transmittance of the composite window. Whether the
absorption in the ZnS is typical, we do not know. The material was
probably manufactured in 1975, or earlier; material produced more
recently may be free from the absorption and the grain structure noted

in Section 3.

For the MgFZ/ZnSe composite, the refractive index of the
bonding glass (n ~ 2.20) falls between that of the substrate (n = 2,62)
and that of the MgF2 cladding (n = 1.37) so that no increase in reflection
loss is expected. In fact, the transmittance of a composite made by
joining a 0,010 in. thick Mng layer to ZnSe is about 77%, Fig. 38,
a 107 increase in transmittance compared to ZnSe alone. The decreased
transmission in the 8 to 12 um region, also apparent in Fig. 38, is
attributed to absorption in the MgF2 cladding. Evgn when the MgF2
cladding was reduced to 0.003 in, thickness, transmittance measurements
indicated that the cladding introduced unacceptable absorption in the
8-12 ym region,

4.,3.3 Antireflective Coatings

A multispectral window must exhibit excellent broadband optical
properties; transmittance above 95% from 8 to 12 ym and over 60Z from
0.5 to 0.9 ym and at 1.06 ym is desired. For most of the candidate
composite windows reflection losses are sufficiently great that some
type of antireflective (AR) coating will be required to meet the overall
transmission requirements. Our objective here was to demonstrate that
with a suitable AR coating, the transmittance of composite windows could
be raised to the desired level. The development of rain erosion resistant

multispectral coatings 1s being carried out elsewhere.4
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The theory and practice of antireflective coatings for windows
and lenses is well known. The simplest AR coating is a single film with
refractive index ng, whose optical thickness (true thickness/refractive
index) is equal to a quarter wavelength of the radiation where the
reflection is to be minimized. The magnitude of the reflection at the

2.0.\2
b = -
A/t condition is given by RA/A = ) so that RA/A becomes zero

when ng = (ns)llz.

Multilayer AR coatings which result in smaller values of the
reflection over broad spectral ranges can also be made. However, the
goals of present program can be well satisfied with a single layer
coating. Such a coating was designed for the ZnSe-ZnS composite window.
For this combination the square root criteria for the refractive index
of the film, i.e., n, = JE:, indicates that the refractive index of the
film should be about 1.62 for the ZnSe surface and 1.51 for the ZnS
surface. Two candidate film materials thus are LaF3, n=1,57 and
PbFz, n=1.65. We used both of these materials for initial coating
studies on ZnSe windows, and found that the deposition conditions are
less stringent and the procedure less complicated for Pbl-"2 than for LaF3.
For this reason, and because PbFz-coated laser windows over
two years old have been used here with no noticeable degradation of the
coatings, we decided to use PbF2 to coat the composite windows. Calcu-
lations for the minimum expected reflection yielded 0.04% for PbF2 on

ZnSe and 0.7% for PbF2 on ZnS.

PbF2 films were deposited from a platinum-lined tungsten
evaporation boat; the platinum prevents PbF2 from reacting with tungsten.
During deposition the composite window was held at 190°C,a temperature
found to give adherent and crack-free Pbl-"2 films without degrading the
glass bond. Film thickness was monitored optically, since our previous
work indicated that careful monitoring is essential to obtain maximum
transmission of coated windows. Figures 39a and b illustrate the short
and long wavelength transmittance of a PbF2-coated
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ZnSe-50% S glass-ZnS composite window. The window was coated on both
surfaces with films designed to given peak transmittance at 10 um.
Examination of Fig. 39 shows that the coating process did not introduce
any apparent absorption and that the transmittance of the coated
ZnSe-ZnS window exceeds the desired levels in the spectral regions of

interest.

4.4 Thermophysical Properties

Knowledge of the thermal behavior of window materials and
window components is important both for optical design, and for assessing
the compatibility of various materials during fabrication and service.
The type of calculations that can be performed with such data are
diverse., Thus, we have collected from the 11terature19 values of
thermal expansion, thermal conductivity, and specific heat for the
claddings, substrates and glasses used to fabricate the composite windows
evaluated during this study. Where such information was scarce or

absent, we supplemented the literature data with our own measurements.

In the case of thermal expansion, data weregathered with a
horizontal quartz tube dilatometer. The change in specimen length
sensed by a strain gage transducer was recorded along with specimen
temperature on a two coordinate recorder. The cooling and heating rates
were automatically programmed and all measurements were made in air.
Thermal conductivity was determined by the stationary heat flow method.
The 0.5 x 0.5 in. cylindrical samples were ultrasonically soldered to
the heater and heat sink of the calorimeter which has been described

in detail elsewhere.21’22

Measurement accuracy is estimated at + 27.
Tyrical data for two bonding glasses measured over the temperature

interval 190 to 380K appear in Fig. 40.

The data for all materials are compiled in Table 5. The high
thermal expansion coefficients of the glass bonding agents are notable,

but typical for chalcogenides of this type. Apparently, the resiliancy
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Fig. 40. Thermal conductivity of 50 and 60X S glass
bonding agents from 190 to 380K.
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of the glasses, coupled with the relatively large expansion coefficient
and good wetting properties is responsible for the remarkable ability
of these materials to join materials with considerably different thermal

expansion coefficients.22

4.5 Mechanical Properties

4.5.1 Hardness and Strength of Window Components

Collected in Table 6 are typical values of the hardness and
strength of the various window components we evaluated. The data were
taken from the literaturel9 or measured during the program. Generally
the rain erosion test data (see below) correlate well with the hardnesses
of the various materials: Mng and ZnS are most erosion resistant and

ZnSe the least.

4.5.2 Bond Strength

A crude measure of the strength of the glass bond joining the
window composites was made by tensile testing a pair of 0.5 x 0.5 in.
ZnS/ZnSe specimens. A load was applied normal to the joined surfaces
after the composite specimens had been cemented to steel grips with
3M AF42 adhesive., The tests were made on a Baldwin Universal Testing
Machine. The breaking strength of the 50% S glass joint was 1688 1b/in2;
that of a specimen bonded with the 60Z S glass was 1704 1b/in2. While
these data cannot be compared directly with the known strengths of ZnS
or ZnSe normally measured in flexure tests, the fracture surfaces of the
test pileces clearly indicate that it is the ZnSe, not the glass which
failed, e.g., Fig. 41. The crack path cut transgranularly through ZnSe
(light) then through the glass layer into the ZnS. The dark areas are
places where loose material spalled after test. The tenacity of the
bond in this static test is evident.

4,5.3 Rain Erosion Testing

Tensile tests give only a partial indication of how a given
adhesive will perform in service. This is because the loading of a

62

e B i o il i s T

A A 102
ph ot

B e Tt

lliiaks g St




T Eoos e okt e D tat e o o et S0 e bl e ik o i e e N D L Aol e s @ o

134 sse18 S 209

8T ssel8 S 206
-2 ooz FLo
1z 9Ls adr
91 062-S2¢ suz
L°6-S"¢ : 79-2¢C TO®N
c°L-8° Y111 | 50
'8y 0ST-00T asuz
E ANsE\wxv doouy
yaduaags arysual S892UPABYOIOTH

SMOPUTM d3Fsodwo) a38OTaAqed 03 PIsf)
s9sseT) pue sajeiIsqng ‘Suyppper) o say3laadoxg TeIFuUBYOIN Ted1dLL

9 FTIVL




T T T N e T Sy ™. T ST 7T i

Fracture surface of ZnS/ZnSe composite tested to failure in
tension. The crack path passed primarily through the ZnSe
substrate (light). The dark areas are material that spalled

after testing.

Ring cracks formed in the ZnS cladding of a ZnS/ZnSe composite
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rain erosion specimen after exposure to the simulated rain field.
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material during rain erosion is dynamic in nature, involving elements

of impact and cyclic stressing. For this reason more than twenty (20)
composites fabricated by us have been evaluated for rain erosion
resistance in the AFML centrifugal test facility at Wright Field (see

e.g. Ref, 6), The cladding material and thickness, the substrate material,
and the adhesive were varied to assess the relative merits of various
combinations. The test conditions were one in/hr simulated rainfall

at 470 mph specimen velocity. Fdlloving periodic exposure, each specimen
was examined in the optical microscope, and its transmittance was

measured over the 2.5 to 25 um spectral range.23

The erosion data for some representative specimens are compiled
in Table 7; for completeness some data from earlier tests (marked 0)
are included. The ﬁost salient result of the experiment was that the
glass bonded CVD ZnS/CVD composite showed essentially the same erosion

23

resistance as monolithic CVD ZnS. The ring cracks formed on the

composite after prolonged exposure, Fig. 42, are quite similar to those
on Zns.lb-16 This is in contrast to Irtran ZnS/ZnSe windows which had

inferior erosion resistance in earlier trials., The erosion tests also

B i L s e

demonstrated two other important features of optically-brazed composites:
(1) the glass bond is durable; it does not delaminate during dynamic
rain impact and (2) cracking is primarily confined to the ZnS cladding
unless the cladding thickness falls below about 0.020 inch. (This

suggests that the damaged cladding could be periodically removed and :
replaced with undamaged material at considerably less cost that replacing

the whole window,) Clearly, the data are yet insufficient to determine
the optimum ZnS cladding thickness, and this should be a subject of

future work,

The MgFZ/ZnS test data mirror the ZnS/ZnSe data with respect
to the durability of thicker layers. Single crystal and Irtran Mng are
both relatively erosion resistant as might be predicted from their

hardness. However, single crystal Hng shows a tendency to delaminate,
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leading to substrate cracking. Irtran MgFZ provides good protection
until the cladding thickness reaches the 0,010 to 0.015 in. range, then
crack propagation into the substrate becomes very evident. This is
significant because the transmittance of Irtran MgF, 1s sufficiently low
in the 8 to 12 um region that rather thin claddings would be required

to meet optical requirements with present quality material (Section 4.3).

Specimens bonded with *he organic adhesives generally
delaminated. Composites based on salt substrates were completely
destroyed.
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SECTION V

CONCLUSIONS

The primary objective of this study, to develop a rain erosion
resistant composite multispectral window, has been successfully accom-~
plished. 2ZnS clad to ZnSe by a Westinghouse-developed technique called
optical brazing meets both the optical and mechanical requirements for
airborne common aperture systems., Both 2 x 2 in, and 4 x 6 in. ZnS/ZnSe
windows were fabricated with no major modifications to the joining
process indicating that the method should be scalable to the larger
window sizes envisaged for systems applications. At present the most
difficult step to scale-up appears to be the uniform polishing of the
cladding but even this appears feasible.

Computer analysis of the interferograms taken from the ZnS

cladding, ZnSe substrate and assembled composite window indicates that
the major sources of optical path differences are the window components
themselves. The transparent glass used to bond the polished pieces
introduces no significant degradation in the optical homogeneity of the
window. Moreover, the optical path differences that are present can be
minimized by suitable corrections during the final polishing of the

assembled composite.

The transmittance of the ZnS/ZnSe windows is sufficiently good
that with a suitable antireflective coating, e.g., LaF3 or PbFz, the

wvindows meet or exceed the minimum system requirements. The results of

rain erosion tests on optically~brazed composites verify that the

ZnS/ZnSe windows are as erosion resistant and monolithic as ZnS. Fracture

when it occurs during rain impingement can be confined to the cladding
layer vhen the ZnS is thicker than about 0.020 in. In practice, the
damaged cladding could be replaced periodically allowing the window to
be maintained at relatively low cost.




Optical brazing is versatile and other cladding-substrate
combinations have been joined. For example, MgPZIZnSe windows up to
2 x 2 in, size were readily fabricated. The low long wavelength trans-
mittance of present hot-pressed MgFZ'limits the utility of this erosion

resistant composite window.

A number of organic optical cements also appear promising
for sandwich window connﬁructioh. Tﬁeir pfimary limitations are the
difficulty of controlling cement.thickhess, uniformity and homogeneity
during joining and the tendency of the bonds to delaminate during rain

erosion testing.
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