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1. Introduction. 
_______________

The von Neuinann-Morgenstern development in 19L& L4 of a theory for n-person

cooperative games leads after considerable argument to a formulation in terms

of a real-valued characteristic function which is defined on the set of all
subsets of the set of n players . Arguments leading to this formulation as
well as their concept of a solution have been challenged on several grounds .
Since that time there have been several dozen reformulations or additional
models proposed and analyzed to varying degrees . No one of the models proposed

is completely satisfactory by itself for all potential applications. However,

many of these models when taken together do provide substantial insight , and
a particular one does on occasion prove to be quite adequate for analyzing a

specific type of application.
Coalition formation and the amount of worth, wealth or power achievable by

a coalition is a most crucial aspect in the multiperson cooperative theory.

So most models are characterized by assigning a real-numbered value or a set
of realizable payoff vectors to each coalition in some manner. One then uses

these numbers or sets of vectors to define a set of realizable payoff vectors

or imputations . A solution concept then selects some of these payoffs as the
ones “most likely’t to f inally occur , on the basis of some argument , as the

resulting distribution to the players in a play of the game.
There are, however , many shortcomings in the more classical theories due

to the facts that they assume side payments in some transferable utility, that
the actual. dynamics of moving from one proposed payoff to another is not
explicit , and that they are static in the sense that they do not exhibit the
actual negotiations, bargaining, or formation or dissolution of the coalition

structures which may take place. Although these objections are valid they are,

j on the other hand, often overstated in some instances. Some solution concepts

may exhibit rather well, those payoffs which are likely to be achieved without
indicating the details of how they will actually be arrived at. Often , a
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resulting payoff nas implicit in it the coalition structure which would have
formed in order to reach this outcome . E.g.,  for each imputation in a
particular von Neumann-Morgenstern solution for a three-person game there is
a natural way to associate a coalition structure with this outcome; except
for a payoff interior to the core in which every coalition is satisfied
simultaneously. It is also safe to say that more detailed insights about
the social sciences have been obtained from the older static and side-payment

m odels than from the more abstract dynamical or non side-payments theories
which have come into existence in more recent years.

There now exists a fairly substantial amount of theory for games without
side payments as well as for more dynamical approaches. There are also so~ne
interesting existence theorems for a few such models , even though several of
these theories are somewhat deeper mathematically. Nevertheless, there is
still a need for models which can exhibit more explicitly the dynamical,
noncooperative,and coalitional formation aspects for the multiperson cooperative
games . The purpose of this paper is to present a model which is extremely
elementary in its basic definitions in order to pursue some of the more dynam—
ical or negotiation aspects in greater depth and to hopefully arrive at better
insights into such behavior . Eventually, such discoveries may be incorporated
back into earlier models , as e.g. was the case when the nonexistence of
solutions was first exhibited in generalizations of the von Neumann-Morgenstern
theory before it was discovered for their classical theory (see section 5 in
[25]).

In section 2 we briefly refer to some other attempts to incorporate dynam-
ical , noncooperative, ox’ coalitional structures more explicitly into cooperative
games . Our simple model [27] which associates a unique payoff with each
coalition structure is presented in sect ion 3. The definitions for stable set

and core are reviewed in section ii- ; and these solution concepts for one

particular form of domination are described for all three-person games

in the following section. A “real world” example, a three-person subgame of
the ten-person “Communications Satellite Game ,” is solved in the final section
for both the side-payment and non side-payment models .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2. Some Other Approaches.

One dynamical approach to cooperative games begins with an ax’bitary
imputation and considers how the players may move successively , in discrete
or continuous steps, through a sequence of such payoff vectors until they
converge upon some outcome which is “stable,” e.g., in the sense that it is
in the kernel or core, is some type of known value, nucleolus or center, or

• is an equilibrium point of some sort. These “forces” or “transfer schemes”
can be viewed intuitively as social pressures or bargaining steps moving
towards an equitable or stable result . The set of all such limit points for
a particular scheme can give rise to a new solution concept in the event that
it does not correspond to a previously known one , e.g., as in the case of the
lexicographic kernel of C. Kalai. A good deal of research in this direction
has been done in the past ten years as is indicated in the papers by Scarf
[41], Stearns [48], Billera [7], Wu [54], Wu and Billera [55], Grotte
[15, 16), C. I(alai, Maschler and Owen [21], Owen [38], and Maschler and Peleg
[30].

Several approaches to the cooperative games which began in the 19508 make
use explicitly of the partitions of the set of n players (i.e., coalition
structures), rather than just the subsets of players (i.e., coalitions). Such

models include the theory of Y stability of Luce [29], the bargaining sets
of Aumann and Maschler [2] (consult Maschler for a detailed list of references),
the games in partition function form introduced by Thrall. (see [49]) and
suggested also by Gamson [12]. Stable sets and cores were studied for this
Latter model by Lucas [22, 23, 24, 26, 49], and more recently by Fink (11]

in a slightly different format . Shapley values have been investigated in
this and more general contexts by Eisenman (9 , 10], Gilbert [13], and Myer’eon
(35, 36]. Aumann and Dreze (1] have also generalized the classical solut ion
concepts to include partitions. Coalition structux ns have also been used in
models developed by social scientists, and some references to this appear in
Shenoy (46).

There have been suggestions by von Neumann (e.g., see page 25 in (53]),
by Nash [37], end others to the effect that the negotiations and bargaining
in a cooper ative game should be considered as a noncooperat ive game super-
imposed on the cooperative structure. Work along these lines has been carTied
out by Vickrey [50], Hareanyi [a.3], Selten (‘e3) and Webar (52]. Such approaches

— __________________________________________________
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can lead to using the normal form of a game and the theory of equilibrium

points to get solution concepts for cooperative games . There are , however,

some difficulties applying equilibrium points to “real world” problems (see

e.g. [28]), as well as some interesting new and basic theoretical results for

this concept [8]. The potential for using discoveries from the repeated play

of games arises , and important new developments have also appeared in this

area [6, 34]. The extensive form of a game can also be helpful in modeling
negotiations; and even if there are a continuum of possible moves made

continuously in time, then some of the recent work by J. C. Kij ushin from

Leningrad may prove useful .
Some new models for cooperative interactions have also been proposed by

social scientists and the work by McKelvey and Ordeshook [32, 33] is an
illustration of these developments.

Many of the models mentioned in this section do become quite abstract

mathematically rather quickly and have not yet been very useful in applications.

The object of this paper is to describe a highly simplified model with the hope

that some of the structur es discussed in this section can be applied to it

without creating a theory which is technically intractable .

II:

L I P
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3. The Model.

We proceed to define an n-person cooperative game model which will be

called the discrete partition function form. A unique n-dimensional vector

payoff will be associated with each partition of N into subsets. I.e.,

the outcomes for the individual players depend only upon which coalition

structure actually forms. This can be viewed as the former model for games

in partition function form [26, 49] except that side payments are not allowed.

Let N = {i, 2, .. ., n} be a set of n players who are represented

by 1, 2, ... , n. Let

be an arbitrary partition of N in nonempty and nonoverlapping subsets

~
‘1~ ~~ ~~~~~~~~ 

P~. A nonempty subset of N is called a coalition and P is

referred to as a coalition structure. Denote the set of all partitions of N

by

H J I = { P}.

Also denote the real numbers by R.

For each partition P assume that there is an outcome function

which assigns the real-number outcome or payoff F~(i) to each player i when

the partition P is the one to form. The function

F: 11 9- (F~: Pe f l }

which assigns to each partition its -outcoise function is referred to as a

discrete partition function. The ordered pair

(N ,F)

is called an n-person game in discrete partition function form.

For each player i in N define the value of i as

v(i)  = mm F~(i).{Pcfl: {i}cP}

— — -~~
.-.-.--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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ways the players in N - {i} can form into coalitions.

In summary, a discrete partition function game merely assigns a particular

payoff vector

• x~ (4, 4, ... , x~ ) (F~(l) ,  F~ (2) ,  ... , F~(n)) F~(N)

whenever the partition P is the one which is actually realized as a result

of playing the game. Player i receives the amount 4 when P forms.

• The set of vectors F~(N). one for each P c 11, is referred to as the set of

extended imputations and is denoted by E. This set E is a finite set in

contrast to most models for multiperson cooperative games. Note that we have

not assumed any “superadditivity” on the functions F~, so that the points in

E are arbitrary. An imputation = F~,(N) is individually rational (i.r.)

whenever

x~ > v(i) for all i c N.

The set of (i.r.) imputations will be denoted by
• 

A { x ~~c E : x~~>v}

where

v (v( l ) ,  v (2 ) ,  ... , v( n ) ) .

For vectors such as x and y s E or for v above, we write x > V

for x~ > v(i)  for all i ~ N , x y to mean x~ > for each

i c M, and similar expressions for > and
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4. Solution Concepts.

The set A consists of all realizable and i.r. outcomes X!’ for the

game (NJ) and can be viewed as a “presolution” to this game. The problem
‘ 

~ 
- is to determine which such outcomes are most likely to occur in the actual

play of the game. The resulting payoffs may be based upon different concepts

such as stability, bargaining power, equity, and so forth. In the theory of

multiperson “cooperative” games these concepts take the form of the various

“solution concepts” such as the von Neumann-Morgenstern solutions (stable

sets), the core introduced by Gillies [14] and Shapley, the value concepts

of Shapley [44) and others, the various bargaining sets of Aumann and

Maschler [21 ~d others, the nucleolus of Schmeidler [42] and its variants,

the sub ’ s of Roth [40], etc. In this section we will describe models

for s ~ and the core for the games (N,F).

von Neumann and Morgenstern (vN-M) introduced the relation of “domination”

on their form of the imputation set. Several variants of their definition

have since appeared (e.g., see Fink [11)). We will now introduce five

different types of domination relations between elements in our set A.

Let x~
’ and y c A , let P and Q c II, and let M represent a

nonempty subset of N. We will write

1 P rx dom~~y

to mean that x~ dominates y via N and that the domination is of

type r = 1,2,3,4 or 5. These five different types of domination are

defined as follows.

— ., —— ~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~
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(1) x~ dom~ y <~~~ > M y.

P 2 P q
( 2 )  x domM y 

<~~~ ~ > M y and N 
•~~~~ 

}‘~ for P1~ •~ Jq 
€ P.

ifl —i

(3) x~ dom~ y <=> x~
’ > M y and M e P.

(4 )  x~ dom~ y <~~> x~ > M y, N c P , and ~~ > M y for all Q ~ M.

(5) x~ dom~ y <~~~ x~ > M y,  N c P , and x~ for all Q 3 M.

Note that domination via M of type r implies that of type r-l for

r = 2,3,4 and 5.

We will also say that x~ dominates y through type r domination,

denoted

P rx dom y

P rif there exists some such M so that x domM y. Furthermore, if x c A

and B C A  we let

Dom~ x = {y c A: x dorn~ y}

Dom
r x {y £ A: x domr y}

— Dom~ B = {y c A: x dom~ y for some x c B}

and Domr~ B = Cy c A: x dom
r y for some x c B)

for r 1,2,3,4 or 5.

In the remainder of this section we will delete the superscript r

from domr and Domr since the following definitions could be stated

for each one of these five types of domination. In sections 5 and 6 the

analysis is done only for domination of type 5, and thus dom and Dom

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~.•-~-~
- -‘.- -~-~

- - 1 ~~~~~~~~~~~~~~~~~~~~~~~~ ~~--• - ~~~~~~~~~~~~~~~~~~ 
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will stand for dom5 and Dom5 respectively in these final two sections.

Similar investigations can be done for the other four types of domination.

• A stable set (or vN-M solution) for (N,F), or for any pair such as

~ ~ (A, dom), is a set V such that

V f l Do m V = ø ,

where 0 is the empty set, and

V U - D o m V = A .

In other words,

V~~~ A - D o m V

i.e., V is fixed under the mapping

f: + 2N where f(B) = A - Dom B.

The core C for the game (N,F) consists of those imputations which are

maximal with respect to the “dom” relation, i.e.,

C A - Dom A.

For any model and solution concept such as V or C, one is interested

in questions about the existence, uniqueness, mathematical nature, computa-

bility, as well as applicability of these sets or ideas. The stable sets and

the core for all three-person games in discrete partition function form are

• described explicity in the next section for type 5 domination.

The pair (A, dora) is a special case of an abstract game (vN-M [51)),

i.e., an arbitrary set A with a binary relation “dora” on this set. We

can also view our particular case as a finite directed graph with node set

• A and with an arc from x to y whenever x dominates y (or for some

purposes when x is dominated by y). A great deal is known about abstract

games and such results appear in both the game theory and graph theory litera-

ture. A sample of such work appears in publications by Berge (5], Richardson

(39], Harary and Richardson [17 ),Behzad and Harary [3,4], Roth -[403, Shmadich [473,

E. Kalai, Pazner , and Schueidler [19,20], and Shenoy [46]. Additional references

—~~~~~~~~~ -~~~ 
- 

~~~~~~~~~~~~~ • . - ~~~- ~~~~— -~~~ ~~~~~~ •-~~
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appear in the report by Shenoy. Results of this type apply immediately to our

model for games G (N,F).

The main reason , however , for introducing the simplified model (N,F)

is an attempt to gain greater insight into the dynamics of coalition formation

Some previous attempts in this direction have been rather intractable mathe-

matically. Our plan is to employ stochastic and dynamical techniques to this

model in order to analyze the formation and breakup of coalitions, e.g., by

using methods similar to Chapters 2 and 3 in Shenoy [463. Some aspects of

bargaining and negotiation can be introduced by analyzing this cooperative

model in a noncooperative mode , making use cf ideas from the normal and exten-

sive forms of a game as well as from various models for repeated play of

games , as was indicated in section 2. The elementary nature of ~he model

(N ,F) has made the analysis of the noncooperative models built upon it

f - more manageable , at least for small values of n. Some preliminary results

in this direction have been obtained and will be reported elsewhere.

- - - - -~~~~.--~~~~-.---
—--- - -- - ~~~~~~~~~~~~~~~~~ ______________________ 
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i
5. The Three-person Games.

For the case n = 3 we have N = U, 2 , 3) and we get five

partitions in the set II:

- - 

- 
~l = {{ i} ,  {2,3} } ,  P2 = {{2} , {i ,3}}, p3 {{3}, {1,2}},

p0 = {{l}, {2), {3}}, and = {N}.

The set E of extended imputations consists of the five corresponding

imputations:

1 1 1 1 2 2 2 2 3 3 3 3x = (x1, x2, x3), x = (x1, x2, x3), x (x1, x2, x3),

x0 
= (4. 4, 4), and ~~ = (x~ , x~ , 4).

The set A of (i.r.) imputations is given by

A { x ~~C E : x~~> v }  ( p 0 , l, 2 , 3, and N )

- - - 
where v = (v(l), v(2), v(3)) and for each i c N

r ) .  0v(j) = mm tx1, x~

In this section we will let i, j and k represent any permutation of the

• three distinct -players 1, 2 and 3 in N.

We will first make some general remarks about domination (type 5) before

exhibiting the stable sets V and core C for A in the case when n = 3.

(1) For any x E A, x
~~~

Dom{~}A for all i CN.

As a consequence of (1) we can find a stable set V
0 

for A - {x°} and 3

then merely check whether or not x0 needs to be added to V0 to obtain

the desired stable set V for A , i.e., whether x° ~ Dom V
0 or x° c Dora V°.

(2) If x e A and > x , then x ~ V for any stable set V.

As a result, we only need to determine a stable set for A - ({x0 , xN} U

Dom xN) and then check whether or not needs to be added to V1~ to

0 0determine a stable set V for A - {x }.

(3) In the case n = 3, if x C A and x dora y, then y

cannot dominate x.

I.e., if x is greater than y on two or three components, then y cannot

— ~~~~~~~~~~~~~~
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dominate x because of (1).

(4) In the case n 3, xm is effective for the coalition

{j,k} for each i £ N, i.e., x~ ~(j,k) ~~ for all Q 3 {hk}.

This follows from the fact that the two-person coalition {j,k} appears in

only the one partition P~ corresponding to xm . Consequently, the determin-

ation of the stable sets or core for A in any three-person game depends to

a large extent upon the donimation pattern between the three imputations xi

• and how these relate to

To determine all stable sets V for the case n = 3 we consider the

following four cases.

Case I. Assume that xm , x~ and C Dora ~
N

Then V0 = {xN} if ~
N 

C A and V0 = 0 otherwise . It follows from (1)

that V = V~ or V0 U {x0} depending upon whether or not x° C Dora

We note that V cannot be the empty set since 
x: 

C Dom xN implies ~
N 

C A.

Case II. Assume that x and x C Dora x and x ~ Dom x

• It follows that {xk) or 0 depending upon whether or not xk c A.

0 . N N .  NTo obtain V we use (2), i.e., we must add x to v iff x C A and

~ Dom v
N. To arrive at V from V0 we then use (1), i.e., we must add

0 0 0 0x toV iff x ~~Dom V .
i N j  k NCase III. Assume that x C Dom x and x and x ~ Dom x

(i) If there is no domination between x~ and xk then VN = {x~, x
k} flA.

We must add x1
~ to V1’ to obtain V0 if f  ~

N 
C A and ~ rom vN . And we

must add x° to V0 to reach V iff x0 ~ Dora V
0.

(ii) Assume x~ dora ~~. Then vN = {x 1} fl A and V0 and V are obtained

as in case (i) using (2) and (1) respectively.

i j k NCase IV. Assume that x , x and x Dora x

(i) If there is no domination between x~, x~ and then

I —-—-k—.—- 
~~ ~

~ 

--~~~~~~ ... —~~~~~~ - -•--‘— —-•--—~~~
—.- -- -- -•
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vN 
= {x1 , x~, ~~ fl A , and V0 and V are obtained as above using (2) and (1.).

(ii) If the only domination within the set

, r I  ~ kA tx , x , x

is x1 dora x~, then V1~ = {x1, xk} fl A and V is obtained as before.

(iii) If the only domination within A’ is xm dora x~ and xm dora xi’,

mthen v {x ) (I A and V is obtained as before.

rt (iv) If the only domination in A’ consists of xm dom x~, x
m doin xk

j  k .and x dom x , then V is determined as in case (iii).

(v) If the only domination in A’ consists of x~ dom and don ~
k

then ~~ = {xm , x~} fi A and V is obtained from using (2) and (1).

(vi) If the domination pattern in A’ is

xm dora x~ dom 
k dom xm

tnen no stable set V exists for the game. This domination pattern implies

that x~, x~ and ~
k 

C A.

Note that there exists a unique nonempty stable set for every three-

person game, except for our last Case IV, (vi) in which no such set exists.

If our components 4 were chosen at random from the unit interval, then the

probability of nonexistence can be computed and it is less than one percent.

However, in “real” applications it could be expected to occur more often.

It is a routine task to determine for a given game which imputations in

V are in Dora A , and to thus determine the core C = A - Dora A = V - Dora A

(wt*en V exists). In Case IV, (vi), in which V does not exist, the core C

may or -may not be the empty set depending upon whether ~ not x° and

C Dora A. More generally, algorithms for determin&ng C for finite A are

given in some of the references mentioned in section 4.

r 

.1.lIi ~~~
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6. An Example.

In chapter 11 of his recent book [31], McDonald describes a business

game concerning which American corporations would put up domestic communication

satellites. Between 1960 and the mid 1970s this idea was conceived, became

- economically feasible, and was finally realized. This new technology gave

rise to may potential benefits and could have drastically altered the rather

stable and placid telecommunications industry. Some firms had the necessary

- - technology and others had the required “traffic”, and thus there were

potential gains from cooperation, even between companies that had competed to

some extent. In the late 1960s there were ten corporate groups, or players:

ATCT, Comsat, Hughes, Western Union, General Telephone (GT&E),

the Networks (ABC,CBS,NBC), RCA, MCI Lockheed, Western Tel,

- and Fairchild,

- 
plus one nonstrategic “player” or “rule-maker” (the FCC). McDonald did not

- solve the full ten-person game, but he did provide the values for a

particularly active three-person subgame which took place between General

- Telephone (G ) ,  Hughes (H) and Western Union (W ) .  This subgame is

discussed in detail in his book. •1

His value estimates are very crude; and they do not represent merely

monetary consideration, but include many benefits which are difficult to

quantify such as corporate image and their position in future business or

f “technological” games. Nevertheless, these rather vague numerical estimates j
:~
1 - were about the best that the participants themselves could do, and these

numbers were checked with some corporation experts who were closely involved

t with the actual decision-making. McDonald’s estimates for the three-person

game with player set

N { G , H,W)

- -~~~~~-—.-— -~~~- - - - —4-—-- -~---—--—-- — h&4 •. ~~~~~~~ ~~~~~~~~~~~~~~~ •-- ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ -



were presented in discrete partition function form as follows:

= (1, 2, 3) =

= (1, 4, 4) = x1

F( H)( Gw ) (N) = (1.5 , 2, 5) = x2

F(W)(GH )(N) = (4 , 4.2, 3) = x3

F(N) (N ) = (1, 2, 4) =

where (G)(}IW) represents the parfition {{G},-EH,W}}, etc. These five

vectors form the set A of imputations, and both the core and the unique

stable set consist of the one payoff vector x3 corresponding to the coalition

structure {{G,H},{W}}. In fact, G and H did enter into a coalition and

petitioned the FCC for a license to jointly orbit a satellite; whereas W

desired to go it alone and has since put up its own bird. Even when the FCC

suggested that they form the coalition N to protect W’s risk, the three

firms soon returned to the FCC with a slightly modified plan involving this

same coalition structure.

The analysis in McDonald’s book made use instead of the previous model

for games in partition function form (with side payments) as described in [49].

Assuming additivity, the partition function (which assigns values to the

respective coalitions in a partition) is given as follows. Here we have also

“normalized” by subtracting off the values 1, 2 and 3 which the respective

players can obtain by themselves.

(0, 0, 0)

F(G )(~~ ) (0 , ~~

(0, 2.5)

(0 , 5.2)

F(N) = (1).

In this approach the pareto-optimal part of the set of imputations is
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the triangle

A(~~)(w) 
= {(xG, x,~, x.~

): X
G 
+ X

H 
+ x.~ = 5.2 and x~, x.~, x.,~ > o).

The core is empty, but “just barely” in the sense that a slight change

of 0.3 in some of the values in the “right” direction could create a nonempty

core.

The game has many stable sets, but all of them contain some imputations

in the small triangle in A(GH)(W) with vertices (2.2, 3, 0), (2.2, 2.7, 0.3)

and (2.5, 2:7, 0). And one would expect that the final outcome would be

selected from the imputations near this region. So G and H may split

the total amount 5.2 so that the latter obtains 2.7 to 3. However, there

are theoretical arguments to support the allocation of a small side payment

from G and H to W. In fact, this is what did occur in the real game.

When the FCC questioned the coalition structure {{G,H), {w}} and

recommended {N} because of an element of risk if W were to go it alone,

then H offered some of its technical information (i.e., the side payment)
Ii

which would lower the risk to W (and hence its customers or stockholders

who would pay for any such failure). So this rather crude side-payment model
I~~t

did (after the fact but in ignorance of it) suggest the small side payment

which was actually realized in the real game.

More details about this game are given in McDonald’s chapter 11.

I - - -~~~~~---4”— ______________________________-— — —- • -- — -~~~~~~ -- -- ~~—--• — ~~ - •-4-—--4--.••-•-- —--~~~~~~~~~~ - -- - • - ~~~~~— —--~~~~~--~~~~~—- -- -—-•
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