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PREFACE

This report was prepared by Professor Shin—yi Hsu of the State Univer—

sity of New York, Binghamton, New York in partial fulf illment of contract
F30602—76—C—0211, for the Rome Air Development Center, Griff iss AFB, New
York. The work incorporated in this task consisted of texture—tone analysis,

sof tware development, analysis of digitized black and white aerial photo-
graphy, and estimation of stable parameters of the texture variables. The

project was carried out using both the DICIFER Image Processing System of
the RADC Image Processing Facility and SIJNY—Binghamton Image Data Pro-
cessing System.

The work described in this report was performed by Dr. Shin—yi Hsu,

Principal Investigator, Dr. Eugene Klimko, Faculty Associate, and

Graduate Assistants.

This study was performed during the period April, 1976 through May,
1977. Capt. Gregory B. Pavlin and Lt. Cyril Speyrer were the R.ADC

Project Monitors.
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EVALUATI ON

This final report covers texture feature extraction by means of measuring

the spatial distribution of TONES of the pixels of a given area. Both 1st

order and 2nd statistics are used . This effort is under TPO Thrust R2D pre-

cision targeting. This effort represents a fine tuning of feature extraction

and image classification that will be used in applications to the Automatic

Feature Extraction System (AFES) being developed at RADC.

DONALD A. BUSH
Project Eng ineer
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SECTION 1

INT RODUCTION AND SUMMARY

Current image processing capability at RADC employs tonal, spatial, and
limited texture feature extractor . To fill the demand for using a powerful

feature extractor for real—time object cuing systems, matching pairs of

sensed and reference map systems , this study is conducted with two specific
objectives: 1) to develop and implement software of texture—tone feature

extraction algorithms , and 2) to evaluate these algorithms ’ potential for ob-

ject identification and terrain classiflt’at4on using digitized photographic

data set. This effort will also provide additional support to a current RAD C
program with AFATL in the semi—automatic classification of ten terrain types

with black/white high altitude photographs.

During the course of this study, Rome Air Development Center (RADC) has

provided digitized image data , the DICIFER (Digital Interactive Complex for

Image Feature Extraction and Recognition) system for selecting training sets,

and the Color Printer for generating color decision maps. The major task of

image data processing was conducted at SUNY—Binghamton with the following

programs developed for this effort : 1) texture analysis using a (n x n)

window size to generate 17 to 23 texture—tone variables for each pixel; 2)

the Mahalanobis D2 logic for classifying pixels into one of the training sets

or a reject category , with a generalize—inverse scheme; 3) a step—wise dis—

criminant analysis to select the significant texture variables for the classi-

fier, with a confusion matrix ind icating the hit—rate of the training set

data; 4) generation of a numerical classification results according to a

(10 x 10) cells for a hit—rate analysis; 5) generation of the decision maps
using IBM 370 system ; h) manual selection of training sets; and 7) pre-

processing capabilities using principal component analysis, and factor analy-

sis.

Eight scenes, four of low altitude and four of high altitude photographs,

from the RADC Northeast Test Area (NETA) were used to evaluate the potential
of the developed texture analysis algorithms . Terrain types being mapped in—

d ude metal, pavement , soil, clutivated field , vegetation , water, and corn—

position——a mixture of several categories such as urbanized area . In some

1
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instances, sub—categories are used in the training sets such as two types of

pavement, cultivated field and vegetation, respectively.

The results indicate that the developed texture feature extractor to-

gether with the Mahalanobis classifier is capable of discriminating the

specif ied terrain types at a high degree of accuracy——a hit—rate of approxi-

mately 90% has been obtained using properly digitized photographic data. It

is also believed that the hit-rate can still be improved by employing a new

classifier which can take into consideration the skewness property of the

image data since about 50% of the texture variables are not normally distrib—

ut ed.

The main body of this report will include a literature review of tex-

ture analysis, the Mahalanobis classifier , and the analysis of the eight

scenes. Preliminary investigation of the potential of the stable distribu-

tion theory as a classifier will also be given.

Owing to the operation difficulties of the R.ADC color printer, or..’y

certain decision maps are produced in a color—print format. For anal’~ ,is

purposes, only the numerical classification results based on (10 x 10) cefls

were utilized to compare against the human interpretation. Hence, the ab-

sence of these color decision maps did not impair the hit—rate analysis.

Finally, the principal investigator would like to express his gratitude

to Captain Greg Pavlin for his technical assistance performed (for this pro-

ject) at RADC.

2
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BACKGROUND

During 1975 and 1976, RADC sponsored a study titled “Digital Image Pro-

cessing Techniques for Automatic Terrain Classification for Generating Ref-

erence Maps From B/W Aerial Photography,” conducted by Pattern Analysis &
Recognition Corporation , Rome , Ne~. York .  Since the correct c lass i f ica tion

rate of t~~is study ~~ about 80~ us ing the feature extractor and the classi-

fier of the DIC1:— }-:~ ~‘.‘s~ e~ , the i-~AI) ’ 
~“~sonnel felt that another study is

needed to ic;)r~ ’:e the u t - r a te  by developing a more powerful texture feature

e x t r a c t o r .  T h i s  h d  t h ~’ u u r r ~~n t  p ro j ec t  conducted by Dr .  lisu , us ing the

same data  set : - . r  :he i - ~7 5— 7 6  s t~idv

~ in’. f a c to r s in :  ~~enee t h e  h i t — r a t e  of an image data processing sys tem ,

the m a j o r  ones inc lude  the  per formance  of the f e a t u r e  ex t rac to r  and the

classifier. The D1CIFER ‘ .stetn ha s  a l imi t ed  capabil i ty of t e x t u r e  analysis

since only six first order statis tics are utilized : mean , standard devia-

tion , range , median , high and lu~.. :~ erefore , to improve the hit—rate , a

feature extractor using the secc~~ui . i t - r s t a t i s t i c s  has to be developed .

The c l a s s i f i e r  of the D I C I F E f -~ S~’stem employs the Fisher Pairwise logic.

It is similar  to the conventional  c l a s 3 if i er  based on linear discriminant

funct ions . The h i t - r a t e  can be improved f u r t h e r  if one employs a c lass i f ie r

whose mathemat ical  assumptions f i t  the  data be t t e r  than other systems .

Hence in this e f f o r t  a new c lass i f ier  named the Mahalanobis Logic is devel-

oped to accommodate the di~ i er s io n  characteristics of different training sets.

A genera i i2ed  it~ver se  schen~ is also developed to take care of the singular-

ity of the  di~ p ’L’~.ion matr’ .i s for each group. In f a c t , it has been deter-

mined that •-thcut 3fl~ ~f t h t . dispersion matrices of the texture variables are

singular or near singula r , w~tich cannot he inverted under normal conditions.

The hit—rate can also be influenced by the sample size , the loca t ion ,

and the number of the training sets. These problems are of technical ones

and will not be discussed in detail in this report . The rese’~rcners , how-

ever , should be aware of these problems .

In the late 1960s and early 1970s remote sensing researchers found that

the  spectral  data are  largel y not normally d i s t r i b u t e d . The conventiona l

3
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classifiers based on the normal assumptions work only in an empirical sense.

The RAD C personnel also felt that it is worthwhile to determine the degree

of the abno rmal behavior of the texture—tone data . The last part of this

report is therefore devoted to the discussion of this problem. A new class-

ifier based on stable distribution theory with the normal distribution as a

special case will be investigated in the Phase II effort  of this study .

4
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I
SECTION 3

TEXTURE F EATURE EX~L~ACT ION——A REVIEW AN!) A NEW MEASURE

3.1 A LITERA TURE REV I }T.~

3.1.1 Background

For years, the tex tu re var iable has been recognized as one of the im-
portant criteria for identif ying objects and scenes by the photo—interpreter

along with other variables such ~s tone , size , shape , associated fea tures ,
et~.. Here t ex tu re  means the apparent  minute  pat tern  of detail of a given

area , de3cribed o r d i n a r i l y  b y these terns : smooth , f i n e , rough , course , and

the  l ik ~€.  In d ig i ta l  data processing , t e x t u r e  means the spa tial dis tribution

of ~~~~~~ of the p ixels of a given area . Its attributes have to be specified

by the investigator—-a specific field of study termed texture feature ex—

t ract ion .

Texture analysis is a rather recent hut rapidly growing field of in-

quiry , though its importance related tc’ v f ~ ual perce ption was recogn ized by

Gibson as early as 1950. Over the past twenty years , many texture measures

have been proposed . This h~~iv of iiter~1t ure has been reviewed by Rosenfeld

in 1975. In general , these measures cai~ be gro uped into two categories,

Fourier—based (power spectrum) features and statistical features . Further-

more , it has been found that statistica features perform much better than

th’ other. (Rosenfeld , 1975) .

To obtain texture features , r h~ . i i a iy st  must specif y t h e  size o~ the

window or c~~~t r o i  area , .~~mp~~ ed of r x n or n x m pixels , from which texture

measures are to he t e i rur ~~~ u -~d .~nal\ ’zed . Fur the rmore , one can classif y

either only t h c  ~•~~ L e r  uu~~ r~t c i  :he window or the  whole of the  window in to

one of the s p e c if i ~~d grou~~ - -~ r a r e j ec t  ca tegory . For detai led mapping

purposes , the former pr”ce~ s ~. c re~~u 1r ec .

Texture features may i~~c i i ~~ su.:h f i r - .t—order statistics as mean , stand-

ard deviition , range , median , extreme highs and lows . More significant are

the second—order statistics , which describe how various pairs of pixels oc-

cur in specified spatial relationships.

5
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3.1.2 The Haralick Measure

In the early 1960s , Julesz employed transition probabilities to charac-

terize textures using scanned digital data. Here for any two grey levels i

and j, the transition probability p(i,j) measures how often level i and level

~ occur in horizontally adjacent position. This concept has been followed by

many investigators, and expanded to include other directions than horizontal,

and pairs of points that are nonadjacent. This is precisely the concept of

the spatial dependence matrix introduced by Haralick (1970) . Then texture

measures are computed from a serie8 of dependence matrices derived from eight

scan angles with elements representing relative frequency of tone levels of

neighboring cells separated by a predefined distance. The basic texture

measures of Haralick ’s method are the angular second moment (ASM), the

angular second moment difference (ASMD), the angular second moment inverse

difference (ASMID), and the correlation between neighboring grey tone (COR).

Using the directional parameters (00, 450 
90
0 1350), one can obtain three

measures, namely, average, range, and deviation, from each of the basic
measures (ASM, etc). Originally ,  he proposed to employ 36 texture context

features for classification purposes. Since his sample size is small, he

selected the following 12 features.

For distance 1: ASM (average, range, deviation),

COR (average, range, deviaiton), and

ASMID (average , range, deviation)

For distance 3: ASH (average)

ASM (range)

ASH (deviation)

The results of his experiment yielded a 70% correct rate using a maxi-

mum likelihood classification logic with a normality assumption for the data

set. It should be noted that the unit of this analysis is a scene (window) ,

not an individual pixel. The same method was also employed by Dyer et al. In

terrain classification with LANDSAT data, yielding a higher hit—rate (about

90%).

3.1.3 Mitchell’s Max—Mitt Descriptor

6



Recently , Mitchell ai d N e x s  proposed a new measure for  texture classi-
fication based on tie imau v .~s u~ll sy stem In t u i t i o n  that the important tex-

ture Information is ~~~~~~~~~~~ ic tht r,~lative frequency of local extremes

of various sizes ii: i nt e l u  ity . Thus it is called a max—mm textur desc rip—

tor. The princip al measure here Is the number of maxima and minima a long  a

one—d imensional scan direction , under certain threshold conditions . i-or in--

stance , the maxima is cal led a maximum only If the intensity fills the thresh-

old amount he1o.~ the  r~ax1mtiu before a higher valued ir~tei~s I tv is cu ount red .

Thus, by repeating the process i s  several  t h re sho ld  se t t i : , s , analogous to

Haralick’s distance setting, one obtains :1 vec tor  0! n u m b e r s  c I ia r a ct e r i z i n u~
the textures .

To make this measure in ~riao~. to iliur~~na t ion and resolution , M itchell

employed two transformational techniques : i) taking the I°h of the inten-

sities first; 7) using the ratio of t i e number of the extrema at  each thresh-

old to the next ltu. ;t u id o~ the ext rem.~ thumoel ve s

Compared to Hara flck ’s methsd , Nitche ll’s max—miri texture analysis per-

forms slightly better , but with such -~imp ler computational effort . Simil~~
to Haralick ’s method , this umalyi s uses the who~ o of the window as a

classification unit. it al -u requires s very large w indow size to obtain

these texture measures. it , t -~~~e f o r e , is not app l icab le  to classif y m di-

vidual pixels  due to ; r ar ed ~~~e - ef 1 e c t  induced by a large window s ize .

3.2 A NE~ ML-~~l hh M f - N .

t o  i u i s s i t ~ :u d u ;ld .ti pixels rather than a i~xeup of pixels (wind ows) ,
it is :r r ~~ - ’~~e 1  t t . ,l~ 1 f l~~ ~oxtur e measuremen t with 17 and 2 3 varIables be

derive~ fro’u “ ~ 1 1)  nd t5 x 5, Model IT~ wind ows , respectively .

In the ~u a ~~ - I . , tac ei w ~ ii move f rom one pixel  to another  with an

ove r~ ;i~~1ng e~ or. ~see n ~ .id~ ac en t  p ixe ls ;  and only the center point i - u

class it fed .

l i t  Model I , t i :  s v a u t o c n  t e x t u r e  v a r i a b l e -u  ar e :  ( 1) through ( L )  a re

the four central moments , (5) I s t h e  absolute  dev ia tlon  f rom the mean , (6) is

the coat ras~ of t lie ~. euter point i rca its ui i gtuho is , (7) the mean bright. --

ness of the center point r -l t ly e  t~~ i t s  b a c k g r o u n d , (8) is the  cont r : iot  bt:~
tween ad jacen t  tue i g htor a , (9) is the s~nn of the Auared va i U C  of (8) . (1 t) is

L 
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the contrast between the second neighbors , (11) is the sum of the squared

value of (10) , and (12) through (17) are the mean area above and below three
datum planes (50 , 100 , 150) . The code names and computational formula of
these seventeen variables are g iven below :

TABLE 3-1. THE TEXTURE-TONE VARIABLES OF MODEL I

Code De8cription or Computational Formula

1. MEAN average

2. STD standard deviation
the four
central moments3. SKEW skewness

4. KURT kurtosis

S. MDEVN lx
1
—xl/n , where x1 tone value of individual

pixel
x ~ mean

6. MPTCON lx —x 1/n, where x = tone value of the centeri c  I
point

7. MPTREL (X~~~X .)/fl

8. MINCON lx
1—x .1/n, I and j are adjacent pixels

9. MINSQR (x
1
-x.)

2/n

10. M2NCON lx j _k
kl/n

11. M2NSQR (xj—x,K
)
2
1n

12. MADAT1 numerical calculation of mean area above datum 1
(50)

13. MADAI7 mean area above datum 2 (100)

14. MADAT3 mean area above datum 3 (150)

15. MBDATI mean area below datum 1 (50)

16. MBDAT2 mean area below datum 2 (100)

17. MBDAT3 mean area below datum 3 (150)

- - - - ~~~~~~~- -~~~~~~ ~~~~~ -- - - ~~ .- - ~~~~~~ -~~- .
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In Model III , w i t h  a (5 x 5) d sigu , fn addition to the above seventeen

variables, three n u a ~ ures are extracted ~e :h uracterize the oscillation na-

ture of wave—form s of the siar. I ines obtained along both the x and y axes of

the data matrix; thus. sfx vaciables are available for analysis. They are

1) sum of the contrast values from peak to trough ; 2) sum of the distance of

peak positions from the origin ; and 3) sum of the number of peaks and troughs.

This means t ha t  there are altogether twenty—th ree texture variables in Model

I I .

1’ \hLE 3—2. ADD ii aNAl. :AR~AhLlIS IN MC~P FL II

Code i escri2tion or  Formula

18. XCONT ( d i s tan c e s  from peaks to troughs) along x—ax ls

19. :~P E~ h i~p a F  ~-osIt1ons from the c .rigil-:) along x—axis

20. XPANDT (nu :u~~cr of peaks and troughs) along x—axis

2 1. YCONT (li ~~tances from peaks to troughs) along y—axis

22 . YPEAK (~~ o ’ positions from the origin) along v—axis

23. YPANDT tu s h e r  of peaks and tro u~1 i - u ) a long y—axis

3.3 I PMPAR I S(Th~ d-t~NG ~i NE 
,
I’Iikhf. ~F_AsUhl~ lENiS

In sum , we l i s t  the  above—ment ioned  t h r e e  t e x t u r e  measurement  ~n t e r  

of their compu~ ::t~~ona cump l esir ’ , r eq u i r e d  wind ow size , and cla~ sitication

unit for - -  u p -  u~~ti i~~o~l’ ~s.

9 
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I
Haralick Mitchell Hsu

Computational Rather Very simple Simple
complexity Complicated

Required window Depending on the Very large Very small
size needed pre—determined (3 x 3)or

distance (5 x 5)

Classification Only group of pixels Group of pixels, Pixels
unit being tried ; but it not applicable to

is app licable to classif ying m di—
classif y individual vidual pixels
pixels

Hit—rate ca 70% (unit of ca 80% (unit of ca 90%
reported analysis: scene) analysis: scene) (unit of

analysis:
pixel)

Owing to classification requirements specified by the AFATL program ,

the proposed new texture measuremen t is preferred to Haralick ’s and
Mitchell ‘s methods .

10 
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~ECTIo~ 4

THE P-E’~ELutME NT ‘aF THE II~uIALAN GBI S CLASS 1FIEP.

4.1 BACKGROUND

Over the year s, researchers have been using various f ads  of s t r a t e g i e s

to classify image data into meaningful groups. Among them , some have mathe-

matical rigor and others do not. In general , they can 5 o r -:p ed Into non—

paramet r ic  and p a r a m et r i c  :~ethods . Examples ~f r c ~n~ ar:u1 c’t ric methods are

minimum distance to u.:~~ou :- , i u i ru in ~ u distance to ru- ~ rest m en ies of a class ,

etc . Parametr ic  m erH ~~as used by leading remote sensing centers  can be

grouped tuit c two broad - a:tegorieu .: 1) maximum ~i~ eiila:d ratio dacision

rules based on a Bayesian fa- rmution , i priori probab ility i r ume ~ ork; and

2) a class o linear discriminant functions based on post arfcr probabiliti es

for classification . (Nalecca , l97 d , Swain , 1973) . -\~ 1 these cla ssification

method s emp loy traini a~ sets (design sets) to define the class characteris--

tics, therefore , th are c’.h~led ‘ su srv sed methods .~ TI clustering methods

are used to group tac pc-j i~ at~ ons inta distinctive classes , ,ne obtains an

“unsupervised” method . Sinc e the a ~unetvised methods are very time consuni—

ing , they are rat gt nes: lv em’~ :ed and thus will not be discussed here .

4.2 T~iE GENERAL CLA SNirie ~ ~~i ij N PRi ~i~IPL F

Within ti- c fra - cv - -- r ~- of pa rame t r i c  analysis , one employs a --vo~ all die—

c riminan t  ana~~~sis to c 1-~s s i f v  an object  into oae of k t y p e s .  I t  ~s a s s u m e d

t i u l t  t u e  sp~~- - ral!te~ t cral signatures of the ob u ects have cer~sity functions

‘
1
(Y),... , F~~(Y~-~~ ht- r e P . is the density function for the objects in the

Lth c l as s .  ~ :. siaii i~ r~ 1:01: - d as given by Rao (1973) is to compute the

numerica l  va i ce  ef P - i - . h o r e  [ is the density of the unknown object , foi

each i 1, . . . ,  k , a l  ~i l a c e  the o~jeat unto class i for which P . (Y) is

largest. Jr. case the P
1~~~

f)’s are mu lt i va r i at e_normal ,  t h i s  method  leads t~~

the usual linear dis crimitua nt function . The method can also be modified to

incorporate a priori distribution ‘r~~, i = 1,..., k, if a Bayesian approach is

desired . Here , the quantiti e- it~ P~ (’u ) ire computed f o r  I = 1 k and the

• object whose spectral srsui.iture is Y is placed in the ci~ ss wh ich max imI z~ uu

11
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1T
1
P
1
(Y) for I = 1,..., k.

4.3 DIFFERENT APPROACHES

The Bayesian approach has been reported by Fu (1969), and employed by

LARS of Purdue University. The linear discriminant function methods are

discussed by Morrison (1976). The Fisher Pairwise logic of RADC , and the
proposed Mahalanobis logic are examples of the linear discriminant function

approaches. Under the same conditions , these three methods should perform
equally well. The difference is performance will come from different as-

sumptions that the classifier accepts.

For example , both the Bayesian and linear dlscriminant function ap-

proaches assume that 1) the spectral data are multivariate normal, and 2)
they have a common dispersion matrix . Researchers , however , have discover ed

that spectral data are generally not normal, nor do they have a common dis-

persion pattern . Once we tuke into consideration these two problems in the

design of the classifier , correct classification rates can be improved sub-

stantially .

4.4 THE DEVELOPMENT OF THE MAHALAN0BIS CLASSIFIER

Here we describe the classification scheme used in this study. The

starting point is the maximum likelihood general principle described in
section 4.2. A parametric form of the probability density function is

chosen in advance . Usually, this form is a multivariate normal distribution .

In this study we xirs t use the normal distribution theory to develop a

Mahalanobis classif~Ler and later we introduce the stable classifier in sec-

tion 6.

After the chci - i ul a parametric model , a train ing set is used to esti-
mate the parameters i’i the probabil ity densities for each separate class ,

e.g., soils , metals , etc. tince the parameters are estimated , the par ticula r
individuals may be classified according to the maximum likelihood principle.

Each individual is characterized by a vector Y whose coordinates consist of

the values of the 17 (or 23 depending on the particular model : 3 x 3 or 5 x 5

being used) variables listed in Table 3—l.Under the normal distribution theory

with the non—Bayesian approach , the probabil ity density function for the ith

12 
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class is given by the formula

T .
~, ~~u — ~j )

(1) P . 
~~~ - - a C i 1

1 (~~~)PI u . ~/2

where i~. is the vector of means and is the covarlance matrix for each

class. lh~ uia~-: mum like ‘ ihood pr inc iple then dictates that an unknown ob-

ject be cla~ s~~t ied I t u - cia- ~ i It P . (
~

) a P .(Y) for all different from
C) 1

i .  sing loparithms , tI ls rule can be restacec as: dllass~ fy into class i

if

T -l ,. -(2 )  lo~ - -  -r ~~---a . ) L ( i -p .  )~
0 0

log 
~~~ 

(Y_ ; j ) T ~~ 

1(y~~~) 
-

f o r  every I d f f e r e nt  fr o m  I . The quan t i t y

(3) D~ = (Y_ ~~
1

) T 
~~~ (Y - p . )

Is called th e Mahalanobis  d~ s e - ’r -e e  s e t ~ ~em tb -c f ixel whose ca r i ab le  val~ * s

are given in the ‘— e ct o r ‘i and the cla~~s I whose parameters are p .  and

Since the va~~:os of thf Sc p:tamere~ s p and are unknown befo ’-ehana ,

they :u - ust be est iruatci from the data o~ tafned t rum the t r a i r  i m p  class.  Ou~ e

these estiutat°s iire o a t u oeo , tWos are then used lo r  el ass- fv i r .g  the en t i re

image.

‘ lu r ing  the  ~n t t  - -wes of the study , the  assumptico that all co—

variance u~a r i c~~s ~ -ar~ uu j  was made , hut q u i c K i v  discarded in favo r of in-

div idual  covar l -L - a -e  rr~~ r i  -os ; f o r  each class. ~lien this  was done , t he c o v a r i - --
—1

ance -matrices were Y - a i n d  t ’ be s inp u l a r .  in t h i s  c-use , the inverse of

the covarlance matrix cannot so uoed , but  u n  i t s  p lace , the ~~~~~ra lized  in-

verse of E must be ised . In ci rat , all of the -c issificatlon thuor - h o l i --

i f one rep laces the t r - i r -  inverse in t e  formula by its generalized inverse .
- ‘hen the tr~ e inverse exists , the algorithm for producing the generalizud

inverse a c t u a l ly  pro nu s the t r ue  iu ~v~ t s .

_ _ _ _  
~~~~~~~ -~~~~~- - - - -  --~~~~-- - ---- ~~~~~~-~~~~~~~~~~~~ - - - - - -  _ _ _ _ _ _ _ _
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Conceptually, the simplest method for ob taining generalized inverses is
to use the spectral decomposition of the covariance matrix

(4) Z =

where is a diagonal matrix whose entries are the eigenvalues of ~ and P is
a ma trix whose columns are the eigenvectors of suitabl y normalized so tha t

the length of the vector is one . A more efficient algorithm is available

for computing generalized inverses. This algor ithm is described by Searle
(1971) , p. 18. It consists principally of solving the systems of linear

equations .

(5) =

for X an~ ther < ~ il1 he the required genera l i zed  inverse.  The geru era l ized

inverse is not unique , but any vt- nt-rali zed inverse used p roduces exac tly the
same classifications . For this i~~ison , we have used the term “the general-

ized inverse” rather than ‘a g e ner a l i z e d  Inve rse ’ .

4.4.1 Classification Rules

From the discussion in the -receding sec t ion , it is clear that the

classification rule states that a pixel should be classified into the class

type (soil , metal , . . .)  for which the Mahalanobis distance is smallest which

would also be equivalent to putting the pixel into the class for which the

posterior probability P(G I Y) is largest. If classification of each pixel is

mandatory , then this rule is used . On the other hand , if it is permissible
to have s~me p txe]u~ u:neiussi rled , then the alternate probability P(Y~ G) that

an object in group G will have a Mahalanobis distance as big as the observed

one for this pixel is found . I cutoff probab ility is established (generally

a small value) and the pixel is declared unclassified I f  the probabil i ty

that this pixel belongs to group d is less than the cutoff value. During

the study ,  various values have been used , sech as .01, .001, etc. As an ex-

ample of this rule, suppose that the mandatory classification rule dictates

that a pixel whose seventeen measurements are deno ted by \‘ is classified as

a metal because metal Is the closest class to which this pixel can he identi—

fled . However , the probabi l it y tha t a me tal pixel wil l  have meas uremen ts as

14
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di er ~- u u  I ro:.u the act ~1 :1 . s s u -; as tb~ s ~~ tic u l .~ ura - Is sir.a~ l, say .1,01

In this case , ii cn~- ioss~~: ied fxe~ u - - ‘ nu t tteul , tCier ~ it will hu ~ee1ared

u n cla s s  f I e ~~.

4.4.2 Sep’r~ tion of Cl ues

The most straightforward method for determining whether or sat the

selected classes ~r uu t - -~ i , soi l .  ~tc .) can he separated is te- cceuupute t i -~
estimate of the confusico nat’-ix. In computing this estimate one must pu

attention to ~~eY 
‘5 u t  u s  ipl e 0! saur~ ie size . In particuLur , tic number of

samples se ics~~ed fu r  each c l a s s  must he at leust ~~~- s - . time s t u  number of

measurements associated  w i t h  each p ixe l .  (On e ci actually use the ronh of

the covar m~ e m at r i x  f o r  t u e  au - u - ~,uuemen:s in case there are ~ultiple col— 

i t-s  ~n t oe  d a ta .  I pis would re~ uc-c the  S~ou1J IC S1ZC - -
~~~ mewhat , Oi~

t u i a u g h  s-a:-up i -  size was a-ut  a psuP cu in this studs .)

The u u ~ m a t e  of this  m a t r i x  is sim~ ly an a rcas  of the uue r entafes of

cases mi sciassified int o e n  ~ f t~~ lasses. If all sf toe cases are cor—

reccl y c l a s s i fi c u , thu e ; uparat  ~~~ is perfect. cm this un-u , It is p robably

possible to reduce the  number Si nests used a~ - och j i x ~- 1.

St e~~~- t c u dis cu - cloi n t a~
— o~~v u i ~ , can be u t i l i z u d  to se ’

~- -ct mea -unrements

or features ~ ‘ien are most useful to discrininate betucen classes. Th is

steç’v cs- pro -ante coS f-;ts oil selecting the feat-ures-- -cuu c at a t ime—--whicu

con triiuiu e me tcw~ir~. t~,e — -~~ r a t  Ion of groups . Ti-c ,eiec ti’ s procedure can

be ctonp~ as ~~ o iu ~~ enough uti :i L u  have tee-u select h t o  produce a coti -

pieCe s parat~~ - -  -:1 tu~ u r— - i ps. In the .sre1~wise dfscr imia -.-inn puu c &cdure , us

F ~ es r  ~os€-d ott the 1u ’~u r 1 I u . ~ ’-d rat io ~-r i~~ctia is made to scu l~~~- roe features ,

r a t n er  cuu 1~ on n uil - - . a the iuc n lusion m a c r l - e s .

~~~~~ u~~ Ji u  - ins

At each u ix~- l , a et f s~.tures ut- menu-~u i culuentu are ~1t-uen whIch - 

cribe tO~ text u re and tone ot that particular pixel. During the ini tial

~1~~~~c I the s:uidv , the u~.u or object Lye u IS  to select th features vhf di

would contribute roost r:u the sep atat is -u of the  t r a i n i n g  c lasses .  i n i t i a l l y  a

large number of texture features were chosen . Princip al components ,unvi ~~~ ‘—

lated factor inal neis methods were used to de t e n uutu- ttW number of non terc

cigenvalues in clue ccs’lr ar’ L matrix of the features . This information des—

-r ihes the number of essentially dist inct I O u t  uu es wh t ii exit,’ i within the

data.



SECTION 5

THE AN ALYSIS

5.1 THE DATA SET

The data set for this study is composed of eight scenes of the RADC ’s

Northeast Test Area : Griffiss AFB , New York (GALA, GAHA); Verona , New York
POL Storage (VPLA , VPHA); Stockbr idge , New York , SAM Si te  (SBLA , SBHA) ; and

Utica , New York , Rail Yards (URLA , IJRHA) at both low altitude (LA), and h igh

altitude (HA). Their geographic locations , elevations and flight heigh t are
given in Table 5—1 .

*TABLE 5—1. iFi li DATA SET

Geographic  Image
Scene Coordinates Elevation Flight HeiBht

1 GALA 43°l4 ’N , 75°25’W 515’ 15 ,500’

GAHA 61,500’

2 VPLA 43°08’N , 75°36 ’ i~ 500 ’ 15 ,500’

VPHA 60,500’

3 SBLA 43°02’N , 75°39’W 1290’ 16,000’

SBHA 60 ,500’

4 U RLA 43°07’N , 75°13 ’W 410’ 15,400’

URBA 60 ,500’

*RADC - TTI --  76 — 196 Final Report by PAR , pj . 8—9.

After di.giti’ scioti th e ground resolution of the low altitude and high

altitude images are app~ uxun atel y 8.75 feet , and 56.75 feet, respectively .

It should be noted that the images have a much higher resolution level.

Stored on tapes , each scene is then composed of (256 x 256) pixels , with
tonal densities ranging from 0 (black) to 255 (white).

For hit—rate analysis , high resolution photographs are provided by RADC

as the basis of the ground truth information to be obtained by manual photo-

interpretation .
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5 .2  THE WA ’~ir 1 F~IClLlT’i

To cor~ v out c i~ - stud , the DICIruR .;;srer at R,c’u; , ~iIR the IBM 370—

158 ge~~ ra1 Lu ’urp- ;e Co ui it ac - h V— ~5~ - u j~~ tor. were utt L Z C C . While tir e

RADC 1 ardtuie sy ~ t ecu ~ u .s -~.sed l u  I ~ i tize ti - i nra) - a d~ .a , fl score t l i e

data in can~ - v ~~~r compat ib le  t ape , 3 select tht  i n i tial  train u n) sets , and
4) generate the color h - c  ision mal -; , the IBM 3K systutoti was used mainly  to

process tI c data w ~th tI~ soft~~ure 
t ovoloped at -- agtuam tnn .

The IBM system was riso emp ia~~~ to ger:.~rate the tone maps and the

f inal  decision ~~ ps w i t h  r h o  i ’r in t e r  - Th i s  allows tn resear  ncr to sele-uit

the a p p ru p r i  ~te t ru ir ~~-tg s et s  manaai iv  f o r  t I e  c l a s s i r i e r .  The decision n ap

was t r an s i ated in a ~~ume: i s  i i  c L a s s ! i lc a t i o e  of each group  a c c o r d i n g  to

~u x i i)  Le~ ls ~ OLC was thee tsed to check  aauine~ L I  C n u - .u.~1 :~t e rp r e ta -

t i  an :est i t ~~~ ~ i 1 t — r - i t o  i n ;  lysi s .  -

5 .3  THE c iO T~’A~~J; SYS1 -
~~~~

The computer  t , r s C r u u r o  u sea in  p rocess  in~ t i e  imace d at a  inc l 1de the fol-

lowing c a p a b i l i t i e s:

(1) T e x tu r e  tone art uu~ -csi ~ - .~uirp a n x n) w ir i -1- ~- - i :u t~ g e n e r at e

l to 23 torts to van ables f u r  each PIxel

(2 )  The rL~ u~l usch i s  Logi t a r  c 1 a - s i f ~ Lag p ixeis  i n t -~ :ue c t t i

design scm or a re5 c: catego ry .

(3) A p e n n - - i  iz~’—i averse  sc:teme to invert si e n lar  or - e at  --
~ a :~” —

t a r  m a t r i c e s .

(4) Ge~ e r r ~~c ; of a n o n  r~ cal c 1assif ~ ca t  Ion r e su l t s  acco rd i ng to

x l~~ c C i i  as t h o b a su s  ~ f h It—rate aruol yni s.

(5~ St~~~~1s : r c r i m i u ~~r r u  c a l ysis  to se lec t  s i g n i f i c an t  t e x t u r e

V t i - u  ~~~~
(6~ Fr~ ,uru - ~ . ‘ah f l i t - .’ u ucluding p r i n c i pal u- aun t-

fjct. r arat s~ s. 
-.

7) Gen -- -urt ion of icr- a t e .1 nti s using I SM 370 svsrcr i

(8~ d+ r erat ion c orutus is ; m a t r i x  with tue - u~~r nc~ sot data.

(9) Generation of D
2
—distanees with !rotst if ty  - ‘ I  h e tw e en

classes .

(10) Manual 5.- I c -  tion of rur I n or; sets .

17 
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5.4 GENERATION OF A DECIS I ON MAP

Decision maps are produced using the following computational steps:

(1) Generate the textuce—tone variables for the training sets and

the unclassified set.

(2) Compute the parameters for the discriminan t function .

(3) Classify the training sets , thereby obtaining the confusion

matrix.

(4) Classif y the unknown set.

The step one is done b y the program “GENV AR .” This p rogram reads con-

trol cards specif ying the position and size of each training set. The vari-

ables are computed as documented in the GENVAR program and written onto a

disk data set.

The remaining steps are done by program “SPCMAP .” It reads control

cards instructing it as to where the training sets and test set may be

found, and how many points are contained in each . It also reads titles for

the training sets and lists of symbols to he used for  the  map output . For

each training set , the centroid vec~ or and covariance matrix is computed .

The covariance matr ices  are inverted usin g a gene ral ized inverse scheme . In

order to classify a poin t , the quadratic forms of the differences of the

point vector and each group centroid over the corresponding group inverse co—

variance matrices are computed . This quadratic form is the Mahalanobis D
2
.

The group which is closest to the given point is chosen .

If the user wishes, a map may be generated in which points that do not

strongl y belong to any training set are excluded or classified as rejects.

This is posa L i e  because D
2 

is Chi—square random variable having a probabil-

ity value. If Its prohasIi ity is below a certain fixed cutoff , the poin t is

rejected . Rejects are left, blank on the decision maps.

5.5 HIT—RATE ANAL:S1S

To assess the performance of the developed texture measures , hit—rate

analyses of the test sites have been carried out. The procedures include ,

1) placing a (10 x 10) grid onto both the computer decision map and the

photo prin t of the test area , and 2) estimating and enumerating the percent-

age of all terrain type classes in each cell. The hit—rate is computed as:

18
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D~’ t c u  et - e e  b e - eer p h o t o - - i .  r~ rp :t a t i s n i

H i t — t a t e  1 — 
an ,~~ m- u t e r — h u - ; f o n  ma~ —~~ ____

1010 co -Int e rp r e tat Ion  ( I n  t ern u c f
s t a t  area of each cl  ass)

or 1 — ,- r:- o~:- ran~

The f ol l o wi n g  teole s uru - i .ar i z e s  the r e n a i t s  of t h e  u u a - - --.~s. It. can ne

concluded that  f o r  a iarg~:r area a hi :- - u a t e  of a i r  -
~ ~ ~~~ be o b t a i n ed  w i  tI

properly digitized inap~~ . flue hit—rate for art-all area s is stat~~- n ca 1ic

meaning les , . It I l u ;  bern f ou n d  t m i m  d f u ~f c i  n i  fl~~ error ’~ cx ~st i t :  t n :  r u i gn

a l t i tude  irna.~e:; ~liAIi;\ , f t i m , U X i t t t ) , th ut - - h i t— r a t e s  I or h e - u r- f a u n a  : must  be

chta~ ru~ o by us ru g sub - hraup u wi th in  c a t e g o ri e s . u r  in s te i t c e , in VPHA to--

t y p o ,  of cultt va ted fl~~t h- - ~~- i e  used in t oe  t r a in ing  sets

[A dL E  5—~.. H i t -  h~ TES

Cul t  ~t eh  i’ ave-- Co~~to
Vc~ e t -i tuc ~ Pield 

- 
‘ie t~~l 5~~’ f f  n e r t  

- 
- - n t  ~ sition

GALA 88. 4 ;t, ~ .-~67~ 9~2’ 53.13% 9 .8% — —  — —

SBLA 89.81% 8~i .5 ’ h% ~in re— 87.13% — — Too er - a l l  an
area fo r  rurc an—
:lngful assess-
ment .

L RLA (in r e j ec t s )  — ‘- B U .  h 4 5 . 9 0 %  8 a . K% — — 87 .4 0%
VPLA 90.0O~ 3 5 . 5 %  9 5 . 0 %  86.00%

*:Ar ~ \ (V e~~ . & G u i .  t~.iu .5 l ’n — —  85 . S  72% — —
f I eld)

SbmA - , q % 
~~~~ 

-‘- -- - 81 ~ — —  — —  95-u,

— —  93 .7 5 % 70 .1% — —  85.1:
(5 x 5)

- -eAhA

*
inc icr- c:, - I .•s r - ~ -- - U l t  iva ted f I el , lIP ‘arr~ r vs . ~iW cerner, Thus

vegetation ari d c u t t i v i ~ cd tle :us ore created as one group .

**
% e V ~ - :  tone tor cuittvated field due to d i g i t i z u a c  error wh i ch

1; ; t r , . ~~ confusion .- :w e e -ru v e g e t a t i o n  and c u l t i v a t e d  I n t i s .  (Top ~n e - L h ~~c~
vs. lower two—thirds .)

N o meaning f u l  h i t - r a t e - . Ca be o b t a i n e d  due to  d h u u i t i z i n u  err or . ’
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The analysis shows that a hit—rate over 90% (except for soil) has been

achieved by Model I. It should be noted that the photo—interpretation of

the ground truth is obtained from a high resolution aerial photo rather than

low resolution images  f r o m  which the c o m p u t e r  d ec is i o n  map was derived . The

author has investigated further the problem regard ing the soil class using

the ou tpu t  from Model I I .  L t  was fir st thought to be the “edge effect. t’

However , sinc - the ruis—cl ;issif icatio ri of the soil pixe ls was largely elimi-

nated in Model II , i t  was t~ iL- ’ e-foCi - d e t e r m i n e d  to he ‘ u~ solution effect ,”

which was purposel y in.i;IL i t  i n t o  t h ~ i i - : i ~ces during t h e  process of d ig i t i za -

tion. The performance of Mod ’s! I I  i— u b e t t e r  t han  Model I, except i t  has a

larger area of re lect , arud occas j o i n . ;  I i v  pronounced ed ge effect

5.5.2 SBLA

In genera l , t In e overal I terr a in patt ern ins - ou t  v e r y  w e l l  in t lue deci-

sion map. The SAM s i te  and t u s f s  I r n r e t a l — o hj c u : t s )  were  c o r r e c t ly i d e n t i f i e d

using the rejec t catcg r- ,.

Similar to I~\LA , “ r~- - o lu t i o n ” el ec t  occured . i t  t o -  ‘0-dg ~~’ of two dis-

tinctive classes, and at cer ta in - : station areas.

The re jec ts  reg is . ; w~ - r  u i : u :t ‘ of the  to ta l  area . There  wos  no

s i g n i f i c a n t  d i f f e r e n u n e  betwe en: t r u e  “ ce~~r - t ’ pattern determined by P ( X / G )  =

0.01 and that  Ow I ’ (x / G  = 0.001. TOt ; means that the pixels being rejected

were really diffe n.nt from t h e  des ign  u-;ct s .

5 .5 . 3  VPL A

2he over -i l l  - n  r u i n  p a t  t e r n ;  in the lieS isioni map was good in the  sense

that essu - .t la l t uea~~ e re cot r~~-t lv identified . In terms of a detailed hit—

r a t e  a n o u t y s i s , t h~ :~ ~ t~ - t c h . s - n f L - .- r t i o n  r a t e  is a b o u t  85% ( e x c e p t i n g  pave-

m e n t )  Two f .~ ter ’;  r i ; :  -s-i t i r e  e r ro r r a t e :  1) a s p h a l t — p a v e d  road could  not

be d it  fer cn t  t at c i  ‘ ruin f i e l d s  used f e  u r e ’s  r e a t i on a l  purposes ;  and 2 )  a new

c e n i c r e t  e road wa s  Se  j o g  b u i l t  tiL the  t ime the  image was taken——many types  of

‘‘ pavement ’’ w e r e  p r ~ setit at th  I s e c t  ion of t i r e  image . I t  c u l t  i va t ed  fiel d

and s t y -s - - n t  were t r e a t e d  is one group , the h i t — r a t e  w i l l  be over 95%.

To a c h i e ve  a co r r ec t  c I r s s i f i r i t i o n  of t h i s  f rame , f o u r  types  of cul-

tivated field were used in the training sets to cover significant local

n
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variations . In terms of the training set itself , a hi t—rate of 98.4 was

achieved . However , in terms of the test set , the hit—rate is much lower due

to significant local variations.

5.5 .4  URLA

The L ’RLA was a more c omp l i ca t ed  f rame , thus  an i t e r a t i v e  process was

u t i l i z e d  to generate the decision maps. The more obvious classes , such as

metal , pavement , composition , etc., were processed f i r s t and the “uncertain”

and insignificant (in terms of aereal coverage) vegetation , were left out.

The “r e j e c t ” area thus  represen t s  mixed wa te r , vege ta t ion  and cu l t i va t ed

f ields , etc. At bo th  0.01 and 0.001 probab ility reject levels , the area

showing “rejects” is very small , corresponding to a po tent ial area of mixed

water and vegetation.

5.5.5 SBHA

Th is was the onl y frame in the high altitude image group that had few

dig itization problems . lb’s generation of the decision map was therefore

rather straightforward due to less complexity in the te r ra in conf igura t ion , ci

v e ry  h igh  h i t - r a te  was ae l t i tn ved  (over 9 5 7) .

5.5.6 VPHA

Image d i g i t i z a t i o n  e r r o r  e x i s t e d  in tire f rame ; specifically the upper

o n e — t h i r d  is mu ch l i g ht e r  than tiit ’ ~W r  I w o— t h i r d s  por t ion  of the fran, .

i n g  t I n ’ s  ~\. I H  R sy s t e m , i n -us d n -r ; : i n ed t h a t  a 30—point difference

sxi stru j ~ - . u en t l tn’ s~ t v ’  p o r t i o n : -; ~ f t i r e  I a la - f r  cultivated f i e l d  c a t ~~—

gory.

5 . 5 . 7  0 \ l i ; t5~

fl it -  s t ::n & -  2 i ~~~ L i .- - . : t i t : n  p r o h i c  ‘s i i l - I  ~i 1 -  : u t  t h a t  the NE corner  of

GAIIA is much 1 i g L r t ~~r t I t  i i  t I ic  sam 11:1 i t v 1 , s  i n  the SW c o r n e r .  To pro-

cess t h i s  f r ;t r n , - , Is -  ; r t i ’ i c i a !  typ es u ’ ’ cu l t i i  i t ’ d  f i e l d s  had to he used i n

the de’ ign set s .  S i n ’ s  vegetz l t b i t  and t u l  t ivated field classes were reall y

co n f u s c~ I by  this d i g i t  I .‘.r t ion eff - u’  t , t toy were grouped as one ci  ass in the

h i t — r a t e  utn i d ys i s .

We were unable to nOt t i n  a n - i i  I . -  h i  t — r : i t e for I1RHA due to tire same

d i g i t  iza t ion p r ob i  err . h owever  • we wu 5’ - abl e t ‘su produce a fairly good dec i -

_ _ _ _  
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sia n map in t erm s i tt the  i ’ve r o l l  t is rr.rin pat tern.

5.6 ~ GENE R Al ,  COMNEN T ON TflI - D E C I S I O N  MAP ~t~K l N ( ;

In add ition to the feuture extractor and the c l a s s i f i e r , the hit—rate

and false alarm rate also depend on the factors regarding samp le size , the

loca tion , and the number of the training sets.

The min imum sample size pr oblem has been inves t iga ted by Forley . His

principle states that for a valid analysis the minimum sample size is three

times as large as the number of the van ,, ales used. For instance , if one

employs ten texture variables in the analysis , the m inimum number of each
trair r ng set is 30. It is also our experience that the Forley princ iple is

valid and that empirically ,  the samp le size of each tra ini ng se t should be
greater than 30 pixols in general .

Improper training sets generally lead to a low hit—rate. To avoid such

an error , one should first employ the confusion matrix (from the training

se ts) ,  to identify confused classes , and to locate mis—classified p ixels on

the (preliminary) decision map . Then , one should change the location of the

train ing se ts in order tha t “pure” training sets can be obtained. This is

an iterative process , and it can be done manual l y or by the opera tor  us ing

the interactive graphics , name ly, using a cursor on the color monitor with

a terminal control. Once the correct classification rate in the design set

reaches a level of 90% or over , tine investigator can proceed to classif y the

test set data.

To classif y the test set , one can c lassif y each group a t  .t time , or

classif y man)’ groups in m e  p r ;t e~~-~ ‘l heo rettd - . r l l y. the t irs t method will

yield a lower hit—ru t e  be~ - ; u n s  I t , - ,  t is sil l v one p r o b ~~b i  i i  t y  v a l u e  fo r  each

pixel to be used in tir e c la s~. it icat ion , wit ic ir unrul y un i t he maximum once other

groups are introduced . Mo - ,t  I i i - ; r 1 v , ‘i ri s me t hod w i l l  p r o duce  o v e r l a p p i n g

groups , tha t  is , an in d i v i d u a l p i x e l may belong to severa l groups.

To assure that the test sets - i r e  p r - r u t - r i ’ . c l u i s s i t  L 1 i ~ a ll the desired

groups should be introduced in t i re  d i - s i g n  -~et. I-uii -t ine rm ore , i t local dif-

ferences exist within one group, sur t — gr r-nrps s t r o u l d  ire introduc ed . These sub-

groups can be labeled as one group onl y i t  t c r  t i re decision map is p roduc e d .

It is our experience that  a s u f f l i - lent n u m b e r  of groups  s h o u l d  he used In the

design sets; otherwise , m is—c la ssif j u t  inns or rejects will be n u t i t u s t a n t l a l .
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GALA——ORIGINAL DIGITIZED PHOTO
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Should be Interp reted
•ccordin~ to the

- . - ~~~~~~ original data sets

The Color Codes for the Decision Maps
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DECISICt~ MAP : GALA (3 X 3) WITH NO REJECTS

F
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DECISICII MAP: GALA (3 X 3) WITH REJECTS (DEEP BLUE)

28

- - - - —- -

~

-

~

-

~ 

- - -  -~~~~~~~~~~~~~~ -~~~~~~--- . ~~-~~~~~--~~~~-~~~~~~~~~~~ - -



DECISION MAP: VPLA (3 X 3) WITH NO REJECTS

DECISION MAP : VPLA (3 I 3) WITH NO REJECTS
NOTICE THE EDGE—EFFECT
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DECISION MAP : SBLA (3 X 3) WITH NO REJECTS

‘ I i

DECISION MAP : SBLA (3 X 3) WI TH REJECTS (DEEP BROWN)
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DECISION MAP : URLA (S X 5) WI Th 10 REJECTS
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SECTION 6

ESTIMAT ION OF STABLE PARANETER~

6.1 CHARACTERISTICS OF STABLE DISTRIBUTIONS

As part of this study , stable distributions were considered as alterna-

tives to the multivariate normal distributions on which the Maha].anobis

classifier is based.

Stable distributions are best defined in terms of their characteristic

functions $(t) or its logarithm which in the univaniate case (single feature)

is given by:

- 

log q (t) = log
e ~: e

itX dF(x)

(1)

= ito — y~~t }~ Ci ÷ i 8

where

w(t,ci) = Tan (~r ct / 2 ) ,  if ci 4 1

= log It i , if ci 1

and 6 is a location parameter , y > a is a scale parameter , ci is the charac—

teristic and 8 is the symmetry parameter. The parameter 6 plays the role of

the mean and is equal to the mean whenever the mean exists. The variance is

always infinite when ci < 2, however the parameter y plays the role of a
sca le parameter and ~ is the symmetry parameter. In particular, if 8 a,

the distribution is symmetric about 6. The parameter ci is called the charac-

teristic of the distribution and o < ci ~ 2. If a 2, then

log q( t) = ItO — yt2

which is the characteristic function of a univariate normal distribution with

mean 6 and variance y12. If a. = 1, the distribution is Cauchy. For all

other values of a, the density exists but a closed formula for It is not
known. Various power series expansions for the density exist wh ich may be
found for example in DuMouchel (1971) and Feller (1966) .

The most Important parameter for a stable distribut ion is a because it
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determines the type - f  the distribution. When a = 2, the distribution is

normal. In this study, the estimation of a is used to assess the normality

or lack of normality of the data. If the estimate for ci is close to 2, then

the data may be assumed to be normal. The results of this study Indicate

that many of the features have distributions which are not normal.

The main reason for considering stable distributions are given here .

The first advantage of stable distributions lies principally in the general—

ized central limit theorem. Among other things, it states that if X1, X2
,

Xn are independent identically distributed random variables having any
distribution with f ini te variance, the distribution of their sum will tend
toward the norma l distribution as n increases. This is an exceedingly power-
ful result as it shows that if an observ able random variable is produced as
the sum of many independent nearly identically distributed random variables,

its distribution will be approximately normal, no matter what the distribu-

tion of the underlying variables. If the variance Ia not finite, a limiting

distribution for the sum may still exist. The vital point is that if it does

exist, it is a stable distribution. Every member of the stable family is

such a limit, and no distribution other than a stable distribution may be -

such a limit. This unique property gives stable distributions an important

position in statistical theory and practice.

One more property of stable distributions which does not have the

theoretical impact of the generalized central limit theorem, but nevertheless

makes them valuable as models of empirical results, is the following: Ex-

perimental image data by no means need be normal. Mixed in with a bulk of

roughly normal observations may be one or two outliers. A whole body of

literature has accumulated on what to do with them. The question usually

asked is whether to keep them as valid measurements which will admittedly

grossly affect the results, or discard them as noise. The principal problem

is that most widely available statistical tests are incapable of properly

handling empirical distributions in which the sum of a set of random vari-

ables is largely dominated by one of the observations. For this reason, the

outliers are usually discarded . The method of choice would seem to be to

keep all the data, but use a method of analysis which is capable of dealing

fairly with such distributions . Recent experimentation in the field of
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economics by Mandeibrot (i963~ has indicated that stable methods are well

suited to ti~~s ~~~~ F t  l.. r 1966) also presents a small but interesting

survey of physical prucusses ~~verned by stable laws.

One of the imporlanc ~r o p e r t i e . of multivariate norma l distributions is
that every linear combination of its components has a univariate normal dis—
—tribution. This projierty also carri ’-.n over to stable distributions. That

is, every linear comb ination ot the components of a multivariate stable dis-

tribution has a univariate stable distribution .

Another important property of stable distributions is chat the sum of

two independent stable variates with the same characteristic çn is itself

stable with the same characteristic ci as the summands.

A final advantage to modelling by means of stable distribut ions is that

skewed distributions c~ n be accommodated .

There is a theory of multivariate stable distributions which is similar

to the theory of multivariate normal distributions and in fact contains the

normal theory as a special case. As in the univariate case, the multivari—

ate stable dis t r ibut ion is best described by its characteristic function.

Details of the multivariace stable distributions are found in Press (1972).

6.2 ESTIMATION METHODS

Various methods for e~ ’-imatIon of stable parameters F~ ve been proposed

in the statistical literature . During this study, these rinethods have been

evaluated for their practical value . Some methods have been found to be

reas~ nablv  usefu l  wh i l e  : : thers  are  useless .

For s~~r~n t r iu -’ di~~tr~~~utions , a relatively easy method for computing es-

timates of the ::~~r - n n ~e~~ 
-
~~~, 

, and y are given by Fama and Roll (1968,

1971) - i~~ey have e - . - Y’ it ru~~cated means are good (and, obviously , un-

biased) estlmator- - of t~nn lo:atlon -~ . The degree of truncation which pro-

vides minimum error v n n f incc ‘ - - a function of ci, but using the central fifty

percent gives quite good r- :suJts . They also show that c = .605(X 72~x 28~~
where X~, is the estimate of the ~

th 
fractile of the sample , is a reasonable

estimator of the scale. It has small asymptotic bias . Its error variance,

though small enough for non—critical work , is significantl y larger than the

Rao—Cramer i wer bound. They aI~ o investigate the approximation of ci by

Tn
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choosing such tha t , for some previously specified fractile P , the theoreti—
cal fractile of 

~~ 
is the same as the sample fractile. Again , the optimal

value for P varies with the true alpha and the sample size. These estimates

of alpha showed some small bias and an error variance which is considerably

larger than could be had. However, all three estimators are excellent when

one considers their elegant simplicity.

DuMouchel (1971) did some work on maximum likelihood estimation of

stable parameters . The data is censored into discrete classes. The likeli-

hood function is evaluated for trial parameters using asymptotic formulas

for extreme values and the fast Fourier transform of the characteristic
function for central values. This method has two drawbacks . First , the

censoring of the data causes some information loss. Second , and most seri-

ous, is its incredible slowness. Each iterative try for a better parameter

estimate requires that the characteristic function be evaluated at many

points, and several Fourier transforms be done.

Other method s have been proposed based on charac te r i s t i c  functions .

These methods in genera l have been shown unwo rkable. The me thod of maximum
likelihood is the best method for obtaining estimates in the case of stable

distributions.

At this time there are no known methods for expl ic i t ly  evaluating stable

densities and distribution functions to any realistic precision rapidly

enough to be feasible for  production work . Therefore , it has been the goal
of this study to investigate algorithms which are quite slow but accurate.

These then are used to generate tables suitable for  interpolation . Mean s of
storing and accessing these tables for the evaluation of stable densities and
distributions at high speed have also been developed .

All of the rather complex details can be found in Masters (1977). A

large number of Monte Carlo experiments were run in order to test the al—
gorithm for computing these parameter estimates . All of the estimaters
showed very small bias and standard error for  most values of ci. Some prob—
lems were noted when ci is c1os~ to 1 or 2. Fortunately , values of ci close to

I do not seem to occur. For a — 2, one can use estimators for  normal d is t r i—
buti ons .
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6.3 PRELIMINARY RESULTS-NON NORMAL BEHAVIOR OF THE TEXTURE VARIABLES

In order to assess the normality assumption for the texture variables,
an estimate of the stable distr ibution parameters was made for  the data

available from the scenes VPLA , VPHA , SBLA and GAHA . Some results of these

estimates are presented in Table 6— 1. The complete set of seventeen texture

variables is given for four separate classes : pavement , vegetation , culti-

vated fields (1) and soil . The estimated value of a is given in the table.

The largest value of ci given by the estimation algorithm is 1.99 , and the

smallest is 1.01. Thus a value of 1.99 means that the estimate is between
1.99 and 2.00 . A value of 1.99 indicates that the data are normally distri-

buted whereas smaller values indicate that stable models are more appropri-

ate. The complete set of values run is too large to present. A total of 476

different variables have been estimated over the four photographs . Of these ,

263 had a values different from 1.99. This means that 55% of the texture

variables are not normally distributed .

A complete set of estimates for  the ~ parameter is not available , but

preliminary estimates indicate that ~ do es deviate from 0 (symmetric dis-

tributions) .

These results indicate that development of a stable classifier will pro-

duce good results.
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TABLE 6-1. VALUES OF ci FOR VPHA

Texture
Variable Pavement Vegetation C. Field 1 Soil

1. MEAN 1.20 1.99 1.99 1.15
2. STD 1.59 1.20 1.71 1.99

3. SKEW l~.3l 1.99 1.99 1.99

4. KURT 1.01 1.53 1.58 1.45

5. MDEVN 1.99 1.21 1.69 1.99

6. MPTCON 1.18 1.35 1.69 1.01

7. MPTREL 1.99 1.99 1.84 1.08

8. MINCON 1.24 1.22 ‘ 1.55 1.41

9. MINSQR 1.27 1.21 1.64 1.99

10. M2CON 1.99 1.26 1.63 1.50

11. M2NSQR 1.99 1.24 1.78 1.66

12. MADAT1 1.18 1.99 1.99 1.15

13. MADAT2 1.15 1.01 1.01 1.18

14. MADAT3 1.01 1.01 1.01 1.99

15. MBDAT1 1.01 1.99 1.01 1.01

16. MBDAT 2 1.85 1.99 1.99 1.01

17. MBDAT3 1.34 1.99 1.99 1.01
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