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ABSTRACT

(S R

Least squares problems arise when one attempts to fit a
model y = n(x,B) to points (y,, xl),...,(yn, xn). Solutions to
such problems are obtained by minimizing the sum of squared devi-
e ations, over an admissible region. This paper discusses the basic
theory of optimization for a general objective function and applies
4 | this material to both linear and nonlinear least squares problems. 5
{ff In linear least squares, normal equations for both the full rank
»jf . and less than full rank cases are considered and the Kuhn-Tucker
j‘- conditions are used to obtain the normal equations under linear
4 1 inequality constraints. In nonlinear least squares different
iterative methods which may be used to obtain a solution are dis-
] ? cussed. The methods considered are steepest descent, Newton-
_ Raphson, Gauss-Newton, Hartley's modified Gauss-Newton, and that
E; of Marquardt. Results are obtained which relate Marquardt's

method to equality constrained linear least squares.

'partially supported by the Office of Naval Research under Contract
N00014-75-C-0443. Reproduction in whole or part is permitted for

any purpose of the United States Government.




l. OPTIMIZATION

1.1 Iteration Procedures

We are primarily concerned with optimizing, i.e. maximizing
or minimizing, an objective function f(t) = f(t,,...,tp) over an
admissible region K c EP.

A general iteration procedure is as follows:

(i) choose a seed point t € K,
(ii) on the basis of local behavior of f(¢) at t select a new
iterate At € K,

(iii) replace t by At and return to step (ii).

A is a mapping of K into itself. The properties of such an
iteration scheme are the properties of A.

The following are examples of some cor ~ teration procedures

on Ep.

Example 1. Steepest Descent

A descent direction, s, at the point t, is a unit vector such

that

£(t + A8) |, o =8  VE(t) <O

&l

hence, any descent direction must be within n/2 of the negative

A general descent procedure is:

(1) choose a seed point t ¢ EP,

(ii) at t, select a descent direction s and a step length ),




-3

(iii) return to ii), replacing t by
At = t + s,

The steepest descent technique chooses as its descent direc-

tion, -VE(t). This is a locally optimal choice in that

d £ (t + As)

e i e
d X Laug © 9 75(0)

is minimized for s proportional to -V£(t)
The corresponding technique for maximization is the method of
steepest ascent. See Nobel (1969, p.403) for a discussion of

convergence.

Example 2. Newton's Method

~

Newton's method is designed to solve h(t) = 0; where h is a
continuously differentiable, real valued function of a real vari-
able. The mapping which defines Newton's method, say Nt*, is
obtained by solving g%(t*)(t - t*) + h(t*) = 0 for t. That is,
we are to find the intercept of the tangent to the curve deter-

mined by h, at the point (t*, h(t*)); hence,

Nt = t - h(t)/@dt‘ﬁ

dh (t)
dt

While Newton's method is designed specifically to solve non-

if = 0.
linear equations, it can be used to obtain a critical point of an
objective function £ and thus a potential solution to the optimiz-

ation problem. Specifically, to solve f'(t) = 0 by Newton's

method, we have




i
3
|
i
3
:

Nt = t - £'(t)/£f"(t).

Example 3. Newton-Raphson method

The Newton-Raphson method is a p-dimensijnal analog of Newton's
method. Let t ¢ EY and h(t) = (hl(t),...,hp(t))T; assume that
hy has continuous first order partials for k = 1,...,p. For each
k consider the hyperplane tangent to the p + 1 dimensional surface

determined by hk at the point (t*%*, hk(t*)). The equations of these

planes are
(1.1) z = h (t*) + (t - g% T Vh (£%): k = 1,..0p.

We obtain Nt* by finding the point of intersection of the *angent

planes (1.1) with the plane z = 0. This yields

(vt =~ ) Tvh, (t) = -h_(£); k = 1,...,p.

When the Newton-Raphson method is employed to find critical

points of an objective function f we get the matrix equation
(Nt = £)Tv28(t) = -(VE(eN) T,

where V2f(t), the Hessian, is

3%f

V2E(t) = (-—-- ).
8tkate
The convergence of a general iteration procedure is of con-

siderable importance. A condition on A sufficient to guarantee

convergence is given by Kolmogorov and Fomin (1957, p. 43). Let

R be a metric space with metric f. A mapping, A, of R into itself

is a contraction if there exists a (0 < a < 1) such that
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p(At, At*) < qp(t, t*) for all t, t* ¢ R.

Theorem 1.1 (Principle of Contraction Mappings)

g . Every contraction mapping defined in a complete metric space
: R has one and only one fixed point. (i.e. the equation At = t
| has one and only one solution).
Furthermore, Kolmogorov and Fomin's proof of this Theorem
3 i implies that, given a seed point t, the sequence t, At, A%t,...

converges to the fixed point.

,§2 Theorem 1.2

let f be defined on [a, b]. If f'(a) < 0 < f£'(b) and
0 <k, s f"(t) s k, on [a, b] then the equation f'(t) = 0 has a
;.g;'t unique solution in (a, b) and the mapping At = t - Af'(t) is a

contraction for 0 < A < k:l.

Proof
f' is continuous and strictly increasing with f'(a) <0 < £'(b).
Therefore f'(t) = 0 has a unique solution in (a, b).

If t,, t, € [a, b] then
At, - At, = [L - AM"(E)I(t, - t,); a s § <b.
In particular, for t ¢ [a, b) and 0 < A < k:‘,
At - a= [1 - Af"(§)](t - ay+ Aa - a > 0.

Similarly b > At. Finally,

: |at, - At | = [1 = A£"(E)||t, = t,] < (1 = xk;) |ty = t,].




abe

Therefore A is a contraction on [a, b].
As a corallary we see that, under the conditions of the Theorem,

the method of steepest descent (with fixed step length) converges

to a unique minimum of f.

1.2 Optimization with Constraints

The mathematical programming problem is as follows:

Given the numerical functions f, g,,..., I defined on Ep, find

T T e Sl iy

a point t of P satisfying

gj(t) - DI T WSS |

and such that f(t) is as large as possible. A solution of the

problem will be denoted by €. Minimization problems may be handled

S i

bk s

5
B

b} taking -f(+) as the objective function.

The inequalities gj(t) > 0 are called the constraints of the

S

program; points which satisfy the constraints are feasible points

and the set of feasible points is the feasible region, denoted by

K. Throughout this chapter it will be assumed that f and
gyreeer 9y are differentiable.
Two well-known special cases are i) when f and g,,«.., In

are linear, we have the linear programming problem and ii) when

f is a quadratic form and g,,..., g, are linear, we have the

quadratic programming problem.
Kuhn and Tucker (1951) developed a set of conditions, the

K-T conditions which, under mild regularity conditions are neces-

sary for a solution to the programming problem. Their conditions

|

g are that there exist u;, Uz,eees Uy such that

d

YR TR UG T NTh e o ki Rl S B




e,

gj(t) Z 0; j= l'o..' m

Ma2a0 i m ko vas . m

uj.gj(t) =o; j=l'¢o Ll m
and

m
VE(t) + %

u, Vgi(t) = 0.
o j gj( )

There are several sets of such regularity conditions which
can be employed. Here we do not try for the most general results
but we give éonditions, involving generalized concavity, which are
easily understood and yet quite general.

Differentiable functions with the property that
f{y) > £(x) implies Vf(x)e(y - x) > 0

(increasing function implies positive slope) are called pseudo-

concave by Mangasarian (1965).

In his unpublished 1953 notes, Convex Cones, Sets and Functicns,

W. Fenchel treats the concept of quasi-concavity. A real valued

function f(x) having convex domaiﬂ is called quasi-concave

_(g-concave) if f£(ix + iy) 2 min(f(x), f(y)) whenever 0 <) - <1 and
A=1- 2. For differentiable functions, pseudo-concave implies
g-concave.

Several alternative characterizations of g-concave functions

are available.

Theorem 1.3

The following conditions are equivalent

e Seuiiie GrabD




(i) £(x) is g-concave

(ii) I,r ="{x : £(x) > 1} is convex for all T,

(iii) the level sets LT = {x : f(x) 2 1} are convex for all T.

The alternative characterizations of Theorem 1.3 are import-
ant; we see for example, that convexity of the "constraint set"
i itgoix) * T, gy 2 Tareeegp(x) 2 =] is assured for all
TyreearTy when and only when g,, J2¢+++r,9, are g-concave functions.

We may now state the following results, see Mangasarian (1969).

Theorem 1.4

gr 1 seer g are differentiable, the gj's are pseudo-
concav 2re exists some feasible a such that gj(a) > 0 for
all 95 wiich are not affine, and if £ is a solution of the program-
ming problem then there exists u = (u;,..., um)T such that t and
u satisfy the K-T conditions.

Generalized concavity can also provide a framework within

whichk the K-T conditions are sufficient.

Theorem 1.5

let £ be a differentiable and pseudo-concave function and
Grreeer 9y be differentiable and quasi-concave. If t and u solve
the Kuhn-Tucker conditions then t solves the mathematical pro-
gramming problem; that is t = €,

As an example consider optimizing a quadratic objective
function subject to linear inequality constraints. This is often
called quadratic programming. In general, we would have the

following problem:

P

E &
2
E &
¥
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Minimize % xTFx - de

Subject to G'x = b

where F and G are matrices, with F symmetric, while b and d are |

vectors.

The K-T conditions,

YT

GTx 2 b, uz20

uT (6Tx - b) =0

S0 U e RS T S

TR APE

Gu = Fx - d

are necessary for a solution to the problem (see Theorem 1.4).

If F is positive semidefinite then, the objective function is con-

cave and Theorem 1.5 tells us that the K-T conditions are also

sufficient.

We have

% xTFx - de = %(x - x)TF(x - ¢c) + constant

TFc for all x. This last is

for some c, if and only if x'd = x
equivalent to the equation Fc = 4 which has a solution, ¢, when
and only when d is in the column space of F. Thus the quadratic
programming problem can be written in the special form: minimize
%(x - c)TF(x - ¢) suject to G'x 2 b if and only if d is in the
column space of F. 1In particular, the positive definite quadratic

programming problem can always be written in this form.

i
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2. LEAST 5QUARES

2.1 Linear Least Squares

Least Squares problems arise when one attempts to fit a model
y = n(x,B) to points (y,, X;)eecer (yn, xn). Here n is a function
of known form, B is a parameter .o be estimated, and x is a vector
of independent variables. We obtain the fitted model by minimizing
n
(2.1) 6(8) = I [y; = n(x;,B))*

i=1l

with respect to 8, a solution being denoted by §.
The deviations di(B) = yi - n(xi, B)nnd = 1 i, W, or
d=Y - n(B), where n(B) = (n(x;+8) ..., n(xn.B))T, measure the
goodness of fit of the model y = n(x,B8) at the parameter value B.
The deviations di(g); i=1,..., n are called the residuals.
If n(x,8) = xB then we have the special case of linear least
squares, and (2.1) becomes
n
(2.2) $(B) = iillyi - x,8]% .
let X be the matrix whose ith row is X, Y = (yl...ynfi and V be
the column space of X, then by minimizing (2.2) we are finding a
g such that X8 is the vector in V that is the closest to Y. Thus,
B solves the linear least squares problem if and only if xé is
the projection of Y on to V. From the projection theorem, X8 is
that vector such that we may write Y = XB + (Y - XB) with X e V

and y - X8 orthogonal to V; hence, xT(Y-XB) =0 or

(2.3) XTxg = x'y.
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The equations (2.3) are called the normal equations.

We have seen that if B solves the linear least squares problem
then it solves the normal equations. Suppose that B satisfies the
normal equations, then xTxﬁ = XTY; thus XT(Y - xB) = o. There-
fore X8 1is the projection of Y on V; hence, B solves the linear
least squares problem. Thus B solves the linear least squares
problem iff B solves the normal equations.

If X is of full rank then xTx is nonsingular; hence, the

normal equations have a unique solution

'I'Y 3

A

B = (xx)"! x

However, if X is not of full rank then there will exist infinitely

many solutions; a general solution to (2.3) will be given by
8= XXX+ QXTX)‘(xTx) - I)Z,

where Z is arbitrary and (XTX)- denotes the generalized inverse
of X'X, see Rao (1965, p. 24).
We now briefly consider linear least squares with constraints.
To this end we first reformulate the unconstrained problem:
Minimize (Y - n)T(Y - n) subject ton = X8 or n € V.
Alternatively we may take the feasible region to be the space
orthogonal to the space orthogonal to V. Let Pr+1"“' Pn be a
basis for the space orthogonal to V and let GT = (Pr+l""' Pn' -
- Pn). The constraints can be written GTH'Z 0.

LTS St
If in addition we have the constraints

WTn 2 b
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then our problem becomes
< 3 ' T
minimize (¥ = n) " (Y - n)

subject to WTH 2 b and GTn 2 0.

The K - T conditions are:
n = XB

Q=20, WTn 2 b

QT W -b) =0
and
n
I P. u +WQ=n-Y
i=r+l i

bl
- )

where u, is unrestricted in sign.

Replacing n by x8 and multiplying by xT we obtain

n
: xTp, u, + xTwo = xTx 8 - X'V,
i=r+l

or

xTX B = XT(Y + W) .

These are the generalized normal equations to be solved for B
and Q.

The following results are of interest for nonlinear estimation,
see Marquardt (1963). However, they are actually theorems in
constrained linear least squares, so we present them here and

return to them later. Consider the programming problem:




g i o

=1 Fe

minimize ||Y - XB8||, with respect to 8,

subject to ||B8|]| = r.

The Kuhn-Tucker conditions are necessary and sufficient

this program; this gives the following result.

Theorem 2.1

B solves the program (2.4) if and only if either

T

a) X'XB = X'Y and ||B]] =«

b) there exists u > 0 such that

T

(XTX + uI)g = X7y, |[|8]] = .

Theorem 2.2
Let u and B8 satisfy u > 0 and (XTX + uI)Bg, = X7y,
lqu] is a strictly decreasing function of u approaching 0 as
u tends to =.
Proof
There exists an orthogonal matrix S such that sTxTx S=D=
diag (djyseees dp). Since u > 0, o i ST(D +uI)! sxTy.

Writing SxTY = V= (vyjpecer vp)T we get

i P v 2
g« o e = F (i)

from which the truth of the theorem is evident.
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Theorem 2.3

Let a be the angle between Bu and X7y then o is strictly

decreasing as a function of u and a tends to 0 as u tends to «,

Proof
Since 0 < o < II, we may instead prove that cos a is a strict-

ly increasing function of u and that cos a tends to 1 as u
approached «.

y7xsT (D + ur) lsxTy
(¥TxsT(p + ur)~2sxTy)% (vTxxTy) %

cos a =

p v.?

jﬁl dyvu

. P v.2 i
(jﬁl ﬁi—r) * 1

As u + » we see that

Also,

: ( v,2? v, ? VLN e
cos a _ Ag aj+u z(aj+u53 =\Z j+u)2
(g'ra';lu—)z—) |1X7Y| |

d

-e

u

using Swartz's inequaltiy, 4 cos a/du > 0.
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Related to the above two results is the expansion

(2.5) By ™ uRTY - um?(XTX)XTY 4 um P (XTK)? KTY =ee-

valid for u greater than the maximum characteristic root of xTx.

This is obtained from the geometric expansion for matrices
M+ I)"'=1I-M+M -...
, see for example Friedman (1956).

2.2 Nonlinear least Squares E

Nonlinear least squares problems arise when one attempts to

fit a model y = n(x,B8) with n nonlinear in B. E

We first make a general observation about residuals. If

ni{x,8) is of the form n(x,B) = B; + Y(X; Byrees, Bp) then 5

Ty RN S 8
2B w2 3 rBimes B, B,

n A
Equating this to 0 we get iEldi(B) = 0; that is, the residuals

sum to 0.

Explicit solutions will usually not be available in the nonlin-

ear case and one must resort to iterative minimization techniques.

We now present four iteration methods specifically adapted to the

nonlinear least squares problem.

Steepest descent

The gradient of (2.1) is

Vo = -2x(B)le - n(B)]
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where
) n(xll B) cee 0 n(XIIB)
3.8, a.ap
X(B) - @ L]
E 2 n(x /8) 9 nix_,8)

Hence the method of steepest descent specifies the mapping

et 2 Sie o
B B o o

sB = B + Ax(8)%(g)

but does not specify the step length, A.

Gauss Newton method

The Gauss-Newton method is an iteration procedure which

-

assumes local linearity of n(x,*) about B to obtain the new iterate

m
R i ki - e i U

G8. The equation of the tangent plane to the surface determined
by n(x,+), at the point B*, is
P 9 *
= * “Mﬁs—.)_ - *
Yy = n(x,8*) +k£13 By (By B .
Replacing n by its linear approximation reduces the problem to the
previously considered case of linear least squares. That is we

wish to minimize

g 9 n(xi.B*)
k=1 9 Bk

.n
I lyg - on(xg, 8%) -

& 2
= (B) = Bf)]

PN

= [|y = n(B*) - X(B*) (B - 8*)||?

with respect to 8, or ||d(B*) - X(B*)§||? with respect to

il e e i
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§ = g - B*. This is equivalent to projecting d(B*) ontc the

column space of X(B*). The solution is given by solving the normal

equations

x(B*) Tx(B*)6 = x(g*)Td(8*).
Replacing B* by B and § by GB - B we get

G8 = g + [x(8)TX(B)1™ xT(B)d(B).

There exist examples with well behaved functions n(xi,e) for

which the Gauss-Newton iteration will not converge no matter how

~good the starting value. However, Jennrich (1969) gives four

conditions which are collectively sufficient so that such diffi-
culties are not likely to arise ﬁhen n, the sample size, is large
and the starting value is close to the true parameter value, 8.
One of the sufficient conditions just mentioned is that the
parameter space is a compact subset of Euclidean space. Hence, in
using the results obtained one would want to restrict the investiﬁ

gation to some closed and bounded subset of the parameter space.

Hartley's Modified Gauss-Newton Method

In considering the Gauss-Newton method we notice that, given
B, there is input of information from the objective function, ¢,
concerning the choice of the next iterate only through a quadradic
approximation and it is possible for the value of the objective
function to actually increase by iteration. This increase would

not, in itself, invalidate the procedure but it could cause slow

convergence. Hartley (1961) modifies the Gauss-Newton method to allow




greater input from the objective function in the iteration proce-

dure. This input is obtained by making the following assumptions:

(a)

(b)

(c)

(a)

the parameter space, , is a convex subset of EP;

an(x;,8) 3'nlx;.8) . . .
36; ’ 38@8 exist and are continuous IOr a
k

iglpo--' n and L' k‘l'ooo' P
there exists a bounded convex subset, S, of the parameter

space such that for every 8 € S and every

n P an(x;,8)
U= (Hyreoep n)' =0, I Z Wy
P i=1 3B,

r=1
is equivalent to requiring that X(B) be of full rank in

2
) > 0 (this

S);

there exists 8° in the interior of S such that

¢(B°) <inf_ ¢(B).
BeS

Hartley's algorithm is as follows:

(i)
(ii)

(iii)

choose B = B’ as starting vector;

obtain another estimate GB by the usual Gauss-Newton
method (the existance of GB is guaranteed by assumption
(e));

consider ¢(AB + (1-A)GB), 2Ael[0, 1], and let A*e [0, 1]

be such that min ¢ (A8 + (1-A)GB) = ¢(A*B8 + (1-A*)GB)
Ae[0,1)

(from (b) ¢(B) is continuous and hence ¢(A8 + (1-1)GB)




obtains a minimum on [0, 11]);

(iv) replace B by HB = A*8 + (1-A*)GB and return to (ii).

Hartley argues that given a sequence,'{HjB°}. constructed by
this algorithm, there exists a subsequence,'{njk8°}, converging to
a point B which is a critical point of ¢(B). 1If, in addition to
the above assumptions, the Hessian of ¢(B) is positive definite

on S, then § is the unique minimum of ¢(B8).

The Marquardt method

Marquardt's algorithm for the solution of nonlinear least
squares problems is a compromise between the Gauss-Newton and
steepest descent methods, the objective of this compromise being
the avoidance of problems associated with the two methods.

let us first review the major difficulties attributed to the
use of the Gauss-Newton and steepest descent methods. First,
steepest descent does not specify the step length. Second, if the
level sets of ¢ tend to be elongated then the method of steepest
descent will converge rapidly for the first few iterates and then
oscillate about the axis of elongation taking smaller and smaller
steps as the iterates approach the minimum. This is because the
correction for B obtained in steepest descent is perpendicular to
the level set at B8; hence, for points close to the minimum, the
correction vector may be almost perpendicular to the direction of
the minimum if the level sets are greatly elongated. The main

problem encountered with the Gauss-Newton method is lack of conver-

gence of the iteration if the starting points are a long way from

the minimum.
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One possible solution to these problems is to use the steepest
descent method for the first few iterations and then switch to the
Gauss-Newton method when the progress becomes slow. Marquardt's
method is one way in which this can be done.

As in the Gauss-Newton method, assume local linearity of
n(x;*) at the point B. Theorem 2.1 then states that the issue
concerning the choice of step length can be restated in terms of
a La Grange multiplier u. More specifically, least sguares sub-

ject to a constraint on the maximum step length leads to the

equation
(xT(B)X(B) + wIls, = XT(8)A(B)

where Gu is the correction to B and dA(B) = Y - n(B). From (2.5)

we get, for large u,

8y = ut XT(B)[Y - n(B)]

But xT(B)[X - n(B)] is the direction of steepest descent and ¢ is

continuous so that for u sufficiently large
(2.6) : ¢(6u + B) < ¢(B)

Marquardt (1963) recommends that the next iterate say Mg be given

by Mg =8 + Gu where u is chosen just large enough to satisfy (2.6).
Thus, in outline, 60 is the correction given by the Gauss-

Newton method while for large u, Gu is in the direction of steepest

descent. Thus B8 + Gu determines a continuous curve on which

Marquardt's method interpolates between the Gauss-Newton and steep-

est descent methods.

This manuscript is the joint work of the author and

W. A. Thompson, Jr.




TG A,

w2 )

BIBLIOGRAPHY

Friedman, B. (1956). Principles and Techniques of Applied

Mathematics, Wiley.

Hartley, H. O. (1961). The modified Gauss-~Newton method,

Technometrics, Vol. 3, #2, May pp. 269-280.

Jennrich, R. I. (1969). Asymptotic properties of nonlinear least

.squares estimators, Annals of Math Stat., Vol. 40, #2

pp. 633-643.

Kolmogorov, A. N. and Fomin, S. V. (1957). Elements of the Theory

of Functions and Functional Analysis, Graylock.

Kuhn, H. W. and Tucker, A. W. (1951). Nonlinear Programming,

Proceedings of the Second Berkeley Symposiumn on

Mathematical Statistics and Probability, ~University

of California Press, Berkeley, pp. 481-492.

Mangasarian, O. L. (1965). Pseudo-convex functions, J. Soc.

Indust. Appl. Math, Vol # 3, PpP. 281-290.

Mangasarian, O. L. (1969). Nonlinear Programming, McGraw-Hill.

Marquardt, D. W. (1963). An algorithm for least squares estimation

- of nonlinear parameters, J. Soc. Indust. Appl. Math.,

VOl. 11’ #2, June' ppo 431-4410

Nobel, B. (1969). Applied Linear Algebra, Prentice-Hall.

Rao, C. R. (1965). Linear Statistical Inference, Wiley.




For s )

ViR it

i i

A

os Sl P s

G2 o, s AN

SO it SN o R o s AR e

o o SR

GO -

b
SECURITY CLASSIFICATION OF THIS PAGET (When Nata Entered) » 7
2 READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
3. RECIPIENT'S CATALOG hNUMLILR

t. REPORT NUMBER

/ 2. GOVT ACCLSSION NO,

77-1

4. TITLE (and Subtitle)

S. TYPE OF REPORY & PERIOD COVERED

[~ Least Squares Viewed as a Genera‘l ? Cj\ t
Optimization Problem, : ']& mcal 7e
] FREPTET R o BER

UML.LF'-)

7. AUTHOR(s)
. j or WM 5. cyl44 =
R. P.fkelley . (NR042-282)

10. PROGRANM ELEMENT, PRC'JERCS’I, TASK

9. PERFORMING ORGANIZATION NAME AND ADDRESS ¥ 4 AREA & WORK UNIT NUMBE

Department of Statistics
University of Missouri-Columbia

B

15. SECURITY CLASS. (of thia report)

Unclassified

€a, DECL ASSIFICATION/ DOWNGRADING
SCHNEDULE

b
16. DISTRIBUTION STATEMENT (of this Report)

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, i{ different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WOROS (Continue on reverse eide Il necessary and identily by block aumber)

<.

Constraints, Iteration, least squares, optimization

beta
/

'
20. WRACT (Clmun on reverse eide Il necessary and identity by block number)

Least [squares problems arise whemone—attempts—to—fit—a model
y = n(x,8) to points (yf.x;),....(y:,x:) . Solutions to such problems

are obtained by optimizing the sum of squared deviations over an admissible
region. This paper discusses the basic theory of optimization for a
general objective function and applies this material to both the Hnear)

o

oD, 'J'::‘.'" 1473 c€oiTion OF t HOV 63 1S pBSOLETE

$/N 0102-014- 6601 |
SECURITY CLASSIFICATION OF THIS PAGE (When Data Hater

O 4 e ik —— v SO\ ;
PRSI ai oL suibeks el e R A R A



‘-—‘\;;?Sband nonlinear least squares problems.

In linear least squares normal equations for both the
full rank and less than full rank cases are considered and
the Kuhn-Tucker conditions are used to obtain the normal
equations under linear inequality constraints. In non-
linear least squares, different iterative procedures, which
may be used to obtain a solution, are discussed. The methods
considered are steepest descent, Newton-Raphson, Gauss-Newton,
Hartley's modified Gauss-Newton, and that of Marquardt.
Results are obtained which relate Marquardt's method to
equality constrained least squares.




