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1
SECTION I

INTROD UCTION

During the past year under Contract No. N000 14-76-C-0547 , the basic

processing outlines-for the fabrication of C~ -S13N4 plate and dome geometries

by the chemical vapor deposition (CVD) method have been determined. Physical
property evaluations of deposits on this program when combined with earlier
property data (as shown in Table 1) suggest that continued developmen t and evalua.-
tion of CVD (~~ -SI3N4 should be pursued since an optimized form could possess

several unique attributes to be potentially useful as a high performance ceramic

component in advanced DoD missile systems.

As documented in subsequent paragr aphs , the first year’s program
broadly explored processing conditions which yielded crystalline CVD O(~ -S13N4
deposits suitable for material characterization. Preliminary correlations

between major processing variables and microstructure have now been estab-

lished . Both flat plate and dome configurations were successfully synthesized

on the progr am . From selected deposits , physical property specimen s were

extracted and subsequently ground and polished. Property evaluations at room

temperature documented in this report include: fiexure strength , failure strain ,

Young’s moduli , microhar dnesg , visible and infrared transmitt ance , infrared

reflectance , dIelectric constant and loss tangent , and fracture toughness deduced

from ident ation and grooved double -cantilever experiments.

/
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SECTION II

DEPOSITIO N CHEMISTRY

2. 1 General Consideration s

The deposition of non-crystalline silicon nitride from the vapor phase
for use as passivating layers in integrated circuitry has been developed Into
routine industrial step in the semiconductor industry . However , establishment
of process requirements for producing crystalline deposits of significant thick-
ness and controlled geometry and properties has not progressed to this point.
Some experimental work has been done which has yielded sufficient material
for characterization of optical , hardness and electrical properties , while basic
studies are only recently being rep orted regarding deposition mechanism ,
deposition conditions and the relationships between prop erties and production .

Silicon nitride for semiconductor application s is usually produced by

the interaction of silane (SiH 4) and ammonia (NH 3) at high dilution s in hydrogen
In a rapidly moving gas stream at one atmosphere. ~

4’ 5) Growth rates are of
the order of 100 Xto 500 per minute , and deposit thicknesses of several

micrometers are usually sought

Deposition temp eratures between 700 and 1000°C are customa ry in so-

called cold wall reactor s while heating is confined to the substrate to be coated

rather than including the entire enclosure.

However , for deposition of crystall ine material of millimete r th i ~knesses ,

higher temperatures are required , where the low thermal stability of ailane
and the difficulty of handling it In high concentrations, militates against It s con-
venient use . Fu rthermore , the coating of large shape s such as r adomes or
deposition of monolithic contours would be expected to be difficu lt to control in
the cold-wall , atmospheric pressure reactor s used In depositing thin films;

thus, relatively large isothermally heated furnace enclosures appear to be more

practical for such process ing. This necessitate s investigation of the formation

of silicon nitride under so-called “hot-wall ” conditions where the chemist ry

of formation Is somewhat more complex because of the longer resid~~oe times ,

4.



higher concentrations, complex flow patterns, slower transport rates and by-
product formation.

This report deals with studies of the formation of crystalline ~~~-.si1icon
nitride in a hot wall reactor system , using a variety of silicon precursor
materials, conducted for the purpose of establishing a process base on which
to deve1o~ optimized deposition conditions for production of useful shapes and
coatings of silicon nitride for various electromagnetic applications .

2 . 2 Chemistry of Silicon Nitride Formation
Powdered , commercial grade silicon nitride used for hot-pressing of

ceramic ware (tubes, crucibles, etc.) is made by reaction of silica and ammonia
in the presence of carbon . A relatively crude , impure product results which
is not amenable to subsequent formation of the materials of interest to this
program . Consequently , chemical vapor deposition , with its dependence on
pure, vapor-borne precur sor materials, and the relatively slow build-up of
equally pure , nearly theoretically dense material, is the most practical
approach. The general procedure in the case of silicon nitride consists of
passing a mixture of vapor-borne precursors into a chamber , hot wall or cold
wall , within which the precursors react and form deposition species. These
then adhere to the heated substrate and crystallize. The process is continued

until de8ired thicknesses are achieved . The chemistry and detailed transfor-

mation processes (deammination , crystal growth, etc.) Involved In formation
• of deposits of certain c~iaracteristics are at present inferred primarily through

analysis of the materials and correlation with the deposition conditions (temper-
ature, pressure, gas feed rate and concentration, gas flow dynamics, substrate
characteristics, etc.).

Silicon nitride can be formed from the vapor phase by interaction of

ammonia and a silicon halide (e. g., silicon tetrachioride , -fluoride or-bromide) ,

a silane derivative (e. g., chlorosilane SiH~Cly (x + y 4), or silane itself

(St H~tJ. Typical gross reactions are:

5.
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3 SiCl4 I- 4NH3~~~ SiaN4 + 12 HCI

3 SiF~ + 4NH3 -~~~Si3N4 + 12 HF

3 SiH~ + 4NH 3 .~~.Si 3N4 + 12 H2

The interaction of silicon tetrachloride with ammonia has been the subj ect

of systematic, detailed study for a number of years. (6 , 7) A series of solid

intermediate complexes, which may be generally termed ally! imides , for m

immediately on mixing the two reagents in the vapor as well as liquid phase .

Intermediates of thi s general type are believed to constitute the deposition

precursors since they lose ammonia as a function of temperature to yield non-

crystalline silicon nitride at temperatures around 1000°C. (7) Various sequences

have been proposed to represent the course of these reactions. For example ,

Billy~
6
~ has substantiated the following sequence by careful analysis:

S1CI4 + 6NH 3 sr— SiN2H2 + 4NH4C1

2S1N 2H 2 ~~~~~ NIl3 + S12N3H

S12N3H + NH4C1 ~~~ ‘- NH3 + Si2N3H2C1

- 
3S12N3H2CI —~~~~ NH4C1 + 2S13N4HCI —~~~~~~ 2Si~N~ + 2HC1

Formation of three dimensional polymeric species at lower tempera-

tures which may be cyclic , and based on the monomer (S1N2H2), is also

suggested by Billy~~ and may account for varying cry stallite sizes or random

large crystals In certain deposits. The precise composition and atoichiometry

of the intermediate mixture in vapor deposition and the rates at which the various

components form and decompose are undoubtedly of importance in determining

the deposition rate, morphology and characteristics of a deposit formed under

specific conditions of gas feed stoichiometry, concentration, mass flow rate,

temperature and pressure. It would be reasonable to assume that the use of a

hot wall versus a cold wall reactor would have an important influence on these

factor s simply by virtue of the different time-temperature profiles which the

reactive mixture experiences en route to the substrate.

The chemistry of the silicon tetrafluoride-ammonia system has not been

as well studied as that of the chloride system, although it has been reported to

6.



be considerably different. (9) Thus , the complex Intermediate structures pro-
posed by Billy and others for the chloride system may not be involved in the
reaction sequence. The lower stability of ainmonium fluoride would also ease
the problem of byproduct accumulation.

The silane-ammonia system has not been reported to have yielded cry-
stalline deposits at reasonable deposition rates, owing probably to the low
thermal stability of silane itself. Airey, Clarke, and Popper have reported~’°~
that coherent deposits were not formed owing to premature formation of silicon
in the vapor phase. Cochet , Mellottee and DelbourgoUl) analyzed the course of
decomposition of a silane/ammonia mixture approaching a substrate heated to
950°C and concluded that the silane was completely decomposed In the gas phase.
Thus , they claim that formation of silicon nitride would not be expected at the
surface. At higher surface temperatures where crystalline deposits occur ,
decomposition even further into the gas phase would be expected with the loss of
particulate silicon nitride particles except for accidental Impingement on the
substrate. This, however , is not very dtssimilar to the chloride process in
which intermediate silyl imide compounds are al so formed although from more
rather than less complex species. Decomposition also Occurs in the gas phase,

• with deposition of crystalline material through impingement on a heated substrate .

However , the lower temperatures at which the hydride process is conventionally
carried out leads to the possibility of entrapment of Incompletely decomposed inter -
mediates such as Si(NH)2, 8i2(NH)3, etc. , in the deposit with Insufficient time
and thermal energy for complete decomposition and crystal growth. The generation
of too high a vapor-borne content of silicon nitride particles at temperatures
below about 1350°C where crystal formation occur s could thus lead to sooting or
formation of non-coherent deposits such as Atrey, et. at . , observed. (10)

in all of these chemical systems, formation of solid deposition precursors
In the gas phase presents a somewhat different picture from processes In which
deposition occurs when the vapor pressure of a nucleus In the boundary layer

adjacent to the substrate exceeds the equilibrium value and precipitation occurs,

7.



1~
(e.g. , gas phase supersaturation In the C-H system) . In the latter case, removal

of the depositing species leads to diffusion of more of the precursor molecules

into the boundary layer as a result of the concentration gradient established . The

silicon nitride deposition process might also be expected to be different from

processes in which two species are reduced at the surface, at which location

they interact to form a more thermodynamically stable compound , such as titanium

bortde (TtB~), for example. The silicon nitride intermed iates may undergo

deammination In the gas phase, growing by collision until they either pass out of

the hot zone , or impinge on a heated surface. At Intermediate deposition temper-

atures , mixtures of both crystalline and vitreous silicon nitride are obtained,

suggesting such a growth process. (12)

Therefore , in developing a practical process for formation of silicon

nitride of optical quality , attentton must be paid to the internal geometry of the

deposition system, partlculari.y if shaped parts are to be formed. Maximum

opportunity for substrate contact should be provided under circumstances where

clogging in the hot zone cannot occur through excessive vapor phase agglomer a-

tion . In all of the above chemical systems, removal of non-gaseous precursors

will reduce the yield and may also cause clogging of the furnace lines , even in

• the absence of excess ammonia and ammonium chloride formation.

Table 2 is a summary of deposition conditions reported for deposition

of atitcon nttrtde from various chemical systems. In this work, an attempt

was made to evaluate the three most common SI precursors In conj unction with

NH3, eventually focussing on one particular system for further optimization.

8.
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SECTION III

EXPERIMENTAL PROCEDUR E

Deposition of silicon nitride from a variety of precursor silicon sources
was carried out using a low pressure hot wall reactor (isothermal furnace)
which has a hot zone of 10 cm. diameter x 25 cm high. A smaller furnace (2. 5 cm
dia. x 20 cm long) has also been used for a few rims. The heating element design
in both furnaces provides a constant temperature along the element wall , which
in turn heats a deposition chamber principally by radiation . Temperature van a-
tions within the deposition chamber are limited to those produced by losses from
the chamber itself due to the gas flow , rather than element end losses which might
occur In a furnace of different design . In this manner , the reagent gases do not
pass through a temperature gradient of any considerable length, but should
achieve equilibrium relatively quickly. The furnace Is equipped with conventional
gas handling facilities such as mass flowmeters , cold traps and a vacuum pump
of high capacity compared to the usual gas feed rates associated with low pressure
chemical vapor deposition. Temperatures are measured by optical pyrometer ,
while pressure is controlled by a nitrogen ballast valve at the pump.

Silicon tetrachlortde of two gr ades was used: technical grade (Fisher
Scientific) and electronic grade (Synthatron, Inc .). Silicon tetrafluoride was obtained
from Matheson Co. and Synthatron - both were listed as being 99 . 6% pure. Ammonia
was 99 .0% pure (Matheson) , pumped from the liquid, as were the silicon precursors.
Hydrogen (Airco) was reported to be technical grade (dew point: - 67.8°C or
‘~~~ 3.5 ppm H20). Hastings-Raydist mass flowineters were used to meter the
vapors Into the furnace with calibration curves based on literature values of
specific heats of the materials. Total mass of S1CI4 fed was determined by weigh-
ing the feed cylinder before and after an experiment and comparing the difference
to the mass fed as calculated from flowmeteir readings. There is some disagreement
In this area which Is believed to have been caused by imeven distillation or boIling

10.



p
of the liquids in the feed cylinder . Heating was provided to offset the decrease
In feed cylinder temperature caused by evaporation . Based on analysis of the
deposits , however , there does not appear to be evidence that variations in feed
stoichiometry were responsthle for effects such as banding or sooting. Forma-
tion of nodules , however , may result from this in the chloride system. These
were not observed in the fluoride System.

Silane was obtained as a three percent mixture in nitrogen (Matheson)
and was metered to the furnace through a mass flowmeter.

After passing through the reaction zone , the gaseous materials were
pumped through liquid nitrogen traps and Into a purged vent line.

Following deposition , the furnace assembly was cut apart and the deposit
removed from the graphite substrate by heating in air at 8 17°C for a sufficiently
long period to remove all traces of graphite. In certain cases, a thin pyrolytic

graphite layer was deposited on the substrate s to ease the residual stresses In
the deposit , to obtain a smoother backface and to prevent carbon contamination.
It is believed that this also provided some degree of protection against the attack
of polycrystalline graphite by ammonia.

In the deposition studies performed on this program, several geometries
were evaluated for the purpose of achieving reasonable deposition rates as well
as fur forming flat and shaped materials. In general , larger open cross-sections
resulted In lower rates, with concomitant plugging of gas exhaust lines with
smdecompo sed Intermediate deposits. This tended to limit deposition times at
constant pressure , and geometries were accordingly modified to offset this

effect . In addition to the problem of clogging induced by loss of intermediates,
unreacted ammonia in the feed mixture contributed to clogging through formation
of solId ammontum chloride by reaction with the HC1 gas released by reduction
of the silicon tetrachior ide.

H 11.



SECTION IV

EXPERIMENTAL RESULTS AND DISCUSSION

4. 1 Process Development
Table 3 summarizes the process conditions used in these studies. The

majority of the run s were performed in the larger furnace mentioned above ,
using various geometries to maximize yield and reduce clogging. (See Section
4. 1. 1). Some were performed using the smaller furnace with a channel geometry.
In general , deposition runs involving the use of silicon tetrachioride and ammonia
were terminated prematurely because of plugging of furnace lines a) when the
ammonia/silicon source ratio was high , and b) when the furnace geometry had
a large open cross-section. Unlike the cold wall reactor systems , the hot wall
system in use here offers little opportunity for collection of unreacted species
which are not converted on contact with the substrate. Thus, the geometry of
the Internal deposition zone is important - deposition runs in which the gas
stream had ample opportunity to contact hot surfaces produced considerably less
unreacted byproducts and usually presented no plugging problems. Less trouble
was also encountered with the fluoride system than with the chloride system ,
and there was no difficulty wIth the silane system other than the low deposition
rates due to the low concentration of silane available with the dilute gas mixtures
used. These observation s are in line with the degree of conversion of the silicon
precursor to deposited silicon nitride.

The deposits ranged from black to white, finely crystalline to heavily
and coarsely nodular . The fluoride deposits were also much finer grained than
the chloride, and had a considerably lower tendency to form nodules and large
faceted crystals. This could be attributed to the occur rence of fewer (if any)
intermediate species particles of significant size In the fluoride system.

Niihara and Rirai~~
3
~ relate the lightest colors with the highest levels

of oxygen contamination; work conducted at GE-RESD on ZR&D funding , however,
shows that addition of metallic elements such as aluminum or niobium also
influences color, other things being equal . Niihar a and HIrai~~

4
~ have also

12.
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correlated the morphology of the deposits with respect to temperature and
pressure of formation and with the location of feed material emerging from a
cold reactor inlet tube and impinging directly on the heated substrate .

Deposits made on Grafoll~~) and pyrolytic graphite sur faces had a tendency
to curl , particularly at the higher temperatures (ca. 1500°C). This appeared to
have occurred early in the course of a run , since the edges of curled sections
were coated . This may have resulted from peeling of the substrate layer
(pyrolytic graphite or GrafoI1~~~) from the polycrystalline substrates, parti-
cularly as broad fiat plates caused cracking of deposits at the upper and lower
ends, where deposit thickness was low. At lower temperatures (1400- 1450°C),
curling was less of a problem. No deposition runs were made at low temperatures
where vitreous deposits are normally encountered, e.g. , below 1300- 1350°C,
since the interest in this first year program was related to crystalline prope rties.

4. 1. 1 As-Deposited Configurations

Several mandrel designs were used for preparing “thick” , free-standing
deposits of crystalline Si3N4. A summary of these are listed below:

(1) flat-plate and dome mandrel s oriented normal to the flow
positioned within a deposition tube of circular cross- section
(e .g. , Run Nos. 1, 2 , 7).

(2) dual purpose mandrel for forming both fiat plate and dome
configurations simultaneously (Run No. 3).

(3) fiat-plate mandrels oriented both normal or parallel to the
flow positioned within deposition tubes of hexagonal cross-
section (e.g. , Run Nos. 8,9).

(4) deposition tubes of circular outside diameter and rectangular
cross- sectional area on the inside (typical of that used in the
smaller diameter 2. 54 cm furn ace, e.g. , Run Nos. 4 and 6).

The following post-deposition photographs illustrate some of the mandrel

configurations used for forming monolithic C~ -S13N4.
Figure 1 illustrates a dome mandrel showing both the first and last

deposited surface . The dome was subsequently ground and polished for optical

property evaluation . The formation of excessive nodular growths during the

latter stages of deposition presented a major obstacle during grinding and polishing .

14. 
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(a) Last Deposited Surface

_ _ _ _ _  

/

~ -L ~~~~~~~~~~~~~

I I I I I
0 1 2 3 4

cm

A

(b) First Deposited Surface

-__~.-Ik ~~~~~~~~~ . .

Figure 1. Dome Mandrel (a) Showing Last Deposited Surface and• 
(b) Firs t Deposited Surface After Removal of Graphi te
Substrate. Run No. 1.
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Figure 2 shows a dual purpose mandrel used for forming both fiat-plate and dome
configuration s simultaneou sly. Nodular overgrowths were again obtained during
the latter stages of deposition . In order to increase the yield of flat plate material ,
an inner deposition tube with a hexagonal cross-section was positioned within the
normal cylindrical deposition tube . Figure 3 shows the six side plates removed
after a deposition , and also a flat plate mandrel of hexagonal cross- section which
was oriented normal to the flow during the experiment. Excessive nodular growth
occurred during the latter stages of deposition . The most successful mandrel design
for forming fiat plate material consisted of two parallel rectangular deposition
plates oriented parallel to the flow. Figure 4 shows two typical plates which were
positioned within a deposition tube with a hexagonal cross-section . Experiments
conducted In the smaller 2. 54 cm diameter furnace utilized a flat plate mandrel
formed as an integral part of a deposition tube of circular outside diameter with
a rectangular channel forming the inside contour. Figure 5 shows a longitudinally
sectioned deposition tube, and also the inlet nozzle tube through which feed gases
were mixed prior to entry into the deposition channel.

4.2 Physical Property Characterization

4. 2. 1 Microstructure

4 .2. 1. 1 X-Ray Diffraction

Preferred orientation of cry stallIne~~~ -Si3N4 deposits varied from almost

random (Run No. 3) to highly preferred (Run Nos. 9 and 10). Figures 6 , 7 and 8

illustrate the actual measured diffraction data obtained from polished surfaces
(both sides) of each material . In all cases , differences In preferred orientation s

were observed between front and back surfaces of polished specimens.

4. 2. 1.2 Scanning Electron Microscopy

Figures ~~~, 10 and 11 show typical last deposited surface morphologies for

the three precursor reactant types studied. For Run No. 10 (Figure 11) , a range
of morphologies were observed varying (a) from a mixture of faceted and nodular
crystalhites to (b) an exclusively nodular growth pattern with growth cone diameters

approximately three times that observed in the mixed growth region . This parti-

cular deposition run was also unusual in that amorphous zones were detected

16.



(a) Inlet Port

• 
. Flow , , “~~~~~ ~~~~~. .i

- Di rection

-~~~~~~

\
;. .fø • ~~

(b) Female Mandrel (c) Male Mandrel

Fi gure 2. Dual Purpose Man drel for Forming Both Flat -Plate and
Dome Configurations Simultaneous ly . A Rectangular
Flow Channe l Was Formed By Combining the (b) and (c)
Portions of the Mandrel. Also Shown is Assembled
Mand rel Showing Gas Inlet Port to Internal Mandrel
Cavi ty. Run No. 3.
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Flow
Direction

L~~i i I a J
0 2 4 6 8 10

cm

Figure 3. Fla t Plate Mandre l ‘f Hexagonal Cross Section Oriented
Norma l to Flow . Also Shown are Six Flat Plates Which
Formed the Sides of the Corresponding Deposition Tube
Wi th a Hexagona l Cross-Section. Excessive Nodular Growth
Occurred Both on the Side Plates and Hexagona l Flat-Plate
Pedes tal. Run No. 8.
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I
Direction

of
Flow

Figure 4. Flat Plate Mandrel Aligned With Flow. Two Parallel
- Plates Shown Were Suspended in a Deposition Tube

Wi th a Hexagona l Cross Section . Run No. 9.
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- - -

Figure 5. Fiat Plate Mandrel Formed A. Wart of a Deposition Tuba
of Circular Outside Diameter Wi th a Rectangular Cross-
Sectiona l Area on the Inside Contour . Photograph Shows
the Inlet Nossle and Longitudinal ly Sectioned Deposition
Tube . Run No. 6.
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FIgure 6. X-Ray Diff raction 6cans of Polished O( -8i3N4 Plate ExtractedS From Run No. 3.
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within the depth of the deposit In regions selected for grinding and polishing.
Flezure strength on typical mMerial from this experiment was approximately
one-third that observed for crystalline deposits with a faceted last deposited
surface (Run No. 9). Also, the average Young’s modulus for material from
Run No. 10 was approximately one-half that observed for crystalline deposits
with a faceted last deposited surface (Run No. 9).
4.2. 1.3 Transmitted Light Microscopy

FIgures 12 and 13 Illustrate the mtcrostructural characteristics of
- S13N4 deposits as viewed In polarized transmitted light. The average grain

size In the plane of the deposit varies from 2-30 microns for Run No. 9 to 40-60
microns for Run No. 10. The presence of a void structure is observed in the
lower magnification photomiorographe of both deposits. Also, the presence of
larger, isolated spherulltlo grains are present in both deposits . These regions
represent areas of high visible specular transmittance (I. e ., good imaging
capability) .

4. 2. 2 Microhardness

Table 4 summarizes Knoop microhardness measurements using a 500
gram load . Although not determined in this study, Knoop microhardness values
on brittle materials vary inversely with applied load. (18) For example, unpublished
Knoop ‘nicrohardness data on similar CVD ~k~

’ -S13N4 deposits have been found to
range from 3580 to 4240 Kg/mm2 for a 100 gram load and correspondingly from
1800 to 1820 Kg/mm2 for a 3000 gram load. It should be noted that Vickers
hardness numbers would be approxImately 30 percent higher than the Knoop
mioroharduess measurements.
4. 2. 3 MechanIcal Propertie.

Figure 14 shows the four point flexure strength fI.xture used for m”klng
room temperature flexure strength determinations. Strain gages were attached
to specimens extracted from Run Nos. 9 and 10. A summary of flexure strength

• data Including failure strain and modulus of elasticity Is given in Table 5. The
lower flexure strength and Yoimg’s modulus of material from Run No. l Ot s
attributed to non-typical microstruotural development during deposition .

27.
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H Table 4. Knoop Mtcrohardness for CVD t~ -S13N 4

Run No. Knoop Microha rdncss, kg/mm 2

Surfac e Parallel to Surface Normal
Deposition Plane to Deposition Plane

1 2351 2344 , (24 10) ***

2 2416 2365

3 2317 2326

4 2565 2479

5 2354 , (1911) ** 2196

* 500 g load , average of six readings

** frosty region (partially amorphous and microcracked )

*** single crystal clear region

.1

30.
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P
Table 5. Flexure Properties of CVD o( -S13N4

Run No. 9 Flexure Strength Failu re Strain Young’s Modulus

MPa psi % GPa psi

233.66 33880 0.07 334.48 48 .5x 106

154.90 22460 0.05 311. 72 45 .2 x 106

213.03 30890 0.07 297.52 43. 14 x 106

271.31 39340 0.09 304.90 44.2 1x io6

X 218.22 31642 0.07 312. 14 45.26 x io6

Run No. 10 62.03 9140 0.03 206.90 30.00 x 106

45. 45 6590 0.03 131.72 19. lOx 1O~
89.38 12960 0.06 203.86 29.56x 106

38. 62 5600 0.04 132.41 19. 20 x 106

64. 76 9390 0. 03 203. 66 29. 53 x 106

I _____________ ___________ __________________ __________ ______________

X 60.25 8736 0.04 175.72 25.48 x io6

32.



Limited characterization of material from this experiment indicated that amorphous
zones existed through the thickness at some locations. The Young’s moduli recorded
for material from Run No. 9 is typical of that recorded In the literature for hot-
pressed ~ -S13N4 Indicating that this set of flexure strength is probably more
typical of CVD C~ -S13N4 at its current stage of development in our laboratory.

Subsequent three-point flexure strength measurements (4 specimens) by
Freiman at NRL on material from Run No. 9 showed an average tensile strength
of 164.09 MN/rn 2 (23. 8 kpsi) in the as-machined condition . Additional flexure
specimens (4) were heat treated at 1430°C for 100 hrs. yielding an average room
temperature flexure strength of 218.56 MN/rn 2 (31. 7 ksi). The fact that the strength
did not decrease after thi s heat treatment Is significant since over 50 percent drops
in strength have been observed on commercial hot pressed S13N4 after similar heat
treatments.
4. 2.4 OptIcal Properties

Spectral transmittance and reflectance properties of ground and polished
deposits were obtained for several runs. In some Instances, hemispherical as
well as specular transmittance was measured to determine the degree of scattering
in polished deposits.

4.2.4. 1 Dome Configurations
Infrared transmittance properties for the first dome segment which was

ground and polished is shown in Figure 15. FIgure 16 shows similar transmittance
data for a full dome segment which exhibited improved Infrared absorption coefficients

In the infrared. An estimate of projected transmtttance properties for a dome
segment of approximately half the thickness of the ground and polished dome is
also shown. By applying an antireflectlng coating, one may recover surface reflection
losses estimated to be approxImately 20 percent. The data shows that CVD

~~~~~~~ -Sf
3

N
4 
when optimized may be utilized as a window with a transmittance cut-off

of approxImately 4.5 mIcrons.
4. 2. 4. 2 Plate Configurations

FIgure 17 shows similar Infrared transmittance data for a polished flat
plate from Rim No. 3 agaIn confirming an infrared transmittance out-off at

7 33.
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approximately 4. 5 microns. The degree of scatterIng relative to the specular
transmitted component is reduced as the transmittance cut-off wavelength is

approached.

4.2.4. 3 Visual Color Characteristics

Visual color variations have been observed within and between deposits

synthesized in this study. Material from Run Nos. 9 and 10 are examples of the
range of color variations observed , I.e., water-clear to dark amber . Figures

18 and 19 show the hemispherical and specular transmittance properties of

material from each experiment. Although both deposits approach the 80 percent

intrinsic transmittance limit In the near Infrared wavelength region , significant

transmittance differences exist In the ultraviolet and visible wavelength regions
(0.30 to 0. 7 microns). These color differences have been attributed to variations

in oxygen content by Nithara and Hirai U3) with white material being associated

with oxygen levels In excess of 1 weight percent . FIgures 20 and 21 show the

hemispherical and specular transmittance characteristics of both types of deposits
In the infrared wavelength region. In this wavelength region, no transmittance
differences are observed for either deposit. Also, the magnitude of the scattered

transmittance component decreases beyond 3 microns. Correspondingly, the

specular reflectance behavIor of each type of deposit remains Identical as shown
in FIgi~res 22 and 23.
4. 2. 5 Dielectric Properties

In order to accommodate the non-standard specimen geometries which

could be extracted from fiat plate deposits, a resonant cavity technique was

developed patented after a method described In ASTM D2520-70 , entitled “Complex
Permittlvity of Solid Electrical Insulating Materials at Microwave Frequencies
and Temperatures to 1650°C. ” Figure 24 shows the laboratory set-up used for
recordb~ -daLa from which the dielectrIc oonstant and loss tangent for CVI)
(
~ -SL3N~ wa~ competed. Table 6 summarizes dielectric data from Run Nos. 9

and 10. The loss tangent data for CVD C( -Si3N4, being an order of magnitude

lower than literature data on hot-pressed and reaction-sintered modifications of

• 
$I

3N4. is especially noteworthy. If this trend continue s at elevated temperatures,
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- Table ~.: Dielectric Properties of CVD Q~— S13N4 at X-Ban d Frequency (~ J 10GHz)

Specimen Dielectric Constant Loss Tangent

Run No. 9 , Spec. 1 7.90 0. 0002

Run No. 10, Spec. 1 7.69 0.0006

Run No. 10, Spec . 2 7.62 0. 0006

- 45.
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the future of CVD C*~ -SI3N4 as a high temperature radar transmitting window
is promising.

4.2.6 Thermal Expansion

The thermal expansion behavior of CVD -S13N4 (Run No. 10) was
determined over the temperature range fro m room temperature to 1200°C.
Figure 25 shows the thermal expansion vs. temperature function . A summary
of thermal expansion coefficient data computed from the data in Figure 25 is
given In Table 7.

-It-

-4- -

I
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Figure 25. Thermal Expansion of CVD -513N4 as a Function of Temperature
Run No. 10,
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Table 7: Thermal Expansion Coefficients of CVD -S13N4 (Run No. 10)

Temperature (°C) Thermal Expansion Coeff. (1/°C)

-

- 290 0.336 x 10~~

500 0.924x 10 6

781 1.907 x 1U~~

-
- 1013 3.284x 10 6

- 1224 4.594 x 105 6

-‘
p

V

- 48.



SECTION 5.0

CONCLUSIONS

Experimental work on this contract during the past year has led to the
following conclusions:

1. Process par ameters and mandrel configurations were identified
for depositing flat plate and dome geometries with as-deposited
thicknesses In the 1 to 2 mm range .

2. The highest deposition rate (up to 0.64 mm/hr) and conversion
was obtained using SiCl4 as the source of elemental silicon.

3. The SiF4 reactant , while providing a relatively smooth last
deposited surface 4 provided low deposition rates (up to 0. 10 mm/br)
and conversion.

4. Dilute mixtures of the SIR4 reactant resulted in the lowest deposition
rates with as-deposited thicknesses to small to enable physical
property characterizations other than surface morphology .

5. On the basis of future scale-up considerations, the use of SIC14
as the source of silicon (together with NH3 and an H2 carrier gas)
appears to be the best reactant system in terms of raw material
cost, conversion and deposition rate (provided that control of last

deposited surface morphology is forthcoming).

6. The visible and Infrared transmIttance window for C( -813N4
extends from below 0. 20 mIcrons to approximately 5.0 microns.

7. The visible colors of polished ~~ -Si3N~ deposits include:
beige, green , light to dark brown , and colorless (water-clear) .

8 

8. The apparent high-purity of CVD prepared Ck~ -S1
3

N
4 

produced
on the program has resulted in microwave loss tangent data at

X-band frequencies significantly below state-of-the-art S1
3

N
4

material ; if this trend continues at elevated temperatures, the
application of CVD C* -S1

3
N

4 as a high temperature radar trans-

mitting window is promising .

49.



• 9. Although room temperature flexure strength of CVD O( -SI3N4
(at its current development stage In our laboratory) is approxi-

- - mately one-third that of state-of-the-art hot-pressed material ,
improvements in this level through control of grain morphology
appear feasible. Supporting mechanical property data from NRL

- indicate unmatched strength retention (compar ed to other forms of
Si3N4).

10. Crystalline CVD ~~ -SI3N4 has hardness levels superior to

[ 
common abrasives ranking it In third place behind diamond and

P ethic boron nitride; the hardness of amorphous CVD (~ -Si3N4,
- .  although somewhat lower than crystalline material , is comparable

(~~~Al2O3
11. SupportIng fracture toughness data from NRL and RI on CVD

material prepared on this program indicate Ir~ levels approaching
those of hot-pressed 813N4, data suggests that achievement of finer
grain size will Increase K 0 levels. (See Section 7.0 , Appendix. )

4 50.
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SECTION 6.0

RECOMMENDATIONS

An assessment of the current status of CVD S13N4 process developments
In this laboratory as a result of the first year’s contract activity has resulted in
the following recommendations for futur e work:

1. Future processing research should now focus upon the develop-
ment and control of a flne-grained microstruoture to improve
strength properties of crystalline deposits.

2. On the basis of future manufacturing considerations, the use of

SiCl4 as the source of silicon, NH3 as the source of nitrogen and
H2 as the carrier gas should be emphasized In futur e process studies
as a result of its lower raw material cost , higher conversion and
higher deposition rate.

3. Increases and control of deposition rate must be addressed In future
• work to provide flat plate material of adequate thickness to enable

comprehensive physical property characteristics.
4. The origin and control of visible color in CVD Si3N4 should be

Investigated; these variations and their origin are of obvious con-
cern for ultraviolet and visible window applications, and may also

have less obvious effects on other physical properties .
5. An assessment should be made with regard to the imaging potentIal

of CVD (~~ -Si3N
4 In the visible and Infrared wavelength regime; in

this regard , the potential of amorphous CVD S1
3
N4 should be

determined since optical isotropy would be anticipated for this
morphology.

6. Continued characterization of key physical properties of Interest
for various DoD applications should be pursued with emphasis on
high temperature behavior.

8
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SECTION 7.0

APPENDIX: FRACTUR E TOUGHNESS AND IMPACT BEHAVIOR
OF CVD ~~ -S13N4

7. 1 Introduction

An early estimate of the fracture toughness of CVD-prepa red ((_Si3N4
(extracted from Run Nos. 9 and 10) was obtain ed through the courtesy of Dr. S. W.
Freiman of the Naval Research Lab (NRL) and Dr. A. G. Evans of Rockwell
Int ernational (1U). The experimental work was supported by concurrent ONR
programs at each laboratory, respectively.

7.2 NRL Measurements

The critical stress Intensity factor (Kc) In the NRL work was deduced from
critical fracture energy ( ic) measurements using the ground double-cantilever
test method. ~~~ 9) An average critical fracture energy ( ic) of 29. 7 JIm2 was
obtained on four specimens from Run No. 9. The critic al stress Intensity factor ,
K 0, was obtained fr om the following equation:

K0 
4~~ I c E  -

where E is the modulus of elasticity

is the critical fracture energy .

A Kc of 4.31 MPa ‘ f ”
~ 

was arrived at using an aver age E of 312. 14
GN/m2 which was deduced from four-point flexure measurements (Table 5) on
material from Rim No. 9.

7. 3 RI Measurem.nts

~~ alternate test method was used by Evans at Ri for determining the
fracture to~~ho.ss of CVD-prspsred C~ -813N4 on specimens extracted from

• Rim Nos. 9 end 10. Tb. method uses Idsuitaticu fracture Information obtained from

52.
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Vickers microha r dness indenter data In the load region where measurable crack

extension occurs from the corners of the diamond pyramid impression . (20)

Figur e 26 shows a typic al experimental indenter Impression for CVD material

evaluated in this study (R un No. 9). From thIs data , the ratio of the crack

extensIon from the centro ld of the indenter impression , C , to the approximate

indenter radius , a , is computed. (See Figure 26.)  The fracture toughness is

then computed from the normalized ordinate parameter , K~ 0 f H \°
. 4

H ‘y7’~~~~ E )

where H is the macrohardness associated with a given impressIon rad ius , a;

E is the modulus of elasticity and (1 is a constraint factor equal to 3. 0. (See
F igure 27.)  Using this correlation , an average critical stress intensity factor ,
K 0, for material from Run Nos. 9 and 10, was found to be 3.2 MPa (about

35 percent lower than the NRL measurements).

7.4 Discussion of Results

A 35 percent discrepancy In Kc Is not too surprising considering the

basic differ aces In the test methods. In the case of the NRL data, K0 values
comparable to hot pressed Si3N4 (as measured at NRL) were obtained. On the

other hand , the RI data falls somewhere between reaction sintered Si3N4
(Kc = 2. 2 MPa ) and hot-pressed Si3N4 (K c = 5.0 MPa 1~~~~~~

) data as

measured by the RI indenter technique . The higher values of the NRL data (com-

pared to the RI data on CVD (~~ -S13N4 is possibly due to the fact that the NRL

method involves crack growth phenomena extending across several grains, whereby

the RI crack extension occurs over only a few grains at most , thus provid ing data

more representative of single crystal material . Also, the RI data represents

near surface prope rt ies rather than a bulk property as determined by the NRL

method . For finer grain size microstructures , the two test methods should yield

better agreement with K0 values comparable , or possibly exceeding, hot-pressed
S13N4.
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