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SECTION I

INTRODUCTION

During the past year under Contract No. N00014-76-C-0547, the basic
processing outlines.for the fabrication of a( -SigN4 plate and dome geometries
by the chemical vapor deposition (CVD) method have been determined. Physical

property evaluations of deposits on this program when combined with earlier

property data (as shown in Table 1) suggest that continued development and evalua~

tion of CVD o( -SigNy4 should be pursued since an optimized form could possess
several unique attributes to be potentially useful as a high performance ceramic
component in advanced DoD missile systems.

As documented in subsequent paragraphs, the first year's program
broadly explored processing conditions which yielded crystalline CVD O( -SigNy
deposits suitable for material characterization. Preliminary correlations
between major processing variables and microstructure have now been estab-
lished. Both flat plate and dome configurations were successfully synthesized
on the program. From selected deposits, physical property specimens were
extracted and subsequently ground and polished. Property evaluations at room
temperature documented in this report include: flexure strength, failure strain,
Young's moduli, microhardness, visible and infrared transmitt ance, infrared
reflectance, dielectric constant and loss tangent, and fracture toughness deduced

from identation and grooved double-cantilever experiments.
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SECTION II

DEPOSITION CHEMISTRY

2.1 General Considerations

The deposition of non-crystalline silicon nitride from the vapor phase
for use as passivating layers in integrated circuitry has been developed into «
routine industrial step in the semiconductor industry. However, establishment
of process requirements for producing crystalline deposits of significant thick-
ness and controlled geometry and properties has not progressed to this point.
Some experimental work has been done which has yielded sufficient material
for characterization of optical, hardness and electrical properties, while basic
studies are only recently being reported regarding deposition mechanism,
deposition conditions and the relationships between properties and production.

Silicon nitride for semiconductor applications is usually produced by
the interaction of silane (SiH4) and ammonia (NHg) at high dilutions in hydregen
in a rapidly moving gas stream at one atmosphere.“’ % Growth rates are of
the order of 100 X to 500 Xper minute, and deposit thicknesses of several
micrometers are usually sought.

Deposition temperatures between 700 and 1000°C are customary in so-
called cold wall reactors while heating is confined to the substrate to be coated
rather than including the entire enclosure.

However, for deposition of crystalline material of millimeter thi-knesses,
higher temperatures are required, where the low thermal stability of silane
and the difficulty of handling it in high concentrations, militates against its con-
venient use. Furthermore, the coating of large shapes such as radomes or
deposition of monolithic contours would be expected to be difficult to control in
the cold-wall, atmospheric pressure reactors used in depositing thin films;
thus, relatively large isothermally heated furnace enclosures appear to be more
practical for such processing. This necessitates investigation of the formation
of silicon nitride under so-called "hot-wall” conditions where the chemistry
of formation is somewhat more complex because of the longer residence times,

4.
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higher concentrations, complex flow patterns, slower transport rates and by-
product formation.

This report deals with studies of the formation of crystalline (x-sllicon
nitride in a hot wall reactor system, using a variety of silicon precursor
materials, conducted for the purpose of establishing a process base on which
to develof- optimized deposition conditions for production of useful shapes and

coatings of silicon nitride for various electromagnetic applications.

2.2 Chemistry of Silicon Nitride Formation

Powdered, commercial grade silicon nitride used for hot-pressing of
ceramic ware (tubes, crucibles, etc.) is made by reaction of silica and ammonia
in the presence of carbon. A relatively crude, impure product results which
is not amenable to subsequent formation of the materials of interest to this
program. Consequently, chemical vapor deposition, with its dependence on
pure, vapor-borne precursor materials, and the relatively slow build-up of
equally pure, nearly theoretically dense material, is the most practical
approach. The general procedure in the case of silicon nitride consists of
passing a mixture of vapor-borne precursors into a chamber, hot wall or cold
wall, within which the precursors react and form deposition species. These
then adhere to the heated substrate and crystallize. The process is continued
until desired thicknesses are achieved. The chemistry and detailed transfor-
mation processes (deammination, crystal growth, etc.) involved in formation
of deposits of certain chiaracteristics are at present inferred primarily through
analysis of the materials and correlation with the deposition conditions (temper-
ature, pressure, gas feed rate and concentration, gas flow dynamics, substrate
characteristics, etc.).

Silicon nitride can be formed from the vapor phase by interaction of
ammonia and a silicon halide (e.g., silicon tetrachloride, -fluoride or-bromide),

a silane derivative (e.g., chlorosilane Smely (x +y = 4), or silane itself

(SiH4). Typical gross reactions are:
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3 SiCl4 + 4NHg—= SigN, + 12 HC
3 SiF4 + 4NH3 9 SigN4 + 12 HF
3 SiH4 + 4NH3 3= SigN4 + 12 Hy

The interaction of silicon tetrachloride with ammonia has been the subject
of systematic, detailed study for a number of years. ikl A series of solid
intermediate coinplexes, which may be generzliy termed silyl imides, form
immediately on mixing the two reagents in the vapor as well as liquid phase.
Intermediates of this general type are believed to constitute the deposition
precursors since they lose ammonia as a function of temperature to yield non-

(7

crystalline silicon nitride at temperatures around 1000°C, Various sequences
have been proposed to represent the course of these reactions. For example,
Billy(s) has substantiated the following sequence by careful analysis:

SiCl4 + 6NHg —®= SiNgHy + 4NH4C1

2SiNgHg —%= NH3 + SiyN3H

SigNgH + NH4Cl —®= NHg3 + SigNgH,Cl

3SigNgHoCl —¥= NH,Cl + 28igN4HCl —= 2SigN, + 2HCI

Formation of three dimensional polymeric species at lower tempera-
tures which may be cyclic, and based on the monomer (SiNgHj), is also
suggested by Blllye) and may account for varying crystallite sizes or random
large crystals in certain deposits. The precise composition and stoichiometry
of the intermediate mixture in vapor deposition and the rates at which the various
components form and decompose are undoubtedly of importance in determining
the deposition rate, morphology and characteristics of a deposit formed under
specific conditions of gas feed stoichiometry, concentration, mass flow rate,
temperature and pressure. It would be reasonable to assume that the use of a
hot wall versus a cold wall reactor would have an important influence on these
factors simply by virtue of the different time-temperature profiles which the
reactive mixture experiences en route to the substrate.

The chemistry of the silicon tetrafluoride-ammonia system has not been
as well studied as that of the chloride system, although it has been reported to



be considerably different. ®)

Thus, the complex intermediate structures pro-
posed by Billy and others for the chloride system may not be involved in the
reaction sequence. The lower stability of ammonium fluoride would also ease
the problem of byproduct accumulation.

The silane-ammonia system has not been reported to have yielded cry-
stalline deposits at reasonable deposition rates, owing probably to the low
thermal stability of silane itself. Airey, Clarke, and Popper have reported(lo)
that coherent deposits were not formed owing to premature formation of silicon

in the vapor phase. Cochet, Mellottee and Delbourgo(u)

analyzed the course of
decomposition of a silane/ammonia mixture approaching a substrate heated to
950°C and concluded that the silane was completely decomposed in the gas phase.
Thus, they claim that formation of silicon nitride would not be expected at the
surface. At higher surface temperatures where crystalline deposits occur,
decomposition even further into the gas phase would be expected with the loss of
particulate silicon nitride particles except for accidental impingement on the
substrate. This, however, is not very dissimilar to the chloride process in

which intermediate silyl imide compounds are also formed although from more
rather than less complex species. Decomposition also occurs in the gas phase,
with deposition of crystalline material through impingement on a heated substrate.
However, the lower temperatures at which the hydride process is conventionally
carried out leads to the possibility of entrapment of incompletely decomposed inter -
mediates such as Si(NH)p, Sig(NH)g, etc., in the deposit with insufficient time

and thermal energy for complete decomposition and crystal growth. The generation
of too high a vapor-borne content of silicon nitride particles at temperatures

below about 1350°C where crystal formation occurs could thus lead to sooting or
formation of non-coherent deposits such as Airey, et.al., observed. (10)

In all of these chemical systems, formation of solid deposition precursors
in the gas phase presents a somewhat different picture from processes in which
deposition occurs when the vapor pressure of a nucleus in the boundary layer
adjacent to the substrate exceeds the equilibrium value and precipitation occurs,




(e.g., gas phase supersaturation in the C-H system). In the latter case, removal
of the depositing species leads to diffusion of more of the precursor molecules

into the boundary layer as a result of the concentration gradient established. The
silicon nitride deposition process might also be expected to be different from
processes in which two species are reduced at the surface, at which location

they interact to form a more thermodynamically stable compound, such as titanium
boride (TiB2), for example. The silicon nitride intermediates may undergo
deammination in the gas phase, growing by collision until they either pass out of
the hot zone, or impinge on a heated surface. At intermediate deposition temper-

atures, mixtures of both crystalline and vitreous silicon nitride are obtained,
(12)

A

o e

suggesting such a growth process.
Therefore, in developing a practical process for formation of silicon

nitride of optical quality, attention must be paid to the internal geometry of the

deposition system, particularly if shaped parts are to be formed. Maximum

PR e

opportunity for substrate contact should be provided under circumstances where
clogging in the hot zone cannot occur through excessive vapor pbase agglomera-

tion. In all of the above chemical systems, removal of non-gaseous precursors
will reduce the yield and may also cause clogging of the furnace lines, even in
the absence of excess ammonia and ammonium chloride formation.

Table 2 is a summary of deposition conditions reported for deposition
of silicon nitride from various chemical systems. In this work, an attempt
was made to evaluate the three most common Si precursors in conjunction with

NH3, eventually focussing on one particular system for further optimization.
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SECTION Il

EXPERIMENTAL PROCEDURE

Deposition of silicon nitride from a variety of precursor silicon sources
was carried out using a low pressure hot wall reactor (isothermal furnace)
which has a hot zone of 10 cm. diameter x 25 cm high. A smaller furnace (2.5 cm
dia. x 20 cm long) has also been used for a few runs. The heating element design
in both furnaces provides a constant temperature along the element wall, which
in turn heats a deposition chamber principally by radiation. Temperature varia-
tions within the deposition chamber are limited to those produced by losses from
the chamber itself due to the gas flow, rather than element end losses which might
occur in a furnace of different design. In this manner, the reagent gases do not
pass through a temperature gradient of any considerable length, but should
achieve equilibrium relatively quickly. The furnace is equipped with conventional
gas handling facilities such as mass flowmeters, cold traps and a vacuum pump
of high capacity compared to the usual gas feed rates associated with low pressure
chemical vapor deposition. Temperatures are measured by optical pyrometer,
while pressure is controlled by a nitrogen ballast valve at the pump.

Silicon tetrachloride of two grades was used: technical grade (Fisher
Scientific) and electronic grade (Synthatron,Inc.). Silicon tetrafluoride was obtained
from Matheson Co. and Synthatron - both were listed as being 99.6% pure. Ammonia

was 99.0% pure (Matheson), pumped from the liquid, as were the silicon precursors.

Hydrogen (Airco) was reported to be technical grade (dew point: - 67. 8°C or

~v 3.5 ppm Hg0). Hastings-Raydist mass flowmeters were used to meter the
vapors into the furnace with calibration curves based on literature values of

specific heats of the materials. Total mass of SiCl4 fed was determined by weigh-
ing the feed cylinder before and after an experiment and comparing the difference

to the mass fed as calculated from flowmeter readings. There is some disagreement
in this area which is believed to have been caused by uneven distillation or boiling
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of the liquids in the feed cylinder. Heating was provided to offset the decrease
in feed cylinder temperature caused by evaporation. Based on analysis of the
deposits, however, there does not appear to be evidence that variations in feed
stoichiometry were responsible for effects such as banding or sooting. Forma-
tion of nodules, however, may result from this in the chloride system. These
were not observed in the fluoride system.

Silane was obtained as a three percent mixture in nitrogen (Matheson)
and was metered to the furnace through a mass flowmeter.

After passing through the reaction zone, the gaseous materiais were
pumped through liquid nitrogen traps and into a purged vent line.

Following deposition, the furnace assembly was cut apart and the deposit
removed from the graphite substrate by heating in air at 817°C for a sufficiently
long period to remove all traces of graphite. In certain cases, a thin pyrolytic
graphite layer was deposited on the substrates to ease the residual stresses in
the deposit, to obtain a smoother backface and to prevent carbon contamination.
It is believed that this also provided some degree of protection against the attack
of polycrystalline graphite by ammonia.

In the deposition studies performed on this program, several geometries
were evaluated for the purpose of achieving reasonable deposition rates as well
as for forming flat and shaped materials. In general, larger open cross-sections
resulted in lower rates, with concomitant plugging of gas exhaust lines with
undecomposed intermediate deposits. This tended to limit deposition times at
constant pressure, and geometries were accordingly modified to offset this
effect. In addition to the problem of clogging induced by loss of intermediates,
unreacted ammonia in the feed mixture contributed to clogging through formation
of solid ammonium chloride by reaction with the HCI gas released by reduction
of the silicon tetrachloride.

11,
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SECTION IV

EXPERIMENTAL RESULTS AND DISC USSION

4.1 Process Development

Table 3 summarizes the process conditions used in these studies. The
majority of the runs were performed in the larger furnace mentioned above,

using various geometries to maximize yield and reduce clogging. (See Section

4.1.1). Some were performed using the smaller furnace with a channel geometry.

In general, deposition runs involving the use of silicon tetrachloride and ammonia
were terminated prematurely because of plugging of furnace lines a) when the
ammonia/silicon source ratio was high, and b) when the furnace geometry had
a large open cross-section. Unlike the cold wall reactor systems, the hot wall
system in use here offers little opportunity for ccllection of unreacted species
which are not converted on contact with the substrate. Thus, the geometry of
the internal deposition zone is linportant - deposition runs in which the gas
stream had ample opportunity to contact hot surfaces produced considerably less
unreacted byproducts and usually presented no plugging problems. Less trouble
was also encountered with the fluoride system than with the chloride system,
and there was no difficulty with the silane system other than the low deposition
rates due to the low concentration of silane available with the dilute gas mixtures
used. These observations are in line with the degree of conversion of the silicon
precursor to deposited silicon nitride.

The deposits ranged from black to white, finely crystalline to heavily
and coarsely nodular. The fluoride deposits were also much finer grained than
the chloride, and had a considerably lower tendency to form nodules and large
faceted crystals. This could be attributed to the occurrence of fewer (if any)
intermediate species particles of significant size in the fluoride system.

Niihara and leal(m) relate the lightest colors with the highest levels
of oxygen contamination; work conducted at GE-RESD on IR&D funding, however,
shows that addition of metallic elements such as aluminum or niobium also
influences color, other things being equal. Nithara and Hirai'*¥ have also

12.
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correlated the morphology of the deposits with respect to temperature and
pressure of formation and with the location of feed material emerging from a
cold reactor inlet tube and impinging directly on the heated substrate.

Deposits made on Grafoi and pyrolytic graphite surfaces had a tendency
to curl, particularly at the higher temperatures (ca. 1500°C). This appeared to
have occurred early in the course of a run, since the edges of curled sections
were coated. This may have resulted from peeling of the substrate layer
(pyrolytic graphite or Grafo ) from the polycrystalline substrates, parti-
cularly as broad flat plates caused cracking of deposits at the upper and lower
ends, where deposit thickness was low. At lower temperatures (1400-1450°C),
curling was less of a problem. No deposition runs were made at low temperatures
where vitreous deposits are normally encountered, e.g., below 1300-1350°C,
since the interest in this first year program was related to crystalline prope rties.

4.1.1 As-Deposited Configurations

Several mandrel designs were used for preparing "thick", free-standing
deposits of crystalline SigN4. A summary of these are listed below:

(1) flat-plate and dome mandrels oriented normal to the flow
positioned within a deposition tube of circular cross-section
(e.g., Run Nos. 1,2,7).

(2) dual purpose mandrel for forming both flat plate and dome
configurations simultaneously (Run No. 3).

(3) flat-plate mandrels oriented both normal or parallel to the
flow positioned within deposition tubes of hexagonal cross-
section (e.g., Run Nos. 8,9).

(4) deposition tubes of circular outside diameter and rectangular
cross-sectional area on the inside (typical of that used in the
smaller diameter 2. 54 cm furnace, e.g., Run Nos. 4 and 6).

The following post-deposition photographs illustrate some of the mandrel
configurations used for forming monolithic Q( -SigNy.

Figure 1 illustrates a dome mandrel showing both the first and last
deposited surface. The dome was subsequently ground and polished for optical
property evaluation. The formation of excessive nodular growths during the
latter stages of deposition presented a major obstacle during grinding and polishing.
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Figure 1.

(a) Last Deposited Surface

| SRR DU LA GHENY
0 e TR
cm

(b) First Deposited Surface

Dome Mandrel (a) Showing Last Deposited Surface and
(b) First Deposited Surface After Removal of Graphite
Substrate. Run No. 1.
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Figure 2 shows a dual purpose mandrel used for forming both flat-plate and dome

configurations simultaneously. Nodular overgrowths were again obtained during

the latter stages of deposition. In order to increase the yield of flat plate material,

an inner deposition tube with a hexagonal cross-section was positioned within the
normal cylindrical deposition tube. Figure 3 shows the six side plates removed
after a deposition, and also a flat plate mandrel of hexagonal cross-section which

was oriented normal to the flow during the experiment. Excessive nodular growth

occurred during the latter stages of deposition. The most successful mandrel design

for forming flat plate material consisted of two parallel rectangular deposition
plates oriented parallel to the flow. Figure 4 shows two typical plates which were
positioned within a deposition tube with a hexagonal cross-section. Experiments
conducted in the smaller 2. 54 cm diameter furnace utilized a fiat plate mandrel
formed as an integral part of a deposition tube of circular outside diameter with

a rectangular channel forming the inside contour. Figure 5 shows a longitudinally
sectioned deposition tube, and also the inlet nozzle tube through which feed gases

were mixed prior to entry into the deposition channel.

4.2 Physical Property Characterization

4.2.1 Microstructure
4.2.1.1 X-Ray Diffraction

Preferred orientation of crystalline O -8igN,4 deposits varied from almost
random (Run No. 3) to highly preferred (Run Nos. 9 and 10). Figures 6, 7 and 8
illustrate the actual measured diffraction data obtained from polished surfaces

(both sides) of each material. In all cases, differences in preferred orientations
were observed between front and back surfaces of polished specimens.
4.2.1.2 Scanning Electron Microscopy

Figures 3, 10 and 11 show typical last deposited surface morphologies for

the three precursor reactant types studied. For Run No. 10 (Figure 11), a range
of morphologies were observed varying (a) from a mixture of faceted and nodular
crystallites to (b) an exclusively nodular growth pattern with growth cone diameters
approximately three times that observed in the mixed growth region. This parti-
cular deposition run was also unusual in that amorphous zones were detected

16.
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(a) Inlet Port

Flow
Direction

(b) Female Mandrel (¢c) Male Mandrel

Figure 2.

Dual Purpose Mandrel for Forming Both Flat-Plate and
Dome Configurations Simultaneously. A Rectangular
Flow Channel Was Formed By Combining the (b) and (c¢)
Portions of the Mandrel. Also Shown is Assembled
Mandrel Showing Gas Inlet Port to Internal Mandrel
Cavity. Run No. 3. 17




Figure 3.

Flow
Direction

/

b

| WS
0 2 4 6 8 10

Flat Plate Mandrel of Hexagonal Cross Section Oriented
Normal to Flow. Also Shown sre Six Flat Plates Which
Formed the Sides of the Corresponding Deposition Tube
With a Hexagonal Cross-Section. Excessive Nodular Growth

Occurred Both on the Side Plates and Hexagonal Flat-Plate
Pedestal. Run No. 8.
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Direction
of
Flow

Figure 4. Flat Plate Mandrel Aligned With Flow. Two Parallel

Plates Shown Were Suspended in a Deposition Tube
With a Hexagonal Cross Section. Run No. 9.
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Figure 5.

Flat Plate Mandrel Formed As Bart of a Deposition Tube
of Circular Outside Diameter With a Rectangular Cross-
Sectional Area on the Inside Contour. Photograph Shows
the Inlet Nozzle and Longitudinally Sectioned Deposition
Tube. Run No. 6.
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within the depth of the deposit in regions selected for grinding and polishing.
Flexure strength on typical material from this experiment was approximately
one-third that observed for crystalline deposits with a faceted last deposited
surface (Run No. 9). Also, the average Young's modulus for material from
Run No. 10 was approximately one-half that observed for crystalline deposits
with a faceted last deposited surface (Run No. 9).
4.2.1.3 Transmitted Light Microscopy

Figures 12 and 13 illustrate the microstructural characteristics of
o( - SigN4 deposits as viewed in polarized transmitted light. The average grain
size in the plane of the deposit varies from 2-30 microns for Run No. 9 to 40-60

microns for Run No. 10. The presence of a void structure is observed in the
lower magnification photomicrographs of both deposits. Also, the presence of
larger, isolated spherulitic grains are 4present in both deposits. These regions
represent areas of high visible specular transmittance (i.e., good imaging
capability).
4.2.2 Microhardness

Table 4 summarizes Knoop microhardness measurements using a 500
gram load. Although not determined in this study, Knoop microhardness values
on brittle materials vary inversely with applied load. el For example, unpublished
Knoop microhardness data on similar CVD &( -8igNy4 deposits have been found to
range from 3580 to 4240 Kg/mm? for a 100 gram load and correspondingly from
1600 to 1820 Kg/mm? for a 3000 gram load. It should be noted that Vickers
hardness numbers would be approximately 30 percent higher than the Knoop
microhardness measurements.
4.2.3 Mechanical Properties

Figure 14 shows the four point flexure strength fixture used for making
room temperature flexure strength determinations. Strain gages were attached
to specimens extracted from Run Nos. 9 and 10. A summary of flexure strength
data including failure strain and modulus of elasticity is given in Table 5. The
lower flexure strength and Young's modulus of material from Run No. 10 is
attributed to non-typical microstructural development during deposition.

i
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» Figure 12. Photomicrographs of Polishedd—Si:,Na Viewed in Polarized
Transmitted Light Parallel to the Deposition Plane.
Run No. 9.
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Figure 13. Photomicrographs of Polished d-st Na Viewed in Polarized
Transmitted Light Parallel to the geposltion Plane.
Run No. 10.
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Table 4. Knoop Microhardness for CVD O( -SigN,

Run No. Knoop Microhardness, kg/mm?2 +
Surface Parallel to Surface Normal
Deposition Plane to Deposition Plane
1 2351 2344, (2410) ***
2 2416 2365
3 2317 2326
4 2565 2479
5 2354, (1911) ** 2196
* 500 g load, average of six readings
% frosty region (partially amorphous and microcracked)
i single crystal clear region

30.




Figure

14, Four-Point Flexure Strength Fixture




Table 5. Flexure Properties of CVD O -SigNy

Run No. 9 Flexure Strength Failure Strain Young's Modulus
MPa psi % GPa psi
233.66 | 33880 0.07 334.48 48.5 x 106
154.90 | 22460 0.05 311.72 45,2 x 106
213.03 | 30890 0.07 297.52 | 43.14 x 10°
271.31 | 39340 0.09 304. 90 44.21 x 106
X 218.22 | 31642 0.07 312. 14 45.26 x 10°
Run No. 10 62.03 9140 0.03 206. 90 30.00 x 108
45.45 6590 0.03 131.72 19.10 x 10d
89. 38 12960 0.06 203.86 29.56 x 106
28.62 | 5600 0.04 132.41 | 19.20x 10°
64,76 9390 0.03 203. 66 29.53 x 106
X 60.25 | 8736 0.04 175.72 25.48 x 10°
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Limited characterization of material from this experiment indicated that amorphous
zones existed through the thickness at some locations. The Young's moduli recorded
for material from Run No. 9 is typical of that recorded in the literature for hot-
pressed ﬂ -SigN4 indicating that this set of flexure strength is probably more
typical of CVD C(-Si3N4 at its current stage of development in our laboratory.
Subsequent three-point flexure strength measurements (4 specimens) by
Freiman at NRL on material from Run No. 9 showed an average tensile strength
of 164.09 MN/m2 (23.8 kpsi) in the as-machined condition. Additional flexure
specimens (4) were heat treated at 1430°C for 100 hrs. yielding an average room
temperature flexure strength of 218. 56 MN/m2 (31.7 ksi). The fact that the strength
did not decrease after this heat treatment is significant since over 50 percent drops
in strength have been observed on commercial hot pressed SigN,4 after similar heat
treatments.

4.2.4 Optical Properties

Spectral transmittance and reflectance properties of ground and polished
deposits were obtained for several runs. In some instances, hemispherical as
well as specular transmittance was measured to determine the degree of scattering
in polished deposits.
4.2.4.1 Dome Configurations

Infrared transmittance properties for the first dome segment which was
ground and polished is shown in Figure 15. Figure 16 shows similar transmittance
data for a full dome segment which exhibited improved infrared absorption coefficients
in the infrared. An estimate of projected transmittance properties for a dome
segment of approximately half the thickness of the ground and polished dome is

also shown. By applying an antireflecting coating, one may recover surface reflection
losses estimated to be approximately 20 percent. The data shows that CVD
d-8!3N4 when optimized may be utilized as a window with a transmittance cut-off
of approximately 4.5 microns.
4.2.4.2 Plate Configurations
Figure 17 shows similar infrared transmittance data for a polished flat
plate from Run No. 3 again confirming an infrared transmittance cut-off at

33.
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approximately 4.5 microns. The degree of scattering relative to the specular
transmitted component is reduced as the transmittance cut-off wavelength is
approached.

4,2.4.3 Visual Color Characteristics

Visual color variations have been observed within and between deposits
synthesized in this study. Material from Run Nos. 9 and 10 are examples of the
range of color variations observed, i.e., water-clear to dark amber. Figures
18 and 19 show the hemispherical and specular transmittance properties of
material from each experiment. Although both deposits approach the 80 percent
intrinsic transmittance limit in the near infrared wavelength region, significant
transmittance differences exist in the ultraviolet and visible wavelength regions
(0.30 to 0.7 microns). These color differences have been attributed to variations
(13) with white material being associated
with oxygen levels in excess of 1 weight percent. Figures 20 and 21 show the

in oxygen content by Niihara and Hirai

hemispherical and specular transmittance characteristics of both types of deposits
in the infrared wavelength region. In this wavelength region, no transmittance
differences are observed for either deposit. Also, the magnitude of the scattered
transmittance component decreases beyond 3 microns. Correspondingly, the
specular reflectance behavior of each type of deposit remains identical as shown
in Figures 22 and 23.
4.2.5 Dielectric Properties

In order to accommodate the non-standard specimen geometries which
could be extracted from flat plate deposits, a resonant cavity technique was
developed patented after a method described in ASTM D2520-70, entitled "Complex
Permittivity of Solid Electrical Insulating Materials at Microwave Frequencies
and Temperatures to 1650°C." Figure 24 shows the laboratory set-up used for
- recording daia from which the dielectric constant and loss tangent for CVD
O( -8igN, was computed. Table 6 summarizes dielectric data from Run Nos. 9
and 10. The loss tangent data for CVD Q( -SigN,, being an order of magnitude
lower than literature data on hot-pressed and reaction-sintered modifications of
8igNy4, is especially noteworthy. If this trend continues at elevated temperatures,
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Figure 18. Hemispherical and Spegular Visible Transmittance of
Polished Flat-Plate -8igN4 from Run No. 9.
o Specimen Thickness = 0.2540 mm.
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Figure 24. Laboratory Set-up for Determining Dielectric Properties
Using the Resonant Cavity Technique.




Table ¢: Dielectric Properties of CVD q— 8igN,4 at X-Band Frequency (~ 10GHz)

Specimen Dielectric Constant Loss Tangent
Run No. 9, Spec. 1 7.90 0.0002
Run No. 10, Spec. 1 7.69 0. 0006
Run No. 10, Spec. 2 7.62 0. 0006
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the future of CVD O -SigN, as a high temperature radar transmitting window
is promising.
4.2.6 Thermal Expansion

The thermal expansion behavior of CVD d ~8igNy4 (Run No. 10) was

determined over the temperature range from room temperature to 1200°C.

Figure 25 shows the thermal expansion vs. temperature function. A summary
of thermal expansion coefficient data computed from the data in Figure 25 is
given in Table 7.




mm/M

AL/L

0 200 400 600 800 1000 1200

Temperature

Figure 25. Thermal Expansion of CVD q -8igN,4 as a Function of Temperature
Run No. 10,

47.




Table 7;

Thermal Expansion Coefficients of CVD d -813N 4 (Run No. 10)

Temperature (° C)

Thermal Expansion Coeff. (1/9C)

290

500

781

1013

1224

0.336 x 1076
0.924 x 10-6
1.907 x 1078
3.284 x 1076

4.594 x 1076




SECTION 5.0

CONCLUSIONS

Experimental work on this contract during the past year has led to the
following conclusions:

1. Process parameters and mandrel configurations were identified
for depositing flat plate and dome geometries with as-deposited
thicknesses in the 1 to 2 mm range.

2. The highest deposition rate (up to 0.64 mm/hr) and conversion
was obtained using SiCl4 as the source of elemental silicon.

3. The SiF4 reactant, while providing a relatively smooth last
deposited surface, provided low deposition rates (up to 0.10 mm/hr)

h 4 and conversion.

4. Dilute mixtures of the SiH, reactant resulted in the lowest deposition
rates with as-deposited thicknesses to small to enable physical
property characterizations other than surface morphology.

5. On the basis of future scale-up considerations, the use of SiCly
as the source of silicon (together with NH3 and an Hy carrier gas)
appears to be the best reactant system in terms of raw material

cost, conversion and deposition rate (provided that control of last

deposited surface morphology is forthcoming).

6. The visible and infrared transmittance window for O -SigN,
extends from below 0. 20 microns to approximately 5.0 microns.

7. The visible colors of polished O{ -SigN4 deposits include:
beige, green, light to dark brown, and coleriess (water-clear).

8. The apparent high-purity of CVD prepared q ~-SigN, produced
on the program has resulted in microwave loss tangent data at
X-band frequencies significantly below state-of-the-art SigNy4
material; if this trend continues at elevated temperatures, the

. application of CVD d -8igN4 as a high temperature radar trans-

mitting window is promising.

49.
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11,

Although room temperature flexure strength of CVDd-Si3N4

(at its current development stage in our laboratory) is approxi-
mately one-third that of state-of-the-art hot-pressed material,
improvements in this level through control of grain morphology
appear feasible. Supporting mechanical property data from NRL
indicate unmatched strength retention (compared to other forms of
SigNy).

Crystalline CVD O( -S1,N, has hardness levels superior to
common abrasives ranking it in third place behind diamond and
cubic boron nitride; the hardness of amorphous CVD q -SigNy,
although somewhat lower than crystalline material, is comparable
to d -Al20g.

Supporting fracture toughness data from NRL and RI on CVD
material prepared on this program indicate K; levels approaching
those of hot-pressed SigN,, data suggests that achievement of finer
grain size will increase K, levels. (See Section 7.0, Appendix.)
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SECTION 6.0

RECOMMENDATIONS

An assessment of the current status of CVD SigN4 process developments
in this laboratory as a result of the first year's contract activity has resulted in
the following recommendations for future work:

1.

Future processing research should now focus upon the develop-
ment and control of a fine-grained microstructure to improve
strength properties of crystalline deposits.

On the basis of future manufacturing considerations, the use of
8iCl4 as the source of silicon, NHg as the source of nitrogen and
Hg as the carrier gas should be emphasized in future process studies
as a result of its lower raw material cost, higher conversion and
higher deposition rate.

Increases and control of deposition rate must be addressed in future
work to provide flat plate material of adequate thickness to enable
comprehensive physical property characteristics.

The origin and control of visible color in CVD SigN4 should be
investigated; these variations and their origin are of obvious con-
cern for ultraviolet and visible window applications, and may also
have less obvious effects on other physical properties.

An assessment should be made with regard to the imaging potential
of CVD Q(_ -813N in the visible and infrared wavelength regime; in
this regard, the potential of amorphous CVD SigN4 should be
determined since optical isotropy would be anticipated for this

morphology.
Continued characterization of key physical properties of interest
for various DoD applications should be pursued with emphasis on

high temperature behavior.




SECTION 7.0

APPENDIX: FRACTURE TOUGHNESS AND IMPACT BEHAVIOR
OF CVD g -SigN,

7.1 Introduction

An early estimate of the fracture toughness of CVD-prepared (x' -SigNy
(extracted from Run Nos. 9 and 10) was obtained through the courtesy of Dr. S. W.
Freiman of the Naval Research Lab (NRL) and Dr. A._ G. Evans of Rockwell
Int ernational (RI). The experimental work was supported by concurrent ONR
programs at each laboratory, respectively.

7.2 NRL Measurements

The critical stress intensity factor (K¢) in the NRL work was deduced from
critical fracture energy (Xc) measurements using the ground double-cantilever
test method. 9 An average critical fracture energy ( rc) of 29.7 J/m? was
obtained on four specimens from Run No. 9. The critical stress intensity factor,
K¢, was obtained from the following equation:

Ke = N 2¥cE
where E is the modulus of elasticity
xc is the critical fracture energy.

A K¢ of 4.31 MPa ‘v m  was arrived at using an average E of 312. 14
GN/m2 which was deduced from four-point flexure measurements (Table 5) on
material from Run No. 9.

7.3 RI ts

An alternate test method was used by Evans at RI for determining the
fracture toughness of CVD-prepared d -8igN4 on specimens extracted from
Run Nos. 9 and 10. The method uses identation fracture information obtained from




Vickers microhardness indenter data in the load region where measurable crack
extension occurs from the corners of the diamond pyramid impression. (20
Figure 26 shows a typical experimental indenter impression for CVD material
evaluated in this study (Run No. 9). From this data, the ratio of the crack

extension from the centroid of the indenter impression, C, to the approximate
indenter radius, a, is computed. (See Figure 26.) The fracture toughness is

then computed from the normalized ordinate parameter, K; O ( H 4 .

H4a'\0E
where H is the macrohardness associated with a given impression radius, a;
E is the modulus of elasticity and J is a constraint factor equal to 3.0. (See
Figure 27.) Using this correlation, an average critical stress intensity factor,
K¢, for material from Run Nos. 9 and 10, was found to be 3.2 MPa ‘{? (about

35 percent lower than the NRL measurements).

7.4 Discussion of Results

A 35 percent discrepancy in K¢ is not too surprising considering the
basic differ: nces in the test methods. In the case of the NRL data, K¢ values
comparable to hot pressed SigN4 (as measured at NRL) were obtained. On the
other hand, the RI data falls somewhere between reaction sintered SigNy
(Ke = 2.2 MPa Fn-' ) and hot-pressed Sl3N4 (Kc = 5.0 MPa 1;' ) data as
measured by the RI indenter technique. The higher values of the NRL data (com-
pared to the RI data on CVD Q[ -SigNy is possibly due to the fact that the NRL
method involves crack growth phenomena extending across several grains, whereby
the RI crack extension occurs over only a few grains at most, thus providing data
more representative of single crystal material. Also, the RI data represents
near surface properties rather than a bulk property as determined by the NRL
method. For finer grain size microstructures, the two test methods should yield
better agreement with K¢ values comparable, or possibly exceeding, hot-pressed
SigNy.
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Figure 26. Identation Fracture of CVD g -SigNg (Run No.
Identer Load 10 kg.
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