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A LINGUISTIC APPROACH TO AU i OMATIC THEOREM ~ROV1NG

Sharon Sickel
Information Sciences

University of California, Santa Cruz, Ca.

ABSTRAC T

Generalizing the concept of a path tn Clause Interconnectlvtty Graphs.

we define the set of simple (I.e.. cycle-free) paths that begin at a specified

subset of nodes. Where the search of the CIG for a proof in the predicate

calculus was previously defined in terms of the edges of the CIG, here the

simple paths themselves become the atomic elements of the search, thereby

Increasing the “chunk” size of the operands. We can further define forms

similar to regular expressions in which the terminal symbols represent those

simple chunks. The forms become templates that model proofs, i.e., they can

be mapped onto resolution proofs Of the unsatisfiability of the clauses making

up the CIG. In general a template. represents an -Infinite number of paths but

an algebraic computation on information derived from the t’~. ~es yields valid

proofs without an exhauStive search through intermediate - .. . of the search

tree. Overall, the method leads to a reduction in both the computation time

per step as well as in the comblnatorics of the search Itself. The represents-

tion also lends itself to an heuristic based on integer prograni~ing by using a

simple difference function based on the chunks.

Introduction

A system for formal theorem proving Is presented, using the Clause

InterconnectivIty Graph as Its basic data structure. Proofs found here can be

mapped onto proofs using resolution and factoring as rules of inference (as

opposed to Modus Ponens, for example). The search method bears little resemblance

to that of resolution methods, however.
The Clause Interconnectivity Graph (CIG) t5] has been used as a representa-

tion for proving first-order predicate calculus theorems. A CIG is a four-tuple:

Nodes, tdges, Subst, Clause ‘ where
3.
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Linguistic Approach...
Nodes is a set of graph nodes, one for each literal of each clause,
Edges is a s3lanetrlc relation between nodes such that ‘a,b’ E

Edges 1ff the literals associated with nodes a and b have
opposite signs and unifiable atoms.

.Subst is a mapping: Edges substitutions such that

Subst(~a,bs’) Is a most general unifier of the atoms of the
literals associated with nodes a and b, and

Clause Is a mapping: Nodes .c2(Nodes) where ~~means powerset;

Clause partitions the nodes so that literals in the same

clause have corresponding nodes In the same partition.
for example, suppose that we are dealing with integers defined by Peano’s

axioms, and we define the predicate, Even:
Even(O)

Even(s~(O)) -~~

Even(s’~
’1(O))

and theorem Even(s~~(O)), Then the CIG is shown In FIgure 1.
A1~,C~SSION for

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
W~te Ssctlon
Sift $ectlon 0

E~~ (s (0)) ~~~~~~~~~~~ a

• ~~~cs mc : ~~s~~~~

- 

C:[n/m]
1 ~~~~ ~~~~~ IE:En/m]

• 
~~~~~~~~~~~~~~~~~~~

CEv en O D
Figure 1. A Clause Interconnectlvtty Graph with labeled edges. The
predicates and terms are left In the nodes for expository purposes only.
They are neither Included in the CIG definition nor are they used in the
ssmrch for a proof.

• p P~~N means “successors; s(O) • 0; 511(0) • s(s~~~(O) ) for n ‘ 0. 
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• Linguistic Approach...

Edges Is a syimuetric relation.. However, when we.lnvolve an edge In the

search, the analogy is made to moving from one element of an ordered pair in
Edges to. the other element in that ‘pair. Therefore when an edge is used, we

• think of it as being directed. Given an edge ca,b, and assuming direction a ~ b,
we can make the following definitions.

DeletlngJiteral Is a mapping: Edges Nodes where
Deleting llteral (ca ,b>) • b and

RssIdualjiterals Is a mapping: Nodes Q(Nodes) where means powerset.
Pesidual_llterals(b) — Clause(b) -

• {b}.

A proof derived from a CIG corresponds to a particular kind of search on
the CIG. The proof search resembles the following process:

Choose a clause to be the starting clause (a clause that is likely
to be used In the proof, a member of the set of support, etc.). Place
a marker on each of the nodes In the partition representing the starting
clause. Each of those markers may be moved along any edge connected to
Its present position. Then the parent marker is removed (from the deleting
node) and children markers are placed on each of the other nodes (the
residual nodes) In the partition arrived at from the move. Then the
process is repeated on 

~J.i of the existing markers; they in turn
become parents, being replaced by children. The goal is to eliminate
all markers.t This process corresponds to unrolling the graph into trees.

From looking at the CIG in Figure 1, it is easy to see that some move
• sequences could be done an arbitrary number of times, e.g., moves D,F,D,F,...

successively, or E.C,E,C,... We call such sequences loops.
Assuming starting clause Even(O), the first move is determined, namely G.

That leaves a marker on the node corresponding to Even(s ’~~(0)). From this node
we could begin one of the loops mentioned above. Let us consider a sequence
of moves Involving one of the loops; G(DF)kDA. meaning move along G, then
around D and F k times, then along D, then A. Intuitively G links up the integer

1 This process Is over—simplified. There are restrictions concerning the
substitutions, and there Is another allowable move that admits non—input steps.
For a complete description, see (5).
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I Linguistic Approach...

0 wIth the start of an induction. The OF loop adds the value ’ 2 to the current
value. Move A jumps out of the Induction to the value that we seek. In other
words, the G(DF) k part Is successively proving that 0 Is even, 2 is even, 4 Is
even, etc.. until we arrive just short of the given value. The 0 and A steps
together add 2 to the value. In this case, k will have the value 29.

Once we have discovere4G (DF)kDA, proofs of the evenness of all even,
positive integers should be equally easy in all systems. But we know that

they are not. Using traditional deductive systems on this axiomatizatlon, the

length of the proof of Even(s1’(O)) increases linearly wi th n, and required

resources generally increase exponentially with the length 0f the proof. In
this method, however, the discovery of the proof is of the same Inherent

difficulty regardless of the magnitude of n. The approach Involves:

1) mapping the CIG onto a context-free graninar (1)

2) mapping the context-free gramar onto a set of expressions similar

‘ to regular expressions.

3) mapping each regular expression onto a composition of substitutions.

4) checking to see if any of the expressions represent a legal substitution.

If so, that expression can be mapped onto a proof.
Chunkin~

The previously presented starch schemes on CIG’s dealt wi th looping by

preferring non-loop moves, preventing run-away development of infinite loops.
However, even in some simple cases , we may need to travel a loop many times .
One example of this Is the proof of evenness in which we should be able to prove
Even(6000) easily once the general method Is discovered. The proof itself may

be long, but the search time should be identical to the search time In proving ‘

Even(60) or Even(6). In fact, It is possible to use this method not only to -

prove individual theorems, but also to derive generalized algorithms to do

computations within a theory.

k Once we know the basic steps needed for a proof, the repetition of one or
I ...— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .
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LInguistic Approach...
more of those steps a large number of tImes should not cause us any trouble.
We need to discover these basic steps or chunks. One might Imagine that the

moves that correspond to edges might serve satisfactorily as chunks. However,

there Is’ some obvious clumping that takes place. The CIG In Figure 2 has three

natural chunks, C1:f, C2:deg, C3:abc, because the moves within each chunk must
be taken together. Note that C3 denotes a loop, and we can travel in either

direction on a ioop, so we can denote cba as C3~~. in this case, the chunking

- partitioned the edges, but that will not necessarily be the case.

- 3

a • c 

QQ~~~~~~~~~~~~~~~~~~~~~~~~~~ I 

~~~~~~Q 
c~

g e

Figure 2. A CIG divided into Its three natural chunks.
• We can derive the chunks by finding all ways of moving and replacing the

markers such that If a marker is on the same node as one of Its ancestors, we

• freeze’ that marker, but continue to move other available markers. The starting

configuration for each chunk is a single marker sitting on some node. The

chunk is said to be related to that node. Intuitively, the chunk represents

the refutation of the literal that the related node represents. This process

fl IdentIfies all of the natural pieces of the graph. Since no repeated looping

Is allowed, this is a terminating process.
We classify the chunks into two types , terminal and loop. A terminal

chunk Is one in which all markers have been eliminated. A loop chunk has one
or more frozen markers . In Figure 2, C1 and C2 are terminal chunks; C3 Is a 

,“- . -~~‘ - --,‘ .. .- -“,.- .. - . .- ,- .-‘-- ~~~~~~~~~ “- - - •~~
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loop chunk.
Chunks to Context-Free Granunar

Chunks as described In the previous section are trees , sincel) a parent

marker may be replaced by one or more children markers and 2) no marker can
ever be Its own descendant. We wish to write the chunks as linear sequences

so that we can use them in constructing a graninar. We produce this flattening
by doing an end-order traversal (4] of the Nchunk tree”. The flattened form

Is a sequence of directed edges and nodes, s1, s2, ... ~~ We can make context-

free productions by putting 
~l’ 

S
2~ ... ~ on the right—hand-side and the

associated node on the left-hand-side,

The intuitive notion is that to eliminate N you must add s1,s21...s11 
(possibl y

Including N). We can now construct a context-free graninar G:

nonterminals: {S) U Nodes (where {S} 11 Nodes —

terminals: Edges

productions : tall N + s1s2.,.s~ as described above}

U (S + Nl...Nk ) Nl...,Nk represent all literals in
starting clause}

start symbol : S

In the ground case any string in the language of G,i.e. any string that

Is derivable from S and consists entirely of terminals (In this case edges),

represents a proof. Therefore, once the chunking is accomplished , determining

theoremhood of the statement in question is equivalent to asking whether a

given context—free graninar generates a non-empty language, which Is a trivial

problem.

Th. general case is more difficult, however. Each edge has an associated

substitution, and for a string of edges to be acceptable, all of their

substitutions must be mutually consistent. Consistent(cs1.a21...t~ ) itt

• 
~~~~ 

~~~~~~ • an)))  Is defined, where ~ • y such that y Is a most

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ •~—. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __________
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‘Linguistic Approach...

general substitution satisfying (Lca)y (Ly)cz — Ly (L8)y (Ly)~ for an

arbitrary literal 1 (5]. SInce ill terminal strings must abide by consistency,

this Is in fact a context-free attribute granmiar (3] and can have the power of

a type 0 graninar. This fact eliminates the usefulness of the result that tells

us there is an upper bound on the length of the shortest string in the language.

However, the graninar form provides us with some valuable heuristics as we shall

see later.

Regular—like Expressions

Given a context-free graninar, it would be convenient to represent the

• language generated in regular expression style. To do that, we need to extend

the definition of reguIar~expression. In addition to ‘9” , meaning “or”,
concatenation meaning “and”, and “*~‘ meaning “repeat zero or more times ”, we

add exponent “ ean repeat exactly n times .~~ For the graninar constructed

In the prev ~, if all productions that have node N on the left-hand-

side have one of t1,...t,~ (terminal chunks), or rlN,...r kN (loop chunks), then,

intuitively, the expression (r1 1r21 .. .rk) ti l ... Itn represents the refutation

for N and we denote it
*

• N (rl Ir2I...Irk) (t1I...It~).

~
‘ I.e. we can go around loops as long and In whatever order we choose, but we

must finally end with a termina’.

In the example In Figure 2,

4~ ~ (abc)~deg, ~2~> (cba)*f.
It may be that by the above recursion method and by simple back-substitution

for nonterininals of right-hand-sides having the corresponding nonterminals on

the left, we can derive S > 

~l~
2••’

~n 
where p1 E Edges. For the example of

Figure 2, the graninar is: •

• 1’ This notation appears frequently in the literature on formal languages .

U 

* A B means B can be derived from A by an application of zero or more
productions.
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LInguIstic Approach...

1) ((S,~~~,®...1}, a,b,c ,d,e,f,g , P, S) where P:
s +~ y~

‘~~ . a b c ~~~

~~+ c b a ®

By back—substitutton we get: S > (abc)*de~ cba)*f. Now by replacing each

terminal by Its substitution and interpreting concatenation of substitutions

to mean ~ , we can easily determine whether there exist non-negative integers
‘-I 

~
. n and m such that subst ’1(abc) 0 subst(def) e substm(cba) 0 subst(f) is

defined. Note that we ha~ replaced whole chunks by their substitutions . The

substitution of a chunk is the ® composition of the substitutions of the edges

making up the chunk. Each time a loop is repeated a new Instance of the clause

at the endpoints of the loop is’ added. For this reason, a loop repeated n

times will have n distinct instances of the variables. Loop substitutions,

• then) must be abstract descriptions incl uding an unknown number of instances

of variables. For example the substitution [f(x~)/x~÷1] specifies that each

new Instance of x is replaced by function “f” applied to the term substituted

for the last Instance of x.

For example, the graninar built from the CIG in Figure 1 having Even(O)

as the start clause would cause S to generate (among others) the expression

G(DF)*DA. The corresponding substitution 0 is

(0/n) 0 [n+ l/rn. , m+l/n]* ® (n+l/m] e [59/rn].

r n — n  + 1 m 21+l

n1~1 -m 1
+1

’

~ 
-

~~ 

~1 -21

(l~1) (151)

‘ 
, I The other nonterminal names and their productions are irrelevant to this

dIscussion .
- —~~~~~~ — -~~~~~ ~~~~~— ~—~~- —
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L~nguist1c Approach...

Differentiating between instances of variables, a becomes (0/n0] ~ [21/n1,
21—1/rn1,1] 0 

~~~~~ 
0 (59/ma] where 1 ~ i ~ k. mk — ~~~ ‘

~k~
1 = 2k+l,

therefore k 29, indicating that the refutation consists of G, twenty—

nine repetitions of (CF) and final ly D and A. We will not go Into how to

generally describe, loop substitutions , decide which instances of a variable
are referred to by other substitutions, or compute the exponent of loops.

However, for a given expression that is a regular expression extended by

exponents and contains no node names (i.e., is completely terminal), it is

straightforward to answer those questions . Due to lack of space the algo—
rlthms will be presented in a subsequent paper.
Integer Progra,miing Heuristic

There will be granmiars derivable from CIG’s that do not easily admit the

extended regular expressions. They include 1) graninars In which the self—
referencing non-terminal appears in the middle of the right-hand-side (e.g.,

N + aNb) and 2) graninars in which a nonterminal can generate a string con-
*tam ing two copies of itself, e.g., N— > ~NNa where c* and ~ are possibly

empty strings of symbols, i.e,, ~~ ~ (Edges U Nodes)
*. In the latter case,

it Is difficult to see the general recursion pattern since the length of the

resulting string Is exponential with the number of repetitions . In both

cases keeping track of which instances of the variabl es to put in each sub-

stitution is a horrendous job in general .

By weakening the grarm~ar, allowed by its particular use in this application,
and not by distinguishing between different instances of the same variable , we

can always derive an extended regular expression reduced to terminal s, the

terminals possib y reordered from what the grammar would actually generate.

Every chunk has a (possibly empty) effect on the total substitution In a •

solution. Terminal chunks have a fixed effect. Loop pieces may have a recur-

sive effect. E.g., (f(xk)/xk+l] has the effect of adding f to the accumulated

effect and applying It to the new “x”.
— -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ ‘..r
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By combining the Information from the reordered extended regular

express ion ‘
and the chunk, effects , it is possible to write integer programming

problems[2) whose solutions are likely candidates for proofs. In this way,

the effects serve as diffc~rence functions for the chunks (operators) in much
the way as is done in an operator difference table. The integer program

tells us how many applications of each operator there are in likely candi-
dates. The structure of the original grammar can then be used to check the

validity of that candidate. An example of this is ‘the “Even” problem in which

we need to change the term from “0” in the start state to ~s
60(0)~ in the goal

state. Therefore the sum of the effects of the chunks used must sum to exactly

sixty appl ications of “s”. In some cases, the start and goal states ~ire not

so clearly known and we have to phrase the problem slightly differen~1y such

that the original terms used in the solution pl us the effects of all applied

chunks sum to zero.

In cases where the regular expression forms are exactly known, the integer
p~ogranintng heuristic i~ substantially improved because the proper placement

of variable instances Is known. We may then break the problem Into subprobl ems —

one for each variable.

• Work on the Integer programing heuristic and computation of effects of

more complex loops is currently In progress.
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