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ABSTRACT

Least squares problems arise when one attempts to fit a

model y = r~ (x, ~) to points (y1, x1) ,. •.,  (yb , xe) .  Solutions to

such problems are obtained by minimizing the sum of squared devi-

e ations , over an admissible region . This paper discusses the basic

theory of optimization for a general objective function and applies

this material to both linear and nonlinear least squares problems.

In linear least squares, normalequations for both the full rank

and less than full rank cases are considered and the Kuhn—Tucker

conditions are used to obtain the normal equations under linear

inequality constraints. In nonlinear least squares different

iterative methods which may be used to obtain a solution are dis-

cussed. The methods considered, are steepest descent, Newton-

Raphson, Gauss-Newton, Hartley’s modified Gauss-Newton, and that

of Marquardt. Results are obtained which relate Marquardt’s

method to equality constrained linear least squares.

‘Partially supported by the Office of Naval Research under Contract

N00014—75—C-0443. Reproduction in whole or part is permitted for

any purpose of the United States Government.
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1. OPTIMIZATION

1.1 Iteration Procedures

We are primarily concerned with optimizing, i.e. maximizing

or minimizing, an objective function f(t) = f( t ir .. .i t~~) over an

admissible xegion K c E~~.

A general iteration procedure is as follows:

(i) choose a seed point t c K,

(ii) on the basis of local behavior of f(.) at t select a new

iterate At c K,

(iii) replace t by At and return to step (ii).

A is a mapping of K into itself. The properties of such an

iteration scheme are the properties of A.

The following are examples of some cor ~~~~~~ teration procedures

L
Example 1. Steepest Descent

A descent direction, s, at the point t , is a unit vector such

that

f(t + As) ‘A=O 
= 5T Vf (t) <0;

hence , any descent direction must be within w/2 of the negative

gradient , - V f ( t ) .

A general descent procedure is:

Ci) choose a seed point t c E~ ,

(ii) at t, select a descent direction s and a step length A ,

-- ~~~~-- ~~-~~~~
-- —--
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(iii) return to ii) , replacing t by

At t + A s .

The steepest descent technique chooses as its descent direc-

tion, —Vf(t). This is a locally optimal choice in that

- d f Ct + As) — T f ( t )- 

d A  I A=o
_ S V

is minimized for s proportional to —Vf (t)

The corresponding technique for maximization is the method of

steepest ascent. See Nobel (1969, p.403) for a discussion of

convergence. -

4 Example 2. Newton ’s Method

2 Newton’s method is designed to solve h(t) = 0; where h is a

continuously differentiable, real valued function of a real van —
- - able. The mapping which defines Newton’s method, say Nt*, is

obtained by solving ~~ (t*) Ct - t*) + h( t*)  = 0 for t. That is,

- we are to find the intercept of the tangent to the curve deter—

mined by h , at the point (t*, h ( t *) ) ;  hence ,

N t = t - h (t )/  dh( t)

j f dh( t )  0dt ~
While Newton ’s method is designed specifically to solve non-

linear equations, it can be used to obtain a critical point of an

objective function f and thus a potential solution to the optimi z-

ation problem. Specifically, to solve f’ Ct ) = 0 by Newton’s

rn~ thod , Wi’ h.-ivc

- - - ~~~
- —.5— ---5 -. _s.. ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——-,- ~~~——~~~~~~ ~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~
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Nt = t — f’Ct)/f” Ct).

Example 3. Newton-Raphson method

The Newton-Raphson method is a p—dimensi nal ‘analog of Newton ’s

method. Let t c E!’ and h Ct )  = (h3 (t)~~...~h~ Ct))T; assume that
S 

hk has continuous first order partials for k = l,...,p. For each

k consider the hyperplane tangent to the p + 1 dimensional surface

determined by hk at the point (t*, hkCt*)). The equations of these

planes are

(1.1) Z = h~~(t*) + Ct — t*)T Vh,~Ct*): k =

We obtain Nt* by finding the point of intersection of the 4-angent

planes (1.1) with the plane z = 0. This yields

(Nt - t)TVhkCt) -~~~C t ) ;  k = l,. . . ,p.

When the Newton-Raphson method is employed to find critical

points of an objective function f we get the matrix equation

(Nt — t) TV 2 f ( t) = ~~C V f ( t ) ) T,

where V2f(t), the Hessian, is

V 2 f ( t) — (~
2 f

— 

I% at JC~~
t 

-

The convergence of a general iteration procedure is of con—

siderable importance . A condition on A sufficient to guarantee

convergence is given by Kolmogorov and Fomin (1957, p. 43). Let

R be a metric space with metric P. A mapping, A, of R into itself

2 is a contraction if there exists a CO < a <1) such that

-. - ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— ~~~~~~~~~~~~~~~~~~~~~ .—
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p (At , At*) � apCt , t*) for all t, t* e R.

• Theorem 1.1 (Principle of Contraction Mappings)

• Every contraction mapping defined in a complete metric space

R has one and only one fixed point. (i.e. the equation At = t

has one and only one solution).

Furthermore, Kolmogorov and Foinin’s proof of this Theorem
implies that, given a seed point t, the sequence t, At, A2t,...

- 2 converges to the fixed point.

Theorem 1.2

Let f be defined on (a, b]. If f’(a) < 0 < f’(b) and

j  0 <k~ � f” (t) � k2 on (a, b] then the equation f’(t) = 0 has a

unique solution in (a, b) and the mapping At = t — Af’ (t) is a

• contraction for 0 < A

• Proof

V is continuous and strictly increasing with V (a) < 0 < f’ (b).

Therefore f’ (t) = 0 has a unique solution in Ca, b).

If t0, t1 c [a, b] then

At0 
— At1 (1 — Af” (F)lCt 0 — t1); a � ~ � b.

In particular, for t c (a , b] and 0 < A

A t — a — [l — Af” (~ ) ) C t — a ) + A a — a > O .

Similarly b > At. Finally,

At 0 — At1 1 = Ii — Af” (~)IIt 0 —.t 11 < (1 — Ak1)ft 0 — t 1I .

- - S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ •~~•• •- - •~~~~~~~~ - ~~_
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Therefore A is a contraction on [a , b].

• As a coral lary we see that , under the conditions of the Theorem,

the method of steepest descent (with fixed step length) converges

to a unique minimum of f .

1.2 Qptimization with Constraints
- 

- The mathematical programmin~g problem is as follows :

Given the- numerical functions f g 1 , ... ,  ~~ defined on E~ , find

a point t of E~ satisfying

g~ (t) � 0, j 1,..., m

and such that f(t) is as large as possible. A solution bf the

problem will be denoted by £. Minimization problems may be handled

by taking f(.) as the objective function. -•

The inequalities g~(t) � 0 are called the constraints of the

program; points which satisfy the constraints are feasible points

and the set of feasible points is the feasible region, denoted by

K. Throughout this chapter it will be assumed that f and

are differentiable.

Two well—known special cases are i) when f and g1,...., ~~

are linear, we have the linear programming problem and ii) when

f is a quadratic form and g 1 ,..., ~~ 
are linear, we have the

quadratic programming problem.

~~ Kuhn and Tucker (1951) developed a set of conditions, the

K-T conditions which, under mild regularity conditions are neces-

sary for a solution to the programming problem. Their conditions

are that there exist u1, u2,..., Urn such that

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-~~~~~ S• ~~~~~~ _ -~ 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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S.

g~ (t) � 0; j = 1,..., in

• u~ � 0; i 1,..., m

- 

- u .g~ (t) = 0; j = 1,.. ., m

and

in
Vf (t) + ~ u• Vg~ (t) = 0.

-

.

There are several sets of such regularity conditions which

can be employed. Here we do not try for the most general results

but we give conditions, involving generalized concavity, which are

easily understood and yet qui te general.

Differentiable functions with the property that

• f(y) > f(x) implies Vf (x)’(y — x) > 0

(increasing function implies positive slope) are called pseudo-

concave by Mangasarian (1965)
S In his unpublished 1953 notes, Convex Cones, Sets and Functions,

W. Fenchel treats the concept of quasi-concavity. A real valued

function f (x )  having convex domain is called quasi-concave

(q-concave ) if f(Ax + Ày)  ~ min(f(x), f(y)) whenever 0 <A -  < 1 and

2 = 1 - A. For differentiable functions, pseudo-concave implies

q—concave.

Several alternative characterizations of q-concave functions

are available.

Theorem 1.3

The following conditions are equiva1ent~

L
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(i) f(x) is q—concave

(ii) I~ ={x : f(x) > t} is convex for all r ,

(iii) the level sets LT 
={x : f(x) � are convex for all r.

The alternative characterizations of Theorem 1.3 are import-

ant; we see for example, that convexity of the “constraint set”
• {x: g1 Cx) � t1, g2 (x) � r 2~~.. .g~~(x) 

~ 
is assured for all

i ’w  ,-r~ when and only when g 1, g2 1. .. , ,g,~ are q—concave functions.

We may now state the following results, see Mangasarian (1969) .

Theorem 1.4 • 

- 
S

If ... , g~ are- differentiable , the gj ’s are pseudo—

conca’ re exists some feasible a such that g~~(a) > 0 for

all g) 
w~iic1i are not affine, and if ~ is a solution of the program-

ming problem then there exists u = (U1,..., u~)
T such that £ and

u satisfy the K—T conditions.

Generalized concavity can also provide a framework within

whiclA the K-T conditions are sufficient.

Theorem 1.5

Let f be a differentiable and pseudo—concave function and

g,~ be differentiable and quasi—concave . If t and u solve

the Kuhn-Tucker conditions then t solves the mathematical pro-

grainming problem; that is t = £.

As an example consider optimizing a quadratic objective

function subject to linear inequality constraints. This is often

• called quadratic programming. In general, we would have the

following problem:

_.S 4 . 5

~
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~
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Minimize ~~~ X~ FX - xTd

Subject to GTx � b

where F and G are matrices, with F symmetric, while b and d are

= vectors.

The K—T conditions,

GTX � b , u � 0

- uT GTx _ b )  = 0

Gu = Fx - d

are necessary for a solution to the problem (see Theorem 1.4).

I~ F is positive semidefinite then, the objective function is con-

• cave and Theorem 1.5 tells us that the K-T conditions are also

sufficient.

We have

~ X
T
FX - xTd = ~ (x 

- x)TF(x - c) + constant

for some c, if and only if xTd = XTFC for all x. This last is

equivalent to the equation Fc = d which has a solution, c, when

an-d only when d is in the column space of F. Thus the quadratic

programming problem can be written in the special form: minimize
- c)TF(x — C) suject to GTx � b if and only if d is in the

• column space of F. In particular, the positive definite quadratic

programming problem can always be written in this form.

- . ---~~ --~~- ~~~~~~~~ ~~~~~~~~~~~~~ ~~~~
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2. LEAST 3QUARES

2.1 Linear Least_Squares

Least Squares problems arise when one attempts to fit a model

y = ri (x ,B) to points (y1, x1),-,.., (yb, Xn) Here n is a function

of known form, B is a parameter ‘~o be estimated, and x is a 
vector

2 of independent variables. We obtain the fitted model by minimizing

n
(2.1) +( B )  = S [y. —

i=l 1 1

~~

. with respect to B, a solution being denoted by

The deviations d
~ 
(B) = y. — n (x1, B); i = 1,..., in, or

d =  Y — ri (8), where rt (B) = (n(x 1,t3),.- ., n (x~,8))
T, measure the

goodness of fit of the model y = n (x,B) at the parameter value B .

S The deviations d~ (~ ); i = 1,..., n are called the residuals. -.

• If r~(x,B) = x8 then we have the special case of linear least

- 

. 

squares, and (2.1) becomes

n
(2.2) +(B) = S (y. — x~B]

2

Let X be the matrix whose ith row is x., Y = (y 1 . . .y ~f ~ 
and V be

the column space of X, then by minimizing (2.2) we are finding a

~ such that X~ is the vector in 
V that is the closest to Y. Thus,

- ~ solves the linear 
least squares problem if and only if X~ is

the projection of Y on to V. From the projection theorem, X~ is 
=

that vector such that we may write I X~ + (I - X~) with X~ c V

and y - X~ orthogonal to V; hence, XT(Y_X~) = 0 or

(2.3) xT4 = xTy.

- 
~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~ __ 
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The equations (2.3) are called the normal equations.

We have seen that if ~ solves the linear least squares problem

then it solves the normal equations. Suppose that ~ satisfies the

normal equations, then xTx~ = thus XT(Y - X~) = 0. There-

fore X~ is the projection of Y on V; hence, ~ solves the linear

least squares problem. Thus ~ solves the 1ine.~~ least squares

problem if f ~ solves the normal equations.

If X is o~f full rank then x
Tx is nonsingular; hence, the

normal equations have a unique solution

= (X~x)~~ x
Ty.

• However , if X is not of full rank then there will exist infinitely

many solutions; a general solution to (2.3) will be given by

= (xTx)
_
xTY + ((xTx)~~xTx) - i)z.

where Z is arbitrary and (X
TX) denotes the generalized inverse

of xTx, see Rao (1965, p. 24).

We now briefly consider linear least squares with constraints.

To this end we first reformulate the unconstrained problem:

S • Minimize (Y - ~)T(y — r~) subject to ~ = X8 or r~ c V. =

Alternatively we may take the feasible region to be the space

orthogonal to the space orthogonal to V. Let 
~r4l’~ •’’ P~ be a

basis for the space orthogonal to V and let GT = 
~
‘r+1’”’’ ~n’ 

—

• ~r+1’”’ — Ps) .  The constraints can be written GTr( � 0.

If in addition we have the constraints =

WTfl ~ b 

~~~~~~~~~~ ~~ ,—-. ~~~~~~~~~~ S •
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then our problem becomes

- minimize (y — )T(1 — )

subject to w
T
~ ~ b and GTn � o .

The K - T conditions are:

~~=X B

Q � 0 , wTn � b

~1 I QT ~wT~ - b) = 0

and

~~ Pi u . + ~~~~~~n Y
i=r+l 1

where u~ is unrestricted in sign.

• Replacing n by xB and multiplying by xT we obtain

~ x~p~ p . + XT~Q = xTx B - xTy•

I 

i=r+l 1

or

xTx B = xT (Y +

These are the generalized normal equations to be solved for B

I and Q.

I The following results are of interest for nonlinear estimation ,

see Marquardt (1963). However , they are actually theorems in

2

~~~ 

constrained linear least squares , so we present them here and

return to them later. Consider the programming prob lem:

Li 
.-5• _~~~~~~~~~~~~~~~~~~~ S

_ ~~~~~~~~~~~~~~~ - - _ S_~~~~~ ’~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ - 5 S~~~~~_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~

• - ~~~~~~~~~~~~~~~
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minimize U~ — x a II ,  with respect to B,
1 1 (2 .4)

• subject to H B H � r .

The Kuhn—Tucker conditions are necessary and sufficient for

this program; this gives the following result.

Theorem 2.1

B solves the program (2 .4 )  if and only if either

• a) XTXB = xTy and I I B II � r

• or

b) there exists u > 0 such that

• 

- (XTX + UI) B = xTy, ~( = r

S Theorem 2.2

Let u and 
~~ 

satisfy u > 0 and (X TX + u I ) B~ 
= xTy .

1 1 8 1 1  is a strictly decreasing function of u approaching 0 as

u tends to~~’. 
S

Proof

There exists an orthogonal matrix S such that sTxTx s = D =

diag Cd 1,..., d
r

) .  Since u > 0 , 
~~ 

= ST (D + u I) 1 sxTy.

writing sxTy V = (v i .. . . ,  v~ ) T we get 

~ \ ~II B 11 2 VT (D + uI) 2 V = ~ ‘d ~ U’U j _ l \ j  /
from which the truth of the theorem is evident.

—-5—~~~. - - -—-5 — ~~~~~~~~~~~~~ --- __
~~~~~___~~~~~~~~~~~~~~~~~ _____ -5 .•5_ — - 5 , ~~~~5~~5~ 5, ~~~~~55~~~ -~~~~~~ -~~~~~
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Theorem 2 .3

• Let a be the angle between B~ 
and xTy then a is strictly

• decreasing as a fun ction of u and a tends to 0 as u tends to ~~~.

Proof

Since 0 � a � I!, we may instead prove that cos a is a strict—

• ly increasing function of u and that cos a tends to 1 as u

approached ~~~.

= 
YTXST (D + uIY 1SXTYcos a 

(1TXST(D + uI)
_2sxTY)~~(YTxxTY)~

2p V

—

p v 2
- 

j=l (d~ +U)2) 
½ li x Ty ll .

As u -‘ ~ we see that

p
5 v~~

• S ~~~~~~~~~ 
~~~~~~ = 1 .• li x Ty ll

S 
Also,

d cos a (
~~ ~~:u)(E d;a: 3)-(E d;~~~

2) 
~

(~ 
Td~+u2 ) ‘

~ 
, , x

Ty , ,

using Swartz’s inequaltiy, d cos a/du > 0.

~~~ -5~~~~~~~~ • ~~~~—— - 5~ -~~~~~~~~~~ _ ~~~~•_~~~~~~~~~~~~ 5 
- -5 -.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~
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Related to the above two results is the expansion

(2.5) B
~ 

= u¼~
y - u 2 (xTx) xTy + u 3 (x Tx) 2 xTy -

valid for u greater than the maximum characteristic root of xTx.
This is obtained from the geometric expansion for matrices

(N + I ) 1  = I - M + M 2 -

, see for example Friedman (1956).

2.2 Nonlinear Least Squares

Nonlinear least squares problems arise when one attempts to

fit a model y = r,(x,8) with n nonlinear in B.

We first make a general observation about residuals. If

y~x,~~) is of the form n (x,B) = B 1 + ~(x; ~~~~~~ B~) then

n A A A

• 
— 

i=l~~~ 
1 Xj~ 2~~••~~~

Equating this to 0 we get S d~ (~) 0; that is , the residuals
i l

sum to 0. 
-

Explicit solutions will usually not be available in the nonlin-

ear case and one must resort to iterative minimization techniques.

We now present four iteration methods specifically adapted to the

nonlinear least squares prob lem.

Steepest descent

The gradient of (2.1) is

= _ 2 X ( B ) T (y —

~~~~~~~~~ 5 _ •
~~ _•~~~~ __~_ _ ;  - - 5.5 ,5-’. . 5 -  S. ~~~&S,s5. ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ________
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where

-
_ - a ~ (x 1, B ) ... a n ( x i , B )

- - 
a 8~~ a

X ( 8)  =

a ~ (x~ .B) a n (x~ .8)

-

~ 

- a B 1 a

Hence the method of steepest descent specifies the mapping

SB = B +

but does not speci fy the step length , A.

Gauss Newton method

The Gauss—Newton method is an iteration procedure which

• assumes local linearity of ~ (x , •)  about B to obtain the new iterate
GB . The equation of the tangent plane to the surface determined
by n ( x , ’) ,  at the point B* , is

a ~~~,y = r1 (x,B*) + ~~ 
‘ (8~. 

— B*)
k=l ~k k

Replacing n by its linear approximation reduces the problem to the

-

‘ previously considered case of linear least squares . That is we
wish to minimize

p a- S Ly~ — n(x. , 8*) — (8 —i=l 1 k=l k k

= 
~ 

jy — n (8*) — X(B*) (8 — 8*) 1 1 2

with respect to B, or l I d ( 8 * )  - X(B*)ISI 12 with respect to

~~~~~~~~~~~~~~ ~~~~~~~~~~~ -—- —. -~~~ — —5~~~~~’—— ~~~~~~~~ ~~~~~~~~~~ &~~~~~~ _. ____________ - S



. ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~ 
- - 

—5—— -

~~~~mr~’~ 15:. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

- S -
~~~~~~~~~~ ~~~~~~~~~ —

—17—

6 = — 6*. This is equivalent to projecting d(B*) onto the

- column space of X ( B *) .  The solution is given by solving the normal

- 
equations

X(B*)TX(B*)o = X (B*) d(8*).

Replacing~~*b y ~~~and 6by G8 - B w e  get

GB = 8 + (X(B)TX(B)] ’ xT 6 d 8 .

-~ There exist examples with well behaved functions fl (Xj~~B ) for

which the Gauss—Newton iteration will not converge no lnatter bow

good the starting value. However, Jennrich (1969) gives four

conditions which are collectively sufficient so that such diffi-

5 c~1ties are not likely to arise when n, the sample size , is large -:
• and the starting value -is close to the true parameter value , 0.

• One of the sufficient conditions just mentioned is that the

parameter space is a compact subset of Luclidean space . Hence , in

using the results obtained one would want to restrict the investi-

gation to some closed and bounded subset of the parameter space.

I Hartley ’s Modi fied Gauss-Newton Method

In considering the Gauss-Newton method we notice that, given

8, there is input of information from the objective function, •,

~~ 

~~~~~
- concerning the choice of the next iterate only through a quadradic

approximation and it is possible for the value of the objective

function to actually increase by iteration. This increase would

not, in itself, invalidate the procedure but it could cause slow

convergence. Hartley (1961) modifies the Gauss-Newton method to allow

~ ~~ ~~~~~~~~~~~~~~~ 
5

—— .-5_5____ p ~. —
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greater input from the objective function in the iteration proce-

dure . This input is obtained by making the following assumptions:

(a) the parameter space , ~~~ , is a convex subset of E~;

an (x.,8) a 2n (x~~8)(b) 
‘ a °  ~~ exist and are continuous for all

i=l ,..., n and £, k=l,..., p;

Cc) there exists a bounded convex subset , S, of the parameter

space such that for every B c S and every

n p a n ( x . , B )  2
14 = (P i ’~~•.’ ~ )‘ ~ 0, 5 S — > 0 (this

i=l r=l a O k
is equivalent to requiring that X(B) be of full rank in

• S) ;  
5 

-

(d) there exists 8 0 in the interior of S such that

$(8°). < inf 4 (8).
8sSc

Hartley ’s algorithm is as follows:

Ci) choose B = as starting vector;

(ii) obtain another estimate GB by the usua l Gauss-Newton

method (the existance of GB is guaranteed by assumption

- 
(c));

(iii) consider $(A8 + (1—A)G8), Ac [0, 1], and let X*c(0, 1]

• be such that mm • ( A B  + ( 1— A )G 8) = $ (A*B + (l_A*)GB)
Ae (0,l]

(from (b) $ (B )  is continuous and hence $(AB + (1—X)G8 )

— —S  — ~~~~~~~~~~~ 
~~~~~~~~~~~~ 5-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ • —~~~~ ~~
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obtains a minimum on [0, 1]);

(iv) replace B by: H8 = At Ø + (l_A*)G8 and return to (ii).

Hartley argues that given a sequence, ‘{0i80}, constructed by

this algorithm, there exists a ~~~~~~~~~~~~~~~~~~~~ converging to

a point ~ which is a critical point of •(8). If, in addition to

the above assumptions , the Hessian of • (~) is positive definite
on S, then ~ is the unique minimum of •(8). 

-

The Marquardt method

Marquardt’ s algorithm for the solution of nonlinear least

squares problems is a compromise between the Gauss-Newton and

steepest descent methods, the objective of this compromise being

the avoidance of problems associated with the two methods.

Let us first review the major difficulties attributed to the

use of the Gauss—Newton and steepest descent methods . First,

steepest descent does not speci fy the step length. Second , if the

level sets of $ tend to be elongated then the method of steepest

descent will converge rapidly for the first few iterates and then

oscillate about the axis of elongation taking smaller and smal ler

steps as the iterates approach the minimum. This is because the

correction for 8 obtained in steepest descent is perpendicular to

the level set at 8; hence , for points close to the minimum, the

correction vector may be almost perpendi cular to the direction of

• the minimum if the level sets are greatly elongated. The main

• problem encountered with the Gauss-Newton method is lack of conver-

gence of the iteration if the starting points are a long way from

the minimum. -

• 
•
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One possible solution to these problems is to use the steepest

descent method for the first few iterations and then swi tch to the

Gauss-Newton method when the progress be comes slow. Marquardt’ s

method is one way in which this can be done.

As in the Gauss-Newton method, assume local linearity of

~(x;~) at the point B. Theorem 2 1  then states that the issue

concerning the choice of step length can be restated in terms of

a La Grange multiplier u. More specifically , least squares sub-

ject to a constraint on the maximum step length leads to the

equation

+ uI]6
~ 

= xT ( B ) d ( 8

where is the correction to B and d(8) = Y — n(8). From (2.5)

we get, for lar ge u,
- ‘1

6u ~~~~~~~~ xT(8 iy — n (B)]

But xT (B) (Y — n ( B ) ]  is the direction of steepest descent and $ is

continuous so that for u sufficiently large

(2.6) + 8)< + (8)

Marquardt (1963) recommends that the next iterate say MB be given

by MB = B + 6 ,~ where u is chosen just large enough to satisfy (2.6).

Thus , in outline , 6
~ 

is the correction given by the Gauss-

Newton method while for large u, 6 is in the direction of steepest

- 

• 
descent. Thus B + 6~ determines a con tinuous curve on which

Marquardt ’s method interpolates between the Gauss-Newton and steep-

est descent methods.

This manuscript is the joint work of the author and

W . A. Thompson , Jr. • 
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nonlinear least squares problems.

In linear least squares normal equations for both the
full, rank and less than full rank cases are considered and
the Kuhn—Tucker conditions are used to obtain the normal
equati ons under linear inequality constraints. In non-
linear least squares, different iterative procedures, which
may be used to obtain a solution, are discussed. The methods
considered are steepest descent, Newton—Raphson, Gauss-Newton,
Hartley’s modified Gauss—Newton , and that of Marquardt.
Results are obtained which relate Marquardt ’s method to
equali ty constrained least squares .
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