

NATFREQ – A COMPUTER PROGRAM FOR CALCULATING THE NATURAL FREQUENCY OF ROTATING CANTILEVERED BEAMS

by

Joseph B. Wilkerson

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED AVIATION AND SURFACE EFFECTS DEPARTMENT ASED 370 January 1977

DMEN

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) **READ INSTRUCTIONS** REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER EPORT NUMBER DTNSRDC ASED-370 5. TYPE OF REPORT & PERIOD COVERED NATFRED, A COMPUTER PROGRAM FOR CALCULATING THE NATURAL FREQUENCY OF ROTATING 6. PERFORMING ORG. REPORT NUMBER CANTILEVERED BEAMS 8. CONTRACT OR GRANT NUMBER(.) AUTHOR(.) Joseph B. Wilkerson 10 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 9. PERFORMING ORGANIZATION NAME AND ADDRESS David W. Taylor Naval Ship R&D Center Program Element 62211N Aviation and Surface Effects Department Task Area F32.421.210 Bethesda, Maryland 20084 Work Unit 1-1690-100 12. REPORT DATE 11. CONTROLLING OFFICE NAME AND ADDRESS January 177 Naval Air Systems Command NUMBER OF PAGE AIR-320D 49 Washington, D.C. 20361 14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) Ο. (of this report) UNCLASSIFIED F32421 154. DECLASSIFICATION DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Approved for Public Release: Distribution Unlimited OCT 27 1977 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) B 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eide if necessary and identify by block number) Natural Frequency Helicopter Structural Dynamics Rotor Blades 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) 7 A computer program was developed to evaluate the natural frequencies of model helicopter rotor blades for use in wind tunnel evaluations. This program, NATFREQ, calculates the uncoupled natural frequency and corresponding mode shape of the first, second, and third natural bending modes for a nonuniform cantilever beam rotating in a vacuum. The program includes centrifugal stiffening effects and allows for arbitrary radial (Continued on reverse side) DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED S/N 0102-014- 6601 / ECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

LUNHITY CLASSIFICATION OF THIS PAGE(When Date Entered)

(Block 20 continued)

Idistributions of blade mass and stiffness properties. The fundamental uncoupled torsional natural frequency may also be calculated for a nonrotating cantilevered nonuniform beam. The blade is represented by a series of concentrated masses connected by massless flexures. The method of calculation for both bending and torsion is by the use of influence coefficients and matrix algebra.

Comparison of calculated results for a uniform beam with the exact solution shows that good results are obtained in the fundamental mode for as few as five mass elements. However, calculated frequencies for the second and third modes of vibration show progressive error. This suggests that up to 20 elements should be used for satisfactory results in the higher modes for nonuniform properties.

NTIS	While Section D
DDC	Batt Section
UNAMNOUN	CED []
NYTERA	10N
BY	
DISTRIBUT	IN/AVISTABILITY CODES
DISTRIBUTI Dist. AV	IN/AVAILASILITY CODES All and/or SPECIAL
DISTRIBUTI	MANATASMITY CODES Alt_ and/or special
DIST. AY	IN/AVARASILITY CODES AIL and/or specific

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

TABLE OF CONTENTS

0

	rage
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	2
COMPUTER PROGRAM	2
GENERAL DESCRIPTION	2
ANALYSIS	3
CENTRIFUGAL STIFFENING	3
INPUT/OUTPUT	5
RESULTS	6
BENDING	6
TORSION	8
CONCLUDING REMARKS	8
APPENDIX - NATFREQ PROGRAM LISTING	37

LIST OF FIGURES

1 .	-	Blade Bending Diagram
2	-	Discrete Mass Representative
3 .	-	Blade Torsional Representation
4	-	Diagram of Centrifugal Stiffening Effect . , 10
5	-	Typical Breakdown for Blade Mass and Stiffness
-		Distributions
6	-	Model Blade Cross Sections
7	_	Comparison of Calculated Natural Frequency with
'		Exact Solution for A Uniform Beam
8	_	Comparison of Calculated Mode Shapes with Exact
		Solution for A Uniform Beam
9	_	Torsional Natural Frequency Calculations for A
-		Uniform Beam

LIST OF TABLES

1	-	NATFREQ	Inputs	for	First Option	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
2	-	NATFREQ	Inputs	for	Second Option	•			•	•	•	•	•	•	•	•	•	•	•	•	16
3	-	NATFREQ	Output	for	First Option		•		•									•	•		17

LIST OF TABLES

		P	age
4	-	NATFREQ Output for Second Option	26
5	-	Comparison of Calculated and Measured Natural	
		Frequencies	35

•

a A A A A A

in a

1

T

I

1

1

0

1

.

ABSTRACT

A computer program was developed to evaluate the natural frequencies of model helicopter rotor blades for use in wind tunnel evaluations. This program, NATFREQ, calculates the uncoupled natural frequency and corresponding mode shape of the first, second, and third natural bending modes for a nonuniform cantilever beam rotating in a vacuum. The program includes centrifugal stiffening effects and allows for arbitrary radial distributions of blade mass and stiffness properties. The fundamental uncoupled torsional natural frequency may also be calculated for a nonrotating cantilevered nonuniform beam. The blade is represented by a series of concentrated masses connected by massless flexures. The method of calculation for both bending and torsion is by the use of influence coefficients and matrix algebra.

Comparison of calculated results for a uniform beam with the exact solution shows that good results are obtained in the fundamental mode for as few as five mass elements. However, calculated frequencies for the second and third modes of vibration show progressive error. This suggests that up to 20 elements should be used for satisfactory results in the higher modes for nonuniform properties.

ADMINISTRATIVE INFORMATION

The work presented herein was authorized and funded by the Naval Air Systems Command (AIR-320) under Program 62211N, Task F32.421.210 and was accomplished in 1970. The David W. Taylor Naval Ship Research and Development Center (DTNSRDC) Work Unit was 1-1619-100. Preparation of this report was funded under Work Unit 1-1619-200.

All data required for the computer program described herein are in U.S. customary units. Measurements of model geometry and frequency measurements were also taken directly in U.S. customary units. Hence, U.S. customary units are the primary units in this report. Metric units are not given in order to avoid confusion with the required program inputs.

INTRODUCTION

The design of helicopter rotor blades requires the ability to analytically predict their natural frequencies. It is also necessary to know the frequencies of model rotor blades, even if they are not dynamically scaled, to avoid resonant amplification conditions. Resonant amplification occurs when the blade natural frequency coincides with an integer multiple of the rotor rotational frequency. The condition is due to the existence of aerodynamic forcing functions which occur at integer multiples of rotational frequency. Operation at such a condition results in excessive blade deflections taking the mode shape corresponding to the frequency of excitation. For magnitudes of forcing functions which are low relative to blade stiffness, this results only in higher stress levels; but for higher magnitudes of forcing functions (occurring at or near the blades fundamental frequency), the resonant amplification dominates the blade motion causing severe fatique stresses as well as affecting aerodynamic performance data.

COMPUTER PROGRAM

GENERAL DESCRIPTION

The computer program NATFREQ was developed by the author to satisfy the above requirements. This program calculates the uncoupled natural frequency and corresponding mode shape of the first, second, and third natural bending modes for a nonuniform cantilever beam rotating in a vacuum. The program includes centrifugal stiffening effects created by spinning of the rotor blade and allows for arbitrary radial distributions of blade mass and stiffness properties. Since this analysis is intended for rotor blades, henceforth the beam length will be referred to as radius and intermediate lengths along the beam will be referred to as radial positions. In helicopter rotor terminology the bending of the beam is taken to be in the out-of-plane direction. That is, the blade bending takes place in a plane perpendicular to the plane of rotation of the rotor as shown in Figure 1. Conditions of precone and aerodynamic dynamic damping are not accounted for.

The first uncoupled torsional natural frequency and mode shape is also calculated for the cantilevered nonuniform beam. Rotor rotational effects on the blade torsional frequency have not been included in the analysis since they generally have small contributions at the relatively high torsional frequencies of model rotor blades.

ANALYSIS

The method of calculation for both bending and torsion is by the use of influence coefficients and matrix algebra as outlined in Hurty and Rubinstein.¹ The blade is considered to consist of a series of concentrated masses connected by massless flexures; see Figure 2. Root end conditions of the blade are taken at the radius r_0 , which is adjusted to suit the particular geometry to be modeled. Blade mass locations r_1 , r_2 , ..., r_n from the center of rotation are arbitrary and do not have to be evenly spaced. Flexures between the masses may have any distribution of stiffness, but an individual flexure is considered to have uniform stiffness over its length for evaluation of the influence coefficients. The accuracy of results therefore depends on the number of masses and flexures used in the model, as more mass elements provide better representation of even a uniform beam.

Representation of the blade for torsional calculations is similar to that for bending. Concentrated mass polar moments of inertia are connected by torsional springs, as shown in Figure 3. The radius r_0 for the root end condition and the radial positions of the polar moments of inertia are taken to be the same numerical values as used for the blade bending calculations. As previously mentioned, the torsion mode is uncoupled from the bending mode and is calculated only for nonrotating conditions.

CENTRIFUGAL STIFFENING

The equations of motion for bending of the nonrotating blade may be expressed in matrix form as

¹Hurty, W.C. and M.F. Rubinstein, "Dynamics of Structures," Prentice-Hall, Inc., Englewood Cliffs, N.J. (1964) pp. 110-136.

 $[m] {\delta} + [K] {\delta} = {0}$

where [K] = the square symmetric stiffness matrix

[m] = the diagonal mass matrix

 $\{\delta\}$ = the column matrix of deflections

At each mass element centrifugal forces act to restore the blade to its undeflected position; see Figure 4. The effect of the restoring force F_i is compounded by the moment created about position r_{i-1} and other inboard elements. This restoring force, proportional to the square of rotational speed, has a considerable impact on the blade out-of-plane bending frequencies. The centrifugal force acting at mass element m_i is

$$CF_i = m_i r_i \Omega^2$$

This force exerts a restoring force component perpendicular to the blade, shown in Figure 4, which approximately

 $F_i = CF_i \sin \Theta_i$

where $\sin \theta_i = \delta_i / (r_i^2 + \delta_i^2)$. For small deflections, $\delta_i < < r_i$, this reduces to

$$\sin \Theta_i = \delta_i / r_i$$

which gives the restoring force to be

$$F_i = m_i \Omega^2 \delta_i$$

This restoring force is added to the matrix equation of motion to give

$$[m] {\delta} + [K] {\delta} + \Omega^2 [m] {\delta} = {0}$$

for the governing equation of natural vibration for the rotating blade.

Solution of the equation of motion is accomplished by matrix algebra to give the characteristic eigenvalue (frequency) and eigenvector (mode shape). The method naturally gives the lowest, or fundamental, frequency which will satisfy the equation for natural harmonic motion. The second mode shape and frequency is a forced solution, requiring it to be orthogonal to the first mode. The third mode shape and frequency is then forced, requiring it to be orthogonal to both the first and second

modes. This is accomplished by the sweeping matrices of reference 1. Since the higher modes are based on the fundamental, they reflect accumulated error and are therefore less accurate than the fundamental.

INPUT/OUTPUT

There are two options within the NATFREQ program. The first option is the most accurate, allowing specific distributions of mass and stiffness properties to be read in. This requires that these distributions be precalculated from detailed engineering drawings or available from some other source. The second option is used for preliminary estimation (or for quick approximations) of frequencies and mode shapes when less information is available. This option requires only a minimum of inputs and uses programmed equations to internally estimate distributions of mass and stiffness. The procedure for calculating frequency is the same for either option once the property distributions are obtained.

Input format for the first option is shown in Table 1. The labels shown in Figure 5 will help to identify and understand the inputs of Table 1.

Input format for the second option is shown in Table 2. Use of this option requires only blade root (RO) and tip (R) general geometry. Mass and stiffness properties are calculated by internal function statements which are defined at the beginning of the program. Those in the current version calculate radial distributions for an elliptical blade cross section with the ellipse major axis in the plane of rotation. Thickness ratio and chord length are considered to be linear with radius from root (RO) to tip (R). The type of blade sections for which this program was written had a hollow cross-sectional shape, shown in Figure 6. First approximations to natural frequency were obtained for this shape by assuming solid elliptical properties and then subtracting those properties attributed to the hollow, or cut out, cross-sectional area. Several inputs of this option are devoted to this purpose and are described in Table 2.

Use of the second option for beams of solid elliptical cross section is easily done by setting all of the cut out inputs to zero. Use of this option for beams with cross-sectional geometry other than elliptical will

require changing the program function statements to equations which are appropriate for the geometry.

Groups of data may be submitted back to back with either program option. The program will read the first data set, execute, return to read a second data set, and so on. Normal exit is produced by putting a card at the end of the last data set with a zero in cclumn 5. (The program exits when the variable N is read in as zero.) A complete program listing of NATFREQ is included in the appendix.

A typical output for each of the two options is shown in Tables 3 and 4. Table 3 (for the first option) shows a printout of the input distributions and the influence coefficient matrices for bending deflection, bending slope, and torsional deflection. The natural frequency and mode shape follow for each of the first three bending modes and for the first torsion mode, in that order. The output frequency has the units of <u>radians per second</u>, and the mode shape is normalized to 1.0 at the last mass point XD(N) rather than at tip R.

Table 4 (for the second option) shows the printout of input blade geometry and material properties, followed by the calculated distributions of blade mass and stiffness properties. The rest of the output is the same as for the first option described above.

RESULTS

BENDING

A lumped mass model for calculation of natural frequency allows for better description and greater accuracy of results for the general case of nonuniform mass and stiffness distribution. However, some judgment is required in modeling the beam to be analyzed to ensure that a reasonable representation is provided to the program. A nonrotating beam with uniform mass and stiffness distribution was analyzed as a check case to evaluate program accuracy and the sensitivity of results to the number of mass elements used. The results (shown in Figure 7) indicate that 20 mass stations are required to give near exact results for the fundamental frequency of the uniform beam; but even 5 elements can give very close results. For this same number of stations the second and third natural frequencies show progressive error, indicating that 10 stations or more should be used for good accuracy in the higher modes. Figure 8 shows the calculated mode shape for 10 mass elements and for 20 mass elements compared to the exact mode shape for a uniform beam. As shown, the calculated mode shapes are in excellent agreement even for 10 mass elements for the first two modes. Note that these modes have been adjusted to be normalized to 1.0 at blade tip R for comparison to the exact solution.

The above adjustment is easily done by assuming that the mode shape is linear near the blade tip (a good approximation for the first three mode shapes of cantilevered beams). The calculated mode shape is adjusted by linear extrapolation of the two end points to estimate the deflection at tip R by

$$\delta_{R} = \delta_{n} + (\delta_{n} - \delta_{n-1}) \frac{(R-r_{n})}{(r_{n}-r_{n-1})}$$

where δ_n is the last value from the output mode shape (1.0) and δ_{n-1} is the next to last value. The new mode shape, δ'_i , is then obtained from

 $\delta'_{i} = \delta_{i} / \delta_{R}$

The program has been applied to the calculation of several model rotor blades. One such application was for the blade with the root and tip cross-sectional geometry shown in Figure 6. These blades incorporated 8.6 degrees of geometric twist, as depicted in the figure, and were tapered in thickness ratio. The cantilevered root end began at $r_0 = 0.333$ feet and the blade tip was at R = 3.333 feet. Mass and stiffness properties were calculated from the detailed engineering drawings for 20 stations. The results from NATFREQ for these blades are shown in Table 5 as compared to the blades experimentally measured nonrotating frequencies. Two of these blades were manufactured; the measured frequencies from both blades are shown. Table 5 shows excellent to good agreement between the measured and calculated natural frequencies.

TORSION

Torsional natural frequency was also checked against the measured frequency of the above-mentioned blades. As shown in Figure 6 the model blades had a hollow duct along the entire blade length with an open slot at the rear edge of the duct. This slot made the blades behave similarly to an open, or C, section. Partial closure was provided by discrete posts (near the duct rear edge) which were spaced out along the blade radius. Therefore, effective values of J estimated along the blade span were used in NATFREQ for torsional frequency calculations. The comparison of calculated to measured torsional frequency is shown in Table 5. Although the comparison is not as good as for blade bending, it is acceptable considering the effective J values which were used.

Torsional calculations were also made for a uniform beam as a check case. Figure 9 shows these results as they vary with the number of concentrated inertias used to represent the beam. The fundamental mode shows only 0.4-percent error from the exact uniform beam solution for a 5 inertia element representation. This suggests that only 5 to 10 inertia stations may be required for good accuracy when calculating the natural frequency of most nonuniform beams.

CONCLUDING REMARKS

The computer program NATFREQ has been shown to be quite accurate for the cases of uncoupled bending and torsional natural frequencies of uniform beams. Calculated natural frequencies for a model rotor blade also showed good agreement with measured values. Care should be exercised, however, to ensure that the program is provided realistic physical inputs when modeling any beam. For instance, beams which have sudden changes in stiffness or mass in some region should have more mass (flexure) elements in the model for that region. Also, beams which have a point mass at some radius in addition to their distributed mass should be modeled accordingly. An additional mass element should be used at the appropriate radius in lieu of distributing the point mass into the adjacent beam elements.

TABLE 1 - NATFREQ INPUTS FOR FIRST OPTION

Concession of the local division of the loca

D

[]

Ĩ

Format	Variable	Description
15 (one card)	N	Number of mass stations (not to exceed 21)
I5 (one card)	10	Option control (1 for this table)
5E12.5 (up to 5 cards)	ARAI	Array of N section area moments of inertia, ft ⁴
5E12.5 (up to 5 cards)	ARAJ*	Array of N section area polar moments of inertia, ft ⁴
5E12.5 (up to 5 cards)	ARM	Array of N discrete mass weights, lb
5E12.5 (up to 5 cards)	ARP*	Array of N discrete mass polar moments of inertia, lb/ft ²
5E12.5 (up to 5 cards)	XD	Array of N mass stations from center of rotation, ft
3E10.4, 3F10.2 (one card)	E	Youngs modulas of material, 1b/ft ²
	G**	Shear modulas of material, 1b/ft ²
	DEN	Density of material, 1b/ft ³
	OM	Rotor rotational frequency, rad/sec
	R	Blade tip radius from center of rotation, ft
	RO	Blade root radius from center of rotation to root end condition, ft

*These values may be set equal to 1.0 if torsional calculations are not desired; they should not be set to zero.

**Set G to a large number (i.e., 10¹⁵) if torsional calculations are not desired.

TABLE 2 - NATFREQ INPUTS FOR SECOND OPTION

Format	Variable	Description
15 (one card)	N	Number of mass stations (not to exceed 21)
15 (one card)	10	Option control (O for this table)
4F10.2 (one card)	TCR	Blade root thickness ratio (taken at RO)
associate of a special state	TCT	Blade tip thickness ratio (taken at R)
and a second s	CR	Blade root chord (in-plane dimension), ft
	СТ	Blade tip chord (in-plane dimension), ft
4F10.2 (one card)	R	Blade tip radius from center of rotation, ft
	RO	Blade root radius from center of rotation to root end condition, ft
	ATP	Area of cross-sectional cut out at blade tip, ft ²
	ART	Area of cross-sectional cut out at blade root radius, ft ²
5E12.5 (one card)	ZMIT	Area moment of inertia of cut out area at blade tip, ft ⁴
	ZMIR	Area moment of inertia of cut out area at blade root radius, ft ⁴
	ZMJT	Polar area moment of inertia of cut out area at blade tip, ft ⁴
	ZMJR	Polar area moment of inertia of cut out area at blade root radius, ft ⁴
	FJ	Empirical correction factor to obtain torsional J term from the calculated section polar area moment of inertia
3E10.4, F10.2	Е	Youngs modulas of material, 1b/ft ²
(one card)	G	Shear modulas of material, 1b/ft ²
	DEN	Density of material, 1b/ft ³
	OM	Rotor rotational frequency, rad/see

G . 5.00000E 08 BEST AVAILABLE COPY TABLE 3 - NATFREQ OUTPUT FOR FIRST OPTION E . 2.00000E 06 MATERIAL PROPERTIES FLIGHT CONDITIONS 1.000000 •00 DENSITY . . V9340 ī 17

TABLE 3 (Continued)

BLADE CHARACTERISTICS AT COLLOCATION POINTS

	50-36:14·
888888888888888888888888888888888888888	38
$\begin{array}{c} \mathbf{A} \\ $. +2866
00000000000000000000000000000000000000	+751E-05
	ur 16u1
88888888888888888888888888888888888888	3.258 81 ADF

IZZ [X] B2266 03 B22706 03 B22706 03 B22706 03 B22706 03 B22706 03 P2266 03 P2266 03 P2603 03 P2

BEST AVAILABLE COPY

0

0

0

0

0

0

U

[]

to and

-Trans. The second se ī

Transmitter of

BEST AVAILABLE COPY

TABLE 3 (Continued)

S w U œ --Σ z w -U -4 4 w • U w v z -3 -4 2 -

DEFLECTION . AICCI.J

		•							
.15734E-05	·24+05E-05	· 33075E • 05	. *17 *6E . 05	·53417E=05	· 59087E - 05	· 67758E-05	·76428E-05	· 85099E-05	-93770E.05
·24405E-05	·+02+8E-05	• 56493E • 05	•72737E-05	• 88982E • 05	•10523E-04	·121472-04	·13772E • 04	·15396E-04	•17020E-04
· 33075E • 05	•56493E-05	·82347E-05	· 10862E-0*	+0-368+61.	·16116E-04	·18743E-04	·21370E-04	•23997E-04	·26624E-04
50-39+41+·	•72737E-05	·10862E-04	·14703E-04	.13587E-04	·22471E-04	• 26355E • 04	· 30239E • 0*	·3+123E-04	· 38007E-04
·50+17E-05	·88982E-05	+13+89E.04	.18587E-04	+239+7E-0+	+0-353595.	·34758E-04	+0164E-04	+5569E-04	+50975E-04
59087E-05	+10523E+0+	·16116E-04	·22471E-04	+0-36362.	· 36507E-04	+3708E=0+	·50910E •04	·58111E-04	•65312E-04
.67758E-05	·12147E.04	·18743E-04	·26355E •0*	· . * 758E . 04	+3708E-04	·52942E-04	·62224E-04	.71505E-04	·80787E-04
·76428E-05	•13772E •04	·21370E-04	· 30239E - 04	+0164E-04	· 50910E • 04	•62224E •04	•73832E•04	.85490E-04	·97149E-04
60-366058·	+0-396E21.	+0-376955.	·34123E-04	.45569E-04	·58111E-04	•71505E-04	•85490E •04	•99780E-04	·11412E-03
.93770E-05	·17020E+0*	·26624E-04	· 38007E-04	·50975E-04	•65312E • 0+	·80787E-04	·97149E-04	•11412E-03	·131+1E-03
·10244E-04	·18645E-04	·29251E-04	+1891E-0+	*56380E •0*	•72513E-04	+0-369006 ·	·10881E • 03	·12847E-03	·14876E-03
•11111E-04	+20269E-04	· 31878E • 04	+5776E-04	·617855-04	·79714E-04	•99351E•04	·12047E-03	·14281E-03	·16611E-03
.11978E-04	·21894E+04	·3+202E •0+	+9660E-04	+0-31916-0+	·86915E-04	· 10863E-03	·13212E-03	·15715E-03	·18345E-03
·12845E-04	·23518E.04	·37132E-0+	+0-3++5ES.	•72596E+04	+0-311146.	•11791E-03	·14378E+03	·17149E-03	·20080E-03
·13712E-04	+0+3E+155.	+0-36516E.	•57428E • 04	· 78002E • 04	·10132E-03	·12720E-03	·15544E-03	.18584E-03	·21814E-03
·1+579E-0+	·26767E-04	+2386E-0+	•61312E-04	.83407E-04	·10652E-03	·13648E-03	·16710E-03	·20018E-03	·23549E-03
·15446E-04	+28392E+04	+5013E-04	·65196E-04	.88813E .04	·11572E-03	·14576E-03	·17876E-03	·21452E-03	·25284E-03
+0-3E1E91.	·30016E • 04	+764nE=n4	.69080E-04	.94218E	.12292E-03	.15504E-03	.1904PE-03	.22886E .03	.27018E-03
17180Feet	+1440E+04	-50267F-04	.72964F .04	40.345996.	50-3410F1.	.164375-03	-20007E-03	En-115EMG.	-28753F -03
	339655 -04	A DE DE DE DE	.76849F -04	10503F-03	50-3556F.	173615-03		. 257555.03	304875-03
-0									
			CONTINUING A	CROSS, INCRE.	C BNISK				
·10244E-04	·11111E-0*	·11978E-04	·128+5E • 0+	•13712E • 04	·14579E • 04	· 15446E • 04	•16313E•0+	.17150E-0+	·18048E-04
+0-35+921.	·20209E-04	·21894E •04	·23515E-0*	+0-3E+1c2.	·26767E-04	• 283926 • 0+	· 30016E • 04	·31640E=04	· 33265E - 04
·292516-04	·31676E-0+	· 34505E • 04	· 37132E-0+	• 39759E • 04	· +2386E • 0+	• +2013E -0+	· +7640E=04	•50267E • 04	•52894E-04
+1871E-04	+0-39//c++	· *9660E-04	· 23244E=04	•27428E • 04	•01312E •0+	•65196E-04	· 69080E • 04	.72964E-04	•76849E=04
+0-302Eec.	•01785E•0*	•67191E•04	•72596E-04	•78002E=04	·83407E-04	•88813E -04	· 94218E - 04	• 99624E-04	·10503E-03
+0-3E152.	+0-3+1+E-0+	· 86915E • 04	·94117E-04	• 10132E • 03	· 10852E • 03	·11572E-03	·12292E-03	·13012E-03	·13732E-03
+2-36006.	+0-31566.	· 10863E-03	•11791E-03	•12720E-03	·13648E-03	·14576E-03	·15504E-03	·16432E-03	·17361E-03
•16851E•03	·120+7E-03	·13212E •03	·14378E-03	.15544E-03	·16710E-03	•17876E-03	· 19042E • 03	·20207E-03	·21373E-03
-128-7E-03	·1*281E-03	•15715E-03	·17149E.03	.18584E-03	· 20018E - 03	·21452E-03	· 228866 • 03	·24321E-03	·25755E+03
·1-8/9E-03	·10011E-03	·18345E•03	· 20080E • 03	·21814E-03	E0-36+6E2.	· 25284E - 03	· 27018E • 03	·28753E-03	· 30+87E-03
F0-365601.	·1200/2=03	- 10/2E-03	· 231 *3E • 03	• 22211E • 03	.272736.03	· 2334/1-03	-1+12E-03	• 33+83E • 03	• 32222E • 03
-17007E-03	•21+37E•03	·238/3E-03	· 26309E • 03	· 28745E • 03	·31181E•03	· 3361/E-03	· 36054E-03	• 38490E • 03	· +0926E • 03
· 10/ 36-03	· 238/3E•03	·26707E-03	· 29547E-03	• 3238/E•03	· 35227E • 03	• 38067E • 03	· *0906E =03	·+37+6E-03	·+6586E+03
E0-3E+122.	· 26309E-03	· 29547E-03	• 32821E • 03	· 36102E-03	· 39383E • 03	· +2664E.03	· 45945E-03	• #9226E • 03	•52507E-03
E0.3112.2.	·28745E-03	• 32387E • 03	• 36102E-03	• 39856E • 03	• #3617E-03	• 47378E • 03	·51138E • 03	·5+899E-03	·58659E-03
.27279E.03	·311816-03	· 35227E • 03	· 39383E • 03	• +3617E-03	• 47891E•03	·52171E-03	· 56451E • 03	· 60732E-03	·65012E-03
·233+7E-03	· 33617E-03	•38067E-03	· 42664E-03	·+7376E-03	·52171E-03	•57006E-03	·61848E-03	· 66689E-03	·71531E-03
· 31415E • 03	· 36054E.03	· 40906E-03	· 45945E.03	•51138E•03	·56451E-03	·61848E-03	·67287E-03	•72733E•03	·78180E-03
E0.3E8+EE.	· 38490E-03	· 43746E • 03	· 49226E - 03	·54899E-03	· 60732E-03	· 66689E • 03	·72733E-03	• 78822E • 03	.84918E-03
E0+32cScE+	• 403266-03	· +6556E-03	• 52507E • 03	• 58659E • 03	· 65012E • 03	•71531E•03	•78180E-03	.84918E-03	·91703E-03

TABLE 3 (Continued)

CI ADF - BICTI.

	. 39758E . 04 . 51789E . 04	50194E-04	915565-04	·95616E-04	.956166-04	.95616E-04 .95616E-04	.95616E-04	.956166-04	·95616E-04	• 32010E • 04	· 95616E-04		·828395 •04		•13/ 86-03 •164576-03	· 19059E-03	.215756-03	50-310E92.	· 28500E • 03	• 30561E • 03	342345-03	· 35815E • 03	· 37205E • 03	. 363675.03	+00+9E-03		••0••2E•03	
	. 35511E • 04 • 45938E • 04 • 55095E • 04	• 69155E • 0+	767176-04	.777235-04	·77723E=0+	•77723E•04	•77723E•04	.777235-04	·77723E-0+	·///235-0*	·77723E-04		·779825-05	-0-36+01	15532E-03	·17955E-03	· 202656-03	24622110	·26606E-03	· 28+50E-03	316435-03	· 33001E-03	· 34139E-03	- 35058E - 03	·36164E-03	·36311E.03	• 36311E•03	
	• 31263E • 0+ • + 0086E • 0+	-58115E-0+	·61879E-04	61679E-04	•618795•0+	•61879E-04	• 61879E • 0 +	·61879E-04	•61879E-0+	•010/3C=04	40-36191		-73735E-04		·14608E-03	·16851E-03	•18994E-03	229375-03	·24712E-03	· 26339E • 03	290935-03	· 30188E - 03	· 31072E-03	· 317295 • 03	.322796-03	· 32279E • 03	.32279E-03	,
	· 27016E • 04 • 34235E • 04 • 40063E • 04	++38+E=0+	+8008E 0	+8008E 0	+#8008E • 0+	• + 8008E = 0 +	• • 8008E - 0 +	• + 8008E • 0 +	+80085-04	• 4 8 0 0 8 F = 0 +	+9008E.0+	r gnist	•69488E•04	-0-36-136.	1136835.03	·15747E-03	•17704E-03		.228185-03	·24229E•03		·27374E-03	· 28006E • 03	284006.03	.285366-03	· 28536E • 03	• 28536E • 03	
	.227695-04 .283845-04 .325465-04	. 35139E • 04	36036E - 04	.36036E • 0*	.36036E -0*	.36036E-04	.36036E-04	.360366-04	· 36036E • 0*	. 360 36E -04	·36036E-04	CROSS, INCRE.	.65541E-04	0-3/2000	.127595-03	•1+643E •03	.16414E.03	195675-03	.20924E-03	· 22118E • 03	23952F 03	24560E 03	.24939E-03	.250/1E-03	.250716-03	.25071E-03	.250715-03	
LOPE . BILLI	.18522E • 0+ • 22532E • 0+ • 25030E • 0+	· 25894E-04	•25894E•0*	.258946.04	•25894E•04	· 25894E • 04	· 25894E • 04	· 25894E • 0+	· 25894E - 04	•25834E.04	·25894E-04	CONTINUING A	*0-3*6609.	-0-30-010.	· 10017E • 03	E0-368561.	· 15123E-03	17825-03	•19031E-03	· 20007E-03	-213825-03	·217+7E-03	· 21873E • 03	· 21873E • 03	218735-03	·21873E-03	·21873E-03	
S	.14275E-04 .16681E-04 .17514E-04	17514E-04	175145-04	·1/5146-04	•17514E•04	•17514E-04	·1751+E-0+	·1751+E-0+	·17514E-04	·17514E•04	·17514E-04		·54746E-0+	+0-3ccle/+	• 10910E • 04	·12435E-03	•138336-03	-0-316.9.	•17137E-03	· 17896E-03	• 10400E • 03	·18933E-03	·18933E • 03	• 189335 • 03	•18933E•03	•18933E • 03	·18933E•03	
	•10028E •04 •10830E •04	.10530E-04	.10630E 04	·10630E•0*	•10830E•0*	•10830E•04	·10830E-04	.108305-0+	.10830E-04	·10830E•0*	·10830E-04		-52499E-04	-0-36-66-0-	.99853E.04	•11331E-03	•12543E•03		·15243E-03	·15785E-03	-1014646	· 16241E-03	·16241E-03	.102416-03	.162415-03	·16241E-03	.162415-03	
	-57864E-05 -57864E-05 -57804E-05	57864E-C5	-378C4E-05	57804E-05	· 57804E-05	57864E-05	578C4E-05	57804E-05	·57864E-05	57864E-C5	57804E+05		************	+ J- 326+50+	+0-36-92.	·102276-03	.112526-03	121212103	133496-03	· 13675E - 03	137875-03	13787E-03	-13787E-03	·137875-03	·13787E-03	·13787E-03	•13787E•03	

0

-

T

1

A strengt

T

BEST AVAILABLE COPY

BEST AVAILABLE COPY

D

Annual a

1

TABLE 3 (Continued)

TORSION - CICCI.J

255 255 255 255 255 255 255 255 255 255	0 0
*258 *258 *258 *259 *259 *259 *259 *259 *259 *259 *259	*28451500 8566050504 8566050504 144228560 85660500 85660500 85660500 85660500 814505 8014500 807225600 807225500 807225500 807225500 93355500 807225500 93355500 807225500 93355500 807225500 93355500 807225500 93355500 807225500 93355500 807225500 93355500 807225500 93355500 807225500 93355500 807225500 93355500 807225500 93355500 93355500 93355500 93355500 93355500 93355500 93355500 93355500 93355500 93355500 93355500 93355500 9355500 9355500 9355500 9355500 9355500 9355500 9355500 9355500 9355500 93555000 93555000 9355500 935500 935500 935500 9355000 9355000 9355000 9355000 9355000 9355000 9355000 9355000 9355000 9355000 9355000 93550000000000
$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	00000000000000000000000000000000000000
Construction Construction<	44000000000000000000000000000000000000
000 000 <th> Nonau and and and and and and and and and and</th>	 Nonau and and and and and and and and and and
44 MM MM MM MM MM MM MM MM MM 000 <t< th=""><th>Валалалалалалалан Валалалалалалан Валалалалалалан Валалалалала Валалалалала Валалалала Валалала Валалала Валалала Валалала Валала В</th></t<>	Валалалалалалалан Валалалалалалан Валалалалалалан Валалалалала Валалалалала Валалалала Валалала Валалала Валалала Валалала Валала В
ал мама амал мал ал ал ал ал ал ал ососососососососососо ососос иши илал илал ал ал ал ал осососососососососососос илал илал илал ал ал ал ал осососососососососососос илал илал илал ал ал ал ал осососососососососососос илал илал илал илал ал ал осососососососососососос илал илал илал илал ал ал осососососососососососос илал илал илал илал ила илал илал илал	 A 4 M M M M M M M M M M M M M M M M M M
44 MM MM <td< th=""><th>В М М М М М М М М М М М М М М М М М М М</th></td<>	В М М М М М М М М М М М М М М М М М М М
Model Model <td< th=""><th>$\begin{array}{c} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} A$</th></td<>	$\begin{array}{c} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} A$
	4 4 m m m m m m m m m m m m m m m m m m

0 BEST AVAILABLE COPY 0 5 ITERATIONS . 0 NAT. FREG . . 24092E 03 TABLE 3 (Continued) 0 0 -MODE SHAPE 0 0 +2C++712 +7952869 -47952849 -60365883 -60365883 -7393909 -73337703 -73931580 -73337703 -73301757 -53301757 -53301757 • C667C711 • C9625332 • 1306C271 • 16947261 • 212356399 • 215954582 • 31009107 • 36384532 ·C2305124 C+22260 0 0 0 R 22

A ---- A 1 0 BEST AVAILABLE COPY 0 0 ITERATIONS . 5 0 0 NAT. FREG . . 70022E 03 0 TABLE 3 (Continued) 0 0 0 ~ MODE SHAPE Trans. Π •12050015 1 1 23

0 0 0 BEST AVAILABLE COPY 0 0 -ITERATIONS -0 NAT. FREG - .18305E 04 TABLE 3 (Continued) 0 • HODE SHAPE 0 0 · 30029127 • 785857 • 63982640 • 63982640 • 63982640 • 63982640 • 648451 • 64845165 • 65845165 • 65873980 • 20573980 • 67003201 24

I 1 BEST AVAILABLE COPY 0 -ITERATIONS . 0 NAT. FRED . . 95343E 03 1 TABLE 3 (Continued) 0 [] [] -TORSION MODE .C3772808 •11334218 •12334218 •26375493 •26347001 •33699214 •33699214 •1265630460 •1455532460 •14553284 •60946614 -72629366 -77836896 -25571378 -2671378 -2671378 -2671378 -2671378 -26139850 -980595495 -980592192 -93550192 [] 0 0 [] [] 25

BEST AVAILABLE COPY G . 5.61600E 08 TABLE 4 - NATFREQ OUTPUT FOR SECOND OPTION R001 7/C • .200 .42 TIP 7/C • .150 .42 R001 CM0RD • .33 TIP CM0RD • .33 .33 R001 RADIUS • .33 E . 1.49760E 09 MATERIAL PROPERTIES FLIGHT CONDITIONS SLADE GEOMETRY DENSITY . 172-800000 0HEGA . 209.44 0]] I 26

BEST AVAILABLE COPY

*	1XX [X]	WT (X)	נאזר	122 [X] "POLAR
EEE.	• 5000E • 03	·2145E 01	. 5000E . 04	• 3000E • 03
.000	· 5000E • 03	.2145E 01	• 5000E • 04	• 3000E • 03
.667	· 5000E • 03	.2145E 01	• 5000E • 0 *	• 3000E • 03
.333	· 5000E • 03	.21456 01	• 5000E • 0*	· 3000E • 03
.000	• 5000E • 03	·21456 01	• 5000E = 04	• 3000E • 03
.667	• 5000E • 03	·21456 01	• 5000E • 04	• 3000E • 03
- 333	· 5000E • 03	·21456 01	• 5000E • 0 *	• 3000E • 03
.000	• 5000E • 03	.2145E 01	• 5000E - 04	• 3000E • 03
.667	· 5000E • 03	.2145E 01	• 500CE • 0 *	• 3000E • 03
EEE.	· 5000E-03	·2145E 01	• 5000E • 04	· 3000E • 03
.000	· 5000E • 03	·21456 01	• 5000E • 0 *	· 3000E • 03
.667	· 5000E • 03	.2145E 01	•5000E •0*	· 3000E-03
· 333	· 5000E • 03	.2145E 01	• 5000E • 0 *	· 3000E • 03
.000	· 5000E • 03	.2145E 01	• 5000E • 0 *	· 3000E - 03
.667	· 5000E -03	·2145E 01	•5000E=0*	• 3000E • 03
BLACE WEIGH	47 • 32•17			

TABLE 4 (Continued)

[]

0

0

[]

0

0

0

[]

BLADE CHARACTERISTICS AT COLLOCATION POINTS

BEST AVAILABLE

U

24

1

197536 197536 196677 1966577 1966577 1966577 196677 196677 197000 197000 197000 197000 197000 197000 197000 197000 197000 197000 197000 1970000000000	
1130 1330 1330 1330 1330 1330 1330 1330 1330 1300 1000	НВ 85 4 45
123366.03 42466.03 4246916.02 4246916.02 4246916.02 4246916.02 4246916.02 4246916.02 1349966.02 1349666.02 1349966.0	CONTINUING AC + 3333356-03 + 4333356-03 + 11723556-01 - 211723556-01 - 212725556-01 - 1141756-01 - 1141756-00 - 1141756-00
	44 100 100 100 100 100 100 100 100 100 1
	20000000000000000000000000000000000000
+123466 +938466 +938466 +938466 +938466 +938466 +938466 +938466 +938466 +938466 +9386466 +9386466 +9386466 +938666 +938666 +9386666 +9386666 +9386666 +9386666 +9386666 +9386666 +9386666 +9386666 +9386666 +93866666 +93866666 +93866666 +93866666 +93866666 +93866666 +93866666 +93866666 +93866666 +93866666 +93866666 +93866666 +93866666 +938666666 +938666666 +938666666 +9386666666 +9386666666 +9386666666 +93866666666 +9386666666 +93866666666 +93866666666 +93866666666666 +9386666666666666 +9386666666666666666666666 +938666666666666666666666666666666666666	

(Continued) 4 TABLE

œ --I z ш Т U -4 w • U 4 U z -2 -z -

5 w U

> AICCI, JJ . DEFLECTION

BEST AVAILABLE COPY

. . . . 7

.

-13889E-02 -38333E-02	· 58333E • 02	•73889L-02	· 85000E-02	•91667E-02	• 93889E • 02	• 93889E • 02	· 93889E .02	· 93889E . 02	· 93889E • 02	• 93889E • 02	· 93889E . 02	-93889Ee.	· 93689E-02
.11667E-02	• 47222E - 02	•58333E •02	• 650005 • 02	•67222E • 02	•67222E-02	·67222E-02	•67222E-02	·67222E • 02	·67222E-02	•67222E • 02	•67222E-02	·67222E-02	•67222E-02
-29444E-03	· 36111E-02	• +2778E - 02	· *5000E - 02	· +5000E • 02	· +5000E-02	· +5000E-02	· +5000E-02	· +5000E -02	· +5000E -02	· +5000E - 02	· *5000E-02	· +5000E • 02	· *5000E • 02
.722225.03	· 25000E-02	·272226-02	·27222E-02	•27222E-02	·27222E • 02	·27222E-02	·27222E • 02	·27222E-02	· 27222E - 02	· 27222E-02	·27222E-02	· 27222E • 02	•27222E-02
• 500001 - 03	·13889E-02	·13889E-02	·13889E-02	·13889E-02	·13889E-02	·13889E-02	·13889E-02	·13889E-C2	·13889E-02	·13889E-02	·13869E-02	·13889E-02	·13889E-02
-27778E-03	·50000E-03	·50000E • 03	·50000E-03	· 50000E • 03	· 50000E - 03	· 50000E - 03	·50000E -03	· 50000E - 03	· 50000E • 03	· 50000E • 03	· 50000E • 03	· 50000E - 03	· 50000E • 03
·535565.0*	+0-395655·	·55556E-04	·55556E-04	· 555566-04	·55556E-04	·55556E-04	+0-39262s*	·555566-04	·555566-04	+0-392525.	·555566-04	· 555566 - 04	+0-395555·

(Continued) 4 TABLE

· BICCI, J SLOPE

BEST AVAILABLE COPY

0

0

0

0

0

0

0

1

1

+U-3335.	+0-35331.	+0+355551.	•13333E •04	+13333E=04
+0000E-C+	. +00000E-04	+0-30000+ ·	+00000E-0+	+00000E-0+
•66667E-04	•66667E-04	•66667E=04	•66667E-04	•66667E-04
+0-35555.	+0-355556.	+0-35556.	•93333E-04	+0-36666.
.1200CE-03	•12000E-03	•12000E = 03	•12000E-03	.12000E-03
·1+667E-03	·14667E-03	·14667E=03	·14667E-03	·14667E=03
.17333E-03	•17333E-03	·17333E•03	·17333E-03	•17333E-03
·2000E-03	·20000E-03	·20000E-03	· 20000E • 03	.20000E-03
·22667E-03	·22667E-03	·22667E-03	•22667E-03	.22667E-03
·25333E •03	•25333E •03	·25333E-03	· 25333E • 03	.25333E-03
-280COE-03	•28000E-03	·28000E-03	• 28000E • 03	·28000E-03
·280006-03	· 30667E-03	· 30667E-03	· 30667E-03	· 30667E-03
·280006-03	· 30667E-03	· 333335-03	· 333335 - 03	· 333335 -03
·28000E-03	· 30667E-03	•333333E •03	· 36000E • 03	· 36000E - 03
·28000E-03	· 30667E-03	• 333333E • 03	· 36000E - 03	·38667E-03

. . . · · · CONTINUING ACROSS, INCREASING J .

.

. . .

1773336 1773336 17733386 177335 17733386 17733386 17733386 17733386 177335 17733386 17733386 17733386 177335 17755 17755 17755 177555 177555 177555 177555 177555 1775555 1775555 1775555 1775555 1775555 1775555 17755555 17755555 17755555 17755555555	14667E=03 14667E=03 14667E=03 14667E=03 14667E=03 14667E=03 14667E=03 14667E=03	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
·17333E-03	.14667E-03	.12000E-03	+0-355555.	•66667E-04		36-04
·14667E-03	·14667E-03	.12000E-03	+0-35556.	•66667E-04	+00000E-0+	+0-366
• 12000E • 03	•93333E •04	• 93333E • 04 • 12000E • 03	•93333E • 0+ •93333E • 0+	•66667E-04	+00000E-04	40-32E
· 66667E-04	•66667E•04	•66667E=04	·66667E-04	·66567E-04	+0000E-0+	+0-3E
13333E 04	.13333E-04	.13333E-04	+00000 -0+	.13333E-04	.13333E-0+	

TABLE 4 (Continued)

TORSION - CIC(1.J]

BEST AVAILABLE COPY -ITERATIONS . NAT. FREG . . 35196E 01 TABLE 4 (Continued) HODE SHAPE 1 [] .61942792 .71307633 .871307633 .90392323 1.0000000

ITERATIONS . 5 BEST AVAILABLE COPY ·22113E 02 NAT. FRED . TABLE 4 (Continued) MODE SHAPE 2 Π

 \Box BEST AVAILABLE COPY -ITERATIONS . NAT. FRED . .62055E 02 TABLE & (Continued) MODE SHAPE 3 •C+184556 •3C+94457 •553C236C •553C2365 •553C2365 •553C2365 •553265 •65132677 • •45132577 • • •5132577 ••87514203 ••69863701 ••27460161 •2262193 1•000000

IJ 0 0 BEST AVAILABLE COPY \$ ITERATIONS . 0 NAT. FREG . .14333E 04 0 TABLE 4 (Continued) TORSION MODE 1 0 C524C737
 155647396
 1556647396
 1556647396
 1556647336
 1556617336
 1566107336
 1566107336
 156714144
 156714144
 156714144
 156714144
 156714144
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 1571004036
 157100436
 157100436
 157100436
 157100436
 157100436
 157100436
 157100436
 15710044
 15710044
 15710044
 15710044
 15710044
 15710044
 15710044
 15710044
 15710044
 15710044
 15710044
 15710044
 15710044
 15710044
 15710044
 15710044
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004
 1571004</l • 89222787 • 93486676 • 96725692 • 98904362 • 98904362 0 0 0 0

-

		·	
Mode of	NATFREQ Calculated	Meas (rad	ured /sec)
Vibration	(rad/sec)	Blade 1	Blade 2
lst Bending	121.9	118.7	121.3
2nd Bending	634.9	603.8	612.0
3rd Bending	1470.0	1521.8	1545.7
lst Torsion	919.9	1097.7	1030.4

TABLE 5 - COMPARISON OF CALCULATED AND MEASURED NATURAL FREQUENCIES

.

APPENDIX

NATFREQ PROGRAM LISTING

C FROGRAM NATFREQ THIS PROGRAM CALCULATES THE FIRST THREE NATURAL BENDING C C FREQUENCIES OF A NONUNIFORM BEAM ROTATING IN A VACUUM. C FROGRAM BY J. B. WILKERSON, CODE 1619 C FUNCTION STATEMENTS C ELLIPTICAL CROSS SECTION, TAPERED THICKNESS RATIO AND PLANFORM C THICKNESS RATIO (X) C TC(X) = (TCT-TCR) + (X-R0)/RP + TCRC CHORD (X) C(X) = (CT-CR)*(X-RJ)/RP + CR DUCT INTERNAL AREA (X) C AI(X) = (ATP-ART) + (X-RD)/RP + ARTDUCT AREA MOMENT OF INERTIA (X), FLAPPING C ZMI(X) = (ZMIT-ZMIR)*(X-RO)/RP + ZMIR DUCT POLAR AREA MOMENT OF INERTIA (X), TORSION C ZMJ(X) = (ZMJT-ZMJR) + (X-RO)/RP + ZMJRBLADE MASS (X) C AMS(X) = DEN*(3.14159*TC(X)*C(X)**2/4.-AI(X)) BLADE AREA MOMENT OF INERTIA (X), FLAPPING AMI(X) = 3.14159*TC(X)**3*C(X)**4/64. - ZMI(X) C BLADE POLAR AREA MOMENT OF INERTIA(X), TORSION C AMJ(X) = 3.14159*TC(X)*C(X)**4*(1.+TC(X)**2)/64. - ZMJ(X) BLADE MASS POLAR INERTIA IS CONSIDERED TO BE AREAPOLAR INERTIA + DENSITY C END FUNCTION STATEMENTS C C DIMENSION XD(22), AIC(22,22), BIC(22,22), CIC(22,22) DIMENSION ARAI(22), ARM(22), ARAJ(22) DIMENSION ZIU(22,22), ZIL(22,22) DIMENSION AICP (22,22), BNON (22,1), DYN (22,22), DYNS (22,22), Y (22), 1 YN(22), YN1S(22), SWPM(2,22), ARP(22) COMMON AICP, BNON 5 CONTINUE READ 3.N IF(N) 160.160.6 6 CONTINUE GG=32.174 READ 3,IO IF(10) 7,7,8 8 CONTINUE READ 200, (ARAI(I), I=1,N) READ 200, (ARAJ(I), I=1,N) READ 200, (ARM(I), I=1, N) REAU 200, (ARP(I), I=1,N) READ 200, (XO(I), I=1,N) READ 9,E,G, DEN, OM ,R.RO 9 FORMAT (3E10 . 4. 3F10.2) WB=0.0 00 202 I=1.N 202 WB=WB+ARM(I) 200 FORMAT(5E12.5) PRINT 1630 1030 FORMAT(1H1) PRINT 1022.DEN.E.G PRINT 1024.0M GO TO 12 7 CONTINUE

					497.2
	 TRACE DE DIG	DACE	-		
1 0 pt		Statistics of		Contraction Contraction	
	100 M	Charles and	11	1	

```
READ 2. TCR. TCT. CR. CT
      READ 2.R.RO.ATP.ART
      READ 200, ZMIT, ZMIR, ZMJT, ZMJR, FJ
      READ 9.E.G.DEN.OM
      PRINT 1020, TCR, TCT, CR, CT, RO, R
      PRINT 1022.DEN.E.G
      PRINT 1624.0M
1020 FGRMAT(1H1.25X.SBLAJE GEOMETRYS//5X.SROOT T/C = 5.F6.3.10X.STIP T/C
     1 =$,F6.3/5X,$ROOT CHORD =$,F8.2,6X,$TIP CHORD =$,F8.2/5X,$ROOT RAD
     2IUS =: .F8.2.5X. .TIP RADIUS =5.F8.2.5X///)
1022 FORMAT (25x, SMATERIAL PROPERTIESS//5x, SDENSITY =5, F12.6, 7x, SE =5,1P
     3E13.5.7X.3G =3.1PE13.5///)
 1024 FORMAT(25X, SFLIGHT CONDITIONSS//5X, JOHEGA = 1, F8.2)
    2 FCRMAT(4F16.2)
    3 FORMAT(15)
   AVERAGE AREA INERTIAS AND MASS/UNIT LENGTH - INTEGRATION BY
C
    FCUR POINT NEWTON-COTES FORMULA (SIMPSONS 3/8 RULE)
      AN = N
      RP = R-RO
      H = RP/ (6. * AN)
      ARAI(1) = (AMI(RJ)+3.*AMI(R3+H)+3.*AMI(R3+2.*H)+AMI(R0+3.*H))/6.
      ARAJ(1) = (AMJ(R0)+3.*AMJ(R0+H)+3.*AMJ(R0+2.*H)+AMJ(R0+3.*H))/8.
   FJ IS AN EXPERIMENTALLY DETERMINED CORRECTION FACTOR TO OBTAIN J FROM THE
C
      CALCULATED SECTION POLAR AREA MOMENT OF INERTIA
r
      ARAJ(1) = ARAJ(1)*FJ
      H = RP/(3. * AN)
      DO 10 I = 2,N
      J=2*I-3
      X0 = J*RP/(2.*AN) + R0
      ARAJ(I)=(AHJ(XO)+3.*AHJ(XO+H)+3.*AHJ(XO+2.*H)+AHJ(XO+3.*H))/8.
      ARAJ(I) = ARAJ(I) *FJ
   10 ARAI(I) = (AMI(XO)+3.*AMI(XO+H)+3.*AMI(XO+2.*H)+AMI(XO+3.*H))/8.0
      WB=0.0
      00 20 I =1.N
      J=1-1
      XO = J*RP/AN + RC
      ARM(I) = (AMS(X0)+3. * AMS(X0+H)+3. * AMS(X0+2. *H)+AMS(X0+3. *H))*RP/
     1 (8. *AN)
      ARP(I) = (AMJ(XO)+3.*AMJ(XO+H)+3.*AMJ(XO+2.*H)+AMJ(XO+3.*H))*DEN
       /(8.*GG)
     1
   20 WB=WB+ARM(I)
      XD(1) = RP/(2.*AN) + R0
      H = RP/AN
      DO 25 I=2.N
   25 XD(I)=XD(I-1) + H
   12 CONTINUE
      PRINT 998
  998 FORMAT(1H1, 10X, $BLADE CHARACTERISTICS AT COLLOCATION POINTS $/)
      PRINT 1000
 1000 FORMAT(// 10X, $X$, 14X, $IXX(X) $, 13X, $WT(X) $, 18X, $J(X) $, 11X, $IZZ(X
     1) .POLARS)
      00 36 I =1.N
   30 PRINT 1001, XD(I), ARAI(I), ARM(I), ARAJ(I), ARP(I)
 1001 FORMAT (6X, F6.3, 4E20.4)
      PRINT 999.WB
  999 FORMAT(//10X, SBLACE WEIGHT =$.F10.2)
   OBTAIN INFLUENCE COEFFICIENTS FOR DISPLACEMENT, SLOPE, AND TORSIONAL
C
C
      DEFLECTION
C
     K DENGTES LOADED STATION
      AN = N
      DO 80 K=1.N
      1=1
      C1=0.0
      C2=0.0
      GO TO 65
   60 C1=BIG(T.K) *F* (ARAI(T+1)-ARAI(T))+C1
```

```
95 LK = LK + 1
     GO TO (97,97,99,101),LK
   97 PRINT 1011
1011 FORMAT(1H1,40X, SSLOPE - BIC(I,J)$/)
     GO TO 85
   99 PRINT 1013
 1913 FORMAT(1H1,40X,STORSION - CIC(I,J)S/)
     GO TO 85
  101 CONTINUE
C
C
    CALCULATION OF D MATRIX
C
     DO 207 I=1.N
  207 ARH(I)=ARH(I)/GG
C
      (AM) MATRIX
  230 00 235 J=1.N
     DO 237 I=1.N
  237 AIC(I,J)=ARM(J)*AIC(I,J)
  235 CONTINUE
      IF(OH) 240,240,205
C
      (A C) MATRIX
  205 CONST = 0H**2
      DO 216 K=1.N
DO 226 I=1.N
  220 AICP(I,K)=CONST*AIC(I,K)
     A ICP (1,K)=00NST A 1012 M

CONTINUE

(I + AC) MATRIX

DO 225 K=1,N

A ICP (K,K)=1.0+AICP (K,K)

BNON (K,1)=1.0

CALL MATINV (N,1,0ETERM,ID)

IF (ID-1) 245,245,227

DOTUT 2111
  210 CONTINUE
C
  225 BNON (K. 1) =1.0
  227 PRINT 2111
 2111 FORMAT(2X, $****NO MATRIX INVERSE ****$)
GO TO 360
      DYN MATRIX
C
 243 00 242 I=1.N
D0 242 J=1.N
  DO 242 J=1,N
242 DVN(I,J) = AIC(I,J)
      GO TO 253
  245 DO 247 I=1.N
      00 247 J=1.N
      DYN(I, J) = 0.0
      00 25% K=1.N
  250 DYN(I, J)=DYN(I, J)+AICP(I,K)+AIC(K, J)
247 CONTINUE
C
   MATRIX ITERATION FOR OMEGA AND MODE SHAPE
C
C
  INITIAL MODE SHAPE
253 MS=1
255 DO 26G I=1.N
269 Y (I)=DYN(I.N)/DYN(N.N)
C
      ITERATION
 SLAM=G.J
KQK=0
262 DC 265 I=1.N
YN(I)=0.0
DO 265 J=1.N
265 VI(I)=0.0
C
  265 YN(I)=DYN(I,J) +Y(J)+YN(I)
      ALAMDA = YN(N)
C
      NORMALIZE MODE SHA E
      00 276 I=1.N
  270 YN(I)=YN(I)/YN(N)
C
      CONVERGENCE CHECK
      IF(A85(* AHDA-SLAH)-. 0661*ALAHDA) 305.275.275
```

275 SLAH = ALANDA 00 280 I=1.N 280 Y(I) = YN(I) KQK=KQK+1 IF(KQK-20) 262,262,285 265 PRINT 1634. KQK 1034 FORMAT(1H1/////20X,5*** NO CONVERGENCE ATSI35 ITERATIONS***5) 305 CONTINUE 300 FRQ = 1.0/SQRT(ALAMDA) PRINT 1035.MS.FRQ .KQK 1035 FORMAT(1H1,20X,SMODE SHAPES, I3,5X, SNAT. FREQ = S, E12.5,5XSITERATION 15 =1.13/) PRINT 1040 . (YN(I),I=1,N) 1040 FORMAT(10(/5X,F12.8)) GO TO (320, 350, 360, 360) . MS C SECOND MODE SHAPE 2 C 320 MS=2 C SWEEPING MATRIX SWPM(1,1)=0.0 00 330 J=2.N 330 SWPH(1, J) =- YN(J) * ARH(J) / (ARH(1) * YN(1)) C SAVE FIRST MODE SHAPE AND DYN MATRIX DO 335 I=1.N YN1S(I)=YN(I) DO 335 J=1.N 335 DYNS(I,J)=DYN(I,J) NEW DYN MATRIX FOR SECOND MODE C 340 L=M5-1 DO 345 I=1.N DYN(I.L) =0.0 00 345 J=MS.N DYN(I,J)=DYNS(I,J) K=1 342 DYN(I,J) = DYN(I,J) + DYNS(I,K) + SWPH(K,J) K=K+1 IF(K-L) 342.342.345 345 CONTINUE GO TO 255 C C THIRD MODE SHAPE C 356 MS=3 SMPM(1,2)=0.0 SHPH (2,1)=0.0 SMPH(2,2)=0.0 DNOM1=ARH(1)*(YN(2)*YN15(1)-YN15(2)*YN(1)) DNOM2=ARH(2) *(YN1S(2) *YN(1) -YN1S(1) *YN(2)) 00 355 J=3.N SWPH (1, J) = (YN(J) * YN1S(2) - YN1S(J) * YN(2)) * ARM (J) / DN OH1 355 SHPH(2, J) = (YN(J) * YN1S(1) - YN1S(J) * YN(1)) * ARH(J) / DNOM2 C NEW DYN MATRIX FOR THIRD MODE GO TO 343 C C TORSIONAL FREQUENCIES C FIRST MODE C 360 MS = 4 00 450 I = 1.N DO 440 J = 1.N 440 DYNS(I,J) = 0.0 450 DYNS(I,I) = ARP(I) CALL ZATRIX(CIC.DYNS.DYN.N.N.N) C INITIAL MODE SHAPE 500 DO 501 I=1.N

41

```
501 Y(I) = DYN(I,N)/DYN(N,N)
          KQK = 0
     C
       ITERATION
       502 DO 504 I = 1.N
           YN(I) = 0.0
           00 504 J = 1.N
       504 YN(I) = OYN(I,J)*Y(J) + YN(I)
        KONV = 1
NORMALIZE AND CHECK CONVERGENCE
     C
           IF(ABS(YN(I)-Y(I))-.0001*YN(I)) 508,508,506
          CONTINUE
IF(KONV) 510,510,370
DO 512 I = 1,N
Y(I) = YN(I)
       506 KONV = 0
       SES CONTINUE
          KQK = KQK + 1
IF(KQK-30) 502,502,514
PRINT 1034, KQK
DENOM = 0.0
MSS = MS-3
D0 440
       510 DO 512 I = 1.N
       512 Y(I) = YN(I)
       514 PRINT 1034, KQK
       370 DENOM = 0.0
           00 460 J = 1.N
       460 DENOM = DYN (N, J) *YN (J) + DENOM
           FRQ = SQRT (YN(N) / DENOM)
           PRINT 1650.MSS.FRU.KQK
      1050 FORMAT(1H1,10X,STORSION MODES,13,5X,SNAT. FREQ =8.E12.5.5X.SITERAT
          110NS =$.13/)
           PRINT 1540, (YN(I), I = 1,N)
           GO TO 5
       160 CONTINUE
           STOP
           END
```

SUBROUTINE MATINV (N1, M1, DETERM, ID)

C

C MATRIX INVERSION WITH ACCOMPANYING SOLUTION OF LINEAR EQUATIONS C NOVEMBER 1692 S GOOD DAVID TAYLOR MODEL BASIN AM MATI C C GENERAL FORM OF DIMENSION STATEMENT C DIMENSION A(,),B(,),INDEX(,3) C DIMENSION A (22,22), B(22,1), INDEX(22,3) COMMON A.B EQUIVALENCE (IRON, JROW), (ICOLUM, JCOLUM), (AMAX, T, SWAP) C C INITIALIZATION C H=H1 N=N1 10 DETERM=1.0 15 00 20 J=1.N 20 INDEX(J,3) = 0 30 DO 550 I=1.N C C SEARCH FOR PIVOT ELEMENT C 40 AMAX=0.0 45 00 135 J=1.N IF(INDEX(J,3)-1) 60, 105, 60 60 DC 106 K=1.N IF(INDEX(K, 3)-1) 80. 160. 715 80 IF (AMAX -ABS (A (J,K))) 85. 100, 100 85 IROW=J 90 ICOLUM=K AMAX = ABS (A(J,K)) 100 CUNTINUE 105 CONTINUE INDEX(ICOLUM, 3) = INDEX(ICOLUM, 3) +1 260 INDEX(I.1)=IROW 270 INDEX(1,2)=ICOLUM C C INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL C 130 IF (IRON-ICOLUM) 140, 310, 140 140 DETERM=-DETERM 150 DO 206 L=1.N 160 SWAP=A(IROW,L) 170 A(IROW,L)=A(ICOLUM,L) 203 A (ICOLUM, L) = SWAP IF(M) 310, 310, 210 210 DO 250 L=1. M 220 SWAP=B(IROW,L) 230 B(IROW,L)=B(ICOLUM,L) 250 B(ICOLUM, L) = SWAP c DIVIDE PIVOT ROW BY PIVOT ELEMENT C PIVOT =A(ICOLUM, ICOLUM) 310 DETERM=DETERM*PIVCT 330 A(ICGLUF, ICOLUM)=1.0

```
340 DO 350 L=1,N
350 A(ICOLUM,L)=A(ICOLUM,L)/PIVQT
  355 IF(M) 380, 380, 360
  370 B(ICOLUM,L)=B(ICOLUM,L)/PIVOT
REDUCE NON-PIVOT ROWS
380 D0 550 L1=1.N
C
C
C
  380 DO 550 L1=1.N
  390 IF(L1-ICOLUM) 400, 550, 400
  400 T = A(L1, ICOLUM)
420 A (L1, ICOLUM) = 0.0
  430 DO 450 L=1.N
  450 A(L1,L)=A(L1,L)-A(ICOLUM,L)*T
455 IF(M) 550, 550, 460
  460 DO 500 L=1.M
  500 B(L1+L)=B(L1+L)-B(ICOLUM+L)+T
  550 CONTINUE
       INTERCHANGE COLUMNS
D0 710 I=1+N
C
C
C
  600 DO 710 I=1.N
  610 L=N+1-I
  610 L=N+1-I
620 IF (INDEX(L,1)-INDEX(L,2)) 630, 710, 630
  620 IF (INDEX(L,1)-INDEX(L,2)) 630, 710, 630

630 JROW=INDEX(L,1)

640 JCOLUM=INDEX(L,2)

650 DO 705 K=1,N

660 SWAP-A(K,JROW)

670 A(K,JROW)=A(K,JCOLUM)

700 A(K,JCOLUM)=SWAP

705 CONTINUE

710 CONTINUE

DO 736 K = 1,N

IF(INDEX(K,3) -1) 715,720,715
       IF(INDEX(K,3) -1) 715.720.715
  715 ID =2

GO TO 740

720 CONTINUE

730 CONTINUE

ID =1

740 RETURN
       LAST CARD OF PROGRAM
C
       END
```

0 SUBROUTINE ZATRIX(A,B,C,N,L,M) DIMENSION A(22,22),B(22,22),C(22,22) DO 30 I=1,N DC 20 J=1,M C(I,J)=0.0 DO 10 K=1,L C(I,J) = C(I,J) + A(I,K)+B(K,J) 10 CONTINUE 20 CONTINUE 30 CONTINUE U 0 U 30 CONTINUE RETURN END U U 1 ſ F I U 45

DTNSRDC ISSUES THREE TYPES OF REPORTS

T

Ι

Ι

Ι

Ι

I

Ι

(1) DTNSRDC REPORTS, A FORMAL SERIES PUBLISHING INFORMATION OF PERMANENT TECHNICAL VALUE, DESIGNATED BY A SERIAL REPORT NUMBER.

(2) DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, RECORDING INFORMA-TION OF A PRELIMINARY OR TEMPORARY NATURE, OR OF LIMITED INTEREST OR SIGNIFICANCE, CARRYING A DEPARTMENTAL ALPHANUMERIC IDENTIFICATION.

(3) TECHNICAL MEMORANDA, AN INFORMAL SERIES, USUALLY INTERNAL WORKING PAPERS OR DIRECT REPORTS TO SPONSORS, NUMBERED AS TM SERIES REPORTS; NOT FOR GENERAL DISTRIBUTION.