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PREFACE

This report was prepared by Professor Shin-yi Hsu of the State Univer-
sity of New York, Binghamton, New York in partial fulfillment of contract
F30602-76~C-0211, for the Rome Air Development Center, Griffiss AFB, New
York. The work incorporated in this task consisted of texture-tone analysis,
software development, analysis of digitized black and white aerial photo-
graphy, and estimation of stable parameters of the texture variables. The
project was carried out using both the DICIFER Image Processing System of
the RADC Image Processing Facility and SUNY-Binghamton Image Data Pro-
cessing System.

The work described in this report was performed by Dr. Shin-yi Hsu,
Principal Investigator, Dr. Eugene Klimko, Faculty Associate, and
Graduate Assistants.

This study was performed during the period April, 1976 through May,
1977. Capt. Gregory B. Pavlin and Lt. Cyril Speyrer were the RADC

Project Monitors.
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This final report covers texture feature extraction by means of measuring
the spatial distribution of TONES of the pixels of a given area. Both lst
order and 2nd statistics are used. This effort is under TPO Thrust R2D pre-
cision targeting. This effort represents a fine tuning of feature extraction
and image classification that will be used in applications to the Automatic
Feature Extraction System (AFES) being developed at RADC.
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SECTION 1

INTRODUCTION AND SUMMARY

Current image processing capability at RADC employs tonal, spatial, and

i limited texture feature extractor. To fill the demand for using a powerful
: feature extractor for real-time object cuing systems, matching pairs of
sensed and reference map systems, this study is conducted with two specific
objectives: 1) to develop and implement software of texture-tone feature

extraction algorithms, and 2) to evaluate these algorithms' potential for ob-

ject identification and terrain classification using digitized photographic
data set. This effort will also provide additional support to a current RADC
program with AFATL in the semi-automatic classification of ten terrain types
with black/white high altitude photographs.

During the course of this study, Rome Air Development Center (RADC) has ‘
provided digitized image data, the DICIFER (Digital Interactive Complex for /
Image Feature Extraction and Recognition) system for selecting training sets,
and the Color Printer for generating color decision maps. The major task of
image data processing was conducted at SUNY-Binghamton with the following
programs developed for this effort: 1) texture analysis using a (n x n)
window size to generate 17 to 23 texture-tone variables for each pixel; 2)
the Mahalanobis D2 logic for classifying bixels into one of the training sets
or a reject category, with a generalize-inverse scheme; 3) a step-wise dis-
criminant analysis to select the significant texture variables for the classi-

fier, with a confusion matrix indicating the hit-rate of the training set

data; 4) generation of a numerical classification results according to a
(10 x 10) cells for a hit-rate analysis; 5) generation of the decision maps
using IBM 370 system; 6) manual selection of training sets; and 7) pre-
processing capabilities using principal component analysis, and factor analy-
sis.

Eight scenes, four of low altitude and four of high altitude photographs,
from the RADC Northeast Test Area (NETA) were used to evaluate the potential 1
of the developed texture analysis algorithms. Terrain types being mapped in-
clude metal, pavement, soil, clutivated field, vegetation, water, and com-

position--a mixture of several categories such as urbanized area. In some




instances, sub-categories are used in the training sets such as two types of

pavement, cultivated field and vegetation, respectively.

The results indicate that the developed texture feature extractor to-
gether with the Mahalanobis classifier is capable of discriminating the
specified terrain types at a high degree of accuracy--a hit-rate of approxi-
mately 90% has been obtained using properly digitized photographic data. It
is also believed that the hit-rate can still be improved by employing a new
classifier which can take into consideration the skewness property of the
image data since about 50% of the texture variables are not normally distrib-
uted.

The main body of this report will include a literature review of tex-
ture analysis, the Mahalanobis classifier, and the analysis of the eight
scenes. Preliminary investigation of the potential of the stable distribu-
tion theory as a classifier will also be given.

Owing to the operation difficulties of the RADC color printer, only
certain decision maps are produced in a color-print format. For analysis
purposes, only the numerical classification results based on (10 x 10) cells
were utilized to compare against the human interpretation. Hence, the ab-
sence of these color decision maps did not impair the hit-rate analysis.

Finally, the principal investigator would like to express his gratitude
to Captain Greg Pavlin for his technical assistance performed (for this pro-
ject) at RADC.
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SECTION 2
BACKGROUND

During 1975 and 1976, RADC sponsored a study titled '"Digital Image Pro-
cessing Techniques for Automatic Terrain Classification for Generating Ref-

erence Maps From B/W Aerial Photography,'" conducted by Pattern Analysis &
Recognition Corporation, Rome, New York. Since the correct classification
rate of this study was about 807 using the feature extractor and the classi-
fier of the DICIFER System, the RADC personnel felt that another study is
needed to improve the hit-rate by developing a more powerful texture feature
extractor. This led to the current project conducted by Dr. Hsu, using the
same data set for the 1975-76 study.

Many factors influence the hit-rate of an image data processing system,
the major ones include the performance of the feature extractor and the
classifier. The DICIFER System has a limited capability of texture analysis
since only six first order statistics are utilized: mean, standard devia-
tion, range, median, high and low. [lierefore, to improve the hit-rate, a
feature extractor using the second order statistics has to be developed.

The classifier of the DICIFER System employs the Fisher Pairwise logic.
It is similar to the conventional classifier based on linear discriminant
functions. The hit-rate can be improved further if one employs a classifier
whose mathematical assumptions fit the data better than other systems.

Hence in this effort a new classifier named the Mahalanobis Logic is devel-
oped to accommodate the dispersion characteristics of different training sets.
A generalized inverse scheme is also developed to take care of the singular-
ity of the dispersion matrices for each group. In fact, it has been deter-
mined that about 307 of the dispersion matrices of the texture variables are
singular or near singular, which cannot be inverted under normal conditions.

The hit-rate can also be influenced by the sample size, the location,
and the number of the training sets. These problems are of technical ones
and will not be discussed in detail in this report. The researchers, how-
ever, should be aware of these problems,

In the late 1960s and early 1970s remote sensing researchers found that

the spectral data are largely not normally distributed. The conventional
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claggifiers based on the normal assumptions work only in an empirical sense.

The RADC personnel also felt that it is worthwhile to determine the degree

of the abnormal behavior of the texture-tone data. The last part of this
report is therefore devoted to the discussion of this problem. A new class~-

ifier based on stable distribution theory with the normal distribution as a

special case will be investigated in the Phase Il effort of this study.




SECTION 3

TEXTURE FEATURE EXTRACTION--A REVIEW AND A NEW MEASURE

S A LITERATURE REVIEW
% ) Background

For years, the texture variable has been recognized as one of the im-
portant criteria for identifying objects and scenes by the photo-interpreter
along with other variables such as tone, size, shape, associated features,
etc. Here texture means the apparent minute pattern of detail of a given
area, described ordinarily by these terns: smooth, fine, rough, course, and
the like. 1In digital data processing, texture means the spatial distribution
of tones of the pixels of a given area. Its attributes have to be specified
by the investigator--a specific field of study termed texture feature ex-
traction.

Texture analysic is a rather recent but rapidly growing field of in-
quiry, though its importance related to visual perception was recognized by
Gibson as early as 1950, Over the past twenty years, many texture measures
have been proposed. This body of literature has been reviewed by Rosenfeld
in 1975. In general, these measures can be grouped into two categories,
Fourier-based (power spectrum) features and statistical features. Further-
more, it has been found that statistical features perform much better than
thie other. (Rosenfeld, 1975).

To obtain texture features, the analyst must specify the size of the
window or control area, composed of n x n or n x m pixels, from which texture
measures are to he obtained and analyzed. Furthermore, one can classify
either only the center point of the window or the whole of the window into
one of the specified groups or a reject category. For detailed mapping
purposes, the former process is required.

Texture features may include such first-order statistics as mean, stand-
ard deviation, range, median, extreme highs and lows. More significant are
the second-order statistics, which describe how various pairs of pixels oc-

cur in specified spatial relationships.




3.1.2 The Haralick Measure

In the early 1960s, Julesz employed transition probabilities to charac-
terize textures using scanned digital data. Here for any two grey levels i
and j, the transition probability p(i,j) measures how often level i and level
" occur in horizontally adjacent position. This concept has been followed by
many investigators, and expanded to include other directions than horizontal,
and pairs of points that are nonadjacent. This is precisely the concept of
the spatial dependence matrix introduced by Haralick (1970). Then texture
measures are computed from a series of dependence matrices derived from eight
scan angles with elements representing relative frequency of tone levels of
neighboring cells separated by a predefined distance. The basic texture
measures of Haralick's method are the angular second moment (ASM), the
angular second moment difference (ASMD), the angular second moment inverse
difference (ASMID), and the correlation between neighboring grey tone (COR).

Using the directional parameters (00, 450, 90°

s 1350), one can obtain three
measures, namely, average, range, and deviation, from each of the basic
measures (ASM, etc). Originally, he proposed to employ 36 texture context
features for classification purposes. Since his sample size is small, he

selected the following 12 features.

For distance 1: ASM (average, range, deviation),
COR (average, range, deviaiton), and
ASMID (average, range, deviation)
For distance 3: ASM (average)
ASM (range)
ASM (deviation)

The results of his experiment yielded a 707% correct rate using a maxi-
mum likelihood classification logic with a normality assumption for the data
set. It sho?ld be noted that the unit of this analysis is a scene (window),
not an individual pixel. The same method was also employed by Dyer et al. in
terrain classification with LANDSAT data, yielding a higher hit-rate (about

\

907%) . \

3.1.3 Mitchell's Max~Min Descriptor




Recently, Mitchell and Myers proposed a new measure for texture classi-
fication based on the human visual system Iintuition that the important tex-
ture information is contained in the relative frequency of local extremes
of various sizes in intensity. Thus it is called a max-min texture descrip-
tor. The principal measure here is the number of maxima and minima along a
one-dimensional scan direction, under certain threshold conditions. For in-
stance, the maxima is called a maximum only if the intensity falls the thresh-
old amount below the maximum before a higher valued intensity is encountered.
Thus, by repeating the process for several threshold settings, analogous to
Haralick's distance setting, one obtains a vector of numbers characterizing
the textures.

To make this measure invariant to illuminaticn and resolution, Mitchell
employed two transformational techniques: 1) taking the log of the inten-
gities first; 2) using the ratio of the number of the extrema at each thresh-
old to the next instead of the extrema themselves.

Compared to Haralick's method, Mitchell's max-min texture analysis per-
forms slightly better, but with much simpler computational effort. Similar
to Haralick's method, this analysis uses the whole of the window as a
classification unit. It also requires a very large window size to obtain
these texture measures. [t, therefore, is not applicable to classify indi-

vidual pixels due to pronounced edge-effect induced by a large window size.

3.2 A NEW MEASUREMENT

To classify individual pixels rather than a group of pixels (windows),
it is proposed that a new texture measurement with 17 and 23 variables be
derived from , Yodel T) and (5 x 5, Model II) windows, respectively.

In the analysis, the indow will move from one pixel to another with an
overlapping region between two adjacent pixels; and only the center point is
classified.

In Model I, the seventeen texture variables are: (1) through (4) are
the four central moments, (5) is the absolute deviation from the mean, (6) is
the contrast of the center point from its neighbors, (7) is the mean bright-
ness of the center point relative to its background, (8) is the contrast be-

tween adjacent neighbors, (9) is the sum of the squared value of (8), (10) is




the contrast between the second neighbors, (11) is the sum of the squared

value of (10), and (12) through (17) are the mean area above and below three

datum planes (50, 100, 150). The code names and computational formula of

these seventeen variables are given below:
~
TABLE 3-1. THE TEXTURE-TONE VARIABLES OF MODEL I
Code Description or Computational Formula
1. MEAN average
2. STD standard deviation
the four
3 SKEW akéaess central moments
]
4. KURT kurtosis
5. MDEVN lxi—§1/n, where X = tone value of individual

pixel

X = mean

6. MPTCON lxi-xcl/n, where x'l = tone value of the center
- point
7. MPTREL (x -x.)/n
ol
8. MINCON lxi—le/n, i and j are adjacent pixels
9. MINSQR (x —x,)2/n
i7]
10. M2NCON lxi-kkl/n
2
11. M2NSQR (xi-xk) /n
12. MADAT1 numerical calculation of mean area above datum 1
(50)
13. MADAT2 mean area above datum 2 (100)
14. MADAT3 mean area above datum 3 (150)
15. MBDAT1 mean area below datum 1 (50)
16. MBDAT2 mean area below datum 2 (100)
17. MBDAT3 mean area below datum 3 (150)
. .




In Model II, with a (5 x 5) design, in addition to the above seventeen
variables, three measures are extracted to characterize the oscillation na-
ture of wave-forms of the scan lines obtained along both the x and y axes of
the data matrix; thus, six variables are available for analysis. They are

1) sum of the contrast values from peak to trough; 2) sum of the distance of
peak positions from the origin; and 3) sum of the number of peaks and troughs.

This means that there are altogether twenty-three texture variables in Model

TE,
TABLE 3-2. ADDITIONAL VARTABLES IN MODEL II
Code Description or Formula
18. XCONT (distances from peaks to troughs) along x-axis
19. XPEAK (peak positions from the origin) along x-axis J
20. XPANDT (number of peaks and troughs) along x-axis
21. YCONT (distances from peaks to troughs) along y-axis
22. YPEAK (peak positions from the origin) along y-axis
23. YPANDT (number of peaks and troughs) along y-axis
3.3 COMPARISONS AMONG THE THREE MEASUREMENTS

In sum, we list the above-mentioned three texture measurement in terms
of their computational complexity, required window size, and classification

unit for comparative analysis,




Haralick Mitchell Hsu

Computational Rather Very simple Simple
complexity Complicated n
Required window Depending on the Very large Very small
size needed pre-determined (3 x 3)or
distance (5 x 5)
Classification Only group of pixels Group of pixels, Pixels 3
unit being tried; but it not applicable to
is applicable to classifying indi-
classify individual vidual pixels
pixels
Hit-rate ca 70% (unit of ca 80% (unit of ca 907
reported analysis: scene) analysis: scene) (unit of
analysis:
pixel)

Owing to classification requirements specified by the AFATL program,
the proposed new texture measurement is preferred to Haralick's and
Mitchell's methods.

10




SECTION 4

THE DEVELOPMENT OF THE MAHALANCBIS CLASSIFIER

4.1 BACKGROUND

Over the years, researchers have been using various kinds of strategies
to classify image data into meaningful groups. Among them, some have mathe-
matical rigor and others do not. In general, they can be grcouped into non-
parametric and parametric methods. Examples of nonparametric methods are
minimum distance to means, minimum distance to nearest member of a class,
etc. Parametric methods used by leading remote sensing centers can be
grouped into two broad categories: 1) maximum likelihood ratio decision
rules based on a Bayesian formation, a priori probability framework; and
2) a class of linear discriminant functions based on posterior probabilities
for classification. (Nalepka, 1970, Swain, 1973). All these classification

methods employ training sets (design sets) to define the class characteris-

' '

tics, therefore, thev are called "supervised methods.” If clustering methods
are used to group the populations into distinctive classes, one cbtains an
"unsupervised" method. Since the unsupervised methods are very time consum-

ing, they are not generally employed and thus will not be discussed here.
4.2 THE GENERAL CLASSIFICATION PRINCIPLE

Within the framework of parametric analysis, one emplovs a general dis-
criminant analysis to classify an object into one of k types. It is assumed
that the spectral/textural signatures of the objects have density functions

PI<Y)""’ P (Y) where ?i(Y) is the density function for the objects in the
N

-~

ith class. standard wmethod as given by Rao (1973) is to compute the

numerical value of P (V), where Y is the density of the unknown object, for

each 1 = 1,..., k, and place the object into class i for which P‘ (Y) is
; i
largest. In case the P, (Y)'s are multivariate normal, this method leads to

the usual linear discriminant function. The method can also be modified to
incorporate a priori distribution e i=1,..., k, if a Bayesian approach is
desired. Here, the quantities niPi(Y) are computed for i = 1,..., k and the

object whose spectral signature is Y is placed in the class which maximizes




= Y saes K,
"ipi(Y) for i . k
4.3 DIFFERENT APPROACHES

The Bayesian approach has been reported by Fu (1969), and employed by

LARS of Purdue University. The linear discriminant function methods are
discussed by Morrison (1976). The Fisher Pairwise logic of RADC, and the |
proposed Mahalancbis logic are examples of the linear discriminant function |
approaches. Under the same conditions, these three methods should perform
equally well. The difference in performance will come from different as-
sumptions that the classifier accepts.

For example, both the Bayesian and linear discriminant function ap-
proaches assume that 1) the spectral data are multivariate normal, and 2)

they have a common dispersion matrix. Researchers, however, have discovered

that spectral data are generally not normal, nor do they have a common dis- |
persion pattern. Once we take into consideration these two problems in the

design of the classifier, correct classification rates can be improved sub-

stantially.
4.4 THE DEVELOPMENT OF THE MAHALANOBIS CLASSIFIER

Here we describe the classification scheme used in this study. The .
starting point is the maximum likelihood general principle described in

section 4.2. A parametric form of the probability density function is
chosen in advance. Usually, this form is a multivariate normal distribution.
In this study we first use the normal distribution theory to develop a
Mahalanobis classifier and later we introduce the stable classifier in sec-
tion 6. 1
After the chcice of a parametric model, a training set is used to esti-
mate the parameters in the probability densities for each separate class,
e.g., soils, metals, etc. Once the parameters are estimated, the particular
individuals may be classified according to the maximum likelihood principle.
Each individual is characterized by a vector Y whose coordinates consist of
the values of the 17 (or 23 depending on the particular model: 3 x 3 or 5 x 5
being used) variables listed in Table 3-1. Under the normal distribution theory
with the non-Bayesian approach, the probability density function for the ith

12




class is given by the formula

(1) Pi(Y) =

where “i is the vector of means and Zi is the covariance matrix for each
class. The maximum likelihood principle then dictates that an unknown ob-

ject be classified into class iv it Pi (N Pj(Y) for all j different from
(e}

ic. Using logarithms, this rule can be restated as: classify into class i_

if

i -
b &

| s 1 T “l <7 N
(2) log |z, | + (¥-u, )" 57 (¥-u, )s

0 )
0 o} Q

T i gl (R
log {Ll% + (Y-u)” T (¥-uy)

for every 1 different from Lr. The quantity

1

@ 0% = )T I
Is called the Mahalanobis distance between the pixel whose variable values
are given in the vector Y and the class i whose parameters are pi and Xi.

Since the values of these parameters My and Ei are unknown beforehand,
they must be estimated from the data obtained from the training class. Once
these estimates are obtained, they are then used for classifying the entire
image.

During the initia! phases of the study, the assumption that all co-
variance matrices were ecual was made, but quickly discarded in favor of in-
dividual covariance matrices for each class. When this was done, the covari-

ance matrices were found to be singular. In this case, the inverse Fi of
the covariance matrix cannot be used, but in its place, the generalized in-
verse of I must be used. In general, all of the classification theory holds
if one replaces the true inverse in the formula by its generalized inverse.
When the true inverse exists, the algorithm for producing the generalized

inverse actually produces the true inverse.
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Conceptually, the simplest method for obtaining generalized inverses is
to use the spectral decomposition of the covariance matrix

(4) T = PIAP

where A is a diagonal matrix whose entries are the eigenvalues of I and P is
a matrix whose columns are the eigenvectors of ¥ suitably normalized so that
the length of the vector is one. A more efficient algorithm is available

for computing generalized inverses. This algorithm is described by Searle

(1971), p. 18. 1t consists principally of solving the systems of linear

equations.

(5) IE X = I

for X and then X will be the required generalized inverse. The generalized
inverse is not unique, but any generalized inverse used produces exactly the
same classifications. For this reason, we have used the term '"the general-

ized inverse'" rather than '"a generalized inverse'.

4,4.1 Classification Rules
From the discussion in the preceding section, it is clear that the

classification rule states that a pixel should be classified into the class
type (soil, metal, ...) for which the Mahalanobis distance is smallest which
would also be equivalent tc putting the pixel into the class for which the
posterior probability P(GIY) is largest. If classification of each pixel is
mandatory, then this rule is used. On the other hand, if it is permissible
to have some pixels unclassified, then the alternate probability P(YIG) that

an object in group G will have a Mahalanobis distance as big as the observed

one for this pixel is found. A cutoff probability is established (generally
a small value) and the pixel is declared unclassified if the probability

that this pixel belongs to group G is less than the cutoff value. During

the study, various values have been used, such as .0l, .001, etc., As an ex-
ample of this rule, suppose that the mandatory classification rule dictates
that a pixel whose seventeen measurements are denoted by Y is classified as

a metal because metal is the closest class to which this pixel can be identi-

fied. However, the probability that a metal pixel will have measurements as

14




different from the metal class as this particular one is small, say .00l.

In this case, if unclassified pixels are permitted, then it will be declared

unclassified.

4.4.2 Separration of Classes

The most straightforward method for determining whether or not the
selected classes (metal, soil, etc.) can be separated is to campute the
estimate of the confusion matrix. In computing this estimate one must pay
attention to Foley's principle of sample size. In particular, the number of
samples selected for each class must be at least three times the number of
measurements associated with each pixel. (One can actually use the rank of
the covariance matrix for the measurements in case there are multiple col-
linearities in the data. This would reduce the sample size somewhat, al-
though sample size was not a problem in this study.)

The estimate of this matrix is simply an array of the percentages of ¥
cases misclassified into each of the classes. If all of the cases are cor-
rectly classified, then separation is perfect. In this case, it is probably
possible to reduce the number of measurements used at each pixel.

Stepwise discriminant apalysis can be utilized to select measurements
or features which are most useful to discriminate between classes. This
stepwise procedure consists of selecting the features--one at a time--which
contribute most toward the separation of groups. The selection procedure can

be stopped as soon as enough features have been selected to produce a com-
PP & P

plete separation of the groups. In the stepwise discriminant procedure, an
F test based on the likelihood ratio criteria is made to select the features,
rather than an analys the confusion matrices.

4.4.3 Ordination Procedures

At each pixel, a set of [eatures or measurements are taken which des-
cribe the texture and tone of that particular pixel. During the initial
phases of the study, the jor objective was to select the features which
would contribute most to the separation of the training classes. Initially a
large number of texture features were chosen. Principal components and re-
lated factor analysis methods were used to determine the number of non zero
eigenvalues in the covariance matrix of the features. This information des-

cribes the number of essentially distinct features which exists within the §

data. ]




SECTION 5
THE ANALYSIS
L 2 THE DATA SET
The data set for this study is composed of eight scenes of the RADC's
Northeast Test Area: Griffiss AFB, New York (GALA, GAHA); Verona, New York
POL Storage (VPLA, VPHA); Stockbridge, New York, SAM Site (SBLA, SBHA); and
Utica, New York,Rail Yards (URLA, URHA) at both low altitude (LA), and high

altitude (HA). Their geographic locations, elevations and flight height are
given in Table 5-1.

*
TABLE 5-1. THE DATA SET

Geographic Image f

Scene Coordinates Elevation Flight Height |
1 GALA 43°14'N, 75%25'w 515" 15,500
GAHA 61,500"
2 VPLA 43°08'N, 75%36'w 500" 15,500"
VPHA 60,500
3 SBLA 43°02'N, 75°39'W 1290" 16,000"
SBHA 60,500"
4 URLA 43°07'N, 75°13'W 410" 15,400"
URHA 60,500"

*
RADC - TR - 76 - 196 Final Report by PAR, pp. 8-9.

After digitizatlon the ground resolution of the low altitude and high
altitude images are approximately 8.75 feet, and 56.75 feet, respectively.
It should be noted that the images have a much higher resolution level.
Stored on tapes, each scene is then composed of (256 x 256) pixels, with
tonal densities ranging from O (black) to 255 (white).

For hit-rate analysis, high resolution photographs are provided by RADC

as the basis of the ground truth information to be obtained by manual photo-

interpretation.




N 2 THE HARDWARE FACTLITY
To carry out this study, the DICIFER system at RADC, and the IBM 370-
158 general purpose computer at SUNY-Binghamton were utilized. While the

RADC hardware system was used to 1) digitize the image data, 2) store the

data in computer compatible tape, 3) select the initial training sets, and
4) generate the color decision maps, the IBM 370 system was used mainly to
process the data with the software developed at Binghamton.

The IBM system was also employed to generate the tone maps and the

1

final decision maps with the printer. This allows the researcher to select
the appropriate training sets manually for the classifier. The decision map
was translated in a numerical classification of each group according to

(10 x 10) cells which was then used to check against the manual interpreta-

tion result for a hit-rate analysis. &
)
Do THE SOFTWARE SYSTEM

The computer programs used in processing the image data include the fol-
lowing capabilities:
(1) Texture-tone analysis using a (n x n) window size to generate
17 to 23 texture variables for each pixel.
(2) The Mahalanobis Logic for classifying pixels into one of the
design sets or a rejsct category.
(3) A generalize-inverse scheme to invert singular or near-singu-
lar matrices.
(4) Generation of a numerical classification results according to

10 x 10) cells as the basis of hit-rate analysis.

,«
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select significant texture

(6) Pre-proc bility dincluding principal components,
factor analLysis,

(7) Generation of decision maps using IBM 370 system.

(8) Generation confusion matrix with the training set data.

(9) Generation of Dz—distances with probability levels between

classes.

(10) Manual selection of training sets.




5.4 GENERATION OF A DECISION MAP

Decision maps are produced using the following computational steps:

(1) Generate the texture-tone variables for the training sets and

the unclassified set.

(2) Compute the parameters for the discriminant function.

(3) Classify the training sets, thereby obtaining the confusion

matrix.

(4) Classify the unknown set.

The step one is done by the program "GENVAR.'" This program reads con-
trol cards specifying the position and size of each training set. The vari-
ables are computed as documented in the GENVAR program and written onto a
disk data set.

The remaining steps are done by program 'SPCMAP." 1t reads control
cards instructing it as to where the training sets and test set may be
found, and how many points are contained in each. It also reads titles for
the training sets and lists of symbols to be used for the map output. For
each training set, the centroid vector and covariance matrix is computed.
The covariance matrices are inverted using a generalized inverse scheme. In

order to classify a point, the quadratic forms of the differences of the

point vector and each group centroid over the corresponding group inverse co-

variance matrices are computed. This quadratic form is the Mahalanobis Dz.
The group which is closest to the given point is chosen.

If the user wishes, a map may be generated in which points that do not
strongly belong to any training set are excluded or classified as rejects.
This 1is possible because D2 1s Chi-square random variable having a probabil-
ity value. If its probability is below a certain fixed cutoff, the point is

1

rejected. Rejects are left blank on the decision maps.

oD HIT-RATE ANALYSIS

To assess the performance of the developed texture measures, hit-rate
analyses of the test sites have been carried out. The procedures include,
1) placing a (10 x 10) grid onto both the computer decision map and the
photo print of the test area, and 2) estimating and enumerating the percent-

age of all terrain type classes in each cell. The hit-rate is computed as:
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Difference between photo-interpretation
and computer—-decision map
photo-interpretation (in terms of

total area of each class)

Hit-rate = 1 -~

=
1

or = error-rate

The following table summarizes the results of the analyses. It can be
concluded that for a larger area a hit-rate of about 90% can be obtained with
properly digitized images. The hit-rate for small areas is statistically

meaningless. It has been found that digitizing errors exist in the high

altitude images (GAHA, VPHA, URHA), thus hit-rates for these frames must be
obtained by using sub-groups within categories. For instance, in VPHA two

types of cultivated fields were used in the training sets

TABLE 5-2. HIT-RATES

Cultivated Pave- Compo-
Vegetation = Field = Metal Soil  ment  Water sition
GALA 88.47% 98.46% 90% 53, 1.3% 92,287 - -
SBLA 89.817% 82.597% (in re- 87137 - Toc small an
jects) area for mean-
ingful assess-
ment.
URLA (in rejects) - 80.50% 45.907% 85.24% - 87 .40%
VPLA 90.007% 35.5% 95.0% 86.00%
.
GAHA (Veg. & Cul. 88.51% - 85.537% 712% - 75.9%
field)
SBHA 997 957 - 98% - - 954
* k%
VPHA 607 84.1 - 93.75% 701X - 85.10%
(5 ¥ 5)
kA%
URHA
o e e L el e ; ;
Uneven densities for cultivated field, NE corner vs., SW corner. Thus

vegetation and cultivated fielus are treated as one group.
**v 3 - " : : : " S ]
Uneven tones for cultivated field due to "digitizing error" which
induced confusion between vegetation and cultivated fields. (Top one-third
vs. lower two-thirds.)

* kK
No meaningful hit-rates can be obtained due to 'digitizing error."
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ST | GALA

The analysis shows that a hit-rate over 90% (except for soil) has been
achieved by Model 1. It should be noted that the photo-~interpretation of
the ground truth is obtained from a high resolution aerial photo rather than
low resolution images from which the computer decision map was derived. The
author has investigated further the problem regarding the soil class using
the output from Model II. It was first thought to be the "edge effect."
However, since the mis-classification of the soil pixels was largely elimi-
nated in Model 1I, it was therefore determined to be "resolution effect,"”
which was purposely induced into the images during the process of digitiza-
tion. The performance of Model II is better than Model I, except it has a

larger area of reject, and occasionally pronounced edge effect.

552 SBLA

In general, the overall terrain pattern came out very well in the deci-
sion map. The SAM site and tanks (metal-objects) were correctly identified
using the reject category.

Similar to GALA, ''resolution'" effect occured at the "edge' of two dis-
tinctive classes, and at certain vegetation areas.

The rejects region were about 10% of the total area. There was no
significant difference between the "reject" pattern determined by P(X/G) =
0.01 and that by P(X/G) = 0.001l. This means that the pixels being rejected

were really different from the design sets.

Do VPLA

The overall terrain pattern in the decision map was good in the sense
that essential types were correctly identified. In terms of a detailed hit-
rate analysis, the correct classification rate is about 857 (excepting pave-
ment). Two factors caused the error rate: 1) asphalt-paved road could not
be differentiated trom fields used for recreational purposes; and 2) a new
concrete road was being built at the time the image was taken--many types of
"pavement' were present at this section of the image. If cultivated field
and pavement were treated as one group, the hit-rate will be over 95%.

To achieve a correct classification of this frame, four types of cul-

tivated field were used in the training sets to cover significant local
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variations. In terms of the training set itself, a hit-rate of 98.4 was
achieved. However, in terms of the test set, the hit-rate is much lower due

to significant local variations.

5.5.4 URLA

The URLA was a more complicated frame, thus an iterative process was
utilized to generate the decision maps. The more obvious classes, such as
metal, pavement, composition, etc., were processed first and the "uncertain"
and insignificant (in terms of aereal coverage) vegetation, were left out.
The "reject" area thus represents mixed water, vegetation and cultivated
fields, etc. At both 0.01 and 0.001 probability reject levels, the area
showing '"rejects'" is very small, corresponding to a potential area of mixed

water and vegetation.

555 SBHA )

This was the only frame in the high altitude image group that had few
digitization problems. The generation of the decision map was therefore
rather straightforward due to less complexity in the terrain configuration, a

very high hit-rate was achieved (over 957).

5.5.6 VPHA

Image digitization error existed in the frame; specifically the upper
one-third is much lighter than the lower two-thirds portion of the frame.

Using the RADC DICIFER system, it was determined that a 30-point difference

existed between these two portions of the frame for cultivated field cate-

gory.
s P GAHA and URHA ;
y

The same digitizaticn problem causcd the fact that the NE corner of |

GAHA is much lighter than the same terrain types in the SW corner. To pro- !

cess this frame, two artificial types of cultivated fields had to be used in
the design sets. Since vegetation and cultivated field classes were really
confused by this digitization effcct, they were grouped as one class in the
hit-rate analysis.

We were unable to obtain a relinsble hit-rate for URHA due to the same

digitization problem. However, we werce able to produce a fairly good deci-
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sion map in terms of the overall terrain pattern.

5. 6 & GENERAL COMMENT ON THE DECISION MAP MAKINC

In addition to the feature extractor and the classifier, the hit-rate
and false alarm rate also depend on the factors regarding sample size, the
location, and the number of the training sets.

The minimum sample size problem has been investigated by Forley. His
principle states that for a valid analysis the minimum sample size is three
times as large as the number of the varicoles used. For instance, if one
employs ten texture variables in the analysis, the minimum number of each
trairing set is 30. It is also our experience that the Forley principle is
valid and that empirically, the sample size of each training set should be
greater than 30 pixels in general.

Improper training sets generally lead to a low hit-rate. To avoid such

an error, one should first employ the confusion matrix (from the training

sets), to identify confused classes, and to locate mis-classified pixels on
the (preliminary) decision map. Then, one should change the location of the

"pure" training sets can be obtained. This is

training sets in order that
an iterative process, and it can be done manually or by the operator using
the interactive graphics, namely, using a cursor on the color monitor with
a terminal control. Once the correct classification rate in the design set
reaches a level of 90% or over, the investigator can proceed to classify the
test set data.

To classify the test set, one can classify each group at a time, or

classifv many groups in cone process. Theoretically, the first method will

yield a lower hit-rate because there is only one probability value for each
pixel to be used in the classification, which may not be maximum once other
groups are introduced. Most likely, this method will produce overlapping

groups, that is, an individual pixel may belong to several groups.

To assure that the test sets arc properly classitied, all the desired
groups should be introduced in the design set. Furthermore, if local dif-
ferences exist within one group, sub-groups should be introduced. These sub-
groups can be labeled as one group only after the decision map is produced.
It is our experience that a sufficient number of groups should be used in the

design sets; otherwise, mis-classifications or rejects will be substantial.




GALA--ORIGINAL DIGITIZED PHOTO

GAHA--ORIGINAL DIGITIZED PHOT




VPLA--ORIGINAL DIGITIZED PHOTO

VPHA--ORIGINAL DIGITIZED PHOTO




SBLA--ORIGINAL DIGITIZED PHOTO

SBHA--ORIGINAL DIGITIZED PHOTO




NAL. DIGITIZED PHOTO




Should be interpreted
according to the
original data sets

The Color Codes for the Decision Maps
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DECISION MAP: GALA (3 X 3) WITH NO REJECTS

DECISION MAP: GALA (3 X 3) WITH REJECTS (DEEP BLUE)
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DECISION MAP: VPLA (3 X 3) WITH NO REJECTS

DECISION MAP: VPLA (3 X 3) WITH NO REJECTS
NOTICE THE EDGE-EFFECT
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DECISION MAP: SBLA (3 X 3) WITH NO REJECTS

DECISION MAP: SBLA (3 X 3) WITH REJECTS (DEEP BROWN)
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DECISION MAP: URLA (3 X 3) WITH NO REJECTS

DECISION MAP: URLA (5 X 5) WITH BO REJECTS
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SECTION 6

ESTIMATION OF STABLE PARAMETERCS

6.1 CHARACTERISTICS OF STABLE DISTRIBUTIONS

As part of this study, stable distributions were considered as alterna-
tives to the multivariate normal distributions on which the Mahalanobis
classifier is based.

Stable distributions are best defined in terms of their characteristic
functions ¢(t) or its logarithm which in the univariate case (single feature)
is given by:

1oge ¢(t) = loge {: eitx dF (x)
(1)

=its - y|e|* 1+ 18 I{T w(t,a)]

where

Tan(na/2), if o % 1

w(t,a)

% log Itl, if a =1

and § is a location parameter, Yy >0 is a scale parameter, a is the charac-
teristic and 8 is the symmetry parameter. The parameter & plays the role of
the mean and is equal to the mean whenever the mean exists. The variance is
always infinite when a < 2, however the parameter Y plays the role of a

scale parameter and £ is the symmetry parameter. In particular, if B = o,
the distribution is symmetric about §. The parameter a is called the charac-

teristic of the distribution and o < a < 2, If o = 2, then
log ¢(t) = its - Yt2

which is the characteristic function of a univariate normal distribution with
mean § and variance y/2. If a = 1, the distribution is Cauchy. For all
other values of a, the density exists but a closed formula for it is not
known. Various power series expansions for the density exist which may be
found for example in DuMouchel (1971) and Feller (1966).

The most important parameter for a stable distribution is a because it
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determines the type of the distribution. When o = 2, the distribution is
normal. In this study, the estimation of o is used to assess the normality
or lack of normality of the data. If the estimate for o is close to 2, then
the data may be assumed to be normal. The results of this study indicate
that many of the features have distributions which are not normal.

The main reason for considering stable distributions are given here.
The first advantage of stable distributions lies principally in the general-
ized central limit theorem. Among other things, it states that if xl, Xz,

Sr i Xn are independent identically distributed random variables having any
distribution with finite variance, the distribution of their sum will tend
toward the normal distribution as n increases. This is an exceedingly power-
ful result as it shows that if an observable random variable is produced as
the sum of many independent nearly identically distributed random variables,
its distribution will be approximately normal, no matter what the distribu-
tion of the underlying variables. If the variance is not finite, a limiting
distribution for the sum may still exist. The vital point is that if it does
exist, it is a stable distribution. Every member of the stable family is
such a 1limit, and no distribution other than a stable distribution may be
such a limit. This unique property gives stable distributions an important
position in statistical theory and practice.

One more property of stable distributions which does not have the
theoretical impact of the generalized central limit theorem, but nevertheless
makes them valuable as models of empirical results, is the following: Ex-
perimental image data by no means need be normal. Mixed in with a bulk of
roughly normal observdations may be one or two outliers. A whole body of
literature has accumulated on what to do with them. The question usually
asked is whether to keep them as valid measurements which will admittedly
grossly affect the results, or discard them as noise. The principal problem
is that most widely available statistical tests are incapable of properly
handling empirical distributions in which the sum of a set of random vari-
ables 1s largely dominated by one of the observations. For this reason, the
outliers are usually discarded. The method of choice would seem to be to
keep all the data, but use a method of analysis which is capable of dealing
fairly with such distributions. Recent experimentation in the field of
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economics by Mandelbrot (1963) has indicated that stable methods are well

suited to tuis task. Feller (1966) also presents a small but interesting
survey of physical processes governed by stable laws.

One of the important properties of multivariate normal distributions is
that every linear combination of its components has a univariate normal dis-
tribution. This property also carri~s over to stable distributions. That
is, every linear combination of the components of a multivariate stable dis-
tribution has a univariate stable distribution.

Another important property of stable distributions is that the sum of
two independent stable variates with the same characteristic o« is itself
stable with the same characteristic o as the summands.

A final advantage to modelling by means of stable distributions is that
skewed distributions can be accommodated.

There is a theory of multivariate stable distributions which is similar
to the theory of multivariate normal distributions and in fact contains the
normal theory as a special case. As in the univariate case, the multivari-
ate stable distribution is best described by its characteristic function.

Details of the multivariate stable distributions are found in Press (1972).

6.2 ESTIMATION METHODS

Various methods for estimation of stable parameters have been proposed
in the statistical literature. During this study, these methods have been
evaluated for their practical vaiue. Some methods have been found to be
reasonably useful while others are useless.

For symmetric distributions, a relatively easy method for computing es-
timates of the parameters «, &, and y are given by Fama and Roll (1968,
1971). They have show. that truncated means are good (and, obviously, un-
biased) estimator: of the location 8. The degree of truncation which pro-
vides minimum error variance ‘= a function of @, but using the central fifty
percent gives quite good results. They also show that E = .6OS(X-72-X.28),
where XP is the estimate of the Pth fractile of the sample, is a reasonable
estimator of the scale. It has small asymptotic bias. Its error variance,
though small enough for non-critical work, is significantly larger than the

Rao-Cramer lower bound. They also investigate the approximation of a by
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choosing a such that, for some previously specified fractile P, the theoreti-
cal fractile of s&’o is the same as the sample fractile. Again, the optimal
value for P varies with the true alpha and the sample size. These estimates
of alpha showed some small bias and an error variance which is considerably
larger than could be had. However, all three estimators are excellent when
one considers their elegant simplicity.

DuMouchel (1971) did some work on maximum likelihood estimation of
stable parameters. The data is censored into discrete classes. The likeli-
hood function is evaluated for trial parameters using asymptotic formulas
for extreme values and the fast Fourier transform of the characteristic
function for central values. This method has two drawbacks. First, the
censoring of the data causes some information loss. Second, and most seri-
ous, is its incredible slowness. Each iterative try for a better parameter
estimate requires that the characteristic function be evaluated at many
points, and several Fourier transforms be done.

Other methods have been proposed based on characteristic functions.
These methods in general have been shown unworkable. The method of maximum
likelihood is the best method for obtaining estimates in the case of stable
distributions.

At this time there are no known methods for explicitly evaluating stable
densities and distribution functions to any realistic precision rapidly
enough to be feasible for production work. Therefore, it has been the goal
of this study to investigate algorithms which are quite slow but accurate.
These then are used to generate tables suitable for interpolation. Means of
storing and accessing these tables for the evaluation of stable densities and
distributions at high speed have also been developed.

All of the rather complex details can be found in Masters (1977). A
large number of Monte Carlo experiments were run in order to test the al-
gorithm for computing these parameter estimates. All of the estimaters
showed very small bias and standard error for most values of a. Some prob-
lems were noted when a 18 close to 1 or 2. Fortunately, values of a close to
Ll do not seem to occur. For a = 2, one can use estimators for normal distri-

butions.
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6.3 PRELIMINARY RESULTS-NON NORMAL BEHAVIOR OF THE TEXTURE VARIABLES

In order to assess the normality assumption for the texture variables,
an estimate of the stable distribution parameters was made for the data
available f:om the scenes VPLA, VPHA, SBLA and GAHA. Some results of these
estimates are presented in Table 6-1. The complete set of seventeen texture
variables is given for four separate classes: pavement, vegetation, culti-
vated fields (1) and soil. The estimated value of a is given in the table.
The largest value of a given by the estimation algorithm is 1.99, and the
smallest is 1.01. Thus a value of 1.99 means that the estimate is between
1.99 and 2.00. A value of 1.99 indicates that the data are normally distri-
buted whereas smaller values indicate that stable models are more appropri-
ate. The complete set of values run is too large to present. A total of 476
different variables have been estimated over the four photographs. Of these,
263 had o values different from 1.99. This means that 55% of the texture
variables are not normally distributed.

A complete set of estimates for fhe B parameter is not available, but
preliminary estimates indicate that 8 does deviate from 0 (symmetric dis-
tributions).

These results indicate that development of a stable classifier will pro-

duce good results.




Texture
Variable
1. MEAN
2. STD
3. SKEW
4. KURT
5. MDEVN
6. MPTCON
7. MPTREL
8. MINCON
9. MINSQR

10. M2CON
11. M2NSQR
12. MADAT1
13. MADAT2
14. MADAT3
15. MBDAT1
16. MBDAT2
17. MBDAT3

TABLE 6-1.

Pavement

1.20
1.59
.31
1.01
1.99
1.18
1.99
1.24
15527
1.99
15.99
1.18
1.5
101
1.01
1.85
1.34

VALUES OF o FOR VPHA

Vegetation

1.99
1.20
1.99
1.53
1.21
1.35
1.99
1.22
1.21
1.26
1.24
1.99
1.01
1.01
15299
1299
1799

C. Field 1

1.99
1.71
1.99
1.58
1.69
1.69
1.84
1.55
1.64
1.63
1.78
1.99
1.01
1.01
1.01
1.99
15299

Soil

1.15
1.99
1.99
1.45
1.99
1.01
1.08
1.41
1.99
1.50
1.66
1.15
1.18
1.99
1.01
1.01
1.01
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