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A LINGUISTIC APPROACH TO AUIOMATIC THEOREM PROVING

Sharon Sickel
Information Sciences
University of California, Santa Cruz, Ca.

: ABSTRACT !
Generalizing the concept 6f a path in Clause Interconnectivity Graphs,

we define the set of simple (i.e., cycle-free) paths that begin at a specified

subset of nodes. Where the search of the CIG for a proof in the predicate
_calculus was previously defined in terms of the edges of the CIG, here the

~ simple paths themselves become the atomic elements of the search, thereby

increasing the "chunk" size of the operands. We can further define forms

similar to regular expressions in which the terminal symbols represent those

simple chunks. The forms become templates that model proofs, i.e., they can

s m————

be mapped onto resolution proofs of the unsatisfiability of the clauses making

up the CIG. In general a template. represents an infinite number of paths but
an algebraic computation on information derived from the t-~u. “es yields valid
proofs without an exhaustive search through intermediate . .  of the search gi

tree. Overall, the method leads to a reduction in'both the computation time

per step as well as in the combinatorics of the search itself. The representa-
tion also lends itself to an heuristic based on integer programming by using a

simple difference funqttonvbased on the chunks. '
Introduction ’;

A system for formal theorem proving is presented, using the Clause 3

}nterconnectivity Graph as {ts basic data structure. Proofs found here can be

mapped onto proofs using resolution and factoring as rules of inference (as

opposed to Modus Ponens, for example). The search method bears 1ittle resemblance
to that of resolution methods, however. :

The Clause Interconnectivity Graph (CIG) [5] has been used as a represenia-
tion for proving first-order predicate calculus theorems. A CIG {s a four-tuple:

< Nodes, Edges, Subst, Clause > where
o |
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‘Linguistic Approach...
¢ o Nodes is a set of graph nodes, one for each 1iteral of each clause,
: " Edges 1s a symmetric relation between nodes such that <a,b> €
- Edges {ff the 11terals associated with nodes a and 5 have
| opposite signs and unifiable atoms. ;
; : .Subst 1s a mapping: Edges + substitutions such that

Subst(<a,b>) s a most general unifier of the atoms of the r
1terals assocfated with nodes a and b, and '
' Clause 1s a mapping: Nodes-*(;)(Nodes) where means powerset;

| Clause partitions the nodes so that literals in the same
clause have corresponding nodes in the same partifion.

for example, suppose that we are dealing with integers defined by Peano's

axioms, and we define the predicate, Even: :

Even(0) AL

Even(s"(0)) + Even(s™ (o))"

Even(s"(0)) + Even(s™(0))

and theorem Even(s%0(0)). Then the CIG 1s shown in Figure 1. _______Tzﬂ,/”/
: ACCFSSICN for
. A [ Vinite Section
60 - Buif Section O
Even(s™"(0)) e =

A: (50

ineeesssssstansanaseena:
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pISTRID T e T (0zes
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n

|

E:[n/m] Lm \

‘ nggre 1. A Clause Interconnectivity Graph with labeled edges. The
\ ¥ g cates and terms are left in the nodes for expository purposes only."
hey are neither included in the CIG definition nor are they used in the \ ;
» search for a proof. 1

C:[n/m]

.t "s" means "successor"; s(0) = 0; s"(0) = s(s""'(0)) for n > 0.
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Linguistic Approach...

Edges is a symmetric relation.. However, when we involve an edge in the
search, the analogy is made to moving from one element of an ordered pair in
Edges to. the other element in that pair. Therefore when an edge is used, we

think of it as being‘directed. Given an edge <a,b> and assuming direction a + b,

} : we can make the following definitions.
: Deleting_literal is a mapping: Edges + Nodes where
Deleting_literal(<a,b>) = b and

_ | Restidual_literals is a mapping: Nodes + @(Nodes) where § means powerset.
b | . Residual_literals(b) = Clause(b) - {b}.

1 % A proof derived from a CIG corresponds to a part1cu1$r kind of search on
the CIG. The proof search resembles the following process:

Choose a clause to be the starting clause (a clause that is likely

to be used in the proof, a member of the set of support, etc.). Place

a marker on each of the nodes in the partition representing the starting
clause. Each of those markers may be moved along any edge connected to

- its present position. Then the parent marker is removed (from the deleting
; node) and children markers are placed on each of the other nodes (the
residual nodes) in the partition arrived at from the move, Then the
process 1is repeated on all of the existing markers; they in turn

become parents, being replaced by children. The goal is to eliminate

all markers.t This process corresponds to unrolling the graph into trees.

B i s el i i’ ki
S SIS | i S R
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i ' frqm looking at the CIG in Figure 1, it is easy to see that some move
y sequences could be done an arbitrary number of times, e.g., moves D,F,D,F,...

successively, or E,C,E,C,... We call such sequences loops.

Assuming starting clause Even(0), the first move is determined, namely G.
That leaves a marker on the node corresponding to fVEE(s"*](O)). From this node
we could begin one of the loops mentioned above. Let us consider a sequence

of moves involving one of the loops; G(DF)“DA. meaning move along G, then

around D and F k times, then along D, then A. Intuitive]y G 1inks up the 1nte§er

t This process {s over-simplified. There are restrictions concerning the
substitutions, and there 1s another allowable move that admits non-input steps.
or a complete description, see [5).

i

b




cingui;tic Approach...

0 with the start of an induction. The DF loop adds the value 2 to the current
value. Move A jumps out of the induction to the value that we seek. In other
words, the G(DF)k part is succossiQely proéing that 0 is even, 2 is even, 4 is
even, etc., until we arrive just short of the given value. The D and A steps

together add 2 to the value. In this case, k will have the value 29.

Once we have d1scoverednG(DF)kDA. proofs of the evenness of all even,
positive 1ntegers'sh6uld be equaliy easy in all systems. But we know that
they are not. Using traditional deductive systems on this axiomatization, the
length of the proof of Even(s"(0)) increases 1inearly with n, and required
resources generally increase exponentially with the length of the proof. In
this method, however, the discovery of the proof is of the same inherent
difficulty regardless of the magnitude of n. The approach involves:

1) mapping the CIG onto a context~free grammar [1]

2) mapping the context-free grammar onto a set of expressions similar

-to regular expressions.

3) mapping each regular expression onto a composition of substitutions. ;

4) checking to see if any of the expressions represent a legal substitution.

. If so, that expression can be mapped onto a proof.
Chunking ‘
The previously presented starch schemes on CIG's dealt with looping by
preferring non-loop moves, preventing run-away development of infinite loops.

However, even in some simple cases, we may need to travel a loop many times. ?

One example of this is the proof of evenness in which we should be able to prove
Even(6000) easily once the general method is discovered. The proof itself may ;
i be Tong, but the search time should be identical to the search time in proving : g

Even(60) or Even(6). In fact, 1t is possible to use this method not only to V

prove individual theorems, but also to derive generalized algorithms to do
computations within a theory.

Once we know the basic steps needed for a proof, the repetition of one or
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" Linguistic Approach...

more of those steps a large number of times should not cause us any trouble.

We ﬁeed to discover these basic steps or chunks. One might imagine that the
moves that correspond to edges miﬁht serve satisfactorily as chunks. However,
there is some obvious clumping that takes place. The CIG in Figure 2 has three
natural chunks, C,:f, C,:deg, C4:abc, because the moves within each chunk must
be taken together. Note that C3 denotes a loop, and we can travel in either
direction on a lobp; S0 we can denote cba as 63‘1. In this case, the chunking

partitioned the edges, But that will not necessarily be the case.
b

- e en A e e e om e e S - .- e em W W W e mr ww e

Figure 2. A CIG divided into its three natural chunks.

We can derive the chunks by finding all ways of moving and replacing the
markers such that if a marker 1s on the same node as one of its ancestors, we
freeze that marker, but continue to move other avaf)ab]e markers. The starting
configuration for each chunk 1s a single marker sitting on some node. The f
chunk is said to be related to that node. Intuitively, the chunk represents '
the rlfutltionvof the 1iteral that the related node represents. This process
identifies all of the natural pieces of the graph. Since no repeated looping
is allowed, this 1s a terminating process.

We classify the chunks into two types, terminal and loop. A terminal
chunk 1s one in which all markers have been eliminated. A loop chunk has one
or more frozen markers. In Figure 2, Cy and C, are terminal chunks; Cy is a




Linguistic Approach...

loop chunk.

Chunks to Context-Free Grammar

Chunks as described in the praVious section are trees, since'1) a parent

" marker may be replaced by one or more children markers and 2) no mérker can

ever be its own descendant. We wish to write the chunks as linear sequences
so that we can use them in constructing a grammar, We produce this flattening
by doing an end-order traversal [4] of the "chunk tree". The flattened form

is a sequence of directed edges and nodes, Sys Sgo o0 S We can make context-

free productions by putting Sy» Sgo +. S ON the r1ght-:and-side and the
associated node on the left-hand-side,
N~ $152: ¢Sy ' Sl
The intuitive notion is that to eliminate N you must add SyeSgeeeS, (possibly
including N). We can now construct a context-free grammar G:
" nonterminals: {S)} U Nodes (where {S} N Nodes = ¢)
terminals:  Edges
productions: {all N + $15+++$, as described above}

V(s ~+ Nyeo N | Nyo-ooN, represent all literals in
starting clausel

_ start symbol: S
In the ground'case any string in the language of G,1.e. any string that
is derivable from S and consists entirely of termihals (in this case edges),
represents a proof. Therefore, once the chunking 1s accomplished, determining
theoremhood of the statement in question is equivalent to asking whether a
given context-free grammar generates a non-empty language, which is a trivial
probiem.
The general case 1s more difficult, however. Each edge has an associated
substitution, and for a string of edges to be acceptable, all of their | :
, substitutions must be mutually consistent. cOnsistent(a].uz....un) iff
a0 (“2 @ (... 0 °n))) s defined, where a ® 8 = y such that y is a most

Gk L v s Ui Sl
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“Linguistic Approach...

general substitution satisfying (La)y = (Ly)a = Ly = (L8)y = (Ly)s for an
arbitrary literal L [5]. Since all terminal strings must abide by consistency,
this is in fact a context-free attribute grammar [3] and can have the power of

a type 0 grammar. This fact eliminates the usefulness of the result that tells

us there 1s an upper bound on the length of the shortest string in the language.
However, the grammar form provides us with some valuable ﬁeuristics as we shall
see later. S

‘Regular-like Expressions

Given a context-free grammar, it would be convenient to represent the
| . language generated in regular expression style. To do that, we need to extend
the definition of regular‘expression. In addition to "|", meaning "or",

concatenation meaning "and", and "*" meaning "repeat zero or more times", we

S e B S T

add exponent " ean repeat exactly n times.* For the grammar constructed

’ in the prev on, 1f all productions'that have node N on the left-hand-
4 side have one of Lpoeeety (terminal chunks), or rlN,...rkN (loop chunks), then,

intuitively, the expression (rllr2|'°'rk)*tll"'ltn represents the refutation

e S R L s

for N and we denote it
* $ *
“ => (rl|r2|¢ot|rk) (t~||000|tn).

+ l.e. we can go around loops as long and in whatever order we choose, but we

must finally end with a terminab.
In the example in Figure 2,
* * * *
@ => (abc) deg, @=> (cba) f.

It may be that by the above recursion method and by simple back-substitution

for nonterminals of right-hand-sides having the corresponding ncnterminals on

the left, we can derive S 2> PyPge - P, where Py € Edges. For the example of

Figure 2, the grammar is:

" ¢+ This notation appears frequently in the literature on formal languages.
s A - B means B can be derived from A by an application of zero or more
productions.
7
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"Linguistic Approach...
(5,®,®D... 1 {a,b,c d,enfog), P, S) where P:
s+ O
@+abc(®
(i)*-d § 9 | ; |
(:>+ cba (:) :
.@.,f‘ .

By back-substitution'we get: S = (abc)*deg(cba)*f. Now by replacing each

' terminal by its substitution and interpreting concatenation of substitutions

to mean @ , we can easily determine whether there exist non-negative integers

n and m such that subst"(abc) @ subst(def) @ subst™(cba) @ subst(f) is

defined. Note that we have replaced whole chunks by their substitutions. The

substitution of a chunk is the ® composition of the substitutions of the edges

making up the chunk. Each time a loop is repeated a new instance of the clause

at the endpoints of the loop is added. For this reason, a loop repeated n

times will have n distinct instances of the variables.

Loop substitutions,

‘then, must be abstract descriptions including an unknown number of instances

of variables. For example the substitution [f(xn)/xn+]] specifies that each

new instance of x is replaced by function "f" applied to the term substituted

for the last instance of x.

For example, the grammar built from the CIG in Figure 1 having Even(0)

as the start clause would cause S to generate (among others) the expression

G(DF)*DA. The corresponding substitution o is
[(o/n] © [n+V/m , m+1/n]* @ [n+1/m] @ [59/m].
m = n +] m, = 2i+1

=
Ne1 * mi+1 ng ® 21

(1=1) J (1=1)

§ The other nonterminal names and their productions are irrelevant to this

discussion.

e Mladlo amie b b - b L i 2 sl o g b L i de o Mok i
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" Linguistic Approach. ..

“nine repetitions of (CF) and finally D and A. We will not go into how to

~resulting string is exponential with the number of repetitions. In both

Differentiating between instances of variables, 6 becomes [O/nol e>[21/n1.
24-1/m, .10 [nkﬂ/mk] ® [59/m, ] where 1= 1=k, m =59 =nH = 2.k+1.
therefore k = 29, 1ndicat1ng that the refutation consists of G, twenty-

generally describe loop substitutions, decide which instances of a variable
are referred to by other substitutions, or compute the exponent of loops.
However, for a giveh eipréssion that is a regular expression extended by
exponents and contains no node names (i.e., is completely terminal), it is
straightforward to answer those questions. Due to lack of space the algo-
rithms will be presented in a subsequent paper.

Integer Programming Heuristic

There will be grammars derivable from CIG's that do not easily admit the

extended regular expressions. They include 1) grammars in which the self-
referencing non-terminal appears in the middle of the right-hand-side (e.g.,
N + aNb) and 2) grammars in which a nonterminal can generate a string con-
taining two copies of itself, e.g., N :> alNNg where.a and g are possibly ;
empty strings of symbols, i.e., a,8 € (Edges U Nodes)*. In the latter case,
it is difficult to see the general recursion pattern since the length of the

cases keeping track of which instances of the variables to put in each sub-
stitution is a horrendous job in general.

By weakening the grammar, allowed by its particular use in this application,
and not by distinguishing between different instances of the same variable, we
can always derive an extended regular expression reduced to terminals, the

terminals possibly reordered from what the grammar would actually generate.

Every chunk has a (possibly empty) effect on the total substitution in a
solution. Terminal chunks have a fixed effect. Loop pieces may have a recur-
sive‘effect. E.g., [f(xk)/xk+]] has the effect of adding f to the accumulated
effect and applying it to the new "x".
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By cambining the information from the reordered extended regular

Bl 0

Bt

expression and the chunk effects, it is possible to write integer programming

problems[2] whose solutions are 1ikely candidates for proofs. In this way,

i
o
%.
:
£

E : the effects serve as difference functions for the chunks (operators) in much

the way as is done in an operator difference table. The integer program
tells us how many applications of each operator there are in likely candi-
dates. The structure of the original grammar can then be used to check the :
validity of that candidate. An example of this is the "Even" problem in which
we need to change the term from "0" in the start state to “560(0)" in the goal
state. Therefore the sum of the effects of the chunks used must sum to exactly
E - sixty applications of "s". In some cases, the start and goal states are not
é@ so clearly known and we have to phrase the problem slightly differenily such
g that the original terms used in the solution plus the effects of all applied
chunks sum to zero.

In cases where the regular expre§s1on forms are exactly known, the integer
ptqgranlﬁng heuristic is substantially improved because the proper placement

of variable instances is known. We may then break the problem into subproblems -

one for each variable.

Work on the integer programming heuristic and computation of effects of

1 ; more complex loops is currently in progress.
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